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Abstract. A Multi-Echelon Inventory Optimization (MEIO) model based on the Guaranteed-Service 

approach is presented for allocating safety stocks across a supply chain, to meet service levels at 

minimum cost. This paper builds on the previous work by Achkar et al. (2023), extending the approach 

to account for new advances. First, the Mixed-Integer Quadratically Constrained Program (MIQCP) 

reformulation is combined with a piecewise linear approximation to improve the computational 

efficiency, leading to significant reductions in computational time. In addition, the piecewise function 

yields an improved approximation for the fill rate targets. Furthermore, this work extends the GSM 

approach to represent non-normally distributed demands with high variability and proposes a different 

approach to account for stochastic lead times through a discrete function. The model is applied to several 

instances of a real-world case study, with more than 7300 product-location combinations, showing that 

optimal solutions can be obtained within few seconds of computational time.  

1. INTRODUCTION 

Inventory management plays a critical role in supply chain optimization (Grossmann, 2005; 

Papageorgiou, 2009; Snyder & Shen, 2019). In recent years, there has been growing interest in multi-

echelon inventory optimization (MEIO) as it holds the potential to enhance efficiency and profitability 

of supply chains. MEIO aims to optimize safety stock levels across the entire network, striking a balance 

between inventory costs and the risk of stockouts. While excess inventory yields unnecessary holding 
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costs, failing to meet the customer needs results in both loss of profit, and potentially the long term loss 

of customers (Jung et al., 2004a). Effective inventory management is mostly conditioned by the 

production system as well as by the demand and supply uncertainties (Rodriguez & Vecchietti, 2010). 

De Kok et al. (2019) provide a comprehensive review of MEIO models summarizing the extensive 

research conducted in this area. The authors highlight that multi-echelon inventory systems are still a 

very active area of research because of their complexity and practical relevance.  

An approach in MEIO to determine safety stock levels is the Guaranteed-Service Model (GSM) 

(Graves & Willems, 2000; Simpson, 1958). From an optimization perspective, the GSM poses 

challenges due to the nonlinearity and nonconvexity of the problems involved. The previous 

contributions regarding solution methods developed for the GSM can be found in the work of Eruguz 

et al. (2016), where they are classified as follows: (i) dynamic programing solution approaches, (ii) 

mixed integer programming (MIP) approaches, and (iii) heuristics. Furthermore, other authors have 

explored the integration of the classic GSM with additional activities or approaches. You and 

Grossmann (2008a, 2008b, 2009) have developed models and algorithms that address inventory 

optimization and supply chain design under demand uncertainty, considering deterministic lead times 

and using the Cycle Service Level (CSL) as desired service levels. They reformulate the nonlinear 

problem as a mixed-integer nonlinear programming (MINLP) using a quadratic reformulation with 

decomposition algorithm based on a Lagrangean relaxation, piecewise linear approximations and a bi-

criterion optimization approach. Additionally, Jung et al. (2008) introduce a simulation-optimization 

framework to estimate the optimal safety stock levels by employing a linearization of the model using 

an approximation of the concave function with the convex hull of straight lines. They present a case 

study involving two production sites and 8 warehouses supplying 10 final products to 30 sales regions. 

Moreover, Chu et al. (2014) propose a simulation-based optimization framework for solving multi-

echelon inventory problems quantified by the fill rates, finding local optimal solutions within modest 

computational times. Recently, Achkar et al. (2023) presented a GSM model accounting for stochastic 

lead times and fill rates. They propose a Mixed Integer Quadratically Constrained Programming 

(MIQCP) model in conjunction with a second-order polynomial regression. The results demonstrated 

optimal solutions within modest computational times for cases involving up to 140 products and 4 

locations. 

In terms of demand modelling, the GSM approach assumes that it follows a stationary process 

that is normally distributed. However, in industrial practice, the demand often does not follow a normal 

distribution, with its coefficient of variation (CV = σ/µ) being closer or even larger than 1. In such cases, 

it can be more attractive to use an alternative distribution that ensures nonnegative demand (Soares, 

2013). In this work, we propose incorporating the gamma distribution as an alternative to represent 

demand for large CVs when the CSL is the service measure, with the fill rate being outside the scope 

of this work. The gamma distribution offers several advantages: it guarantees positive demand, and 

allows for a higher probability of very high demand compared to the normal distribution due to its right-
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skewness. There are few works in the literature that use Gamma distributions for safety stock setting 

(Beutel & Minner, 2012; Mirzaee, 2017; Moors & Strijbosch, 2002), but there is little work for 

extending the GSM model to account for nonnormal distributions for the demand. Mirzaee (2017) 

proposes an alternative approach to determine safety stocks by adjusting the service level, using the 

equivalent safety factor (k) that corresponds to the value of the empirical cumulative distribution 

function (h(x)).  

This paper aims to build upon the previous work of Achkar et al. (2023) to include: (i) a solution 

method with improved computational efficiency, (ii) non-normal demand distributions, and (iii) an 

improved approach to account for stochastic lead times. The motivation for each point is as follows. 

First, their approach may become computationally expensive when attempting to find the optimal 

solution as the model size increases, particularly when the desired target is the fill rate. Second, it 

assumes normally distributed demand, which does not account for the highly variable demands often 

observed in real-world industrial settings, leading to underestimations of service levels. Third, the 

stochastic lead time extension of the proposed GSM, based on the work of Inderfurth (1993) can result 

in significant basestock levels on upstream nodes, and involves distinct calculations for internal and 

external demands. 

To address the limitations mentioned above and to improve upon the previous model developed 

by Achkar et al. (2023) the present paper introduces several key enhancements:  

(i) A new MIQCP model is introduced to enhance computational efficiency and improve 

estimation accuracy for fill rate targets. This model incorporates a piecewise linear 

approximation, which significantly reduces computational complexity compared to the 

previous polynomial regression. The new model achieves faster and more precise estimations, 

making it a valuable tool for optimizing fill rate targets. 

(ii) An extension to considerate highly variable demands within the GSM framework. This is 

achieved by adjusting the safety factor, extending the approach of Mirzaee (2017). The model 

is adjusted to ensure the desired CSL in cases of large CVs, where the original distribution is 

unknown and the mean and standard deviation are available. The gamma distribution is 

included as an alternative distribution for these cases.  

(iii) A novel approach for dealing with stochastic lead times is introduced, building upon the work 

of Minner (1998). A discrete function is introduced to address the challenges associated with 

lead time variability for divergent network topologies.  

In summary, the extended GSM model includes: (i) the consideration of non-normally distributed 

demands, only when the target service measure is the Cycle Service Level (CSL), (ii) the inclusion of 

both stochastic demand and lead times, and (iii) the fill rate as an additional key customer service 

performance indicator, alongside the CSL. From an optimization perspective and to the best of our 

knowledge, this is the first work that proposes a quadratic reformulation to solve the nonlinear 

nonconvex problem in conjunction with a discrete function to include stochastic lead times and a 
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piecewise linear approximation to extend the model for fill rate service levels. The MINLP model is 

reformulated as an MIQCP by exploiting the structure of the constraints of the base model. The 

piecewise linear approximation and the discrete function provide a more computationally efficient and 

precise approach. Examples for a real industrial system are presented to illustrate the application of the 

proposed model and its improved computational performance. 

The outline of the paper is as follows. The problem statement and assumptions are described first, 

followed by the model formulation. Next, the solution approach is presented to include the solution 

strategies and the extension for non-normal distributions for the demand. The paper ends with the 

application of the model to illustrate its application to illustrative examples and real-world case studies. 

Conclusions are drawn in the final section. 

2. PROBLEM STATEMENT AND ASSUMPTIONS 

A supply chain is considered with a fixed design for locations j ∈ J and a set of materials p ∈ P. 

Materials can be either raw materials or finished goods. The distribution routes within the supply chain 

are divergent and single-sourcing, meaning that a node holding a specific material p can only receive it 

from a single node and distribute it to one or more locations. It should be noted that the same node can 

receive many different materials q ∈ P from other locations, but it should be a single sourcing route to 

supply each q on that node. 

The demand at each node is independent and characterized by a stationary process, with a mean 

μjp and standard deviation σjp. A novelty in this work is that the statistical distributions of demand do 

not necessarily follow a normal distribution. Instead, the model includes demands with larger 

Coefficient of Variation (CV) by considering them to be gamma distributed. We propose this extension 

only for CSL, leaving the fill rate targets to be addressed in future work. Additionally, demand is 

assumed to be bounded as in the classic GSM, meaning that if in a certain time period it exceeds the 

bound, extraordinary measures are used to satisfy the excess demand. To propagate demand upstream, 

risk pooling assumptions as described in You and Grossmann  (2009) are applied. Plant locations 

introduce a coefficient ϕpq, representing the bill of materials for product transformation. This coefficient 

depends on the relationship between materials and finished goods, and it is used in the demand 

propagation to determine raw materials demand parameters. 

In terms of replenishment decisions, each stage operates under a periodic review inventory policy 

denoted as (R,S), where R and S represent the review period and order-up-to level, respectively. A 

basestock level is maintained at each stage. Replenishment orders may be subject to a Minimum Order 

Quantity (moqjp) requirement.  

The core decision variable of the classic guaranteed service approach is the service time Sj. When 

a customer places an order of size dj(t) on node j at time t, the order will be fulfilled by time t + Sj, 

where Sj represents the guaranteed-service time of node j (Graves & Willems, 2000). Furthermore, each 

node j within the supply chain receives a service commitment from its upstream nodes i ∈ J. This 
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commitment is known as the inbound service time (SIjp) and is defined as  SIjp=max {Sip | i : (i,j,p) ∈ A}, 

with A being the set of active arcs (i,j) for p. The Net Lead Time (NLT), shown in Figure 1, represents 

the period that is not covered by the guaranteed service time and must be covered with safety stock. It 

is calculated as NLTjp = SIjp + LTjp - Sjp. For instance, if NLTjp = 0, it indicates that the node operates 

under a make-to-order (MTO) policy, where no inventory is stored. Conversely, if NLTjp > 0, there is a 

time period that needs to be covered with safety stock, indicating a make-to-stock (MTS) policy. 

Regarding the lead times, they are associated for each location and material, and they are assumed 

to follow a normal distribution with mean LTjp and standard deviation σLTjp. While the work of Achkar 

et al. (2023) introduces stochastic lead times based on the work by Inderfurth (1993), this paper 

proposes a novel extension inspired by Minner (1998). In the GSM, the lead times used in single-

echelon systems are replaced by the net lead times in multi-echelon systems. In the present paper, it is 

assumed that the variable NLTjp described above has a standard deviation σNLTjp, and its value depends 

on the specific NLTjp. A new discrete function is proposed to determine the value of σNLTjp. This approach 

introduces an additional layer of complexity to the problem, as previous parameters now become 

variables in the model. 

 

Figure 1. Guaranteed-service model elements 

In terms of the service levels, a safety stock factor kjp is associated with the Cycle Service Level 

(CSL) at each node in the supply chain. This factor represents the percentage of replenishment cycles 

during which stockouts do not occur. Alternatively, the modeler can also ask for a fill rate to be 
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considered as a target service measure. The fill rate represents the proportion of demand that is 

successfully fulfilled out of the total demand placed. It should be noted that this option is applicable in 

the current paper only when the demand is assumed to follow a normal distribution. To incorporate fill 

rates into the model, the safety factor kjp must become a variable (Kjp), and the loss function of the 

normal distribution G(Kjp) is required. The work by Achkar et al. (2023) uses a second-order polynomial 

regression to approximate this function. Although this approximation generally provides a good fit (R2 

= 0.98), slight differences in the approximation, particularly for larger safety factors, can lead to 

significant variations in the required safety stock levels. To address this limitation, the new approach 

utilizes a piecewise linear approximation, providing a better fit for the loss function G(Kjp). 

Holding costs are incurred at all nodes within the supply chain. The objective is to find the 

guaranteed-service times (SIjp and Sjp), and consequently how much safety stock to maintain, in order 

to minimize the total holding costs and satisfy the specified customer service level. The service times 

at the initial and the final nodes are given. 

3. MODEL FORMULATION 

The formulation of the model maintains certain variables related to Guaranteed-service Model 

(GSM). These variables include the guaranteed service time (Sjp) of a product p at a specific node j, the 

inbound service (SIjp), and the net lead time (NLTjp). Moreover, in this model, the traditional safety 

factor, which is an input parameter in the classic GSM, is transformed into a variable (Kjp) related to the 

service level.  

The first set of constraints are derived from the classic GSM. Equation (1) defines the first 

inbound service time for the starting nodes in the network J0, where si0 is a given input. Equation (2) 

establishes the connection between the inbound guaranteed-service time SIjp and the guaranteed-service 

time of upstream nodes Siq. The set A consist of elements (i,j,p) indicating that there is an enabled route 

for material p from i to j. It should be noted that if the link is for the same product (q = p) and is a 

distribution link (from node i to node j), then i ≠ j. Conversely, if node j is a plant location that produces 

p from q, then q ≠ p and i = j. To ensure feasibility, the service time Sjp is bounded by Eq. (3). Eq. (4) 

becomes active if there is a maximum accepted service time. The NLTjp is defined in Eq. (5), with ltjp 

being the lead time and rjp the time period between reviews. In cases where nodes face external demand, 

the parameter maxSjp is set to 0, enforcing a make-to-stock (MTS) inventory policy for these demand 

nodes. 

𝑆𝐼𝑗𝑝 = 𝑠𝑖𝑗𝑝
0                                                                                                           ∀ 𝑗 ∈ 𝐽0, 𝑝 ∈ 𝑃𝑗 (1) 

𝑆𝐼𝑗𝑝 ≥ 𝑆𝑖𝑞                                                                              ∀ (𝑖, 𝑗, 𝑝) ∈ 𝐴, (𝑞, 𝑝) ∈ Φ, 𝑝 ∈ 𝑃𝑗 (2) 

𝑆𝑗𝑝 ≤ 𝑆𝐼𝑗𝑝 + 𝑙𝑡𝑗𝑝 + 𝑟𝑗𝑝                                                                                       ∀ 𝑗 ∈ 𝐽, 𝑝 ∈ 𝑃𝑗 (3) 
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𝑆𝑗𝑝 ≤ 𝑚𝑎𝑥𝑆𝑗𝑝                                                                                                      ∀ 𝑗 ∈ 𝐽, 𝑝 ∈ 𝑃𝑗 (4) 

𝑁𝐿𝑇𝑗𝑝 ≥ 𝑆𝐼𝑗𝑝 − 𝑆𝑗𝑝 + 𝑙𝑡𝑗𝑝 + 𝑟𝑗𝑝                                                                      ∀ 𝑗 ∈ 𝐽, 𝑝 ∈ 𝑃𝑗 (5) 

In the GSM, the CSL is typically used as the customer service performance indicator to determine 

safety stocks. However, when the desired target is the fill rate (j,p ∈ F), a constraint is introduced to 

calculate the equivalent CSL of a given fill rate value (frjp) (Chopra & Meindl, 2013). Eq. (6) establishes 

the relationship between the fill rate (frjp) and the safety factor, thereby determining the minimum 

required CSL that can meet the desired fill rate. The safety factor, as mentioned before, becomes a 

positive continuous variable, Kjp, and the aim is to find the lower required CSL that is able to meet the 

desired fill rate. In Eq. (6), the square root represents the “sigma-combination” formula, known from 

single-echelon models to determine the standard deviation of demand over the lead time, applying the 

random sum of two random variables representing the demand and the lead time (Drake, 1967; Silver 

et al., 1998). The mean demand and the standard deviation are represented by µjp and σjp, respectively. 

The supply variability parameters are NLTjp and its standard deviation σNLTjp. The approach proposed to 

obtain σNLTjp is explained in subsequent paragraphs. Qjp = max{µjp rjp, moqjp} represents the average 

replenishment quantity of product p on location j, with moqjp being the minimum order quantity for 

replenishment. Φ(Kjp) and φ(Kjp) correspond to the cumulative distribution function and the probability 

density function of the standard normal distribution, respectively. These functions are utilized as part 

of the loss function of the normal distribution, denoted as G(Kjp) = Kjp [1-Φ(Kjp)]- φ(Kjp) (Axsäter, 

2006).  

𝑓𝑟𝑗𝑝 ≤ 1 +

√𝑁𝐿𝑇𝑗𝑝 𝜎𝑗𝑝
2 + 𝜇𝑗𝑝

2  𝜎𝑁𝐿𝑇𝑗𝑝

2

𝑄𝑗𝑝
(𝐾𝑗𝑝[1 − Φ(𝐾𝑗𝑝)] − 𝜑(𝐾𝑗𝑝)) 

      ∀ 𝑗 ∈ 𝐽,  𝑝 ∈ 𝑃𝑗 ,  (𝑗, 𝑝) ∈  𝐹 

(6) 

On the other hand, if the service level target is CSL, the safety factor is given as an input kjp, as in 

Eq. (7): 

𝐾𝑗𝑝 = 𝑘𝑗𝑝                                                                                            ∀ 𝑗 ∈ 𝐽,  𝑝 ∈ 𝑃𝑗 ,  (𝑗, 𝑝) ∉  𝐹 (7) 

As mentioned before, stochastic lead times are introduced into the GSM by extending the approach 

for serial networks proposed by Minner (1998) to divergent networks, because it faces all the variability 

sources using safety stock. Other approaches such as Inderfurth (1993) can lead to large stock levels. 

To account for multi-echelon systems together with stochastic lead times, we define σNLTjp to represent 

the standard deviation of the NLTjp. To obtain its value, we introduce a new discrete function. We 

assume that the variability of the lead time is pushed downstream if the NLT of node j for product p is 

not enough to cover the total replenishment time inherent to node j. In other words, if NLTjp ≤ SIjp +ltjp 

+ rjp, then, σLTjp should be propagated downstream. As the objective function is concave and there is an 
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“all or nothing” optimal solution, we assume that σNLTjp accumulates either all lead time variabilities 

until stage j, or it pushes all of them to the following downstream nodes, as shown in Figure 2. In the 

left scenario, the plant operates under a make-to-order (MTO) policy, while the subsequent nodes i and 

k operate under make-to-stock (MTS) policies. Node j must incorporate both the lead time variability 

of node j itself (𝜎𝐿𝑇𝑗𝑝

2 ) plus the upstream node variability (𝜎𝐿𝑇𝑖𝑝

2 ) into its 𝜎𝑁𝐿𝑇𝑗𝑝

2  value. In the right case, 

nodes i and j operate under MTO policies, pushing all the variability to the most downstream node in 

the network. Consequently, the variance of the net lead time for node k is calculated as 𝜎𝑁𝐿𝑇𝑘𝑝

2 = 𝜎𝐿𝑇𝑖𝑝

2 +

𝜎𝐿𝑇𝑗𝑝

2 + 𝜎𝐿𝑇𝑘𝑝

2 . The discrete function is depicted in Figure 3. Note that the “all or nothing” concavity 

property of the approach leads to a discretized function rather than a stepwise function, without 

incorporating any intermediate values for NLTjp. This is because intermediate values are not considered 

as optimal alternatives in the optimization process. 

 

Figure 2: Representation of the NLT variance calculation for different nodes of the network 

depending on inventory policies (MTS or MTO). 

 

 

Figure 3. Discrete function to define 𝜎𝑁𝐿𝑇𝑗𝑝

2  

A new positive continuous variable, Xjp, is proposed to represent 𝜎𝑁𝐿𝑇𝑗𝑝

2 .The value for each step s ∈ 

S1 is defined by the parameter djps. For the first step (s1) of product p at node j, djps1 = 0, and for s2, djps2 

= ltjp + rjp. As NLTjp increases, the bounds increase by adding the lead times and the review periods of 

upstream nodes with djps3 = ltjp + rjp + ltip + rip, being i the upstream node. A new binary variable V1jps 
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defines what the active step in Eq. (8) is according to the value of NLTjp. Equation (9) ensures that only 

one step is active for each product on each location. Eq. (10) assigns the value of σNLTjp associated with 

the step s, given by the parameter cjps, which represents the sum of lead time variances according to 

Figure 3. In the example, cjps1 = 0, cjps2 = 𝜎𝐿𝑇𝑗𝑝

2 , and cjps3 = 𝜎𝐿𝑇𝑗𝑝

2 + 𝜎𝐿𝑇𝑖𝑝

2 . It is worth to mention that this 

coefficient also includes the lead time variance of raw materials if they are involved in the production 

of product p. 

𝑁𝐿𝑇𝑗𝑝 = ∑ 𝑑𝑗𝑝𝑠𝑉1𝑗𝑝𝑠
𝑠∈𝑆1

                                                                                  ∀ 𝑗 ∈ 𝐽, 𝑝 ∈ 𝑃𝑗  (8) 

∑ 𝑉1𝑗𝑝𝑠
𝑠∈𝑆1

= 1                                                                                                    ∀ 𝑗 ∈ 𝐽, 𝑝 ∈ 𝑃𝑗  (9) 

𝑋𝑗𝑝 = ∑ 𝑉1𝑗𝑝𝑠
𝑠∈𝑆1

𝑐𝑗𝑝𝑠                                                                                        ∀ 𝑗 ∈ 𝐽, 𝑝 ∈ 𝑃𝑗  (10) 

The previously presented discrete function fails to keep the concavity property of the GSM model 

when upstream lead times are larger than downstream lead times. The optimal solution can pick 

intermediate values for the service times and the NLT that avoids accumulating large lead times from 

upstream nodes. This is not correctly modelled, because nodes that have MTO policies must push their 

variabilities to some other location to meet their service levels. Therefore, Eqs. (11) and (12) are 

proposed using upper bounds with big-M to reinforce the “all or nothing” optimal decisions. If the 

service time Sjp becomes a positive value, a MTO policy is the only available option, forcing the NLTjp 

= 0. Conversely, if the NLTjp > 0, MTS policy with no delay (Sjp = 0) is the only available possibility. 

𝑆𝑗𝑝 ≤ 𝑉2𝑗𝑝𝑠
 𝑀                                                                                                  ∀ 𝑗 ∈ 𝐽, 𝑝 ∈ 𝑃𝑗  (11) 

𝑁𝐿𝑇𝑗𝑝 ≤ (1 − 𝑉2𝑗𝑝𝑠
)𝑀                                                                                 ∀ 𝑗 ∈ 𝐽, 𝑝 ∈ 𝑃𝑗  (12) 

Finally, the objective function is to minimize safety stock holding cost as defined by Eq. (13), 

where hjp is the coefficient that represents the holding cost for each material at each location. As Eq. 

(13) is concave, there is an “all or nothing” optimal solution, a stage either has no safety stock, or has 

sufficient safety stock to de-couple it from its downstream stages (Graves & Willems, 2000).  

𝑚𝑖𝑛 ∑ ∑ ℎ𝑗𝑝 𝐾𝑗𝑝 √𝑁𝐿𝑇𝑗𝑝 𝜎𝑗𝑝
2 + 𝜇𝑗𝑝

2  𝜎𝑁𝐿𝑇𝑗𝑝

2

𝑗 ∈ 𝐵𝑗𝑝𝑝

 (13) 

 

 

3.1 Solution Approach 
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The model presented in equations (1)-(13) represents a challenging problem known as a 

nonconvex mixed-integer nonlinear problem (MINLP). While these problems can in principle be solved 

with global optimization solvers (Sahinidis, 1996), the computational time required to find a global 

solution can be very expensive. Eq. (6) includes the normal distribution density and cumulative 

functions. Moreover, Eqs. (13) and (6) include concave functions that significantly impact the 

computational burden. To overcome these difficulties, we propose two solution strategies: (i) an exact 

mixed-integer quadratically constrained reformulation, and (ii) a piecewise linear approximation of Eq. 

(6) to replace the function G(Kjp).  

First, we reformulate the MINLP as an MIQCP as in Achkar et al. (2023). Solvers like CPLEX 

and Gurobi can solve MIQCPs to global optimality quite effectively in reasonable computational times. 

To obtain the MIQCP reformulation, we introduce a new positive continuous variable, Ujp, that 

represents the square root, i.e. 𝑈𝑗𝑝 ≥ √𝜏𝑗𝑝, as shown in Figure 4, with τ being the argument of the square 

root. We include Eq. (14) to define 𝑈𝑗𝑝
2 : 

𝑈𝑗𝑝
2 ≥ 𝑁𝐿𝑇𝑗𝑝 𝜎𝑗𝑝

2 + 𝜇𝑗𝑝
2  𝑋𝑗𝑝           ∀ 𝑗 ∈ 𝐽, 𝑝 ∈ 𝑃𝑗  (14) 

Hence, the objective function becomes the linear function given by Eq. (15): 

𝑚𝑖𝑛 ∑ ∑ ℎ𝑗𝑝 𝐾𝑗𝑝 𝑈𝑗𝑝

𝑗 ∈ 𝐵𝑗𝑝𝑝

 (15) 

 

 

Figure 4. Reformulation from MINLP to MIQCP 

Regarding G(Kjp) = Kjp [1-Φ(Kjp)]- φ(Kjp) present in the fill rate constraint, we aim to improve 

the model tractability by replacing it with a piecewise linear approximation Y(Kjp), as shown in Figure 

5 (A). This function is the same for all nodes on all locations, while demand is normally distributed. In 

the example (A), there are four breakpoints (p1, p2, p3 and p4) and three segments (s1, s2 and s3). If the 

number of breakpoints increases, the precision of the estimation also does, but the computational 

efficiency decreases. For the current formulation we propose 8 breakpoints (p1 to p8) as shown in Figure 

5 (B). 
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Figure 5. (A) Illustrative piecewise linear approximation, (B) Breakpoints selected for the 

current model 

To introduce this approximation into the model, a continuous positive variable Yjp is added to 

represent the piecewise linear function in Eq. (16). The continuous variable 𝐾𝑗𝑝𝑠 represents the value 

that the safety factor takes if the active segment is s ∈ S2. As only one segment must be active, there is 

a binary variable Wjps that takes value 1 if segment s is the active segment, and 0 otherwise. The upper 

and lower bounds of each segment are given by Eqs. (17) and (18), with 𝑙𝑏𝑗𝑝𝑠 and 𝑢𝑏𝑗𝑝𝑠 being the 

breakpoints that define segment s. The condition of only one active segment is defined in (19). Equation 

(20) assigns the final value of the safety factor given by 𝐾𝑗𝑝𝑠 for active segment s to the variable Kjp 

that only depends of location j and material p. 

𝑌𝑗𝑝 = ∑ (𝑎𝑗𝑝𝑠𝐾𝑗𝑝𝑠 + 𝑏𝑗𝑝𝑠 𝑊𝑗𝑝𝑠)

𝑠∈𝑆2

                                                  ∀ 𝑗 ∈ 𝐽, 𝑝 ∈ 𝑃𝑗  (16) 

𝑙𝑏𝑗𝑝𝑠𝑊𝑗𝑝𝑠 ≤  𝐾𝑗𝑝𝑠                                                                               ∀ 𝑗 ∈ 𝐽, 𝑝 ∈ 𝑃𝑗 , 𝑠 ∈ 𝑆2 (17) 

𝐾𝑗𝑝𝑠 ≤ 𝑢𝑏𝑗𝑝𝑠𝑊𝑗𝑝𝑠                                                                               ∀ 𝑗 ∈ 𝐽, 𝑝 ∈ 𝑃𝑗 , 𝑠 ∈ 𝑆2 (18) 

∑ 𝑊𝑗𝑝𝑠

𝑠∈𝑆2

= 1                                                                                       ∀ 𝑗 ∈ 𝐽, 𝑝 ∈ 𝑃𝑗 (19) 



12 

 

∑ 𝐾𝑗𝑝𝑠

𝑠∈𝑆2

= 𝐾𝑗𝑝                                                                                    ∀ 𝑗 ∈ 𝐽, 𝑝 ∈ 𝑃𝑗 (20) 

Finally, Eq. (6) is redefined including the new variables related to the piecewise functions: 

𝑓𝑟𝑗𝑝 ≤ 1 +
𝑈𝑗𝑝

𝑄𝑗𝑝
𝑌𝑗𝑝        ∀ 𝑗 ∈ 𝐽,  𝑝 ∈ 𝑃𝑗 ,  (𝑗, 𝑝) ∈  𝐹 (21) 

The new mathematical reformulation is a MIQCP given by Equations (1)-(5), (7)-(12), (14)-(21).  

3.2 Extension for non-normal demand 

In industrial practice, it is commonly observed that demand data histograms do not follow a 

normal distribution. Soares (2013) states that if the coefficient of variation (CV = σ/µ) of the demand 

is not much less than 1, there is a relatively high probability for negative demand when using the normal 

distribution. Consequently, simulating normally distributed demands with large CVs requires special 

treatment since demand cannot take negative values. If negative values are truncated to zero or removed 

from the analysis, the mean and standard deviation of the effective sample of demands differ from the 

original ones. As a result, the parameters used for safety stock and basestock calculations do not 

correspond to the actual data. Even if we have complete knowledge of demand realizations from the 

simulation and can calculate inventory targets based on these occurrences, achieving customer service 

levels becomes less effective as the coefficient of variation (CV) approaches 1. In other words, for 

distributions with large CVs, the GSM model predicts slightly lower Cycle Service Levels (CSLs) than 

expected, especially when CSL targets are closer to 100% as demonstrated in Table 2. This table 

presents the results of simulation experiments conducted using the Arena Software for a single-echelon 

network and a single product. Safety stocks and basestock levels (Bjp = SSjp + NLTjp µjp) are calculated 

for different target CSLs: 90%, 93%, 96% and 99%. The focus is primarily on high service levels as 

they are the most commonly used targets in Multi-Echelon Inventory Optimization (MEIO). Demand 

is randomly generated following a normal distribution with CVs of 0.2, 0.5, 1, and 50. If a randomly 

generated number is negative, it is discarded, and a new number is generated until a positive value is 

obtained. The effective CVs of the demand obtained after truncation are 0.20, 0.46, 0.61, and 0.76. It is 

worth noting that representing demands with CVs larger than 0.8 becomes challenging using the 

truncated normal distribution, even for the case of an original CV = 50. For each combination of CV 

and target CSL, five replications of 10,000 periods each were run. A deterministic lead time equal to 1 

and a period between reviews equal to 1 is assumed. Table 1 displays the mean CSL obtained from the 

five replications along with the 95% confidence interval for each experiment. It can be observed that 

the confidence intervals encompass the expected target for CV 0.2 and are close to the target for CV 

0.5. However, for larger CVs, the intervals deviate from the target CSL as the target increases and the 

CVs get closer to 1. For CVs 0.6 and 0.7, all expected CSLs are more than 1 percentage point below 

the target. 
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Table 1: Mean CSL and Confidence intervals obtained from simulations 

 Effective CSL Mean and Confidence Intervals from Simulations 

Original CV 0.2 0.5 1 50 

Effective CV 0.2 0.5 0.6 0.7 

Expected 

CSL 
Mean CI Mean CI Mean CI Mean CI 

0.90 0.899 [0.898, 0.900] 0.894 [0.893, 0.896] 0.891 [0.888, 0.893] 0.890 [0.886, 0.893] 

0.93 0.930 [0.929, 0.931] 0.925 [0.923, 0.926] 0.919 [0.918, 0.921] 0.915 [0.911, 0.919] 

0.96 0.960 [0.958, 0.961] 0.955 [0.953, 0.956] 0.948 [0.946, 0.950] 0.944 [0.941, 0.946] 

0.99 0.989 [0.989, 0.990] 0.987 [0.986, 0.988] 0.982 [0.981, 0.984] 0.978 [0.977, 0.979] 

 

Although the assumption of normal distribution usually works relatively well also in these 

examples, with small deviations from the desired CSL, it can be more attractive to use an alternative 

distribution that ensures nonnegative demand. In this work, we propose incorporating the gamma 

distribution to represent demand for CSL targets, with fill rate being outside the scope of this work. The 

gamma distribution offers several advantages: it guarantees positive demand, can capture shapes similar 

to exponential and normal distributions, and allows for a higher probability of very high demand 

compared to the normal distribution due to its right-skewness. Additionally, it can effectively represent 

more volatile demand patterns with coefficient of variations (CVs) exceeding 1. 

As the current mathematical model proposed in this work is based on the safety factor derived 

from the normal distribution, the objective of this section is to extend the GSM to address scenarios 

where demand exhibits large CVs, and the existing safety stock model fails to meet the target CSL. Few 

works in the literature use Gamma distributions for safety stock setting, and there is little work for 

extending the GSM model (Beutel & Minner, 2012; Mirzaee, 2017; Moors & Strijbosch, 2002)  

Mirzaee (2017) proposes an alternative approach to determine safety stocks by adjusting the 

service level, using an equivalent safety factor (kjp) that corresponds to the value of the empirical 

cumulative distribution function H(xjp). In this work, our goal is to find an alternative method that 

ensures the desired customer service level in cases of large CVs, where only the mean and standard 

deviation of the demand are known. We propose employing the gamma cumulative distribution function 

Γ(x) as an alternative to determine the safety factor kjp. Following the approach of Mirzaee (2017), we 

adjust the safety factor using the standard normal cumulative density function (cdf), Φ(kjp), but the new 

safety factor comes from the inverse of the gamma distribution for the desired CSL, denoted 

Γ𝑗𝑝
−1(𝐶𝑆𝐿𝑗𝑝), as depicted in Figure 6. The blue line corresponds to the normal distribution, with kNjp 

being the safety factor obtained from the inverse of the normal cdf as in the classic GSM. On the other 

hand, the red line represents the gamma distribution for the same mean demand and standard deviation 

parameters, and kGjp is the safety factor obtained from the standardized inverse gamma cdf.  
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Figure 6: Proposed safety factors for normal and gamma distributed demands using the 

standard normal cdf 

It is important to note that in certain situations, particularly for high service levels, kGjp may result 

in larger values. Conversely, there may be cases where kGjp is lower than the original safety factor kNjp 

used for lower service levels, leading to a decrease in inventory levels. Since the original distribution 

of demand is unknown, we propose a new approach that selects the maximum value between the 

traditional safety factor kNjp and the one obtained using the gamma distribution kGjp. This is represented 

in Eq. (22): 

𝑘𝑗𝑝 = 𝑚𝑎𝑥 {𝑘𝑁𝑗𝑝
,  𝑘𝐺𝑗𝑝

} = 𝑚𝑎𝑥 {Φ−1(𝐶𝑆𝐿𝑗𝑝),  
Γ𝑗𝑝

−1(𝐶𝑆𝐿𝑗𝑝) − 𝜇𝑗𝑝

𝜎𝑗𝑝
}  (22) 

To evaluate the proposed approach, a simulation study is conducted using multiple datasets with 

demands following a gamma distribution. The CV for these datasets ranges from 0.6 to 2 We assume 

that CVs larger than 2 are related to highly erratic demands and the safety stock models may not be the 

appropriate ones to implement in those cases. Table 2 displays the results obtained for the CSL using 

the safety factors obtained from both the normal distribution (kNjp) and the equivalent factor derived 

from the gamma distribution (kGjp), named N and G, respectively. This table presents the mean and the 

95% confidence interval for different CSLs from 81% to 99%. We observe that kGjp performs better for 

larger CSL targets, while it yielded poorer results for lower service level values. 

If the complete set of demand data were available, we could obtain the empirical distribution 

function H(x) for the dataset instead of using the gamma distribution. However, in this work, we assume 

that such a dataset is not available, and we only have access to the mean and standard deviations of the 

demand. Using Eq. (22), as shown in Table 2, we can observe that all CSL targets are satisfied. One 

drawback of this approach is that it may result in over-buffering in the case of very large CVs. In future 

work, we aim to extend this approach to incorporate fill rate targets. The proposed extension enables 

the MEIO model to accurately calculate safety stock levels for demands with large CVs, without 

compromising computational efficiency, as it serves as a pre-processing step to determine the parameter 

kjp in Eq. (7). The MIQCP with the concavity property and model efficiency are conserved. 
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Table 2. Effective CSL for large CVs with original and safety factors kNjp (N) and kGjp (G) 

    CV = 0. 6 CV = 0.8 CV = 1 CV = 2 

Target 

CSL 
  N G N G N G N G 

0.81 
Mean 0.822 0.803 0.829 0.799 0.837 0.796 0.885 0.782 

CI [0.821, 0.824] [0.802, 0.804] [0.827, 0.831] [0.799, 0.800] [0.834, 0.840] [0.792, 0.801] [0.884, 0.886] [0.779, 0.786] 

0.84 
Mean 0.846 0.836 0.851 0.834 0.856 0.830 0.897 0.822 

CI [0.843, 0.849] [0.834, 0.839] [0.848, 0.854] [0.832, 0.836] [0.853, 0.859] [0.828, 0.833] [0.896, 0.899] [0.818, 0.825] 

0.87 
Mean 0.869 0.869 0.872 0.867 0.875 0.864 0.909 0.861 

CI [0.867, 0.871] [0.867, 0.871] [0.870, 0.874] [0.865, 0.869] [0.872, 0.877] [0.861, 0.868] [0.907, 0.912] [0.858, 0.864] 

0.90 
Mean 0.892 0.901 0.893 0.901 0.893 0.896 0.920 0.897 

CI [0.891, 0.894] [0.900, 0.903] [0.892, 0.894] [0.900, 0.902] [0.89, 0.896] [0.893, 0.899] [0.917, 0.922] [0.893, 0.900] 

0.93 
Mean 0.917 0.935 0.916 0.935 0.914 0.932 0.932 0.932 

CI [0.915, 0.918] [0.933, 0.936] [0.914, 0.917] [0.934, 0.936] [0.911, 0.916] [0.930, 0.933] [0.930, 0.934] [0.930, 0.934] 

0.96 
Mean 0.943 0.964 0.940 0.964 0.938 0.965 0.946 0.964 

CI [0.941, 0.944] [0.963, 0.965] [0.938, 0.941] [0.962, 0.965] [0.936, 0.939] [0.964, 0.966] [0.945, 0.948] [0.962, 0.965] 

0.99 
Mean 0.974 0.993 0.970 0.994 0.969 0.994 0.966 0.992 

CI [0.973, 0.976] [0.993, 0.994] [0.969, 0.972] [0.993, 0.994] [0.968, 0.97] [0.994, 0.995] [0.964, 0.968] [0.992, 0.993] 
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4. APPLICATION AND RESULTS 

4.1 Illustrative example 

To better understand the results of the model, we propose to first solve the illustrative example 

presented in Achkar et al. (2023), depicted in Figure 7, with slight changes on demand and holding cost 

parameters. This case involves the production and distribution of a finished good (SKU1) produced 

from two raw materials (Raw1 and Raw2) at a Plant. The finished good is then delivered to three retailers 

(R1, R2 and R3) who satisfy external demand. The bill of materials (BOM) coefficients are ϕRaw1, SKU1 = 

1 and ϕRaw2, SKU1 = 0.014. Table 3 provides the demand and lead time parameters, maximum service 

time, and unit holding costs for each material and location. The target service measure chosen is the fill 

rate, with a desired value of 97% for all products. 

 

Figure 7: Illustrative example representation 

 

Table 3: Illustrative example input data 

Material Raw1 Raw2 SKU1 SKU1 SKU1 SKU1 

Location Plant Plant Plant R1 R2 R3 

Demand (units) 
µjp 425,717 5,913 425,717 162,379 67,284 196,054 

σjp 116,671 1,620 116,671 48,714 40,370 98,027 

(CV= σjp /µjp) 0.27 0.27 0.27 0.30 0.60 0.50 

Lead Time (weeks) 
ltjp 6 3 2 1 1 1 

σLTjp 1.9 0.7 0.0 0.3 0.6 0.4 

Max Service Time Sjp (weeks) - - - 0 0 0 

hjp ($/unit) 0.0586 0.0001 0.6 0.6 0.6 0.6 

 

The advantage of using the MIQCP reformulation instead of the MINLP model regarding 

computational efficiency and obtaining the same global optimum has been shown in previous work  

Achkar et al. (2023). In this work, we solve the illustrative example comparing two approaches based 
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on the MIQCP formulation. The first one is (a) the current approach proposed in this work, with a 

piecewise linear approximation. To provide a basis for comparison, we also solve the same example 

using (b) the polynomial regression proposed in Achkar et al. (2023), using a second-order polynomial 

regression in Eq. (6) (h(Kjp) = a Kjp
 2 + b Kjp + c), with a = -0.074700, b = 0.331986, c = -0.357195. 

Computational results are shown in Table 4. The tests were performed using Pyomo on an Intel Core i7 

CPU with 12 GB RAM and 4 parallel threads, with Gurobi 9.5 as the QCP solver. In terms of approach 

(a), it is worth noting that the size of the model increases significantly due to the inclusion of constraints 

associated with the piecewise function. However, the computational time required to obtain the optimal 

solution is lower compared to approach (b). 

Table 4: Computational Results 

  
(a) MIQCP with piecewise 

function (current approach) 

(b) MIQCP with 

polynomial regression 

CPU time (seconds) 0.17 0.25 

Optimality GAP 0% 0% 

Number of constraints 164 86 

Number of binary variables 61 25 

Number of integer variables 73 37 

Number of continuous variables 85 43 

 

Both the MIQCP formulation with the piecewise linear approximation (a) and the polynomial 

regression approach (b) successfully find the same optimal solution for the illustrative example. The 

obtained solution is presented in Table 5. The safety stock allocation decisions are the same for both 

approaches, deciding to push the safety stock of finished goods in the plant to downstream nodes, 

selecting a guaranteed service of 2 weeks for supplying the retailers. When comparing the total costs, 

approach (a) achieves a total cost of $351,531, while approach (b) results in a total cost of $358,046. 

The main factor contributing to the cost difference between the two approaches is the value of the safety 

factor Kjp obtained through the different approximation methods. As small differences in the safety 

factor can yield large differences in safety stock costs, the selection of the most accurate approximation 

method is of great importance.  

In Table 6, a comparison of the precision between the two approaches is presented. This 

comparison is based on the fill rate obtained by using the safety factor Kjp from the piecewise linear 

approximation, and the regression approximation in the original Eq. (6). The results indicate that the 

piecewise linear approximation provides a better fit for approximating the loss function with smaller 

deviations from the target fill rate of 97%. This higher precision in approximation leads to a 2% 

reduction in the total cost. Therefore, for this example, the improved precision achieved through the 
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piecewise linear approximation contributes to better accuracy in determining the safety factor and 

subsequently optimizing the cost, resulting in cost savings compared to the regression approximation. 

Table 5: Illustrative example results 

    

(a) MIQCP with piecewise function 

(current approach) 
(b) MIQCP with polynomial regression 

Material Location Sjp SIjp Kjp SSjp Costjp Sjp SIjp Kjp SSjp Costjp 

Raw1 Plant 0 0 1.88 1,629,691 $ 95,451 0 0 1.63 1,409,022 $ 82,526 

Raw2 Plant 0 0 1.45 7,648 $ 1 0 0 1.44 7,583 $ 1 
 

SKU1 Plant 3 0 0 0 $ 0 3 0 0 0 $ 0 

SKU1 Retailer1 0 3 0.79 94,563 $ 56,738 0 3 0.87 103,339 $ 62,004 

SKU1 Retailer2 0 3 0.67 66,236 $ 39,742 0 3 0.74 73,508 $ 44,105 

SKU1 Retailer3 0 3 1.14 266,000 $ 159,600 0 3 1.21 282,350 $ 169,410 

Table 6: Precision of approximations 

  
(a) MIQCP with piecewise function 

(current approach) 

(b) MIQCP with polynomial 

regression 

Material Location Kjp 
Fill rate from 

Eq. (7) 

Difference 

from target 
Kjp 

Fill rate from 

Eq. (7) 

Difference 

from target 

Raw1 Plant 1.88 0.9765 0.0065 1.63 0.9557 
 

-0.0143 

Raw2 Plant 1.45 0.9711 0.0011 1.44 0.9703 
 

0.0003 

SKU1 Plant 0 - - 0 - - 

SKU1 Retailer1 0.79 0.9709 0.0009 0.87 0.9745 0.0045 

SKU1 Retailer2 0.67 0.9703 0.0003 0.74 0.9738 0.0038 

SKU1 Retailer3 1.14 0.9707 0.0007 1.21 0.9746 0.0046 

 

4.1 Larger-size examples 

To assess the performance of the proposed approaches on larger cases, the previous example is 

expanded to include 4 finished goods and 6 raw materials (10 materials in total), as well as 20 finished 

goods and 120 raw materials (140 materials in total). The demand distributions are assumed to be 

normally distributed, and the target fill rate for all materials is set at 97%. The results of these tests are 

summarized in Table 7.  

For the first extension with 10 materials, approach (a) achieves a total cost of $8,472,820, with a 

computational time of 0.3 seconds and an average error (difference between the obtained fill rate and 

the target) of 0.0054. On the other hand, approach (b) results in a total cost of $7,326,065, the 

computational time is 0.9 seconds, but with an average error of -0.0495. In this case, although the total 
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cost using approach (b) is lower, on average, the safety factors proposed are not enough to meet the 

desired customer service level. 

For the larger case with 140 materials, approach (a) finds the optimal solution within 1.27 

seconds, with an average error of 0.0030. In contrast, approach (b) is not able to find the optimal solution 

in 1000 seconds, and obtains a solution with a 19% GAP. In addition, the total cost of approach (a) 

increases, but the average error presented in Table 7 indicates that approach (b) underestimates the 

service levels. This clearly shows the advantage of the model proposed in this work to significantly 

increase the computational efficiency while improving the solution accuracy. 

In summary, the results show that approach (a) outperforms approach (b) in terms of 

computational efficiency and solution accuracy, even when dealing with larger cases. 

Table 7: Extended illustrative example results for 10 materials 

 Extension for 10 materials Extension for 140 materials 

 
(a) MIQCP 

with piecewise 

(b) MIQCP 

with regression 

(a) MIQCP 

with piecewise 

(b) MIQCP 

with regression 

CPU time (seconds) 0.25 0.90 1.27 1,000 

Optimality GAP 0% 0% 0% 19% 

Constraints 572 298 5793 3243 

Binary variables 215 89 1896 720 

Integer variables 257 131 2288 1112 

Continuous variables 295 148 2745 1373 

Total Cost $ 8,472,820 $ 7,326,065 $ 22,743,468 $ 20,212,859 

Avg. error for fill rate 0.0054 -0.0495 0.0030 -0.0210 

 

Finally, to illustrate the application of the proposed solution strategy in a large and complex 

supply chain, a computational experiment is conducted based on a real-world case study involving 1400 

products and 18 locations, as depicted in Figure 8. The numbers assigned to each node indicate the 

number of products that can be stored at that location, as different products follow different routes. In 

total, there are 7371 product-location combinations to consider for allocation decisions. Nodes with 

people icons represent locations that receive external demand. The demand for each product is 

stochastic, independent, and identically distributed, while lead times follow a normal distribution. 

Figure 9 displays the computational time required to solve different instances of the problem, 

ranging from 100 to 1400 products. Two targets were considered: the orange line corresponds to the 

problem with a target customer service level (CSL) of 98% for all products, while the dashed blue line 

represents the results when a fixed fill rate (FR) target of 98% is set. It can be observed that real-world 

cases can be solved to optimality within a few seconds of CPU time. The computational burden 
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increases when the fill rate is used as the target measure, as more constraints and variables become 

active. Table 8 provides detailed information on the model sizes and objective values for selected 

instances. When the target service level is the fill rate, there is a noticeable reduction in the total holding 

cost. This can be attributed to the fact that even though orders may not be completely fulfilled, partial 

fulfilment is taken into account when calculating the overall service level. In situations where the CV 

is relatively low and the demand is assumed to be normally distributed, the fill rate tends to be higher 

compared to the CSL. While occasional stockouts may still occur, they are typically of smaller 

magnitude (Chopra & Meindl, 2013; Peter L. King, 2011). For instance, in the illustrative example, the 

safety factor required to achieve a 97% fill rate is KRetailer1,SKU1 = 0.79 (Table 6). On the other hand, if 

the target were a 97% CSL, the safety factor would be Φ-1(0.97) = 1.88. This would result in a higher 

safety stock level and consequently higher costs. 

It is worth mentioning that using BARON to solve the smallest instance for both the MINLP and 

MIQCP formulations failed to yield a feasible solution within 1000 seconds. This demonstrates that the 

proposed MIQCP reformulation solving with Gurobi yields order of magnitude improvements in 

computational efficiency. 

 

Figure 8. Case-study network 

 

Figure 9. Instance size vs. computational time 
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Table 8. Model sizes and optimal solutions 

  
Items Constraints 

Binary 

variables 

Integer 

variables 

Continuous 

variables 

Total holding 

cost ($) 

Target 98% 

CSL 

200 14 261 5 525 7 831 5 766  $    2 025 853  

400 27 210 10 991 15 155 10 991  $    2 936 325  

600 39 816 15 504 21 930 16 066  $    4 526 933  

800 55 018 21 194 30 080 22 216  $    8 626 338  

1000 66 471 25 412 36 146 26 836  $  11 693 035  

1200 81 104 31 132 44 230 32 746  $  16 412 021  

1400 86 381 34 783 49 525 36 856  $  22 281 963  

Target 98% 

FR 

200 27 341 10 757 13 063 13 895  $    1 009 487  

400 48 870 19 423 23 819 24 741  $    1 548 778  

600 73 386 28 932 35 358 37 183  $    2 246 342  

800 104 023 40 796 49 682 52 795  $    5 129 822  

1000 124 596 48 662 59 396 63 203  $    7 533 684  

1200 152 324 59 620 72 718 77 279  $  11 155 372  

1400 171 249 66 781 81 523 86 891  $  15 268 330  

5. CONCLUSIONS 

In this work, we have presented an optimization model based on the guaranteed-service approach 

to determine safety stocks in multi-echelon supply chains. The objective of this work is to provide a 

model that is both accurate and efficient in determining the appropriate safety stock levels. We build 

the on the model proposed in Achkar et al. (2023), by extending it in several important directions. 

The initial MINLP problem has a concave objective function, and the loss function of the normal 

distribution in the fill rate constraint. The proposed solution strategy combines an MIQCP reformulation 

with a piecewise linear approximation to enhance computational efficiency. The results demonstrate 

that the reformulated model outperforms the original MINLP formulation and previous approaches 

based on polynomial regression. It is the first model to combine an MIQCP reformulation with 

piecewise linear functions to achieve improved computational efficiency in the guaranteed-service 

model. Additionally, the piecewise-linear approximation improves the precision of the safety stock 

setting by providing a more accurate estimation of the fill rate. This is of great relevance, since slight 

variations in service levels can have significant impacts on inventory costs. 

Furthermore, this work extends the GSM to handle non-normally distributed demands with high 

variability. The extension to non-normal demand distributions with higher variability allows for the 

inclusion of a wider range of products, which is particularly relevant in pharmaceutical supply chains. 

It is demonstrated that safety stocks based on safety factors derived from the standard normal 

distribution may underestimate the customer service level, and the proposed adjustment including the 

gamma distribution provides a more accurate estimation of safety stock levels for highly variable 

demands. 
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Finally, the approach to handle stochastic lead times is modified from the one proposed in Achkar 

et al. (2023). The standard deviation of the net lead time in the present paper depends on the value of 

the net lead time itself, and a discrete function is proposed to determine the value of the standard 

deviation σNLTjp. By exploiting the concavity property of the objective function, a novel discrete function 

is proposed to obtain the value of σNLTjp. 

Overall, the proposed model accurately represents real-world systems and enables the 

determination of optimal safety stock levels to meet target customer service levels while minimizing 

inventory costs. Illustrative examples and real-world cases from the pharmaceutical industry have been 

presented to demonstrate the applicability of the proposed formulation. The model can efficiently solve 

large-scale problems with over 7300 product-location combinations. Future work will focus on non-

normal demand with fill rate targets, and responsive characteristics to address supply chain disruptions. 

6. NOMENCLATURE 

6.1 Sets 

J Set of locations 

𝐽0  Subset of starting locations in the network 

𝑃𝑗 Subsets of products that can be stored at location j 

A Subset of routes segments (from node i to node j) enabled for material p  

F Set of locations that have materials with an active fill rate as a target 

S1 Set of steps related to discrete function for NLT variance 

S2 Set of segments related to piecewise linear approximation for fill rate constraint 

6.2 Parameters 

𝜇𝑗𝑝 Mean of the total demand of material p in location j 

𝜎𝑗𝑝 Standard deviation of the total demand of material p in location j 

𝑙𝑡𝑗𝑝 Lead time/order processing time of material p in location j 

𝜎𝐿𝑇𝑗𝑝
 Standard deviation of the lead time/order processing time of material p in location j 

𝜎𝑁𝐿𝑇𝑗𝑝
 Standard deviation of the NLT of material p in location j 

ℎ𝑗𝑝 Holding cost of material p in location j 

𝑠𝑖𝑗𝑝
0  Inbound service time for the source nodes in the network 

𝜙𝑝𝑞 Amount of material p required to produce material a unit of material q 

𝑚𝑎𝑥𝑆𝑗𝑝 Maximum service time accepted for material p in location j 

𝑟𝑗𝑝 Stock review period for material p in location j 

𝑚𝑜𝑞𝑗𝑝 Minimum Order Quantity of material p that location j must place  
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𝑄𝑗𝑝 Replenishment order size of material p at location j 

𝑓𝑟𝑗𝑝 Fill rate level of material p at location j 

𝑘𝑗𝑝 Safety factor associated with CSL of material p at location j 

𝑐𝑗𝑝𝑠 Value assigned to NLT variance of material p at location j on step s 

𝑑𝑗𝑝𝑠 Value of NLT represented in step s for material p at location j 

𝑎𝑗𝑝𝑠 Slope of segment s associated to piecewise linear approximation for material p at 

location j 

𝑏𝑗𝑝𝑠 Origin of segment s associated to piecewise linear approximation for material p at 

location j 

𝑙𝑏𝑗𝑝𝑠 Lower bound of NLT associated to piecewise approximation for segment s, material 

p at location j 

𝑢𝑏𝑗𝑝𝑠 Upper bound of NLT associated to piecewise approximation for segment s, material 

p at location j 

𝑘𝑁𝑗𝑝
 Safety factor obtained from the standard normal cdf for material p at location j 

𝑘𝐺𝑗𝑝
 Safety factor obtained from the standardized gamma cdf for material p at location j 

6.3 Positive Variables 

𝑆𝑗𝑝 Guaranteed service time within which location j will attend demand of material p 

𝑆𝐼𝑗𝑝 Inbound Guaranteed service time at location j of material p 

𝑁𝐿𝑇𝑗𝑝 Net Lead time of material p at node j 

𝑈𝑗𝑝 Variable used for quadratic reformulation on dependent demand net lead time formula 

𝐾𝑗𝑝 Variable used to replace k input factor when the fill rate is introduced to determine 

safety stocks 

𝑋𝑗𝑝 Variable defined to represent NLT variance of material p at node j 

𝑌𝑗𝑝 Variable that represents the value of part of the fill rate constraint resulting from 

piecewise approximation for material p at node j 

𝐾𝑗𝑝𝑠 Auxiliary variable that represents the value the safety factor for piecewise 

approximation for material p at node j, segment s 

6.4 Binary Variables 

𝑉1𝑗𝑝𝑠
 Variable associated with discrete to define NLT variance  

𝑉2𝑗𝑝𝑠
 Variable associated with discrete to define NLT variance 

𝑊𝑗𝑝𝑠 Variable associated with piecewise linear approximation 
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