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Abstract 

This paper presents a new mixed integer linear program (MILP) for the optimal short-term 

scheduling of single stage batch plants with sequence dependent changeovers and optimal selection 

of the number of batches to produce. It is a continuous-time formulation employing multiple time 

grids that is based on the resource-task network (RTN) process representation. The main novelty is 

that aggregated processing and changeover tasks are considered that account for the time required to 

produce all batches of the product, plus the changeover time to the next product in the sequence. 

When compared to the traditional approach of considering a single processing task per batch, fewer 

event points are needed, which results in significantly lower computational effort as illustrated 

through the solution of several example problems. The new formulation is further compared to a 

continuous-time model with global precedence sequencing variables to a bounding model with 

immediate precedence sequencing variables and to a constraint programming model. 
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1. Introduction 

Optimization models for batch scheduling can be classified based on four main aspects1: time 

representation, material balances, event representation and objective function. Time representation 

can be considered the most important issue and optimization approaches can be classified into 

discrete and continuous-time formulations. The latter have received much of the attention of the 

process systems engineering community in the last decade and a recent comparative study involving 

the five most important formulations can be found in Shaik et al.2. 

In terms of material balances, the handling of batches and batch sizes gives rise to two types of 

model categories. Models based on unified frameworks for process representation like the State-

Task Network (STN)3 or the RTN4 can simultaneously deal with the optimal set of batches (number 

and size), the allocation and sequencing of manufacturing resources, and the timing of the 

processing tasks. Alternatively, there are models that assume that the number of batches of each size 

is known in advance, which can be regarded as one of the approaches for detailed production 

scheduling, widely used in industry, which decomposes the whole problem into two stages, batching 

and batch scheduling. Although they can address much larger practical problems, they are restricted 

to processes comprising sequential product recipes. 

For event representation models can rely on single5-7 or multiple, unit specific8-9, time grids with a 

pre-specified number of event points or, alternatively, on immediate10 or global precedence11-12 

relationships. In time grid based models, the higher the number of tasks to execute, the larger the 

number of event points required to find global optimal solutions. Since most model entities, i.e. 

variables and constraints, feature one or more time indices, there is a clear incentive to develop 

models requiring fewer event points in the hope of making them computationally more efficient. A 

well known example results from shifting from single to multiple-time grid based models2,8. Since 

time-grid based models require an iterative search procedure over the number of event points 

composing the grid in order to find the global optimal solution, there is the additional disadvantage 

of solving a larger number of problems. On the other hand, models based on precedence 

relationships need to be solved only once. 
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Finally, the objective function can be one of different measures of the quality of the solution, 

where the criteria selected for the optimization usually has a direct effect on the computational 

performance. In addition, some objective functions can be very hard to implement for some event 

representations. 

This paper builds on recent work by the authors8, who have compared different event 

representation models for the batch scheduling of multistage batch plants with sequence dependent 

changeovers. However, instead of considering that the number of batches for the production of a 

given order is known in advance, we solve the simultaneous batching and scheduling problem for 

single stage plants. A new RTN-based multiple time grid continuous-time formulation is proposed 

that considers the number of batches of a product to produce as explicit integer variables. It features 

aggregated tasks that include all the required batches of a particular order, where only one will need 

to be executed in a particular equipment unit. Each aggregated task will account for the time 

required to produce all selected batches of the product, plus the total changeover time between 

dissimilar batches of the same product, as well as the required changeover to the next product in the 

sequence. In this way, we take advantage of the well known ability of continuous-time formulations 

to handle variable duration tasks. When compared to the traditional STN/RTN approach that 

implicitly determines the number of batches by the number of processing tasks that are executed, 

fewer tasks will be generally needed and since each requires one time interval, fewer event points 

will be required to achieve global optimal solutions. 

To provide a better evaluation of its performance, the new approach is compared to a continuous-

time model with global precedence sequencing variables11 and to a constraint programming18 model, 

besides to a multiple time grid, traditional RTN approach. A bounding model14 using immediate 

precedence sequencing variables that does not use timing variables and can thus be viewed as a less 

constrained version of a pure scheduling model is also part of the comparison. Starting with a 

scenario of total production flexibility that is translated into the ability of producing different 

batches of the same product in multiple units, the formulations are simplified to the case where all 

batches of a product are produced in the same unit. This study is conducted for two alternative 

objective functions, revenue maximization and makespan minimization in order to increase our 
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knowledge of the strengths and drawbacks of each model. Note that when minimizing makespan, the 

batching problem reduces to finding out how to split the total number of batches over the parallel 

units in a flexible environment, whereas for production of all batches of a product in a single unit we 

get a pure scheduling model. 

2. Motivation and problem definition 

The problem that we will address in this paper is inspired by a real world application of a specialty 

chemicals and plastic manufacturing business. This has become a highly competitive and an 

unpredictable industry due to the introduction of new products, migration of products from specialty 

grade to commodity, pressures to reduce costs and inventories. Therefore, assessing the accurate 

production capacity and increasing plant utilization can provide a competitive advantage. 

In such industries, changeover times are sometimes required to switch the production from one 

product to another. If changeovers are sequence-dependent, then the utilization of plant capacity will 

depend on the sequence in which products are produced on the units. These changeover times can 

considerably reduce the capacity available for production particularly if their magnitudes are in the 

order of the batch times. Hence, there is a clear incentive to develop scheduling models that can 

account for sequence dependent changeovers efficiently. 

In this paper, the optimal short-term scheduling of single stage batch plants is considered together 

with the selection of the optimal number of batches. Given are a set I of products to be produced in a 

set M of parallel identical/non-identical batch equipment units. An example involving five products 

(A-E) and two reactors (R1-R2) is given in Figure 1. Both the duration pi,m and batch size bi,m of 

product i in unit m are known and assumed to be fixed. Given also are the duration of the required 

changeover times between the products, cli,i’,m and the product demand Δi. Two alternative objective 

functions will be considered: a) the maximization of the sales revenue over a fixed time horizon, H, 

where the demand will typically not be met for all the products; b) the minimization of the makespan 

required to meet the product demand. For the former objective, the products selling prices, vi, are 

needed. 

In order to allow for maximum plant flexibility, we do not restrict all batches of a given product to 

be produced in a single equipment unit. Thus, there will be cases where the optimal solution 
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comprises the production of batches in parallel units (see Figure 2). Nevertheless, we do consider 

such constraint as a special case and study its impact on model simplification, quality of the solution 

and computational effort. Note in Figure 2 that nonzero changeovers between different batches of 

the same product (e.g. I1-I1 in M1, I3-I3 and I4-I4 in M2), i.e. cli,i,m≠0, can be handled, although it 

must be said that this type of changeovers is less frequent than those involving different products. 

3. Multiple Time Grid Continuous Models 

The two continuous-time formulations considered in this section rely on the Resource-Task 

Network representation4 and employ multiple time grids, one for each equipment unit. They also use 

four-index binary variables linked to the execution of combined processing and changeover tasks, so 

they are conceptually similar to formulation CT4I developed by Castro et al.8. However, that 

formulation assumed the execution of just one processing task per product, with the amount of 

material processed (resulting from one or more batches) being implicit on the task duration. In order 

to deal with material amounts and also with variable duration tasks, the new formulations have used 

insights from the single time grid, short-term scheduling formulation of Castro et al.5. 

The two new formulations differ conceptually on the definition of a processing task. The 

traditional way1 is to define a processing task as the activity to process one batch of a particular 

product. If the model decides that more than a single batch of a product is required, it will execute a 

few instances of the corresponding task in the given time horizon, with the number of batches being 

equal to the number of instances of the task that are carried out. We will be calling this the implicit 

batching approach and refer to it as CT-IB (see Figure 2). CT-IB can be seen as a minor upgrade 

from CT4I8, concerning the generality of single stage problems that can be handled. 

Time grid based continuous-time formulations5-7,9 can handle variable duration tasks without 

significantly altering the complexity of the model. In the second approach, we take advantage of this 

fact and consider all processing instances of the same product that are executed in the same unit as a 

single aggregated task. The number of batches to produce on a particular unit will be defined as 

integer model variables, Zi,m, and will affect the duration of the aggregated task. As a consequence, 

this novel approach is named the explicit batching approach, referred to as CT-EB. In CT-EB, the 
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aggregated task linked to product i accounts for the aggregated processing time, the changeover time 

between different batches of the same product (as many times as the number of batches allocated to 

the unit minus one) and the final changeover time (if required) that prepares the unit for the 

subsequent production of another product. These features are illustrated in Figure 3. 

The underlying time grid is given in Figure 4. All |M| time grids feature the same number of event 

points, defined in set T. They also share the same origin and the fact that H acts as an upper bound 

on the time span. However, all other event points are free to vary between those two limits and there 

is no relation whatsoever between the timing variables of event points belonging to different grids. 

An important property inherited from CT4I8, is that a single time interval (slot) is enough for the 

execution of any task. Thus, the higher the number of tasks to execute, the larger the number of 

event points required to find the global optimal solution, which like in all other time grid based 

continuous-time models needs to be iteratively estimated1-2. With that in mind, from a comparison 

between Figure 2 and Figure 3, one can see that CT-IB requires a total of 5 event points while CT-

EB requires just 4. Since the number of event points required to solve a problem to global optimality 

is being used2 as a performance metric for continuous-time formulations where more event points 

typically means worse performances, such a small example perfectly illustrates the motivation for 

the development of CT-EB. Overall, CT-EB can be seen as a major upgrade from CT-IB concerning 

efficiency, but not generality since it cannot handle certain features that can appear in practice but 

are not part of the problem under consideration as will be discussed later on. 

3.1. Implicit Batching Approach (CT-IB) 

The implicit batching continuous-time formulation (CT-IB) features two sets of binary variables. 

Extent variables, Ni,i’,m,t, identify the execution of the processing task, starting at event point t, 

required to produce product i in unit m followed by the changeover task that makes the unit ready to 

process product i’ immediately after. The second set is linked to the initial condition of unit m, 

determined through variables 0
,miC , which can be fixed if the initial state is known. All continuous 

variables are nonnegative and include the excess resource variables, Ci,m,t, that indicate the 

availability of unit m at a condition that enables it to process product i at event point t. These 
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variables could also be defined as binary variables, but it is not necessary since the model constraints 

ensure that Ci,m,t={0,1}. It is important to note that the sum over i is linked to the availability of the 

unit for which variables Rm,t could be used explicitly8. Finally, Tt,m represents the absolute time of 

event point t belonging to time grid m and MS is the makespan. 

Other than makespan minimization, we consider the objective of the maximization of the sales 

revenue, eq 1, where the total production of product i is achieved by multiplying the batch size by 

the number of batches, which in turn is equal to the number of tasks that are executed. In eq 1, the 

domain of the binary variables is given by set Ii’,m,t, defined through eq 2. Note that in the last time 

interval (tasks starting at t=|T|-1, see Figure 4) only tasks with the same product index can be 

performed since there are no slots left to process any more tasks (see also Figure 2). Set Im includes 

the orders that can be processed in unit m, those that have a nonzero duration, see eq 3. 
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Regarding the model constraints we start with the excess resource balances, which can be viewed 

as multiperiod material balance expressions where the excess amount at point t is equal to that at 

point t-1 adjusted by the amounts produced/consumed by all tasks starting or ending at t. In eq 4 the 

initial state variables (first term on the right-hand side) only appear in constraints related to the first 

event point. For unit m, condition i is produced by all tasks (i’,i) processed in m and starting at t-1 

and is consumed by tasks (i,i’), also processed in unit m, starting at t. Eq 5 ensures that there is but 

one initial condition for each equipment unit. There is exactly one equipment unit of type m, so the 

maximum availability at any point in time is equal to one, eq 6.  
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The timing constraints relate the duration of a particular time interval to the duration of the 

combined task taking place, which is calculated by multiplying the corresponding binary extent 

variable by the sum of the processing plus changeover time, see eq 7. Note that we need to remove 

the changeover time of tasks executed in the last time interval to ensure that whenever there are 

products with cli,i,m≠0, we end with a processing task, which is reasonable since we do not know 

what lies ahead (see Figure 2).  
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Whenever the objective is makespan minimization, the timing variables need to be related to the 

makespan (MS), which must be greater than the ending time of all tasks. Eq 8 ensures that the 

makespan is greater than the absolute time of event point t plus the duration of all combined tasks 

starting at or after that event point, for all equipment units. 
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According to Figure 4, the time of the first event point must be set to zero (eq 9), while the time 

horizon acts as the upper bound for all points, see eq 10. 
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Finally, we conclude with the demand constraint that depends on the objective function. For profit 

maximization, the production of i must not exceed its demand (eq 11), while for makespan 

minimization we want to meet the exact demand for all products (eq 12). Naturally, the latter 

assumes that the given demands are multiples of the batch sizes otherwise ≥ is used instead. 
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3.1.1. Remarks 

Although CT-IB considers tasks with known batch sizes and fixed duration, it is straightforward5 

to adapt it in order to consider tasks with variable batch sizes and a duration that are dependent on 

the amount of material that is processed (if the relation is made linear the model remains as a MILP). 

CT-IB will then allow different processing instances of the same product to handle different batch 

sizes, which will increase significantly the variety of production amounts that can be obtained. At 

the same time, the total duration of the tasks will also belong to a continuous rather than to a discrete 

domain so the model can use more efficiently the available time horizon. CT-IB can thus be more 

considered a more flexible and general formulation than CT-EB. 

Concerning the definition of other objective functions, it is important to emphasize that the binary 

variables Ni,i’,m,t can be used to account for other non-time related contributions. For example, fixed 

and variable (dependent on the amount processed) operating costs can be merged into a single 

parameter since the batch sizes are fixed, and eventually further incorporated into parameter vi. 

Changeover costs are also straightforward to implement since the summation of such binary 

variables over t gives the number of changeovers from i to i’ in unit m. 

On more technical issues, because of eq 7, tasks will tend to be executed from the last to the first 

time interval, similarly to CT3I8 and contrary to CT4I8. Eq 13 can be added to enforce unit 

availability to decrease from start to finish with the exception of the last event point, where all 

equipment units become available. The idea is to reduce the number of degenerate solutions and 

facilitate the search procedure. However, adding more constraints also makes the mathematical 

problem more complex. Since computational studies have shown the latter effect to be more 

important than the former, eq 13 was not included. 

[||,1],0)( 1,,,, TtMmCC
mIi

tmitmi ∈∈∀≤−∑
∈

−  (13) 

3.2. Explicit Batching Approach (CT-EB) 

The explicit batching continuous-time formulation (CT-EB) requires two sets of variables to 

characterize an aggregated task. It shares the binary extent variables Ni,i’,m,t with CT-IB while also 

using the continuous extent variables ξi,m,t, which give the amount of product i produced in unit m at 
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time interval t. In addition, CT-EB uses the integer variables Zi,m to determine the number of batches 

of i produced in unit m, as already mentioned. All other CT-IB variables are also employed by CT-

EB. Regarding the model constraints, CT-EB uses eqs. 4-6, 9-10 and a few more sets other than 

those that are very similar to the ones in CT-IB. We will be focusing only on the features that are 

different. 

The first thing to note is that the domain of variables Ni,i’,m,t has changed. Like before, tasks with 

different order indices cannot be executed in the last time slot. However, now at most one 

aggregated task of product i will be executed in unit m since one task can handle multiple batches 

(see eq 14). Therefore, tasks with the same order index can be restricted to the last time slot. Set Ii’,m,t 

is thus given by eq 15. 
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The maximization of sales revenue objective function is given by eq 16, where the total production 

of product i is now accounted for through the continuous extent variables. These must equal the 

batch size times the number of batches of the product on that unit, eq 17. Eq 18 places an upper 

bound on the integer variables. The ceiling function has been used due to the fact that the total 

production of i cannot exceed its demand (eq 19) for the sales revenue objective. For makespan 

minimization, the equality is used instead (eq 20). 
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Material i can only be produced if one of its aggregated tasks is active at that point. The binary 

and continuous extent variables are related through eqs 19-20, where the upper bound on the amount 

produced is the product demand, and the lower bound is the batch size.  
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The timing constraints are more complex than before. For each aggregated task we need to 

account for the total processing task, total changeover time between different batches of the same 

product and changeover time for the following product, the latter only for tasks not executed in the 

last time interval. Figure 5 illustrates how the procedure works for a simple example and relates the 

multiplying terms to the relevant model variables. The general constraint is given in eq 23. Finally, 

eq 24 is the equivalent of eq 8, and is only to be used for makespan minimization. 
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3.2.1. Remarks 

An important simplification of the problem is achieved if all batches of a product are allocated to a 

single equipment unit. This choice has the advantage of allowing the consideration of simpler 

mathematical formulations that can effectively handle larger problem sizes. The obvious 

disadvantage is that the plant equipment units are not used to their full potential, as can be seen in 

Figure 6, where the three batches of product I3 can no longer be produced in the given time horizon 

(compare to Figure 3). As a consequence, the revenue has decreased and the idle time of unit M1 has 

increased. 
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For the sales revenue objective function, the explicit batching, with products allocated to a single 

unit (CT-EB-SU), continuous-time formulation, is very similar to CT-EB. A single adjustment is 

possible in terms of model variables whereas a couple of constraints can be made tighter. Integer 

variables Zi,m are replaced by integer variables Wi since at most one unit will be involved in the 

production of i, and their upper bounds can be determined through eq 25. The number of batches of i 

are now equal to the total amount produced divided by the corresponding batch size, see eq 26 that 

replaces eq 17. Eq 27 then ensures that i is not produced in more than one equipment unit (it replaces 

eq 14). 
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When minimizing makespan, CT-EB-SU becomes very similar to the implicit batching approach 

CT-IB, although the domain of variables Ni,i’,m,t is the one of CT-EB, given by eq 15. No integer 

variables are needed since the number of batches that are required to achieve a certain production 

can be determined a priori. This information is then incorporated into the processing time data, 

which naturally must include all required changeovers but the last, considered in the corresponding 

timing constraint (eq 7). The new processing times are calculated through eq 28 and the demand 

constraints (eq 12) can be dropped from the formulation. Finally, eq 29 ensures that each product is 

processed exactly once. 
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4. Continuous-Time Model with Global Precedence Sequencing Variables (CT-SV) 

Continuous-time scheduling formulations for single/multistage processes do not need to rely on an 

explicit time grid. The notion of global precedence can be used to relate processing tasks of different 
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products and hence avoid the drawback of requiring the specification of the total number of event 

points before solving the problem, which may compromise the quality of the solution. The 

continuous-time model with global precedence sequencing variables (CT-SV) shown next, needs to 

be solved only once to find the global optimal solution to the problem (if solved to zero optimality 

gap). 

Model CT-SV builds on the work of Harjunkoski and Grossmann11 and employs one sequencing 

variable for each pair of products (Xi,i’) to identify if product i ends before i’ (with i’>i). Variables 

Yi,m, also binary, are used to assign order i to unit m. The novelty of CT-SV is that it considers 

multiple batches for each product instead of a single one. Like for CT-EB, integer variables Zi,m give 

the number of batches of i processed in unit m. The full processing task for product i will include the 

total time of the individual processing tasks plus the total changeover time between different batches 

of i, as is illustrated in Figure 7. Another adjustment11 is that the ending time of the full tasks are 

now unit dependent (given by continuous variables Tfmi,m) since a particular product may be 

produced in multiple units. 

Concerning the model constraints, eq 30 represents the maximization of the revenue from product 

sales. Eq 31 ensures that the ending time of full processing task i in unit m is greater than the total 

duration of its contributors. Notice that the first term on the right-hand side accounts for one more 

changeover (i,i) than it requires and that is the reason why that same time is subtracted in the second 

term. Eqs 32-33 are big-M constraints (where the big-M parameter is the time horizon, H) relating 

the ending times of any two products. The time horizon acts as an upper bound on the timing 

variables, eq 34. Eq 35 ensures that the total duration of the full processing tasks is lower than the 

time horizon. Note that due to the use of global instead of immediate precedence sequencing 

variables, changeovers between batches of different products cannot be added to the LHS, so the 

constraints are not as tight as those given by eq 58 (see 5). Eq 36 states that batches of i can only be 

allocated to unit m if the product is allocated to that unit. The ceiling instead of the floor function 

has been used to determine the upper bound since it might not be possible to meet the exact demand 

when minimizing the makespan. The demand constraint is given in eq 37.  

∑∑
∈ ∈

⋅⋅
Mm Ii

mimii
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When minimizing makespan, besides turning eq 37 into an equality or the opposite inequality, and 

replacing eq 35 with the tighter eq 38, one additional set of constraints is required. Eq 39 ensures 

that the makespan, MS, is greater than the ending time of all tasks. 
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4.1. Remarks 

Model CT-SV implicitly assumes the same global precedence between any two products in all 

equipment units. However, it is theoretically possible that if two products are processed in more than 

a single unit, the optimal sequence may change due to different values of cli,i’,m and cli,i’,m’ or simply 

because of the influence of the other products that are processed in those units (see section 7.2 for an 

example). Cutting off the true optimal solution can be overcome by adding index m to the 

sequencing variables Xi,i’ but computational studies have shown a steep decrease in the model’s 

performance.  

Contrary to the time grid formulations, the use of global precedence sequencing variables prevents 

us from explicitly knowing the required changeover tasks between batches of adjacent products. As 

a consequence, accounting for transition costs is not possible. 
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Simplifying the problem by assuming that a product is allocated to a single equipment unit 

significantly increases the performance of the model, as will be seen in section 6. In terms of 

variables, the unit index can be dropped from the timing variables in model CT-SV-SU, which 

become Tfi. Regarding the constraints, a new set is required to ensure allocation of each product to at 

most a single equipment unit, eq 40. In addition, minor adjustments are needed for some of the 

previous sets due to the use of different timing variables. More specifically, for the revenue 

objective function, eqs 31-34 are replaced by eqs 41-44. Eqs 35-36 remain the same while eq 18 acts 

as the demand constraint, instead of eq 37.  
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For makespan minimization and similarly to CT-EB-SU, we can use eq 28 to define the processing 

time of the full processing tasks. As a consequence, the timing constraints are now simpler (see eqs 

45-49). We then ensure through eq 50 that each product needs to be allocated to exactly one unit. 
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5. Model of Erdirik-Dogan and Grossmann14 with Immediate Precedence Sequencing 

Variables (E-D&G) 

Erdirik-Dogan and Grossmann14 have recently proposed a method for simultaneously determining 

the number of batches to produce of each product together with their allocation and sequencing on 

the equipment units. The idea for the sequencing is to generate a cyclic schedule that minimizes the 

changeover times amongst the assigned products while determining at the same time the optimal 

sequence by breaking one of the links in the cycle15. Immediate precedence sequencing variables are 

used and the sequencing constraints can be regarded as a relaxation of the traveling salesman 

problem16. 

The E-D&G model has the potential drawback of generating solutions featuring subcycles even 

though for asymmetric sequence-dependent changeovers the likelihood is very small. Whenever 

subcycles are present, the solution does not correspond to a feasible schedule. Nevertheless, since a 

less constrained version of the scheduling problem is being solved, the model will yield an 

upper/lower bound when maximizing revenue/minimizing makespan, which is very tight, as will be 

seen in section 7. If no subcycles are present, the solution is a global optimal schedule. 

Subcycles can be broken by adding subtour elimination constraints and solving the model 

iteratively until a feasible schedule is found. General subtour elimination constraints of the type 

given in Birewar & Grossmann17, do not compromise optimality but increase the size of the problem 

greatly if the number of products is high. The alternative used in this paper, is to introduce these 

constraints for only the set of products involved in the various subcycles. In such case, at the end of 

the iterative procedure, the solution will correspond to a lower/upper bound on the 

revenue/makespan. 

When compared to Erdirik-Dogan & Grossmann14, the nomenclature of the model has been 

adapted to the specifics of the problem under consideration. Like in CT-SV, Yi,m are the binary 

assignment variables and Zi,m are the integer batching variables. Also of the binary type, ZPi,i’,m are 

the immediate precedence sequencing variables indicating that product i precedes i’ in unit m, while 

ZZPi,i’,m identify if the link between i and i’ in unit m is to be broken (see Figure 8). The E-D&G 

model constraints are given next together with a brief explanation. 
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Eqs 51-52  ensure that if product i is assigned to unit m there is exactly one transition to/from 

product i’ in that unit. Eq 53 states that exactly one of the links in the optimal cycle can be broken. A 

link cannot be broken if the corresponding pair is not selected in the cycle, eq 54. To avoid 

schedules consisting of self loops, a self changeover is allowed if and only if that product is the only 

one assigned to the unit (eqs 55-57). Eq 58 ensures that the total processing plus changeover time in 

unit m does not exceed the time horizon. It is a much tighter constraint than eq 35 due to the use of 

immediate instead of global precedence sequencing variables. Eq 59 guarantees that only in cases 

where product i is assigned to unit m, can there be batches of i be produced in m. The remaining sets 

of constraints, eqs 36-37 together with the revenue maximization objective function, eq 30, are 

shared with CT-SV. 

When minimizing makespan, and besides the previously mentioned changes to eq 37, one just 

needs to replace eq 58 by eq 60. 
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Whenever the optimal solution features subtours, the model needs to be re-solved with the subtour 

elimination constraints (eq 61). In this iterative procedure, set IT includes all previous iterations, Sit 
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the set of subtours of iteration it and ISs,it,m the set of products involved in subtour s of iteration it in 

machine m. Eq 61 is applied for every pair of subtours belonging to the set of active systems, AcSit,m, 

which is defined by eq 62. The elements of sets ISs,it,m and AcSit,m are given in section 7.3 for one 

example. 
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5.1. Remarks 

With immediate precedence sequencing variables it is straightforward to account for transitions 

costs in the objective function. 

To ensure that a given product is allocated to a single unit, model E-D&G-SU can be used. When 

compared to the base models, eq 40 replaces eq 37 for revenue maximization, while for makespan 

minimization eq 50 needs to be added. 

6. Constraint Programming Model (CP-SU) 

Constraint programming13, originally developed to solve feasibility problems, can also solve 

optimization problems. Constraint programming (CP) algorithms are very efficient for some classes 

of problems, among which scheduling is a prominent one. The CP formulations shown here are 

based on ILOG’s OPL Studio modeling language18. Contrary to the previous MILP models, CP 

scheduling models do not rely explicitly on time grids neither on sequencing constraints. Instead, 

task (activity) sequencing is implicit through starting and ending times in the equipment unit where 

they have been allocated. Nevertheless, CP scheduling models seem to rely on global precedence 

sequencing variables since one such model exhibited the same limitations as a global precedence 

sequencing variable model in the solution of a single stage problem with sequence dependent 

changeovers8. CP scheduling models are also similar to RTN models in the sense that both have as 

their two main components activities (tasks) and resources. Activities and resources, which can be of 

three different types (equipment units correspond to unary resources), are the special constructs of 

the model. These are then linked to global constraints (e.g. requires) to build up the scheduling 
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model. For a brief description of such OPL Studio’s entities and their possible use for solving 

scheduling problems of higher structural complexity, the reader is directed to the work of Maravelias 

and Grossmann19. 

The constraint programming model considered assumes that a particular product is allocated to a 

single equipment unit (CP-SU). A more general model, able of handling the scenario of total plant 

flexibility, was also developed but it exhibited a very low performance and for this reason it is not 

shown here. The activities of model CP-SU concern the execution of product i and are subject to a 

transition time that is accessed through the corresponding element in the transition matrix, see eq 63. 

The transition matrix is given by the parameter chgover[Units,Products,Products] (equivalent to 

cli,i’,m), with each row being associated to a particular equipment unit (eq 64). Each activity can be 

executed in one of m units, so these machines are alternative resources from the activity standpoint, 

see eq 65. Integer variables Wi indicate the number of batches of product i to produce (upper bound 

given by eq 25), while set Qi identifies the unit allocated to product i: Qi∈M, ∀i∈I. The amount of i 

that is produced will be given by Ai, which is bounded by the product demand..  

Activity DO[i in Products] transitionType i (63) 

UnaryResource unit[m in Units] (chgover[m]) (64) 

AlternativeResources Machines[unit] (chgover[m]) (65) 

Concerning the model constraints, eq 66 is the objective function for revenue maximization. Eq 67 

relates the amount of i produced to the number of batches executed and to the batch size of the unit 

where the product is executed. Notice the use of variable Qi as an index (to determine the relevant 

unit), an important feature of CP models. Eq 68 states that each activity requires one of the available 

equipment units, while eq 69 determines the activity’s duration (activities are equivalent to the full 

processing tasks in Figure 7). Notice the inequality sign, which is needed because the duration of an 

activity must be nonnegative. It is also important to mention that all activities will be performed 

even though no batches of product i are produced (such activities will have a zero duration). 

Furthermore, zero duration activities are not subject to changeovers so it is exactly as if those 

activities were not being performed. Finally, eq 70 states that selecting unit m from the set of 

alternative machines to process product i, is equivalent to allocating i to unit m.  
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When minimizing makespan the first thing to do is to determine the duration of the full processing 

task through eq 28. Then, besides eqs 68 and 70, eqs 71-72 are needed. 

( )end].[DOmaxmin i
Ii∈
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IiiQipi ∈∀= ]][,[duration].[DO  (72) 

7. Computational Studies 

The performance of the eight alternative approaches is evaluated in this section through the 

solution of four example problems ranging from 5 products in 2 units to 10 products in 4 units. For 

revenue maximization, each problem is solved for three different values of the time horizon, H. 

Naturally, the higher the time span the higher the revenue, due to the production of an higher 

number of batches. For makespan minimization with the continuous-time formulations we need to 

specify a value of H that is sufficiently large to ensure full production. We have used 1.5 times the 

highest value of the maximum revenue tests. Overall, a total of 128 computer runs were made. The 

data from the example problems are adapted from data taken from a real industrial plant and are 

given as Supporting Information. It is important to emphasize that despite the fact that all the 

examples feature cli,i,m=0 ∀m∈M, i∈Im, we have confirmed with other examples that all the 

approaches are able to handle cli,i,m≠0. 

The continuous-time mathematical formulations were implemented and solved in GAMS 22.2 

using CPLEX 10.0.1 as the MILP solver. All the problems were solved to optimality (relative 

tolerance equal to 1E-6) or up to a maximum resource limit of typically one hour, or up to the 

moment the solver ran out of memory. The CP models were in turn implemented and solved in 
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ILOG’s OPL Studio 3.7.1 and identical termination criteria were used. The computer used was a 

Pentium-4 3.4 GHz processor with 2 GB of RAM, running Windows XP Professional. 

The results have been divided into those generated under the option of maximum plant flexibility 

and those under the restriction of all batches of a product allocated to a single equipment unit. 

Tables showing the computational effort for the several formulations identify the best performer in 

bold and give the value of the global optimal solution or in alternative the best known solution. 

Since the global precedence sequencing variables and constraint programming based approaches are 

not entirely general, for reasons explained in section 7.2, we rely on CT-EB or E-D&G to identify 

the global optimum. With CT-EB this is assumed to be found whenever no improvement in the 

optimal value is observed following a single increment in the number of event points |T|. With E-

D&G we know that a solution is a global optimum whenever no subtours are observed in the first 

iteration. 

7.1. Maximum Plant Flexibility 

Table 1 and Table 2 show the results for the objectives of revenue maximization and makespan 

minimization, respectively.  The new explicit batching formulation (CT-EB) and the approach of 

Erdirik-Dogan & Grossmann14 (E-D&G) are undoubtedly the best approaches. It is also apparent 

that the new approach should be preferred in the more complex problems, for which the latter 

typically generates a first solution with subtours, that when eliminated, lead to the degradation of the 

solution in five cases (entries in the table with a superscript). The worst, was found for P3 (H=120 h) 

for which the lower bound after 5 iterations was equal to $1029.52, 15.5% lower than the global 

optimal solution. However, it is also true that E-D&G is less demanding computationally so it may 

have the edge when trading-off between quality of the solution and computational effort. Problem P4 

(makespan minimization) is the best example of this. With both CT-EB and E-D&G we were able to 

find a solution of 130 h but the former was 280 times slower. Furthermore, E-D&G provides us with 

the important additional information that the global optimal solution is at most 129 h. The other 

problem for which the global optimal solution is still unknown is P4 (H=120 h), for which the 

optimal solution returned by CT-EB for 5 event points is equal to $2068.58 for a possible maximum 



22 

of $2085.38 (upper bound from E-D&G). Due to the already high computational effort we did not 

solve the problem for a higher number of event points, which would widen the feasible region.      

The implicit batching CT-IB approach is a worse performer than CT-EB by typically one order of 

magnitude, an expected behavior since CT-IB requires a larger number of discrete variables and, 

most of the times, also exhibits a larger integrality gap (see Table 3 for detailed computational 

statistics). Contributing to the number of discrete variables are the number of binary and integer 

variables of the model. CT-EB uses exactly the same set of binary variables as CT-IB (Ni,i’,m,t being 

the most important) plus the integer variables Zi,m. However, the number of binary extent variables 

in CT-IB will be significantly higher due to need to use time grids with more event points (i.e. index 

t has a wider range) to find the exact same solution as CT-EB, as can be seen in Table 4. 

At the bottom of the performance table we find CT-SV, which fails to find the optimal solution in 

the majority of the cases. It is worth noting that when compared to CT-IB, CT-SV requires about 

one tenth the number of discrete variables, has a similar integrality gap but has a worse performance 

most of the times. The most notable exception to the rule is P3 (H=168 h) that takes less than one 

minute to solve as opposed to 4 hours by CT-IB. However, this is a special problem with zero 

integrality gap due to the fact that the time horizon allows for all product demands to be met 

(makespan is 167 h, see Table 2). When compared to E-D&G, Table 3 shows that the use of global 

instead of immediate precedence sequencing variables leads to a significantly smaller number of 

variables and constraints. Continuous-time models with global precedence sequencing variables are 

known8 to be able to find very good solutions fast, but also not being that good for proving 

optimality and CT-SV is no exception. Due to the smaller number of discrete variables, many nodes 

can be searched per second, but since the branch-and-bound tree rapidly explodes (i.e. the solver 

runs out of memory given sufficient time, see for example P4, H=120 h), it can only be concluded 

that the model is not as tight as time grid based models where each assignment brings the feasible 

region of the LP and the MILP closer together. 

There are a couple of results from Table 1 and Table 2 that are very important but are hidden. CT-

SV was able to solve P2 (for H=144 h and makespan minimization) to optimality, but it returned a 

suboptimal solution thus highlighting the fact that CT-SV is not as general as the multiple time grid 
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continuous-time models. In fact, CT-SV can fail for two different reasons, which will now be 

explained. 

7.2. Limitations of CT-SV and CP models 

Castro et al.8 reported that continuous-time models using global precedence sequencing variables 

can cutoff the real optimal solution from the feasible space in problems involving sequence 

dependent changeovers. To explain this behavior let us use the optimal solution of P4 (H=96 h) and 

the schedule for unit M1, which features a I6-I10-I2-I7 sequence, see Figure 9. The relevant 

processing and changeover times (h) are pI6,M1=15, pI10,M1=8,  pI2,M1=19, pI7,M1=9, clI6,I10,M1=1, 

clI6,I2,M1=18, clI10,I2,M1=1 and clI2,I7,M1=5. The optimal number of batches are in turn ZI6,M1=1, 

ZI10,M1=1, ZI2,M1=2, ZI7,M1=3. It can be seen that the difference between the ending times of products 

I2 and I6 is equal to 48 h. However, this solution cannot be generated by CT-SV simply because eq 

33, when applied to these two products and unit M1, gives: TfmI2,M1-TfmI6,M1≥56 h (note that 

XI2,I6=0). Overall, of the 16 instances solved for maximum plant flexibility, the global precedence 

issue was responsible for 6 failures, which were identified after using the optimal values from CT-

EB to fix the values of the integer variables Zi,m and then realize that either an infeasible solution 

(for revenue maximization) or a worse solution (for makespan minimization) was returned. With the 

problems constrained to production of a particular product in a single unit, CT-SV only failed for P3, 

H=144 h. This limitation is common to CP, which has global precedence sequencing variables that 

are implicit in its global constraints. 

The second failure for CT-SV was observed with P2 for makespan minimization. The optimal 

schedule obtained by both CT-IB and CT-EB with MS=235 h is shown in Figure 10. Notice that in 

M1, I2 precedes I6, which corresponds to XI2,I6=1, while in M2 it is product I6 that globally precedes 

I2, which corresponds to XI2,I6=0. Obviously, this cannot happen. Nevertheless, as mentioned in 

section 4.1, this can be overcome by disaggregating the sequencing variables over the equipment 

units, making it possible for XI2,I6,M1=1 and XI2,I6,M2=0. 
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7.3. Limitation of model E-D&G 

The E-D&G model can generate solutions featuring subcycles that cannot be translated into a 

feasible schedule. To illustrate this issue let us consider the solution from the first iteration of P3 

(H=144 h), which like all other problems, has asymmetric changeover time values. Six products are 

allocated to each machine and there are six subtours of two products, SIT1={S1, S2,…, S6}, see 

Figure 11. The correspondence of products to subtour, iteration and unit is then used to generate sets 

ISs,it,m, which become: ISS1,IT1,M1={I2, I10}; ISS2,IT1,M1={I3, I7}; ISS3,IT1,M1={I5, I6}; ISS4,IT1,M2={I1, 

I9}; ISS5,IT1,M2={I3, I7}; ISS6,IT1,M2={I4, I8}. For each machine there are three systems to consider for 

the subtour elimination constraints, AcSIT1,M1/M2={(S1,S2), (S1,S3), (S2,S3)} (see eq 62). The six 

subtour elimination constraints that were included in the second iteration of the algorithm are the 

following. 

11,7,101,3,101,7,21,3,2 ≥+++ MIIMIIMIIMII ZPZPZPZP  (73) 

11,6,101,5,101,6,21,5,2 ≥+++ MIIMIIMIIMII ZPZPZPZP  (74) 

11,6,71,5,71,6,31,5,3 ≥+++ MIIMIIMIIMII ZPZPZPZP  (75) 

12,7,92,3,92,7,12,3,1 ≥+++ MIIMIIMIIMII ZPZPZPZP  (76) 

12,8,92,4,92,8,12,4,1 ≥+++ MIIMIIMIIMII ZPZPZPZP  (77) 

12,8,72,4,72,8,32,4,3 ≥+++ MIIMIIMIIMII ZPZPZPZP  (78) 

The second iteration returns a solution equal to $1272.8, which is lower than the global optimal 

solution of $1388.88. This tells us that one of the above constraints has led to the elimination of the 

optimal solution from the feasible region. The optimal sequence of production is equal to I8-I7-I2-

I10-I1 in M1 and I5-I6-I4-I9-I3-I7 in M2 so a single binary variable, ZPI9,I3,M2 differs from zero and 

only eq 76 does not cutoff the optimal solution. The solution from the second iteration features two 

subtours in M1 and two other in M2: ISS7,IT2,M1={I2, I6, I7}; ISS8,IT2,M1={I3, I5, I9, I10}; 

ISS9,IT2,M2={I1,I8}; ISS10,IT2,M2={I3, I4, I7, I9}. Thus, the third iteration, besides eqs 73-78, features 

the following constraints. 

11,10,71,9,71,5,71,3,7

1,10,61,9,61,5,61,3,61,10,21,9,21,5,21,3,2

≥+++

++++++++

MIIMIIMIIMII

MIIMIIMIIMIIMIIMIIMIIMII

ZPZPZPZP
ZPZPZPZPZPZPZPZP

 (79) 
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12,9,82,7,82,4,82,3,82,9,12,7,12,4,12,3,1 ≥+++++++ MIIMIIMIIMIIMIIMIIMIIMII ZPZPZPZPZPZPZPZP  (80) 

The final solution, $1261.68, corresponds to a sequence of production equal to I2-I6-I7-I10-I3-I5 

in M1 and I1-I3-I7-I4-I9-I8, which clearly respects all the subtour elimination constraints. 

7.4. All Batches of a Given Product in the same Unit 

The flexibility of the plant is reduced if production of a product is restricted to a single equipment 

unit. From the modeling point of view, this option has the advantage of leading to simpler 

mathematical formulations and typically to lower computational efforts. Furthermore it is even 

possible that the optimal solution to the restricted problem, which is at most as good as the optimal 

solution to the unrestricted problem, is better than the best one found for the unrestricted problem up 

to a considerable computational resource limit. The results in Table 5 for CT-SV-SU are evidence of 

this behavior, when compared to those given in Table 1 for CT-SV. Notably, P2 (H=168 h) and P4 

(H=96 h) are solved in just 45 and 52.1 s, respectively,  and solutions of $1329.2 and $1725.34 are 

found, while CT-SV can only reach $1313.8 and $1715.6 until the moment the solver runs out of 

memory. Overall, for problems that were solved to global optimality, there were only two exceptions 

to the rule that the constrained problem is easier to solve than its unconstrained counterpart. The 

computational effort for P4 (H=144 h) increased by more than two orders of magnitude simply 

because the complexity of the mathematical problem has increased substantially due to the fact that 

144 h is no longer enough to meet all maximum demands (the makespan has increased from 130 to 

151 h, see Table 2 and Table 6). For P3 (H=168 h) with CT-SV-SU the difference is not as 

significant since the new makespan, 168 h, although higher than 167 h, still allows for maximum 

production to be achieved, with fewer degrees of freedom. 

The results in Table 5 also show that CT-EB-SU and CT-SV-SU have similar performances. 

Recall, however, that CT-EB-SU has the disadvantage of needing an iterative procedure over |T|, 

while CT-SV-SU only needs to solve each problem once. E-D&G-SU failed to find the optimal 

solution in all instances of P3 but was able to solve all problems in less than a minute. The constraint 

programming approach is the worst performer for revenue maximization since it can only solve to 
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optimality the three simplest problems. Problem P2 is already too hard to solve by CP-SU and very 

poor solutions are frequently obtained after 1 h of computational time. 

For makespan minimization, the results in Table 6 show that CP-SU is the best performer by far, 

able to solve all four problems in less than one second. It is worth to emphasize that under the 

restriction of production in a single unit and fixed demands, the three models considered in this 

section are submodels of those given in Castro et al.8, which can also handle release and due dates 

and be used in multistage plants. Larger problems involving 15 orders in 5 units were solved to 

global optimality for makespan minimization in less than one hour of computational time and the 

constraint programming model was found to be the best performer so the results in this paper are 

consistent with those findings. It is also interesting to see that for the three formulations, whenever 

the time horizon is sufficient to meet all product demands, it is a better option to solve for makespan 

minimization than for revenue maximization (e.g. P3, H=168 h). Furthermore, the solution will 

typically be better since the units will feature shorter changeovers or be idle for less time, in cases 

were the makespan is lower than the pre-specified time horizon. 

From the above results, is it worth to use more complex models and allow the production process 

of the plant to be more flexible? Table 7 gives the improvements in the value of the objective 

function for maximum plant flexibility. For revenue maximization gains were observed in half of the 

cases, with an average increase of 0.81% and a maximum of 3.86% for P4 (H=120 h). For makespan 

minimization it was a better approach in all 4 cases, with a far better average of 5.85% and a 

maximum of 13.91%. Thus, it can only be concluded that the answer to the question is yes. 

To end this discussion we should emphasize that we are looking into revenue maximization for a 

fixed time horizon or makespan minimization for production of all the required batches of the given 

product orders. For the latter case, the derived schedule will typically be used as the starting point 

for scheduling the next set of orders that will arrive at the plant. The objective of makespan 

minimization for the partial schedules attempts to maximize the productivity of the plant by reducing 

changeovers and idle times. However, it looks at the equipment units as a system and not as 

components. For maximum plant flexibility, the equipment units will tend to end at about the same 

time and this is achieved by distributing batches of one or more products through the parallel units. 
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For example, in Figure 10, M1 and M2 end both at 235 h. If on the other hand, batches of the same 

product are restricted to be produced in a single unit, fewer changeovers will be required and the 

productivity of the plant will increase despite the fact that the makespan will be higher. In Figure 12, 

unit M1 ends at 237 h but M2 ends before that, at 225 h, for an average completion time of 231 h, 

which is lower than the 235 h obtained for maximum plant flexibility. 

8. Conclusions 

This paper has presented a new continuous-time formulation for the optimal short-term scheduling 

of single stage multiproduct plants, where the number of batches of a product to produce in a 

particular unit are explicit integer variables. All individual processing tasks, one per batch, are 

included in a single aggregated task per product, whereas in the traditional approach, each batch 

corresponds to a single task. Since each task occupies exactly one time interval, fewer tasks leads to 

time grids consisting of fewer event points and, consequently, a lower number of model variables 

and constraints. 

The performance of the new formulation has been illustrated through the solution of 12 example 

problems for the objective of revenue maximization and 4 for the objective of makespan 

minimization. The same problems were solved by a multiple time grid implicit batching approach, 

by a continuous-time model with global precedence sequencing variables, by a model with 

immediate precedence sequencing variables that does not determine the timing of events, and by a 

constraint programming model. The new formulation emerged overall as the best performer for the 

scenario of maximum plant flexibility, where different batches of the same product can be produced 

in different units. The model with immediate precedence sequencing variables is the fastest but it is 

not a general scheduling model in the sense that it assumes a single cyclic schedule in each unit, 

which can be broken, but two or more cyclic schedules per unit may result. In such cases, subtour 

elimination constraints can be added and the problem solved iteratively to find a feasible schedule at 

the likely expense of removing the global optimal solution from the feasible space. When compared 

to the implicit batching approach, the computational effort of the new formulation was typically one 

order of magnitude lower, which in practice indicates that the new formulation can tackle larger 

problems. 
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The other goal of the paper has been to study the effect of considering a less flexible production 

mode on model simplification. Restricting all batches of a product to a single unit allows for a 

reduction in the number of variables and/or constraints and/or the use of tighter constraints, which 

make the model simpler and generally faster. The drawback is that worse solutions than those 

obtained for the more flexible plant may result. It was particularly interesting to find out that the 

models reacted differently, with the model with global precedence sequencing variables approaching 

the performance of the new approach for revenue maximization, and the constraint programming 

model overcoming the other two for makespan minimization. 

Supporting Information Available: Tables of data in GAMS format for problems P1-P4. 
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Table 1. Overview of computational performance (CPU s) for maximum plant flexibility and 
revenue maximization a. 

   model 
problem H (h) optimum ($) CT-IB CT-EB CT-SV E-D&G 

P1 (|I|=5, |M|=2) 120 908.7 2.95 1.19 21.9 0.42 
 144 1036.5 6.17 0.84 7.03 0.36 
 168 1149.3 4.72 0.55 2.8 0.42 

P2 (|I|=8, |M|=2) 144 1202.8 18.2 1.5 40859f 1.12 
 168 1329.2 465 1.73 11705g 1.09 
 192 1464.4 48.5 0.52 38209h 0.75 

P3 (|I|=10, 
|M|=2) 

120 1218.5 723 285 11842i 5.23n 

 144 1388.88 853 49.1 13850j 1.89o 
 168 1544.88 14386 0.19 32.8 1.67p 

P4 (|I|=10, 
|M|=4) 

96 1742.14 3600c 2292 9286k 33.6 

 120 2068.58b 3600d 14669 9990l 470q 
 144 2196.68 3600e 79.4 3600m 246r 

a FTP= fewer event points were used (|T| value within brackets) than those required to find the 
optimal solution. BPS= best possible solution at the time of termination. LB=first solution features 
subtours so it provides a lower bound on the optimal solution (value given). MRL= maximum 
resource limit exceeded. NIT=number of iterations. OM= solver ran out of memory. SO= suboptimal 
solution returned. UB=first solution features subtours so it provides an upper bound on the optimal 
solution (value given). b May not be the global optimal solution. c MRL, SO=1751.3, FTP (|T|=7). d 

MRL, SO=2028.0, FTP (|T|=8). e MRL, SO=2183.1, FTP (|T|=8). f SO=1196.8, although solver 
solved to optimality (special case). g OM, SO=1313.8, BPS=1375.4. h OM, BPS=1505.5. i MRL, 
SO=1212.4, BPS=1336.9. j OM, SO=1336.9, BPS=1492.9. k OM, SO=1715.6, BPS=1820.3. l OM, 
SO=2037.7, BPS=2165.3. m MRL, SO=2148.98, BPS=2196.68. n UB=1264.9, SO=1029.52, NIT=5. 
o UB=1429.28, SO=1261.68, NIT=3. p UB=1544.88, SO=1492.88, NIT=3. q UB=2085.38, 
SO=2032.80, NIT=4. r NIT=5. 

 

Table 2. Overview of computational performance (CPU s) for maximum plant flexibility and 
makespan minimization. 

  model 
problem optimum (h) CT-IB CT-EB CT-SV E-D&G 

P1 171 5.34 0.53 1.55 0.42 
P2 235 38.6 4.92 4080c 0.64 
P3 167 364 10.9 3600d 1.75f 
P4 130a 9400b 9645 64500e 34.4g 

a May not be the global optimal solution. b MRL, SO=153, FTP (|T|=8).  c SO=236, although solver 
solved to optimality (special case). d MRL, SO=168, BPS=152.5. e MRL, SO=133, BPS=130.8. f 

LB=161, SO=175, NIT=4. g LB=129, NIT=2. 

 



34 

 

Table 3. Detailed computational statistics for problem P3 (H=120) 

 model 
 CT-IB CT-EB CT-SV E-D&Gb 

|T| 11 7   
discrete variables 1840 960 85 440 
single variables 2083 1235 106 441 

constraints 253 445 233 515 
RMIP 1336.88 1284.67 1346.06 1346.06 
Obj 1218.5 1218.5 1212.42 1264.9 
CPU 723 285 11842a 1.14 
nodes 171407 130436 18092900 351 

a OM, BPS=1336.9. b Results for first iteration only. 

 

Table 4. Number of event points (|T|) used to solve the problem by the implicit (CT-IB) and explicit 
batching continuous-time formulations (CT-EB) for maximum plant flexibility. 

  revenue maximization makespan minimization 
problem H (h) CT-IB CT-EB CT-

IB 
CT-EB 

P1 120 9 4   
 144 10 4   
 168 11 4 12 4 

P2 144 11 5   
 168 13 5   
 192 14 5 16 7 

P3 120 11 7   
 144 12 7   
 168 13 7 14 7 

P4 96 7a 5   
 120 8a 5   
 144 8a 4 8a 5 

a Finding the optimal solution requires even more event points 
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Table 5. Overview of computational performance (CPU s) for products in a single unit and revenue 
maximization. 

   model 
problem H (h) optimum ($) CT-EB-SU CT-SV-SU E-D&G-SU CP-SU 

P1 120 908.7 0.67 0.16 0.33 0.7 
 144 1036.5 0.92 0.12 0.33 89.2 
 168 1134.3 0.86 0.06 0.44 0.59 

P2 144 1196.8 1.17 9.05 0.67 3600e 
 168 1329.2 1.81 45 0.75 3600f 
 192 1464.4 0.58 9.55 0.55 3600g 

P3 120 1212.42 24.7 34695 4.61b 3600h 
 144 1388.88 8.5 17156a 3.5c 3600i 
 168 1544.88 5.64 64.3 1.28d 3600j 

P4 96 1725.34 68.6 52.1 7.95 3600k 
 120 1991.72 1294 20 34.3 3600l 
 144 2141.03 18309 28 40.8 3600m 

a SO=1368.9, although solver solved to optimality (special case). b UB=1238.48, SO=1140.02, 
NIT=3. c UB=1420.9, SO=1336.88, NIT=2. d SO=1440.88, NIT=2. e MRL, SO=1169.8. f MRL, 
SO=436.9. g MRL, SO=876.1. h MRL, SO=735.6. i MRL, SO=858.1. j MRL, SO=858. k MRL, 
SO=453.5. l MRL, SO=577.7. m MRL, SO=654.9 

 

Table 6. Overview of computational performance (CPU s) for products in a single unit and 
makespan minimization. 

  model 
problem optimum (h) CT-EB-SU CT-SV-SU E-D&G-SU CP-SU 

P1 186 0.2 0.06 0.54 0.01 
P2 237 0.34 0.36 0.53 0.05 
P3 168 4.88 11.7 1.86a 0.64 
P4 151 184 1.95 68.1 0.80 

a LB=166, SO=176, NIT=3. 
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Table 7. Improvement in the value of the objective function for maximum plant flexibility. 

 revenue maximization makespan 
minimization 

problem H (h) % increase % decrease 
P1 120 0 8.06 

 144 0 - 
 168 1.32 - 

P2 144 0.50 0.84 
 168 0 - 
 192 0 - 

P3 120 0.50 0.60 
 144 0 - 
 168 0 - 

P4 96 0.97 13.91 
 120 3.86 - 
 144 2.60 - 
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Figure 1. Example of a single stage multiproduct plant 
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Figure 2. Implicit batching approach. Required number of batches for a particular product 
determined by the number of instances executed of the corresponding processing task (e.g. 2 batches 
for product I1, 1 for I2, 3 for I3 and 2 for I4).  
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Figure 3. Explicit batching approach. Required number of batches for a particular product is defined 
as an integer model variable that affects the duration of the corresponding aggregated task. 
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Figure 4. Basic continuous-time grid (one for each equipment unit). 
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Figure 5. Calculation of the duration of aggregated tasks for explicit batching approach. 
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Figure 6. Explicit batching approach with products allocated to a single unit. 
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Figure 7. Illustration of global precedence sequencing variables approach showing the values of the 
most important model variables for this simple example. 
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Figure 8. Example of a cyclic schedule and location of the link to be broken 
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Figure 9. Part of the optimal schedule for example P4 (H=96). 
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Figure 10. Optimal schedule for P2 (makespan minimization). 
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Figure 11. Solution of E-D&G for P3 (H=144 h), first iteration. 
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Figure 12. Optimal schedule for P2 (makespan minimization) with all batches of a given product in 
the same unit. 

 


