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Abstract 
In this paper, we introduce a generalized multiperiod version of the pooling problem to 
represent time varying blending systems, and also propose novel approaches to solve 
these problems to global optimality. The primary difficulties in solving this 
optimization problem are the presence of bilinear terms inherent in blending operations, 
as well as binary decision variables required to impose the operational constraints over 
multiple time periods. A general nonconvex MINLP formulation is presented that is 
used to globally optimize small systems, but quickly becomes intractable as problem 
size increases. A novel approximation of specified precision for the nonconvex bilinear 
terms is developed (a radix-based discretization scheme), with which the problem can 
be reformulated as an MILP. Solving this new formulation requires much less 
computational time than when the MINLP model is solved directly with a global 
optimization solver such as BARON. This then allows for the global optimization of 
larger blending systems. A comparison of the two formulations is presented, along with 
detailed computational results of each approach. 
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1. Introduction 
The efficient blending of liquid fuels to meet both technical and environmental 
specifications has been a growing research area in recent years as stricter regulations 
and smaller profit margins drive the need for the globally optimal blending scheme 
(Misener & Floudas, 2009). Specifically in refineries, the blending of different distilled 
fractions to meet specifications - without waste - is of great importance. Research up to 
this point has focused on what has become known as the pooling problem, posed by 
Haverly in 1978. In short, the problem is as follows: Multiple liquid streams with 
various properties (called qualities) are fed from supply tanks into blending tanks where 
they are assumed to be perfectly mixed in some proportion to meet a set of 
specifications, and are then fed into demand tanks. The goal is then to select the flows 
that minimize the overall cost of the blending process. The traditional pooling problem 
is assumed to operate at steady state, and thus inventory and other dynamics are 
neglected. In practice, however, supply and demand vary with time, and therefore the 
inventory in each tank varies as well. This gives rise to a multiperiod blending problem, 
which has received very little attention in the literature. Therefore, unlike the pooling 
problem, the supply and demand flows in the multiperiod problem are specified as a 
function of time. Additionally, mass balances over each blending tank must allow for 
accumulation in the form of inventories, as flow into a tank need not equal the flow 
leaving the tank. Lastly, a special operational constraint is imposed: flow cannot both 
enter and exit a blending tank in the same time period. This avoids the dynamic change 
of concentration associated with filling and draining a tank at the same time. The 
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multiperiod blending problem allows for a more accurate modeling of a blending 
system that varies over time, as is the case in gasoline and crude oil blending in 
refineries. 

2. Multiperiod Blending Problem 
2.1 Problem Description 

  
Figure 1: The pooling problem Figure 2: The multiperiod blending problem 

 

The multiperiod blending problem can be stated as follows. A network of supply, 
blending, and demand tanks is given that operates over a time horizon defined by a set 
of time periods. At time t = 0, an initial inventory is specified for each tank, as well as 
initial values for the qualities. Given the specified network topology, the optimal flows 
between the tanks in each time period must be determined, as well as the corresponding 
inventory levels, which are carried over from one period to another. It is important to 
note that each time period is not independent of the others due to the coupling created 
by the inventories. For example, flow may be diverted to a tank for temporary storage to 
be used in a later period, or there may be no direct path from a source tank to a demand 
tank. Thus, the optimization must be performed simultaneously over all time periods. 

In detailed terms, incoming supply flows (Fs,t) enter supply tanks each time period, and 
demand flows (Fd,t) are withdrawn from the demand tanks each time period. The supply 
flows to a given tank are assumed for simplicity to have the same composition over all 
time (Cq,s) but can vary in amount (hence the subscript t in Fs,t). Likewise, the 
concentration of flows leaving the demand tanks must be within specified bounds (CL

q,d 
and CU

q,d), but the flows can also vary in amount (hence the subscript t in Fd,t). Bounds 
on inventories are also given for each tank (IL

n and IU
n) and for each flow between each 

tank (FL
n→n’, usually zero, and FU

n→n’). Lastly, costs for the supply flows (βs), demand 
flows (βd), and fixed and variable costs for flows within the network (α and β, 
respectively) are taken into account with the goal of maximizing the profit (or 
minimizing the costs) of the multiperiod network operation to most efficiently mix the 
fuels to meet demand specifications. Because of the operational constraint that flow 
cannot both enter and exit a blending tank in the same time period, as well as to 
represent the fixed costs, binary decision variables yn→n’,t must be introduced into the 
problem such that yn→n’,t =1 when any flow exists between tank n and tank n’ in time 
period t, and yn→n’,t = 0 otherwise.  
 

2.2 MINLP Formulation 
Given a network topology and all associated values described above, the schedule for 
blending the fuels is sought that maximizes total profit. As stated earlier, the 
multiperiod blending problem naturally involves binary variables yn→n’,t for all the 
streams in each time period, and bilinearities for the mass balance constraints involving 
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mixing. This leads to the following nonconvex mixed-integer nonlinear programming 
(MINLP) model:  

𝑀𝑎𝑥 ����𝛽𝑑𝐹𝑏→𝑑,𝑡 −��𝛽𝑠𝐹𝑠→𝑏,𝑡 − � ��𝛼𝑛→𝑛′𝑦𝑛→𝑛′,𝑡+𝛽𝑛→𝑛′𝐹𝑛→𝑛′,𝑡�
𝑛′∈𝑁𝑛∈𝑁𝑏∈𝐵𝑠∈𝑆𝑑∈𝐷𝑏∈𝐵

�
𝑡∈𝑇 

 (1) 

Subject To:  
 𝐹𝑛→𝑛′,𝑡 ≤ 𝐹𝑛→𝑛′

𝑈 𝑦𝑛→𝑛′,𝑡 ∀𝑛,𝑛′ ∈ 𝑁; 𝑡 ∈ 𝑇 (2a) 
 𝐹𝑛→𝑛′,𝑡 ≥ 𝐹𝑛→𝑛′

𝐿 𝑦𝑛→𝑛′,𝑡 ∀𝑛,𝑛′ ∈ 𝑁; 𝑡 ∈ 𝑇 (2b) 
 𝐶𝑞,𝑏,𝑡 ≤ 𝐶𝑞,𝑑

𝑈 + 𝑀(1 − 𝑦𝑏→𝑑,𝑡−1) ∀𝑞 ∈ 𝑄;𝑑 ∈ 𝐷; 𝑡 ∈ 𝑇 (3a) 
 𝐶𝑞,𝑏,𝑡 ≥ 𝐶𝑞,𝑑

𝐿 + 𝑀(1 − 𝑦𝑏→𝑑,𝑡−1) ∀𝑞 ∈ 𝑄;𝑑 ∈ 𝐷; 𝑡 ∈ 𝑇 (3b) 
 𝐶𝑞,𝑏,𝑡 ≤ 𝐶𝑞,𝑑

𝑈 + 𝑀(1 − 𝑦𝑠→𝑑,𝑡−1) ∀𝑞 ∈ 𝑄; 𝑠 ∈ 𝑆; 𝑡 ∈ 𝑇 (3c) 
 𝐶𝑞,𝑏,𝑡 ≥ 𝐶𝑞,𝑑

𝐿 + 𝑀(1 − 𝑦𝑠→𝑑,𝑡−1) ∀𝑞 ∈ 𝑄; 𝑠 ∈ 𝑆; 𝑡 ∈ 𝑇 (3d) 
 𝐼𝑠,𝑡 = 𝐼𝑠,𝑡−1 + 𝐹𝑠,𝑡 − � 𝐹𝑠→𝑛,𝑡

𝑛∈𝑁

 ∀𝑠 ∈ 𝑆; 𝑡 ∈ 𝑇 (4a) 

 𝐼𝑏,𝑡 = 𝐼𝑏,𝑡−1 + �𝐹𝑛→𝑏,𝑡
𝑛∈𝑁

− � 𝐹𝑏→𝑛,𝑡
𝑛∈𝑁

 ∀𝑏 ∈ 𝐵; 𝑡 ∈ 𝑇 (4b) 

 𝐼𝑑,𝑡 = 𝐼𝑑,𝑡−1 + �𝐹𝑛→𝑑,𝑡
𝑛∈𝑁

− 𝐹𝑑,𝑡 ∀𝑑 ∈ 𝐷; 𝑡 ∈ 𝑇 (4c) 

 𝐼𝑏,𝑡𝐶𝑞,𝑏,𝑡 = 𝐼𝑏,𝑡−1𝐶𝑞,𝑏,𝑡−1 + �𝐹𝑠→𝑏,𝑡𝐶𝑞,𝑠
𝑠∈𝑆

+ � 𝐹𝑏′→𝑏,𝑡𝐶𝑞,𝑏′,𝑡−1
𝑏′∈𝐵

− � 𝐹𝑏→𝑛,𝑡𝐶𝑞,𝑏,𝑡−1
𝑛∈𝑁

 

∀𝑞 ∈ 𝑄; 𝑏 ∈ 𝐵; 𝑡 ∈ 𝑇 (5) 

 𝑦𝑛→𝑏,𝑡 + 𝑦𝑏→𝑛′,𝑡 ≤ 1 ∀𝑏 ∈ 𝐵;𝑛,𝑛′ ∈ 𝑁 (6) 
 𝐼𝑛𝐿 ≤ 𝐼𝑛,𝑡 ≤ 𝐼𝑛𝑈  ∀𝑛 ∈ 𝑁; 𝑡 ∈ 𝑇  
 𝑦𝑛→𝑛′,𝑡 ∈ {0,1} ∀𝑛,𝑛′ ∈ 𝑁; 𝑡 ∈ 𝑇  
 𝐹𝑛→𝑛′,𝑡 ≥ 0;      𝐼𝑛,𝑡 ≥ 0;        0 ≤ 𝐶𝑞,𝑏,𝑡 ≤ 1 ∀𝑏 ∈ 𝐵;𝑛,𝑛′ ∈ 𝑁; 𝑡 ∈ 𝑇; 𝑞 ∈ 𝑄  

To solve the multiperiod blending problem, the MINLP formulation must be solved to 
global optimality due to the bilinear constraints in (5). 

3. Radix-based Discretization 
Because the primary difficulty is the presence of bilinear terms (the only nonlinearity), 
we propose an approximation for the bilinear term u = F∙C by introducing a novel radix-
based discretization (RBD) of C. This approach was proposed in the solution of water 
network problems by Teles, Castro, & Matos (2012). The approximation shown below, 
which can be derived using disjunctive programming and exact linearizations, replaces 
the bilinear terms F∙C in equation 5 of the MINLP formulation (I∙C is treated similarly): 

𝑢 =  �� 10𝑘 ⋅ 𝑗 ⋅ 𝐹�𝑗,𝑘

9

𝑗=0

𝑃

𝑘=𝑝

  (7) 

𝐶 = �� 10𝑘 ⋅ 𝑗 ⋅ 𝑧𝑗 ,𝑘

9

𝑗=0

𝑃

𝑘=𝑝

  (8) 

 𝐹�𝑗,𝑘 ≤ 𝐹𝑈 ⋅ 𝑧𝑗,𝑘    ∀𝑘 ∈ {𝑝, … ,𝑃}, 𝑗 ∈ {0, … , 9} (9) 

�  𝐹�𝑗,𝑘 = 𝐹
9

𝑗=0

 ∀𝑘 ∈ {𝑝, … ,𝑃} (10) 



4  S.P. Kolodziej and I.E. Grossmann 

�  𝑧𝑗,𝑘 = 1
9

𝑗=0

 ∀𝑘 ∈ {𝑝, … ,𝑃} (11) 

𝑧𝑗,𝑘 ∈ {0,1};      𝐹�𝑗,𝑘 ≥ 0 ∀𝑘 ∈ {𝑝, … ,𝑃}, 𝑗 ∈ {0, … , 9}  
 

This set of constraints essentially represents C as a discrete value based on a given radix 
(in this case 10) to arbitrary precision (determined by p, the smallest power of 10 
allowed, and P, the largest power of 10 allowed). Other radices (or bases) can also be 
used. The accuracy of the solution depends on the precision of this approximation. 
However, a global or near global solution can be found by fixing the binary variables to 
the values found by the approximation and resolving the problem with a global or local 
NLP solver. Also, we should note that to ensure feasible solutions that the tolerances for 
the satisfaction of constraints need to be adjusted accordingly. 
 

While the proposed reformulation introduces significantly more constraints and 
variables, it changes the class of the problem from an MINLP to a mixed-integer linear 
programming problem (MILP). This class of optimization problem can generally be 
solved more efficiently, especially using highly refined commercial solvers such as IBM 
ILOG’s CPLEX Optimizer (Int, 2009) and Gurobi Optimization’s Gurobi Optimizer 
(Gur, 2011). These solvers can also take advantage of multiple computing threads, a 
further advantage over current MINLP solvers.  

4. Computational Results 
The nonconvex MINLP model was implemented in the modeling language GAMS 
(Brook et al, 1988) and solved using BARON 9.3.1 (Sahinidis, 1996) to guarantee a 
global optimum.  For comparison, the discretized MILP formulation was also 
implemented in GAMS and solved using Gurobi 4.5.1.  Using this new radix-based 
discretization approach at a discretization of p = -3 and P = 0 (10-3 to 100), we can solve 
previously intractable problems (requiring BARON more than 6 hours of computational 
time to close the optimality gap to 0.1%) in minutes. The results of this approach and 
the MINLP formulation solved by BARON are shown in Table 1. All computations 
were performed on an Intel Core i7 processor at 2.93GHz. The Gurobi results used eight 
threads simultaneously, while BARON could only utilize one thread.  
For an 8 tank, 3 time period problem with 2 qualities selected from the test problems, 
the optimal schedule is shown in Figure 3 and detailed results in Table 2.  

Table 1: Computational results of MINLP (BARON) and MILP (Gurobi) formulations for five 
test multiperiod blending problems 

Table 2: Computational results for 8 tank, 3 time period, 2 quality problem 

 CPU Time (s) Objective Constraints Continuous 
Variables 

Binary 
Variables 

MINLP >21600.0 *13.4517 628 136 87 
RBD (MILP) 389.7 13.5268 7092 4632 855 
NLP Post-Solve 0.2 13.5268 447 327 0 
*Best lower bound 

Tanks 6 8 8 8 8 
Time Periods 3 3 3 4 4 
MINLP CPU Time (s) 17.7 >21600.0 >21600.0 >21600.0 >21600.0 
RBD CPU Time (s) 3.0 663.6 389.7 845.9 409.7 
CPU Time Speedup 5.9x >32.5x >55.4x >25.5x >52.7x 
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While the discretization approach greatly increases the problem size, the time required 
to solve the problem is decreased significantly.  Additionally, after solving the 
discretized MILP, the binary variables present in the original problem were fixed and 
the problem was solved again with BARON acting as an NLP solver (see Table 2). 

  
t = 0 t = 1 

  
t = 2 t = 3 

Figure 3: Optimal solution for 8 tank, 3 time period, 2 quality problem 

5. Conclusion 
We have addressed in this paper the multiperiod blending problem for which a 
nonconvex MINLP formulation was proposed.  It was shown that the radix-based 
discretization approach has allowed the solution of larger multiperiod blending 
problems, with up to 8 tanks and 4 time periods, in a significantly shorter amount of 
time. However, as problem size increases, the discretized approach may become 
intractable. Thus, for future investigation, decomposition approaches will likely be 
required for the solution of very large systems. 
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