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1 Introduction

Methods for transforming mathematical programs (MPs) are generally not
stated in a manner amenable to computer implementation. As a result, there
is little support for these methods in existing MP software, restricting their
use to experts familiar with the relevant literature. Even for experts, manual
application of these techniques is tedious and error-prone.

We believe there are two main reasons preventing more widespread imple-
mentation of program transformations. Firstly, most are stated on programs
in a canonical form, with matrices, not on the more natural syntax used in
practice. Second, matrix forms only support numerical operations, but trans-
formation procedures often require other types of operations. For example, a
numerical function cannot formalize variable name generation as needed for
transforming disjunctive constraints.

We develop a framework for automating two transformations: disjunctive con-
straints are converted to mixed-integer constraints, and Boolean propositions
into linear integer constraints. Our transformations are applicable to a fairly
broad class of programs—including nonlinear terms, nested disjunctions, and
Booleans intermixed with disjunctions—but we have not yet attempted to
provide a good reformulation in the general case. However, when a disjunc-
tion consists purely of linear inequalities on the reals, our method corresponds
to the convex hull reformulation (Balas; 1974). Our main result is to define
these methods in a novel style based on set theory. We show how these kinds
of definitions lead more directly to a computer implementation.

There have been limited efforts to automate transformations even in the
most widely used MP software: GAMS (Bisschop and Meeraus; 1982), AMPL
(Fourer et al.; 1990), Mosel (Colombani and Heipcke; 2002), and OPL (van
Hentenryck and Lustig; 1999). None of these transform Boolean expressions,
and only OPL transforms disjunctive constraints, although it occasionally
gives incorrect results (see Agarwal (2006) for an example). SIMPL (Aron
et al.; 2004) also converts disjunctive constraints but only of a very particular
form. LogMIP (Vecchietti and Grossmann; 2000) is an extension to GAMS
and converts disjunctions using either the big-M or convex hull (Balas; 1974)
methods. However, in the latter case, it assumes bounds on variables when
none are provided, thereby returning an incorrect reformulation to the un-
knowing user. Most importantly, none of these software have been accompa-
nied with a mathematical framework enabling a general study and systematic
implementation of program transformations.

First we will briefly review a definition for a set of mathematical programs
provided in Agarwal’s (2006) dissertation. In contrast to previous definitions,
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this set contains MPs as written in practice 2 and uniformly integrates a rich
variety of constraints. Crucially, it allows treating MPs as syntactic objects
that formally encode all information needed for program transformations.

The usual matrix-based definitions do not. For example, Nemhauser and Wolsey
(1999, p. 3) define a mixed-integer linear program (MILP) as

max
{

cx + hy : Ax + Gy ≤ b, x ∈ Z
n
+, y ∈ R

p
+

}

The mathematical theory supporting this definition allows using only the co-
efficient matrices as formal arguments to a function. The variable names x
and y, operators + and ≤, or data types Z and R cannot be. However, pro-
gram transformations are functions operating literally on constraints, such
as f (Ax + Gy ≤ b). Function f needs to be a mapping between constraint
spaces, and these spaces must be first defined.

With these definitions in place, we define binary relations on them. The two
main relations we provide convert Boolean expressions into linear integer in-
equalities, and disjunctive constraints into mixed-integer inequalities. These
are combined to provide a transformation on programs with an arbitrary mix
of such constraints. We conclude by showing how our definitions lead directly
to automation and present some examples of our software’s output.

2 Review of Inductive Set Definitions

We provide a brief review of induction since it is used in virtually every def-
inition of this paper. Induction is often explained over the natural numbers
(e.g. Rosen; 1995) but we require a more general version that allows multi-
ple base cases and allows the inductive step to proceed in multiple directions
(Andrews; 2002). We use induction to define sets and set relations, and so it
is discussed from this perspective.

A judgement J is a statement declaring that a certain object has some prop-
erty, i.e. that it lies in some set. For example, we might let “e expr” be a
judgement meaning that e is an expression, i.e. that it lies in the set of expres-
sions. The objects satisfying this judgement are defined by a set of inference
rules, each of which takes the form

J ′
1 · · · J ′

m

J
(1)

2 For simplicity we omit here the very important feature of indices, which is covered
in Agarwal (2006).
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where J ′
1, . . . , J

′
m are the preconditions required for a conclusion J . For exam-

ple, we might choose to define the judgement e expr by the rules

k expr
(2a)

e1 expr e2 expr

e1 + e2 expr
(2b)

e1 expr e2 expr

e1 − e2 expr
(2c)

where k is any integer. The first rule states that an integer k by itself is an
expression without condition. The second states that if e1 and e2 are known to
be expressions, then so is “e1+e2”, and the third rule is similar. The definition
is inductive because expressions are constructed from other expressions. An
infinite set of expressions has been defined, which contains for example the
elements “1”, “2”, “1 + 2”, “(1 + 2) + 1”, etc. Later we will define a richer set
of expressions that includes variables and additional operators.

A shorthand is often used when the preconditions are simple enough to allow
it. Rules (2) can be written compactly as

e ::= k | e1 + e2 | e1 − e2 (3)

Here it is understood that any use of the symbol “e” refers to an object
satisfying the judgement e expr. This notation can be read as “an expression
e can be of the form k, or of the form e1 + e2, or of the form e1 − e2”. But
usually rules have to be written out in their full form (1).

The same technique can be used to define subsets or set relations. For example,
let e val mean e is a value, and define this judgement with the single rule

k val
(4)

This states that the subset of expressions of the form “k” are what we consider
to be values.

Next, we can define a binary relation ց on expressions. Let e1 ց e2 mean e1

evaluates to e2, where e2 satisfies e2 val. One rule defining ց is

k ց k
(5a)

which states that values evaluate to themselves. Another rule would be

1 + 1 ց 2
(5b)

which states that the expression “1+1” evaluates to “2”. Many more rules are
needed to complete this definition; there are techniques for providing these in
a finite way but we will not need them here.
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More thorough and rigorous introductions to induction are available in many
texts, e.g. Andrews (2002); Pierce (2002).

3 Set of Mathematical Programs

We now review Agarwal’s (2006) definition of a set of MPs, where each element
is a syntactical object representing a particular MP. Mathematical programs
are comprised of constraints, which are themselves comprised of expressions,
and so we need to first define these sets.

The set of expressions is defined by

e ::= x | r | true | false

| −e | e1 + e2 | e1 − e2 | e1 ∗ e2

| not e | e1 or e2 | e1 and e2 (6)

which contains several more forms than the one of our tutorial example.
Firstly, any alphanumeric symbol x is declared to be an expression. Also,
we allow numerical constants r, as well as the Boolean constants true and
false. The other forms are the familiar arithmetic and Boolean operations.

According to this definition, the expression “not 3.4” is an expression, which
we do not want. Agarwal (2006) defines an important judgement known as a
typing judgement that specifies the subset of expressions that are well formed.
In particular, the judgement allows checking that an expression is of some type,
either real or Boolean. The expression “not 3.4” is ill formed because it is not
of any type.

The set of constraints, which we call propositions in this work, is defined by

c ::= T | F

| isTrue e | e1 = e2 | e1 ≤ e2

| c1 ∨ c2 | c1 ∧ c2

| ∃x : ρ � c (7)

Propositions T and F are propositional truth constants, which are distinct from
the Boolean constants true and false. Propositions of the form “isTrue e”
mark a Boolean expression as a proposition. Next, two expressions e1 and
e2 can be used to construct an equation or an inequality. Following that,
we define c1 ∨ c2 to be a proposition given that c1 is and that c2 is. There
is a distinction between propositional disjunction ∨ versus Boolean disjunc-
tion or, and similarly conjunction. These distinctions are crucial for program
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transformations. We will see that converting Boolean expressions into linear
integer inequalities requires lifting Boolean conjunction and into propositional
conjunction ∧. Also, Balas’s method regards c1 ∨ c2, and is not relevant to
e1 or e2, a disjunction of an entirely different nature.

Finally, the last form ∃x : ρ�c is how variables get introduced and is read “there
exists x of type ρ such that c holds”. Importantly for transformations, the
scope of the variable x is local to c. When new variables are generated, we need
not avoid name clashes with any part of the program except c. This notation
for introducing variables greatly facilitates the definition of the disjunctive
constraint transformation we give later.

The types ρ are defined by

ρ ::= 〈rL, rU〉 | 〈rL,∞) | (−∞, rU〉 | real

| [rL, rU ] | [rL,∞) | (−∞, rU ] | int

| {true} | {false} | bool (8)

where angle brackets have been used to denote real intervals, and square brack-
ets integer intervals. Essentially variables can be of type real, int, or bool.
The interval forms allow bounds to also be specified, and the singleton sets
{true} and {false} are provided for completeness.

Given expressions e, propositions c, and types ρ, we can now define the syntax
for a mathematical program. An MP is of only a single form given by

p ::= δx1:ρ1,...,xm:ρm
{e | c} (9)

where δ ::= min | max. The notation means that an objective e will be min-
imized (or maximized) over some variables x1, . . . , xm subject to proposition
c. A program is well formed only if the objective is of type real and the
proposition is also well formed. This judgement is denoted p mp and has been
defined in Agarwal (2006); we assume subsequently that we are working only
with well formed programs.

Compare (9) with the usual matrix style definition of an MP. For example,
Raman and Grossmann’s (1994) definition of what they call a generalized
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disjunctive program (GDP) is

min Z =
∑

k

ck + dTx

s.t. Bx ≤ b

∨

i∈Dk







Yik

Aikx ≤ aik





 , k ∈ SD

Ω (Y ) = true

x ∈ R
n, c ∈ R

m, Y ∈ {true, false}m (10)

This includes disjunctive constraints and Boolean expressions, so includes pro-
grams similar to those included by definition (9). However, (9) is a formal set
definition, and can be used as the domain and codomain of a function. Also,
the use of induction nicely includes additional constraint forms useful in prac-
tice, e.g. nested disjunctions. Definition (10) does not, and consequently a
transformation defined on this form may be difficult to apply to programs as
written in practice.

We define one other construct needed subsequently. A context

Υ ::= ∅ | Υ, x : ρ (11)

is either an empty list or a context appended with an item “x : ρ”. In other
words, a context is a list of variables with their declared types. It is assumed
that variable names are unique within any context. Let Υ (x) = ρ mean, in
context Υ, variable x is declared to be of type ρ.

Finally, there are two basic operations needed on the set elements we have
defined. It is necessary to know which variables occur in any construct. We let
FV (e) and FV (c) refer respectively to the free variables of an expression and
proposition. For example, FV (x + (1 − y)) = {x, y}. Bound variables are not
included. For example, FV (∃x : ρ � x + (1 − y)) = {y} because x is not free
in the overall proposition. Another basic operation allows replacing variables
with another expression. Let {e/x} e′ mean that we substitute e for x in e′.
For example {3/x} (x + (1 − y)) would return 3 + (1 − y). Similarly, {e/x} c
substitutes e for x in proposition c.

4 Transforming Syntactic Constructs

The class of programs covered by p include disjunctive propositions and Booleans.
However, most solvers accommodate only mixed-integer programming (MIP)
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constraints, which do not allow either of these forms. Formally, we define the
MIP types ρmip to be as above but exclude {true}, {false}, and bool; MIP
expressions emip disallow Boolean constants and Boolean operators, and MIP
propositions cmip disallow isTrue e and c1∨c2. Essentially, the only constraints
included in cmip are conjunctions of equations and inequalities. Finally, let pmip

refer to programs containing only MIP types, expressions, and propositions.

Our goal now is to provide a method for transforming programs in the full
syntax p to those in the restricted syntax pmip. We know this can be done,
under a mild condition, because of previous results by Balas (1974), Raman
and Grossmann (1994), and others. However, the transformation procedures
in these works have been stated in English. We now provide corresponding
mathematical definitions.

Transforming a program requires transforming the types, expressions, and
propositions that comprise it. We provide a transformation procedure for each
construct in turn.

4.1 Type Transformation

Let ρ
rtype

7−→ ρmip be a binary relation on types meaning the general type ρ can
be transformed to the MIP type ρmip. The definition of this judgement is given
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by the rules

〈rL, rU〉
rtype

7−→ 〈rL, rU〉
(12a)

〈rL,∞)
rtype

7−→ 〈rL,∞)
(12b)

(−∞, rU〉
rtype

7−→ (−∞, rU〉
(12c)

real
rtype

7−→ real
(12d)

[rL, rU ]
rtype

7−→ [rL, rU ]
(12e)

[rL,∞)
rtype

7−→ [rL,∞)
(12f)

(−∞, rU ]
rtype

7−→ (−∞, rU ]
(12g)

int
rtype

7−→ int
(12h)

{true}
rtype

7−→ [1, 1]
(12i)

{false}
rtype

7−→ [0, 0]
(12j)

bool
rtype

7−→ [0, 1]
(12k)

The final rule declares that the type bool will be converted into the type [0, 1],
which is the set containing the two integers 0 and 1. We convert {false} into
[0, 0], and {true} into [1, 1]. The other types remain unchanged because they
are already MIP types.

Let Υ
ctxt

7−→ Υmip be a context transformation. Its definition is

∅
ctxt

7−→ ∅
(13a)

Υ
ctxt

7−→ Υmip ρ
rtype

7−→ ρmip

Υ, x : ρ
ctxt

7−→ Υmip, x : ρmip

(13b)

This simply transforms each of the declared types in a context.

4.2 Expression Transformation

Only Boolean expressions need to be transformed; numerical ones are already
in MIP form. Boolean expressions are first converted into conjunctive normal
form. Let e cnf mean e is a conjunctive normal form, and let e1 y e2 be a
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relation converting any Boolean expression e1 into e2 such that e2 cnf. These
judgements have been defined by Agarwal (2006). Also, we will partition cnf

expressions into disjunctive literal forms dlf and conjunctive forms conj.
Different methods for transforming dlf versus conj expressions are required
(if we wish to generate linear inequalities).

Let e
dlf

7−→ emip be a judgement converting dlf expressions into integer mip

expressions. Its definition is motivated by the following decisions:

• literal expressions taking the value false and true correspond to nu-
meric expressions taking the value 0 and 1, respectively

• dlf expressions taking the value false and true correspond to numeric
expressions taking the value 0 and ≥ 1, respectively.

x
dlf

7−→ x
(14a)

true
dlf

7−→ 1
(14b)

false
dlf

7−→ 0
(14c)

e
dlf

7−→ e′

not e
dlf

7−→ 1 − e′
(14d)

e1

dlf

7−→ e′1 e2

dlf

7−→ e′2

e1 or e2

dlf

7−→ e′1 + e′2
(14e)

A variable x is left as is. But since its declared type will also be compiled, it
will take a [0, 1] value instead of a bool value. The Boolean constants true

and false are transformed to the integer constants 1 and 0. The expression
not e is converted by first converting e to e′, and the result is 1 − e′. The or

is converted to a + after first converting its arguments. Lemmas 5.3 and 5.4
of Agarwal (2006) prove that this definition adheres to the decisions above.

As an example, let us convert x or (not y). The above rules define how this
can be done mechanically. The expression is an or expression, so the last rule
applies. It requires that we first convert x, which returns x, and convert not y,
which returns 1− y. Then the last rule says the overall answer is x + (1 − y).

CNF expressions of the form e1 and e2, which we call conj, are transformed
directly into propositions. Let e

conj

7−→ cmip be the judgement doing so. Its defi-
nition is by the single rule

{

∅ ⊢ isTrue ej
prop

7−→ cj

}2

j=1

e1 and e2

conj

7−→ c1 ∧ c2

(15)

10



All that is done is to replace Boolean conjunction and with propositional con-
junction ∧. This requires first converting e1, e2 to propositions c1, c2, which
is done by marking the expressions to be propositions and then using the
proposition transformation defined next. An alternative would have been to
convert and expressions to multiplication expressions, analogously to how or

was converted to +, but that would generate nonlinear inequalities. The sep-
arate transformations we provide for dlf versus conj expressions produce
linear inequalities.

4.3 Proposition Transformation

Let Υ ⊢ c
prop

7−→ cmip mean within context Υ, proposition c can be converted
to the MIP proposition cmip. Unlike expressions, transforming propositions
requires knowledge of the variables’ types (only because of disjunctive con-
straints). The definition is given by the rules

Υ ⊢ T
prop

7−→ T
(16a)

Υ ⊢ F
prop

7−→ F
(16b)

e y e′ e′ dlf e′
dlf

7−→ e′′

Υ ⊢ isTrue e
prop

7−→ e′′ ≥ 1
(16c)

e y e′ e′ conj e′
conj

7−→ c′

Υ ⊢ isTrue e
prop

7−→ c′
(16d)

Υ ⊢ e1 = e2

prop

7−→ e1 = e2

(16e)

Υ ⊢ e1 ≤ e2

prop

7−→ e1 ≤ e2

(16f)

Υ ⊢ c1 ∨ c2

disj

7−→ c′

Υ ⊢ c1 ∨ c2

prop

7−→ c′
(16g)

Υ ⊢ c1

prop

7−→ c′1 Υ ⊢ c2

prop

7−→ c′2

Υ ⊢ c1 ∧ c2

prop

7−→ c′1 ∧ c′2
(16h)

ρ
rtype

7−→ ρ′ Υ, x : ρ′ ⊢ c
prop

7−→ c′

Υ ⊢ ∃x : ρ � c
prop

7−→ ∃x : ρ′ � c′
(16i)

Boolean propositions are first converted into cnf. A cnf expression will be
either dlf or conj; see Theorem 8.5 of Agarwal (2006). The first rule handles
the dlf case. Truth corresponds to a positive integer value. So the converted
expression is required to be greater than or equal to 1. The conj case calls
conj

7−→, which produces a proposition directly.
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Inequalities and equations are already in MIP form, so no work is required
to convert them. Compilation of a disjunctive proposition is sufficiently com-
plex to justify packaging it into a separate judgement

disj

7−→, discussed next.
Conjunctive propositions simply recurse into their sub-propositions. Similarly
for existential propositions, but the introduced variable must be added to the
context.

4.4 Disjunctive Proposition Transformation

Our disjunctive proposition compiler is motivated by the convex hull method
(Balas; 1974; Raman and Grossmann; 1994). When the disjuncts are each a
conjunction of linear equations and inequalities on the reals, it is the convex
hull method. It is so only for each disjunction separately. When there are
multiple disjunctions, i.e. a conjunction of disjunctions, it does not produce
the convex hull overall.

Consider the disjunctive constraint
[

A1x ≤ b1
]

∨
[

A2x ≤ b2
]

, (17)

where Ai is an m× n coefficient matrix, x is an n× 1 vector of real variables,
and bi is an m × 1 vector of constants. Using the convex hull method, this
disjunction can be transformed into the mixed-integer constraints

A1x̄1 ≤ b1λ1 (18a)

A2x̄2 ≤ b2λ2 (18b)

λ1 + λ2 = 1 (18c)

x = x̄1 + x̄2 (18d)

where λi ∈ {0, 1}. In each of the ith disjuncts, vector x has been replaced with
a new vector of variables x̄i. This causes the inequalities of each disjunct to
be disaggregated, meaning they have no variables in common. For this reason,
the x̄i’s are called the disaggregated variables. Finally, the original x is defined
to be a sum of the new x̄i’s. The idea is that ith disjunct gets enforced only if
λi = 1.

We can see that several operations are involved in the convex hull method.
Constants are multiplied by binary variables. New disaggregated variables
must be created. These must replace the original variables they correspond
to in each disjunct. Also, when inequalities do not represent bounded regions,
constraints corresponding to known bounds on a variable must be inserted into
the disjuncts. Finally, equations relating the original and disaggregated vari-
ables must be produced. Our goal is to define this transformation in a formal
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way, as a mapping on propositions of the form c1 ∨ c2. We first define several
auxiliary judgements, which will be employed in the overall transformation.

A type declaration restricts the values a variable can take. The declaration x :
ρ implies a constraint on x, and it will be necessary to extract this information
explicitly. Let x : ρ ⋍ c associate a declaration x : ρ with a proposition c. The
definition of ⋍ is inductive on ρ,

x : 〈rL, rU〉 ⋍ rL ≤ x ∧ x ≤ rU

(19a)

x : 〈rL,∞) ⋍ rL ≤ x
(19b)

x : (−∞, rU〉 ⋍ x ≤ rU

(19c)

x : real ⋍ T
(19d)

x : [rL, rU ] ⋍ rL ≤ x ∧ x ≤ rU

(19e)

x : [rL,∞) ⋍ rL ≤ x
(19f)

x : (−∞, rU ] ⋍ x ≤ rU

(19g)

x : int ⋍ T
(19h)

x : {true} ⋍ isTrue x
(19i)

x : {false} ⋍ isTrue (not x)
(19j)

x : bool ⋍ T
(19k)

The first rule states that the declaration x : 〈rL, rU〉 is equivalent to stating
the proposition rL ≤ x ∧ x ≤ rU , and all other rules are similar. Our theory
distinguishes between the concept of variable bounds and a constraint that
happens to contain the same information. Variables’ bounds declarations are
not constraints, but they do have a correspondence given by ⋍.

Let Υ ⊢ c ⊸ c′ be a judgement adding to c bounding propositions for all
variables free in c, returning the result as c′. Its definition is

{xj : ρj ⋍ cj}
m

j=1

Υ ⊢ c ⊸ (c1 ∧ · · · ∧ cm ∧ c)
(20)

where FV (c) = {x1, . . . , xm} and Υ (xj) = ρj for j = 1, . . . , m.

Let e ⊛ e1 →֒ e2 be a judgement that multiplies e to all constant terms in e1,
producing e2. Both e and e1 must be numeric expressions. The definition is
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inductive on e1,

e ⊛ x →֒ x
(21a)

e ⊛ r →֒ e ∗ r
(21b)

e ⊛ e1 →֒ e2

e ⊛ −e1 →֒ −e2

(21c)

e ⊛ e1 →֒ e′1 e ⊛ e2 →֒ e′2
e ⊛ (e1 op e2) →֒ (e′1 op e′2)

for op ∈ {+,−} (21d)

e ⊛ (e1 ∗ e2) →֒ e ∗ (e1 ∗ e2)
if FV (e1 ∗ e2) = ∅ (21e)

e ⊛ e2 →֒ e′2
e ⊛ (e1 ∗ e2) →֒ (e1 ∗ e′2)

if FV (e1) 6= ∅ (21f)

e ⊛ e1 →֒ e′1
e ⊛ (e1 ∗ e2) →֒ (e′1 ∗ e2)

if FV (e2) 6= ∅ (21g)

The result of e ⊛ x is x. Since x is not a constant, it does not get multiplied
by the given expression. e ⊛ r gives e ∗ r since r is a constant. For negation,
addition, and subtraction expressions, the procedure simply recurses into the
sub-expressions. The result of e⊛ (e1 ∗ e2) depends on whether e1 ∗ e2 has any
free variables. If it does not, e1 ∗ e2 is a constant term and it is multiplied by
e. If it does, e1 and e2 are each considered separately to handle nested terms.

Let e ⊛ c1 →֒ c2 be an analogous judgement for a proposition. We omit the
definition; it simply employs e ⊛ e1 →֒ e2 on all nested expressions.

Finally, let Υ ⊢ (cA ∨ cB)
disj

7−→ cmip be a disjunctive proposition transformation.
The definition is by the single rule

{

Υ ⊢ cj
prop

7−→ c′j
}

j∈{A,B}
Υ

ctxt

7−→ Υ′

{

Υ′ ⊢ c′j ⊸ c′′j
}

j∈{A,B}

{

yj
⊛ {~xj/~x} c

′′

j →֒ c′′′j

}

j∈{A,B}

Υ ⊢ (cA ∨ cB)
disj

7−→







∃~xA : ~ρ � ∃~xB : ~ρ � ∃yA : [0, 1] � ∃yB : [0, 1] �
(

~x = ~xA + ~xB
)

∧
(

yA + yB = 1
)

∧ (c′′′A ∧ c′′′B)







(22)
The notation used assumes the context Υ is x1 : ρ1, . . . , xm : ρm. For each xj ,
two disaggregated variables xA

j and xB
j are created, but these must not be free

in cA ∨ cB. Also, two binary variables yA and yB are created, such that the
chosen names are not free in cA ∨ cB and are also unique from the xA

j ’s and
xB

j ’s.

In the first line of the preconditions, the disjuncts are themselves transformed,
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producing the MIP propositions c′A and c′B, and the context is transformed. In
the second line, bounding constraints are added to each disjunct. Then, each
of the jth disjuncts is disaggregated by performing the substitution {~xj/~x} c

′′

j .
Finally, constants are multiplied by the binary yj.

The results of these operations are used to produce the result proposition. The
disaggregated variables are related to the original by the equation ~x = ~xA+~xB,
which is an abbreviation for the conjunction of equations xj = xA

j + xB
j for

j = 1, . . . , m. The binary variables must sum to 1. Finally, the disjunctive
proposition cA ∨ cB is replaced with the conjunctive proposition c′′′A ∧ c′′′B .

The disjunctive transformation Υ ⊢ (cA ∨ cB)
disj

7−→ cmip is valid only when all
variables occurring within the disjunction have bounds specified in Υ. Our
software checks for this precondition and warns the user if it is not satisfied.
This is sufficient but not necessary. Corollary 2.1.1 of Balas (1974) requires
that the region represented by each disjunct be bounded. Our method for
including variable bounds explicitly in each disjunct is just one way to satisfy
this.

4.5 Program Transformation

Transforming a program is now straightforward. Let p
prog

7−→ pmip represent a
program transformation. It is defined only for well formed programs. The
definition is

{

ρj
rtype

7−→ ρ′
j

}m

j=1
x1 : ρ1, . . . , xm : ρm ⊢ c

prop

7−→ c′

δx1:ρ1,...,xm:ρm
{e | c}

prog

7−→ δx1:ρ′
1
,...,xm:ρ′m

{e | c′}
(23)

Since the objective e must be of type real, it is already in MIP form and need
not be transformed. The types and propositions are transformed using their
respective procedures.

5 Software Implementation

The mathematical definitions we have provided support automation because
they are more precise. For example, the disjunctive transformation (22) in-
cludes every detail of the convex hull method: variable name generation, in-
sertion of bounding constraints, multiplication of constants by the new binary
variables, etc. Transforming these definitions into code is now less challenging.

In object oriented programming languages such as C++ and Java, the induc-
tively defined sets can be coded by using inheritance. For example, the set
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of expressions can be coded by declaring an abstract base class called Expr.
Then, a derived class is defined for each of the specific forms, e.g. PlusExpr
whose members are Expr e1 and Expr e2. The transformation procedures
have one rule for each of these forms. So one can simply declare a virtual
method called transform and provide the specific implementation for this in
each of the derived classes.

Actually, functional programming languages are a superior choice for this
work. The programming language ML (Harper et al.; 1989) has explicit sup-
port for inductive definitions. The “|” notation used in several of our defini-
tions is directly supported and case constructs allow defining rules for each
syntactic form. Our software is implemented in ML, and the ML code closely
follows our mathematical definitions.

Minor variations do exist. The syntactic objects we have defined include math-
ematical symbols, as where parsers usually work only with ASCII text. For
example, the set of mathematical programs according to definition (9) includes

minx:real,w:real {x + w | x ≤ w ∨ x ≥ w + 4.0}

but our software requires the form shown in Example 2. The x and w variables
are declared prior to the min to avoid subscripting, and the ∨ symbol is written
disj. Other differences are ∃ is written exists, “|” is written subject to, ∧
is written as a plain comma “,”, and the expression e1 implies e2 is allowed
but immediately interpreted as not e1 or e2. These are relatively minor de-
tails; our software’s examples should be recognized as directly corresponding
to the mathematical definitions given in this work.

We give two examples: the transformation of a Boolean expression and a
disjunctive proposition. These are small examples due to space limitations;
a larger example of a continuous process with discrete switching is provided
in Agarwal (2006).

Example 1 Consider the program

1 min 0.0 subject_to

2

3 exists y1:bool . exists y2:bool . exists y3:bool .

4 isTrue ((y1 and y2) implies y3) and y1

A dummy objective has been chosen because we are concerned only with the
Boolean expression in this example. The transformation procedure p

prog

7−→ pmip

is applied, and the returned program is

1 min 0.0 subject_to

2

3 exists y1:[0,1] . exists y2:[0,1] . exists y3:[0,1] .
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4 ((1 - y1) + (1 - y2)) + y3 >= 1,

5 y1 >= 1

Each Boolean variable has been converted into a [0, 1] variable. The conjunctive
normal form is derived internally, giving

((not y1 or not y2) or y3) and y1

which is a conj expression. Thus, e
conj

7−→ cmip gets applied to produce the
proposition shown.

Example 2 Now consider a disjunctive proposition in which a variable x has
to be less than or greater than some function of w,

1 var x:real

2 var w:real

3

4 min x + w subject_to

5 (x <= w) disj (x >= w + 4.0)

The program fails the precondition required for disjunctive propositions. The
following error messages are printed,

ERROR: variable in disjunct must be bounded

variable: w

is of unbounded type: real

ERROR: variable in disjunct must be bounded

variable: x

is of unbounded type: real

Variables x and w must have bounds explicitly declared. These must be ob-
tained from an understanding of the physical system. We change the declara-
tion x:real to x:<10.0, 100.0>, and w:real is changed to w:<2.0, 50.0>.

Now, the precondition passes, and the software performs the transformation
producing the pure mixed-integer program 3

1 var x:<10.0, 100.0>

2 var w:<2.0, 50.0>

3

4 min x + w subject_to

5

6 exists y1:[0, 1]

3 Due to formatting reasons, the output of our software is not easily legible. The
ouput we are showing has been modified in two minor ways: unnecessary parentheses
have been deleted, and indenting has been adjusted.
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7 exists y2:[0, 1]

8 exists x1:<10.0, 100.0>

9 exists x2:<10.0, 100.0>

10 exists w1:<2.0, 50.0>

11 exists w2:<2.0, 50.0>

12 w = w1 + w2,

13 x = x1 + x2,

14 y1 + y2 = 1,

15

16 10.0 * y1 <= x1,

17 x1 <= 100.0 * y1,

18 2.0 * y1 <= w1,

19 w1 <= 50.0 * y1,

20 x1 <= w1,

21

22 10.0 * y2 <= x2,

23 x2 <= 100.0 * y2,

24 2.0 * y2 <= w2,

25 w2 <= 50.0 * y2,

26 x2 >= w2 + 4.0 * y2

Several new variables are generated. Since these are not used in the objective,
they are introduced locally with existential quantifiers. Lines 12–13 relate the
new disaggregated variables to the original x and w. On line 14, the sum of
the binary variables is required to be equal to 1. Lines 16–20 represent the
disaggregation of the first disjunct and lines 22–26 of the second.

6 Conclusions

Our main goal was to automate program transformations. As we discussed,
even transformations of well known importance have not been supported in
any software because they were not defined on the syntax in which programs
are written in practice and because many aspects of the transformations were
explained only conceptually. Definitions that formally encode every detail of
a transformation first require a definition of programs that itself encodes all
features of a program, not just the numerical aspects. The inductive set defi-
nitions we provided do this by treating programs as syntactic objects. Given
this, we were able to define a precise mapping between programs p

prog

7−→ pmip.
We discussed how our definition of this transformation can be implemented
in a programming language, thus automating it. The automation is a direct
consequence of the fact that our set theoretic definitions are more precise than
those previously provided.
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