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Abstract

The main objective of this paper is to examine the impact of probability distribution func-
tions in optimizing a field management plan that accounts for various sources of uncertainties.
The uncertainty arises due to the flow of CO2 in the system and the various costs associated
with the project. This paper addresses the cases of the known and unknown values of uncer-
tain parameters and their probability distribution. The case for which the uncertainties are
known is solved by formulating a two-stage stochastic programming problem where investment
decisions (number of wells to be drilled and number of buffer tanks) are set as stage-1 variables
and while other variables are set as stage-2 or recourse variables. The deterministic equivalent
model is formulated in the form of mixed-integer nonlinear programming (MINLP) which is
solved. For distributions with different mean values and variances, assess the impact on other
distributions. In the case where the distribution of the random variables is unknown, the mo-
ment matching problem(MMP) is formulated and solved to generate a scenario tree based on
the historical data, which can be used for the two-stage programming model.

Keywords - Two-stage stochastic programming, Moment matching problem, Mixed integer non-
linear programming, Scenario tree

1 Introduction
In this paper, we consider the impact of uncertainties in the MINLP model that we have recently
proposed in [1] for optimizing field management for carbon capture and storage, an area that has
received increased attention [2] [3] [4] [5]. The area of optimization under uncertainty has greatly
expanded through, stochastic programming (SP) [6] which is among the two most widely adopted
frameworks for incorporating uncertainty in optimization models, the reader can refer to [7] for
a recent review of this area. Previous works have extensively explored the optimization of CCS
infrastructure under uncertainty, focusing on both environmental and financial risks [8] [9].

A schematic representation of a two-stage stochastic programming problem is shown in Figure
1. Here, x is the first-stage decision variable at time t = 1. The uncertainty, w is realized after
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t = 1 and the recourse variable y(w) at t = 2 takes into account the uncertainty by taking corrective
action also known as recourse action.

Figure 1: A schematic representation of a two-stage stochastic programming problem

The simplest approach to address stochastic Mixed-Integer Nonlinear Programming (MINLP)
problems is to directly solve the deterministic equivalent problem using [6] optimization solvers like
DICOPT [10], BARON [11], or SCIP [12] which is the approach that is used in this paper. For
problems with a large number of scenarios for uncertain parameters, strategies such as Lagrangean
decomposition and Benders decomposition are required to effectively solve these problems [7].

Since the chosen scenarios directly impact the solution to the stochastic problem, an alternative
is to use sampling techniques like Monte Carlo sampling and Sample Average Approximations can
be used methods to approximate the probability distribution [6].

The most common assumption made in stochastic programming is that the probability distri-
bution is pre-defined and the uncertainty varies between a certain minimum and maximum range.
In general, the highest probability is given to the average value of the uncertain parameters[13].
However, an alternative approach is to generate the scenario trees from historical data instead of
assuming certain probability distributions and a range of values for a set of uncertain parameters.
This data-driven approach has been reported recently by [14] who formulated the problem as an
NLP.

The goal in this paper is to assess the effect of the probability distribution function in field
management problems for carbon capture and storage, whether by the use of deterministic for the
two-stage programming or by generating scenario trees through the moment matching problem [14].
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2 Problem Statement
We consider the following problem in this paper. Given is a Carbon Capture Utilization and
Sequestration (CCUS) system that comprises capturing, transporting, and sequestration of CO2-
rich fluid. There is a system of logistic supply of CO2 capture, logistic supply, terminal storage
tanks, and a pipeline network connecting injection wells to the reservoirs. The system is defined
with a fixed design in terms of the number of wells, well injection potential as well as their status
along with the availability of the reservoirs. A CO2 terminal injects CO2-rich fluid (mixture of
cryogenic and gaseous) through the pipeline network. The uncertainties considered are associated
with the flow rates of CO2 in gaseous and cryogenic states as a function of time. We should clarify
that these are not the only uncertainties in the system.

The objective of the model by [1] is to determine the following items to minimize the total cost.

1. The number of buffer tanks used for storing CO2.

2. The number of wells to be drilled during gasfield operations.

3. The rate of CO2 to the wells that include uncertainties in the flow of CO2 from various
industries (gaseous) in metric ton per annum, MTPA.

A schematic diagram of a CO2 terminal is shown in Figure 2 that consists of boats that carry
cryogenic CO2, storage tanks on the terminal, and a pipeline network injecting to the wells from
the terminal including transport of cryogenic carbon dioxide to the terminal and supply from varies
industries in gaseous form. The CO2 flow from the storage tank is controlled flowrate together with
the gaseous flowrate supplied by various industries to reach the field injection rate RF , that is to
be injected into the injection wells.

Figure 2: A schematic diagram of a CO2 terminal

In Figure 2, the following parameters are defined:
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1. RB represents the rate of cryogenic CO2 being supplied from the boats carrying cryogenic
CO2

2. RG represents the gaseous rate of CO2 from various industrial suppliers that cannot be con-
trolled.

3. RC represents the outlet rate from the terminal storage tanks.

4. RF represents the rate of CO2 supply to the fields.

RF represents the total CO2 supply, which is the sum of RB , the CO2 received from ships, and
RG, the CO2 supplied by industry. Due to the uncertainty in RB (the CO2 from ships), a buffer
tank is installed to ensure we can meet our commitment to the required CO2 injection quantity.
The buffer tank mitigates the risk of supply shortfalls by storing excess CO2 when available and
compensating for days when the supply from ships is insufficient.

Building on the deterministic MINLP model by [1], the primary objective of the two-stage
stochastic programming model is to optimize the expected value of CAPEX (Capital Expenditure)
and OPEX (Operational Expenditure) such that all the physical, as well as the operational con-
straints, are satisfied. The major decisions consist of determining the total number of wells to
be operated, the installation cost associated with the number of buffer tanks, and the total cost
associated with venting CO2 during the operation. The uncertainty lies with the flow of CO2 and
with the investment cost associated with the construction and operations of terminals.

In this paper, we assess the impact of the uncertainty parameters for two cases.

1. Case 1: The form of the probability distribution function of the uncertain parameters is known
(eg. Normal distribution) except for its mean and variance.

2. Case 2: The probability distribution and the values of uncertain parameters are unknown.
The scenario tree is generated from the historical data for the uncertain parameters.

For the first case, we assume the probability distribution and the corresponding discrete values
of uncertainties. For the second case, the probability distribution is unknown and we generate
the scenario tree from the historical data provided for the uncertain parameters by TotalEner-
gies. In case-1 a two-stage stochastic programming model is formulated which assumes that the
uncertainties are given in the form of scenario tree. This stochastic programming aims to min-
imize the overall expected CAPEX and OPEX for the problem. Case 2 focuses on the Moment
Matching Problem(MMP) [14], a scenario-generation algorithm for which we compute the unknown
random variables and their corresponding probabilities. Our model independently employs a two-
stage stochastic programming approach, similar in concept to that discussed in [15]. However, our
implementation diverges significantly by integrating advanced moment-matching techniques

2.1 Assumptions
The model proposed in this work is based on the following assumptions:

1. The uncertainties are considered with the flowrate coming from the boat and the gaseous
nature of CO2 from the various industries.

2. The injection flowrate for the field is bounded between certain values.
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3. At the end of a month’s operations the buffer tanks are emptied.

4. The superstructure is well-defined for a network consisting of wells, buffer tanks, pipelines,
and reservoirs.

5. Model-specific costs like well opening cost, cost of venting CO2, the installation cost of buffer
tanks, the injection cost, and other data are assumed to be known.

6. The time step of the operation is at least 10 days.

3 Two-stage Stochastic Programming Model
The previous work by [1] proposed an optimization model to determine the field management plan
for injecting rate of CO2-rich fluid into the wells for several years of operations. The formulation of
the model was decomposed by dividing it into three levels: (a) years, (b) months, and (c) periods
of injection and buffering expressed in days to reduce the complexity of the model. This work
considers uncertainties through the scenarios for the values of the flowrate for different streams and
the cost of installation and operation of the project. We formulate a deterministic equivalent model
by optimizing across multiple scenarios of the uncertain parameters, using this as the foundation
for the deterministic MINLP model. [1].

min f0(x) +
∑
ω∈Ω

τωf1 (x, yω; θω)

s.t. g0(x) ≤ 0

g1 (x, yω; θω) ≤ 0 ∀ω ∈ Ω

x ∈ X, X =
{
x : xi ∈ {0, 1},∀i ∈ I1, 0 ≤ x ≤ xub

}
yω ∈ Yω,∀ω ∈ Ω, Yω =

{
yω : yωj ∈ {0, 1},∀j ∈ J1, 0 ≤ yω ≤ yubω

}
(1)

The formulation in (1) has a nonlinear objective and nonlinear constraints in terms of 0-1 and
continuous variables. The functions f0, f1, g0 and g1 are nonlinear functions. The functions f1
and g1 are functions of the first-stage decisions x, the second-stage decisions yw, and the uncertain
parameters ωw for the scenarios w. Although the above model is difficult to solve due to the non-
linear objective and constraints present in the problem in terms of 0-1 and continuous variables, in
this work it is greatly separated by the fact that we consider only three scenarios and low, medium,
and high values simultaneously for all the uncertain parameters.

4 Moment Matching Problem

4.1 Introduction
The Moment Matching Problem (MMP) is a useful method for generating scenario trees that
accurately reflect historical data, providing a robust basis for stochastic programming models.
This section explores the MMP approach, detailing its formulation, implementation, and practical
applications.

In stochastic programming, accurately modeling uncertainties is paramount for making robust
decisions. Traditional methods often assume pre-defined probability distributions for uncertain
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parameters. However, this can lead to inaccuracies. The MMP offers a data-driven approach by
generating scenario trees from historical data, ensuring a more accurate representation of uncer-
tainties.

4.2 Problem Formulation
The MMP aims to minimize the weighted square error between the statistical properties (moments)
of the generated scenario tree and those of the historical data [13]. Its main goal is to find the values
at the uncertain parameters (i ∈ j) xij with corresponding probabilities pj in the scenario tree shown
in Fig 3. This ensures that the scenario tree accurately represents the uncertainties inherent in the
data.

The MMP can be formulated as a nonlinear programming (NLP) problem [14] in which the
objective function of the MMP is given by:

min
x,p

ZMMP =
∑
i∈I

∑
k∈K

wi,k (mi,k −Mi,k)
2
+

∑
(i,ii)∈I

wi,ii (ci,ii − Ci,ii)
2

i < ii

(2)

Here mi,k and Mi,k represent the k-th moments of the scenario tree and historical data, respec-
tively, while ci,ii and Ci,ii denote the covariances. The weights wi,k and wi,ii adjust the importance
of each moment and covariance.

The constraints ensure that the probabilities sum to one and define the moments and covariances:

n∑
j=1

pj = 1

mi
i,1 =

n∑
j=1

xi,jpj , ∀i ∈ I

mi,k =

n∑
j=1

(xi,j −mi,1)
k
pj , ∀i ∈ I, k > 1

ci,ii =

n∑
j=1

(xi,j −mi,1) (xii,j −mii,1) pj , ∀(i, ii) ∈ I, i > ii

(3)

The values of the parameters are bounded as follows:

xi,j ∈
[
xUB
i,j , xLB

i,j

]
, ∀i ∈ I, j = 1, 2 . . . n −→

pj ∈ [0, 1], ∀i ∈ I, j = 1, 2 . . . .x (4)

The structure of the scenario tree is illustrated in Figure 3. Each node xj represents a possible
outcome with an associated probability pj .
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Figure 3: Scenario Tree Structure

The Moment Matching Problem builds on the idea that by matching the statistical moments of
a scenario tree with those of the historical data, one can generate a tree that accurately reflects the
underlying uncertainties. This method, originally proposed by [13], has been further developed by
[14] to include matching cumulative distribution functions (CDFs) and empirical CDFs (ECDFs).

The weights wi,k and wi,ii are optimized through parameter hypertuning over a range from 0.1
to 1.0, with increments of 0.1 i.e (0.1, 0.2, 0.3,...., 1.0). The optimal weights are calculated as
follows:

wi,k =
w′

i,k

M2
i,k

wi,ii =
w′

i,ii

C2
i,ii

(5)

4.3 Data-Driven Scenario Generation
A significant advantage of the MMP is its data-driven nature. By using historical data for example
like Figure 4 (his figure is provided for reference only and is not directly related to the problem
at hand), to generate scenario trees, the method avoids the need to assume pre-defined probability
distributions. This approach is particularly beneficial in fields with abundant data and complex
uncertainties.
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Figure 4: Example of Historical data

As indicated before solving the MMP involves a nonconvex NLP problem, which can be com-
putationally challenging., especially for large-scale problems. Advanced solvers like BARON or
multi-start strategies can be employed to find global optima. Additionally, parallel computing
techniques can be utilized to speed up the computation, making the MMP feasible for real-time
applications.

5 Results and Discussion

5.1 Data, Bounds and Initial Values
It is assumed that the parameters for the investment and the operational costs along with the
coefficients are uncertain. The injection rate to the gasfield is bounded between the maximum and
the minimum injection capacity, which is determined by fitting a degree-3 polynomial curve to the
data provided by TotalEnergies [1]. The NLP model which includes OPEX in the objective function
as opposed to the model described by [1] has been executed on an Intel 8th generation i7 processor
with 16 GB of RAM.

5.2 Case 1: Two-Stage Stochastic Programming Problem
Two approaches are analyzed in detail to guide investment decisions, considering different sources
of uncertainty in the system. The first approach addresses the uncertainty in the target flow,
which remains unaffected by external factors such as the costs associated with well installation
and operational expenses. On the other hand, the second approach considers a broader spectrum
of uncertainties that affect the system both from investment and operational perspectives. This
includes variables like the target flow rate, and the costs associated with investment and operations,
examined across three scenarios.

5.2.1 Uncertainty in Target flowrate, RF

The approach for considering the uncertainty in the target flow rate consists of three realizations
RF representing optimistic, average, and pessimistic conditions. As shown in Figure 5, the buffer
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tank is not needed during the first 420 days when RB is consistent. However, after this period, as
the supply from ships becomes irregular, the buffer tank is used to maintain the required injection
rate. The injection from the buffer tank varies depending on the supply deficit, ensuring only the
necessary amount of CO2 is drawn to match the injection commitment.

Figure 5: Cryogenic CO2 stored volume profile of a buffer tank generated by solving
the MINLP problem for 36 months of operation.

The probability distribution is varied to account for different instances. The results are recorded
for 5 different probability distributions shown in Table 1. For the first instance, the probability is
distributed evenly among the three realizations. The computational time and the objective values
are recorded for all 5 test cases on different distributions. The longest computational time of 957.90
seconds is reported for the distribution of 25% − 50% − 25%. The objective value of 188.39 is
achieved by including an additional operational cost: the injection cost. This cost is $15 per ton
for the injection rate and is accounted for with a high probability of 95%.

The deterministic equivalent model in the form of MINLP-SP has 25,584 constraints with 10,572
continuous variables and 1,289 discrete variables solved for one month of operational time. The
model is solved by BARON in GAMS, a state-of-the-art solver that ensures global minima which
cannot be ensured by other solvers like DICOPT or SBB. The model for all the instances selects
wells 1,2 and 3. The results for the five sets of probability distributions are recorded in Table 1.
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Table 1: Objective values and computational time for different distributions in target
flowrate

5.2.2 Uncertainty in Target flow rate and the Investment costs
The uncertainty in the target rate is related to flowrate, investment costs, and operational costs
associated with the project. Numerous factors like delays in the project, and availability of resources
have an impact on the investment costs like the possibilities of opening a well, the cost of installing
a buffer tank, and operational costs like penalty cost for venting CO2 and also the cost of injection
of CO2.

In this section, the values for different costs and flowrates are assumed as per the historical data
issued by TotalEnergies. The probability distribution was 25% for the pessimistic value, 50% for the
average, and the 25% belong to the optimistic value for the costs and the flowrates. For this specific
case, we redefined the range of target flowrate for the low and high values. The average value for the
target injection rate remains unchanged. The new low value utilized for the target injection rate is
4, 700KSm3

day . Similarly, the target injection rate for a much higher value of 5, 300KSm3

day3 is considered
to record the difference in the investment strategies made by the stochastic model as compared to
that from the deterministic equivalent. The model is solved first using DICOPT which does not
guarantee global optimality yielding an objective value of 190.72 for 3,8544 constraints and 20,373
variables out of which 3,809 are discrete variables. The CPU time recorded for the problem is
396.66 seconds. Fig 5 represents the wells and reservoirs connection that are operated to meet the
demand for the target injection rate. There are 5 wells and 4 reservoirs to store the CO2-rich fluid,
however, the model selects 2 reservoirs and 3 wells as shown in figure 5. The same optimization
model is solved by BARON, to determine the global minima of 190.72. BARON guarantees a global
optimal as it applies the Spatial Branch and Bound algorithm. However, the CPU time recorded
for the problem was 1, 196.47 seconds. After solving the SP MINLP by BARON, a change in the
process decision is observed. Well 3,4 and 5 are selected. However, different sets of combinations
for the wells and reservoirs are selected as shown in the Figure 6 .
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Figure 6: The selected choices of wells and reservoirs for Approach 2 using DICOPT

Figures 7 and 8 show that the cumulative reservoir volume for reservoir 3 and the actual flowrate
to the fields are plotted against a 1 month time horizon. It is inferred that in the first two scenarios
(s1 and s2) which are lower than an equivalent to the deterministic value, we observe a constant
target flowrate, Rf is achieved by the model. However, in the case of the third scenario where Rf is
high, the actual flowrate to the field Qact, changes with respect to time to meet the higher demand.
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Figure 7: The selected choices of wells and reservoirs for global minima

Figure 8: Cumulative reservoir volume for reservoir-3
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Figure 9: The actual injection flowrate to reservoir-3

5.3 Value of Stochastic Solution (VSS)
To provide further insight into the impact of the mean and variance of the distribution function we
determine the value of the stochastic solution for the 5 cases in Table 2.

The Value of the Stochastic Solution [6] is determined by comparing the solution of the stochastic
problem with the solution of a stochastic version in which the investment (decisions like the number
of wells, nw, and the number of buffer tanks n required for the problem) are fixed to the values of
the deterministic solution. If the investment strategy devised by the stochastic version is the same
as that of the deterministic model, VSS is 0 for that case as shown in Figure 8. The Value of the
Stochastic Solution (VSS) tends to 0 as the probability of the nominal value of the distribution
increases as shown by point 5 in Fig 9. On the other hand, as the distribution widens (e.g., point
1 in Fig. 9), the VSS reaches its highest value.
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Figure 10: The VSS calculated for five probability distributions

5.4 Case 2: Moment Matching Problem
In this section, we implement the formulation in (2) of the moment matching problem, which is a
non-convex nonlinear programming problem. In this section, we consider the source of uncertainty
coming from the downloading rate from the boat, RB which carries CO2 in the cryogenic state. The
objective of this case study is twofold, first, to determine the decision variable, xi,j , and second, to
determine the probability distributions. The NLP model is solved for a global minimum by Branch-
And-Reduce Optimization Navigator (BARON) [11] solver. The computation time recorded for the
model is 93 seconds to obtain the global minima over 50 iterations. An objective value of 0.78334
is obtained. In addition, it consists of 14 constraints and 25 variables.

The optimized weights across the four moments and the covariance have been obtained from
tuning weights, as a hyperparameter. The values for the optimized weights for the moments are
reported in Table 2 and the weights across the covariances are reported in Table 3, respectively.
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Table 2: Weights across the four moments

Weights for moments, w1 wi,k

Data Tree
0.0982318 0.13624

1.343 0.10541
0.01 0.693289

0.0172331 0.01

Table 3: Weights of the covariance

Weights for covariance, w2 wi,ii

Data Tree
0.00295396 -0.149839
-0.149839 0.0892857

In this way, applying the moment matching problem, the scenario tree is generated. The two-
stage scenario tree involves 3 realizations and associated probability distribution. The red node
represents the root node followed by three blue nodes for stage- 2 branches of the tree. The
probability distribution of 97.4%, 1.14%, and 1.4% is recorded for the corresponding values of the
random parameter RB that represent the download rate of the boats at the CO2 logistic terminal.

Figure 11: A two-stage generated scenario tree
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5.4.1 Comparative Study
We have implemented the solutions of the deterministic equivalent problem for the proposed two-
stage stochastic MINLP model. The Moment Matching Problem (MMP) is described in section
4.2.2, the uncertainties are accounted for by the target injection flowrate. The proposed deter-
ministic equivalent MINLP optimization model was solved by DICOPT. The MINLPSP model
consists of 10,572 variables, 25,584 constraints along with 1,289 discrete variables. The objective
value of $190.72 million was determined for the probability distribution of 25%, 50%, and 25%. The
probability distribution is based on low, average, and high values of the target injection flowrate.

The probability distribution and the values recorded for the random parameters obtained from
the Moment Matching problem (MMP) are applied to the MINP-SP model. An objective value
of $190.24 million was obtained compared to $190.72 million in the case of the solution obtained
from the MINLP-SP problem. The optimal well-reservoir configuration of well-03 to reservoir-03,
well-04 to reservoir-3, and well- 05 to reservoir- 04 is determined by the optimization model based
on the initial condition. In the case of the high scenario for the target injection rate of 5100Ksm3/
day, there was the venting of CO2 to the atmosphere.

6 Conclusion and Future Work
This paper has examined the impact of distribution functions in two strategies to anticipate uncer-
tainties in the optimal field management problem. The goal is to examine two different mathemat-
ical formulations to tackle uncertain parameters in the model. We first consider the case for which
the probability distribution and the uncertain values are known, and next the case for which the
probability distribution and values for the uncertain parameters are unknown.

For the first case, a two-stage stochastic programming problem is formulated for the fields with
various sources of uncertainties. In addition, the value of the stochastic solution was calculated
for different probability distributions. A small deviation from the expected objective value of the
deterministic equivalent of the problem and the stochastic version of the problem was found. For
cases with a higher probability of the average value, the value of the stochastic solution tends to 0.
However, a larger deviation can be observed when there is an equal distribution of probability over
the three scenarios of the uncertain parameters which in turn lead to different investment strategies.

For the second case, the scenario tree is generated by employing the Moment Matching Problem.
The first four moments are calculated across the mean of the historical data. The hyperparameters
that include weights for the moments and covariance are optimized and reported. A scenario tree
was generated by solving the corresponding non-convex NLP problem. The weighted squared error
for statistical properties determined for the tree and the data is minimized. This method can
determine the unknown parameters and their probability distribution, given the historical data for
the uncertain parameters.

This paper has greatly simplified the stochastic programming problem by simply considering
three scenarios, high, average, and low. For more realistic cases in which the number of scenarios
can be much larger, the high computational time required to solve the model remains a challenge.
With the increase in the number of scenarios, the computational time increases exponentially.
Decomposition techniques like Benders Decomposition technique can be applied to decrease the
model’s computational time.
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