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Abstract 
In this work, we address the modeling and solution of mixed-integer linear multistage stochastic 

programming problems involving both endogenous and exogenous uncertain parameters. We first propose 

a composite scenario tree that captures both types of uncertainty, and we exploit its unique structure to 

derive new theoretical properties that can drastically reduce the number of non-anticipativity constraints 

(NACs). Since the reduced model is often still intractable, we discuss two special solution approaches. 

The first is a sequential scenario decomposition heuristic in which we sequentially solve endogenous 

MILP subproblems to determine the binary investment decisions, fix these decisions to satisfy the first-

period and exogenous NACs, and then solve the resulting model to obtain a feasible solution. The second 

is Lagrangean decomposition. We present numerical results for a process network and an oilfield 

development planning problem. The results clearly demonstrate the efficiency of the special solution 

methods over solving the reduced model directly. 

 

Keywords: Multistage stochastic programming; endogenous uncertainty; exogenous uncertainty; scenario 

tree; non-anticipativity constraints; Lagrangean decomposition; oilfield planning. 

1 Introduction 
In the optimization of process systems, there is often some level of uncertainty in one or more of the input 

parameters. A major challenge for the decision-maker, then, is to determine how to best account for this 

uncertainty. Rather than optimizing for expected values, which can often lead to suboptimal or even 

infeasible solutions, these problems can usually be effectively approached with mathematical 

programming techniques such as stochastic programming (Birge and Louveaux, 2011), robust 

optimization (Ben-Tal et al., 2009), or chance-constrained optimization (Li et al., 2008). 

 

In stochastic programming, the topic of this paper, a decision-maker must implement a set of decisions at 

the beginning of the planning horizon without knowing exactly what the true values of some of the input 

parameters will be. After the uncertainty in those parameters is resolved, the decision-maker can take 

corrective action based on this new information. Since this approach does not fix all of the decisions at 

the beginning of the planning horizon, it tends to be an appropriate choice for long-term planning projects 

that may span several decades (Grossmann et al., 2016). 

 

In robust optimization, on the other hand, the general goal is to guarantee feasibility over a specified 

uncertainty set. This is typically more appropriate for short-term scheduling problems where feasibility is 

a major concern and where there is little scope for corrective action (Grossmann et al., 2016). Chance-

constrained optimization also has a similar emphasis on constraint feasibility; specifically, some of the 
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constraints must be satisfied with at least a given level of probability for all possible outcomes of the 

uncertain parameters present in those respective constraints (Calfa et al., 2015). As our intended 

applications are long-term planning problems in which corrective action is essential and probabilistic 

constraints are not required, we focus on a stochastic programming framework to effectively hedge 

against parameter uncertainties. Extensions of robust optimization and chance-constrained optimization 

that allow for some corrective action will not be considered here, but a discussion of these approaches can 

be found in Ben-Tal et al. (2004) (as well as Lappas and Gounaris (2016) and Zhang et al. (2016)) and 

Liu et al. (2016), respectively. 

 

A second major concern for the decision-maker is the type of uncertainty. In general, there are two types: 

exogenous, where the true parameter values are revealed independently of decisions, and endogenous, 

where the parameter realizations are influenced by the decisions (Jonsbråten, 1998). In the context of 

process systems engineering, exogenous uncertainties often correspond to market uncertainties, such as 

crude-oil prices. The corresponding realizations occur automatically in each period of the planning 

horizon, independently of any decisions. For example, in an oilfield planning problem, we may rely on a 

forecast to predict the price of oil in the upcoming year. At the time the forecast is prepared, the true price 

is unknown. Once next year arrives, however, we will realize the true price of oil, regardless of the 

decisions that have been made. 

 

For endogenous uncertainties, we may be dealing with at least two distinct types which we will refer to as 

Type 1 and Type 2 (Goel and Grossmann, 2006). In the case of Type-1 endogenous uncertainties, 

decisions influence the parameter realizations by altering the underlying probability distributions for the 

uncertain parameters. A simple example of this may be an oil company’s decision to flood the market in 

order to force a competitor out of business. Here the uncertainty is no longer strictly exogenous, as the 

decision will make lower oil-price realizations more probable. This type has been considered in relatively 

few stochastic-programming publications; namely, as far as we are aware: Ahmed (2000), Viswanath et 

al. (2004), Flach (2010), Peeta et al. (2010), Escudero, Garín, Merino, and Pérez (2013) (which considers 

both exogenous and Type-1 endogenous uncertainties), Laumanns et al. (2014), and Hellemo (2016). 

 

In the case of Type-2 endogenous uncertainties, decisions influence the parameter realizations by 

affecting the time at which we observe these realizations. This refers specifically to technical parameters, 

such as oilfield size, for which the true values cannot be determined until a particular investment decision 

is made (Goel and Grossmann, 2006). For instance, seismic studies may provide a good indication of the 

size of an oilfield, but we will not know the exact recoverable oil volume until we drill the field and begin 

producing from it (Goel and Grossmann, 2004). Note that Type-1 and Type-2 endogenous uncertainties 

are not mutually exclusive; for example, the choice of drilling technology may make higher oil recoveries 

more likely (Type 1), but the true recovery will only be revealed if we decide to develop that field (Type 

2). This case is referred to as Type-3 endogenous uncertainty in Hellemo (2016). 

 

It is worth noting that Powell (2011) classifies problems with either Type-1 or Type-2 endogenous 

uncertainty as “state-dependent information processes” and recommends the use of approximate dynamic 

programming (ADP) to solve them. In fact, dynamic programming methods have been successfully 

applied to optimization problems involving exogenous uncertainties (e.g., Powell (2011)), Type-1 

endogenous uncertainties (e.g., Webster et al. (2012)), and Type-2 endogenous uncertainties (e.g., Choi et 
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al. (2004)). Such methods are outside the scope of this paper; however, we refer the reader to these 

selected references for further details. 

 

For the endogenous uncertainties considered here, we will focus exclusively on Type 2, where decisions 

affect the timing of realizations. This is sometimes referred to as ‘exogenous uncertainty with endogenous 

observation,’ in view of the fact that the technical uncertainty itself is exogenous (as we cannot alter it), 

but the time at which this uncertainty is resolved is endogenous (since it depends on our investment 

decisions) (Colvin and Maravelias, 2011; Mercier and Van Hentenryck, 2011). For the remainder of this 

paper, we will drop the “Type 2” prefix and simply refer to these uncertainties as endogenous. 

 

The literature on stochastic programming (SP) has focused primarily on problems with exogenous 

uncertainties. Reviews of this area are given in Birge (1997), Schultz (2003), and Sahinidis (2004). 

Endogenous uncertainty is a newer area and has received far less attention in the literature, with the first 

publication introduced by Jonsbråten et al. (1998) less than 20 years ago.
2
 

 

In the area of process systems engineering, Goel and Grossmann (2004) and Goel et al. (2006) addressed 

a gas-field development problem in which the size and initial deliverability of reserves are uncertain, and 

these endogenous uncertainties are resolved immediately after the drilling decisions are made. Tarhan and 

Grossmann (2008) explored the synthesis of process networks with endogenous uncertainty in the process 

yields and relaxed the common assumption of immediate resolution of the uncertainty. Instead, the 

authors modeled the gradual resolution of uncertainty over time, which is more in line with reality in 

certain applications. Tarhan et al. (2009) applied this approach to the oil/gas-field development problem 

and considered nonlinearities in the reservoir model. Boland et al. (2008) studied the open pit mine 

production scheduling problem with endogenous uncertainty in the geological properties of the mined 

materials. The authors proposed a lazy-constraints approach for handling the large number of non-

anticipativity constraints, whereby these constraints are only added to the problem as needed. 

 

Colvin and Maravelias (2010) (an extension of Colvin and Maravelias (2008, 2009)) considered 

endogenous uncertainty in the scheduling of pharmaceutical clinical trials, and proposed a branch-and-cut 

method for this problem, as well as several theoretical reduction properties. Although many of these 

reduction properties are specific to the pharmaceutical scheduling problem, one applies to the general 

case considered here and will be discussed later in this paper. Solak et al. (2010) studied R&D project 

portfolio management under endogenous uncertainty, where the investment requirement for each project 

resolves gradually as a function of the progress of the respective project. The authors solved the resulting 

model with the sample average approximation method. The sample problems in this method were solved 

through the use of Lagrangean relaxation and a heuristic. In a related study, Colvin and Maravelias (2011) 

explored endogenous uncertainty in R&D activities in an R&D pipeline management problem, and also 

explored risk management strategies in this context. 

 

Gupta and Grossmann (2011) discussed process networks with endogenous uncertainty in process yields, 

and proposed a general theoretical property that can considerably reduce the dimensionality of the model 

when there are uncertain parameters defined with three or more possible realizations. Gupta and 
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Grossmann (2014a) developed a scenario grouping Lagrangean decomposition algorithm for solving 

large-scale problems of this class (which is similar in concept to the scenario clustering approach of 

Escudero, Garín, Pérez, and Unzueta (2013) for two-stage exogenous problems). Gupta and Grossmann 

(2014b) also made advances in the modeling of the oilfield development planning problem under 

endogenous uncertainty. More recently, Christian and Cremaschi (2015) proposed two heuristic solution 

methods for the R&D pipeline management problem: a shrinking-horizon, multiple two-stage stochastic 

programming decomposition algorithm, and a knapsack decomposition algorithm. Other publications on 

stochastic programming under endogenous uncertainty which we will not discuss here, but may be of 

interest to the reader, include: multistage stochastic network interdiction (Held and Woodruff, 2005); the 

decision-rule approach to multistage stochastic programming (Vayanos et al., 2011); the optimal design 

of integrated chemical-production sites (Terrazas-Moreno et al., 2012); computational strategies for 

nonconvex, multistage mixed-integer nonlinear programs (Tarhan et al., 2013); and the dynamic single-

vehicle routing problem with uncertain demands (Hooshmand Khaligh and MirHassani, 2016). 

 

Although many problems contain both endogenous and exogenous uncertainties (e.g., uncertain field 

sizes and uncertain oil prices), optimization under both types has been largely unexplored in the 

literature.
3
 To the best of our knowledge, Goel and Grossmann (2006) has been the only previous work to 

comprehensively explore multistage stochastic programming (MSSP) problems of this class. The authors 

introduced a hybrid mixed-integer linear disjunctive programming model for these problems and 

proposed two efficient theoretical properties for eliminating redundant constraints; however, their 

numerical studies considered only endogenous uncertainties in capacity expansion and sizing problems. 

Dupačová (2006) briefly discussed optimization under both types of uncertainty but did not provide a 

specific multistage formulation, new solution strategies, or numerical results. More recently, Bruni et al. 

(2015) proposed a stochastic programming approach for the operating theater scheduling problem, in 

which there is exogenous uncertainty in the arrival of emergency patients and endogenous uncertainty in 

the duration of surgery. The authors offered only brief details on the modeling of the endogenous 

uncertainty and employed a heuristic approach to solve the problem. As our focus is on a general 

framework for multistage stochastic programming, Goel and Grossmann (2006) will serve as the 

foundation for this paper. 

 

The goals of this work are to: (1) efficiently model multistage stochastic programming problems that 

involve both endogenous and exogenous parameters; (2) develop effective solution methods for these 

problems; and (3) apply the proposed methods to challenging applications. Given the complexity of these 

problems and the fact that only little work has been reported on them, we begin in section 2 with a 

detailed review of the relevant background regarding multistage stochastic programming under 

exogenous uncertainty, as well as multistage stochastic programming under endogenous uncertainty. In 

section 3, we then introduce the definitions and notation necessary to model these types of uncertainties, 

and propose a composite scenario tree that captures all possible realizations of both endogenous and 

exogenous parameters. Next, in section 4, we present the multistage stochastic programming models for 

                                                           
3 It is worth noting that there is also a significant lack of literature on stochastic programs with both exogenous and Type-1 

endogenous uncertainties. Tong et al. (2012) addressed demand and yield uncertainties in a risk-averse oil supply chain planning 

problem; however, the authors represented the product yield fluctuations with a Markov chain and solved the problem using an 

iterative heuristic algorithm that integrates two-stage stochastic programming and simulation. For a discussion of modeling and 

solution considerations for multistage stochastic programs with both exogenous and Type-1 endogenous uncertainties, see 

Escudero, Garín, Merino, and Pérez (2013). 
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purely exogenous uncertainty, purely endogenous uncertainty, and both endogenous and exogenous 

uncertainties. After this point, we focus our attention on the latter case, and in section 5, we discuss 

reduction properties that can significantly reduce the dimensionality of these problems. Finally, in section 

6, we introduce a sequential scenario decomposition heuristic and briefly review Lagrangean 

decomposition, and then apply these algorithms in section 7 to solve a process network example and an 

oilfield development planning problem. 

2 Background 

2.1 Stochastic Programming under Exogenous Uncertainty 
A common approach for optimization under exogenous uncertainty is two-stage stochastic programming 

(Birge and Louveaux, 2011). In this approach, first-stage decisions are made ‘here and now’ at the 

beginning of the first time period, without knowing exactly how the uncertainty will unfold. The decision-

maker then waits for the outcome. At some point following these decisions, the uncertainty is resolved 

and the true values of the exogenous-uncertain parameters become known. Second-stage, or recourse 

(‘wait-and-see’), decisions are then taken by the decision-maker as corrective action. For example, in a 

problem spanning multiple time periods, the decision-maker’s first-stage decisions may enforce an 

investment plan that is fixed for the entire horizon. Subsequent recourse decisions allow operating 

conditions to be specified in response to this plan, based on the realizations observed for the exogenous-

uncertain parameters (see, for instance, Liu and Sahinidis (1996)). 

 

In practice, however, it is often necessary for the decision-maker to have the additional freedom to make 

new here-and-now decisions at the beginning of each time period. This leads to a multistage stochastic 

programming formulation; decisions, realizations, and recourse actions occur sequentially, allowing for a 

more accurate description of the decision-making process for long-term planning projects. This is 

illustrated in Figure 1 for a three-stage problem with one exogenous-uncertain parameter, 𝜉𝑡. We use 𝑦𝑡
𝑠 

and 𝑥𝑡
𝑠 to denote the vectors of here-and-now decisions and recourse decisions, respectively, in each time 

period 𝑡 and scenario 𝑠. Note that 𝑡 = 0 corresponds to the beginning of the first time period (stage 1), 

𝑡 = 1 corresponds to the end of the first time period/beginning of the second time period (stage 2), and 

𝑡 = 2 corresponds to the end of the second time period (stage 3). As will be discussed, multistage 

stochastic programming also provides a more suitable framework for endogenous uncertainties, as these 

realizations can occur at any point in the time horizon. 

 

 
Figure 1. Sequence of events in multistage stochastic programming under exogenous uncertainty. 

 

One fundamental assumption in stochastic programming, which we have already made here, is that the 
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time horizon is represented by a set of discrete time periods. A second very common assumption is that 

the possible realizations (possible values) for each uncertain parameter are available from a discretized 

probability distribution. With these two assumptions in place, the stochastic process can be represented by 

a scenario tree, like that shown in Figure 2a. Note that this is the scenario-tree representation of Figure 1, 

where the exogenous parameter 𝜉𝑡 has two possible realizations (low (𝐿) or high (𝐻)) in each time period. 

Each node in the tree represents a different possible state of the system in time period 𝑡. Arcs indicate a 

possible transition from a state in time period 𝑡 to a new state in time period 𝑡 + 1, with a given 

probability of this transition occurring. For example, the system shown in Figure 2a can transition from 

its initial state in time period 1 to either of two different states in time period 2 depending upon the 

realized value of 𝜉1. A complete path from the root node to a leaf node represents a scenario, which 

corresponds to one possible combination of realizations for the uncertain parameters (e.g., (𝜉1
𝐿 , 𝜉2

𝐿)). Note 

that since the uncertainty is purely exogenous in this case, and exogenous realizations occur automatically 

in each time period, the structure of the scenario tree is known in advance. 

 

 
Figure 2. An exogenous scenario tree and its alternative representation. 

 

One complicating aspect of the standard form of the scenario tree (Figure 2a) is that the corresponding 

stochastic programming problem contains variables that are shared among two or more scenarios. For 

instance, in Figure 2a, all four scenarios share the variables of the root node (shown in blue), scenarios 1 

and 2 share the variables of the green node at 𝑡 = 1, and scenarios 3 and 4 share the variables of the 

purple node at 𝑡 = 1. This prevents the direct application of scenario-decomposition approaches like 

Lagrangean decomposition which can be effective for solving large stochastic programs. 

 

Ruszczyński (1997) proposed an alternative form of the scenario tree in which shared nodes are split such 

that each scenario is given its own unique set of nodes. This is shown in Figure 2b. The alternative form 

is more amenable to scenario decomposition, as variables are no longer shared and each scenario 

represents a different instance of the same deterministic problem with different realizations for the 

uncertain parameters. Notice, however, that in moving from the standard form of the tree to the 

alternative form, we have created several copies of the same states. For example, the root node in Figure 

2a has been split into four separate nodes in Figure 2b. These four nodes all have identical information at 

that point in time. Accordingly, scenarios 1-4 are said to be indistinguishable at the beginning of the first 

time period. It follows that because these scenarios are indistinguishable at that time, we must treat them 

all in the same way, and we must make the same here-and-now decisions in all four scenarios at the 

beginning of the first time period. This equality between the states is enforced by the red horizontal lines 

connecting the nodes in Figure 2b. These red lines represent what are known as non-anticipativity 

constraints (Rockafellar and Wets, 1991; Ruszczyński, 1997). Without these constraints, it is clear that 
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the tree would decompose into independent scenarios in which we would be anticipating one particular 

outcome for each of the uncertain parameters. Since we do not have this level of information, these 

constraints are required. Using the notation from Figure 1, we express the non-anticipativity constraints 

(NACs) as 𝑦1
1 = 𝑦1

2, 𝑦1
2 = 𝑦1

3, and 𝑦1
3 = 𝑦1

4. Similarly, as can be seen from the green nodes at 𝑡 = 1 in 

Figure 2b, we must make the same recourse decisions at the end of the first time period and the same 

here-and-now decisions at the beginning of the second time period in scenarios 1 and 2. Thus, the 

corresponding NACs are 𝑥1
1 = 𝑥1

2, and 𝑦2
1 = 𝑦2

2. A similar argument can be made regarding the purple 

nodes at 𝑡 = 1 and the corresponding decisions in scenarios 3 and 4. Notice that by the end of the time 

horizon, all scenarios differ in the realizations of exogenous parameter 𝜉𝑡, and the leaf nodes refer to 

independent states. Accordingly, the scenarios are said to be distinguishable at that time, and non-

anticipativity no longer applies (as noted by the absence of any red lines connecting the scenarios). In 

other words, at the end of the second time period, we are free to make independent recourse decisions in 

each of the four scenarios. 

 

It is important to note that the alternative form of the scenario tree corresponds directly to the non-

anticipativity formulation of the deterministic equivalent for stochastic programming problems (Birge and 

Louveaux, 2011). In this formulation, as the preceding discussion suggests, each scenario represents a 

different instance of the deterministic problem with different realizations for the uncertain parameters, 

and non-anticipativity constraints ensure that we make the same decisions in indistinguishable scenarios 

in each time period. This is the modeling approach that will be used in this paper. We will rely heavily on 

the concept that two scenarios are indistinguishable in time period 𝑡 if they are identical in the realizations 

of all uncertain parameters that have been resolved up until that time;
4
 and as soon as the scenarios differ 

in the realization of any uncertain parameter, they are distinguishable for the remainder of the time 

horizon. As we will describe in the next section, the alternative form of the scenario tree is also very 

useful in modeling endogenous uncertainties. 

2.2 Stochastic Programming under Endogenous Uncertainty 
In the case of stochastic programming under endogenous uncertainty, a multistage framework is generally 

the logical starting point. This can be seen when considering a problem such as the capacity expansion of 

process networks (Goel and Grossmann, 2006), where small installations are made in early time periods 

to determine the true yields of new process units. Capacity expansions can then be made at a later point in 

time to capitalize on that knowledge. This type of decision making is not possible with only two stages. 

Furthermore, in the two-stage case, if investments are not made at the beginning of the first time period 

(as this may not be optimal), the uncertainty in the endogenous parameters cannot be resolved during the 

time horizon. 

 

The decision-making process in these types of multistage stochastic programming problems proceeds in a 

manner similar to that of the exogenous case (Figure 1). The primary difference here is that the timing of 

realizations depends on the decisions. Hence, uncertainty is not resolved automatically in each time 

period, and the uncertainty in some parameters may not be resolved at all. This is illustrated in Figure 3 

for a three-stage problem with two endogenous-uncertain parameters, 𝜃1 and 𝜃2, where set ̅𝑡
𝑠
 indicates 

the parameters that are realized in each time period 𝑡 of scenario 𝑠. It is important to note that rather than 

                                                           
4 The phrase “indistinguishable in time period 𝑡” will be used as a shorthand way of stating: “indistinguishable at the end of time 

period 𝑡, after all realizations in that period have occurred.” 
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being associated with a particular time period, endogenous parameters represent intrinsic properties of a 

given source, such as the size of an oilfield or the yield of a process unit (Goel and Grossmann, 2006). 

Accordingly, in the case of Figure 3, we state that 𝜃1 is an endogenous parameter associated with a given 

“Source 1,” and 𝜃2 is an endogenous parameter associated with a given “Source 2.” 

 

Consider the case where we make an investment
5
 in both Source 1 and Source 2 at the beginning of the 

first time period. Also, assume that the uncertainty is resolved immediately after we implement this 

decision. As indicated by the sequence of events in Figure 3, we will realize the values of 𝜃1 and 𝜃2 in the 

first time period, and no realizations will occur in the second time period (i.e., ̅1
𝑠
= {1, 2}, and ̅2

𝑠
= ∅). 

Notice that unlike the exogenous case, we do not know which parameters will be realized until we know 

which decisions we will make. This information is not known in advance and must be determined by 

solving the corresponding stochastic programming problem. We use dotted lines in Figure 3 to indicate 

that the timing of the realizations is conditional. 

 

 
Figure 3. Sequence of events in multistage stochastic programming under endogenous uncertainty. 

 

As this discussion suggests, the scenario-tree representation of these stochastic processes is also not as 

straightforward as the exogenous case. This is for the simple reason that there are many possible 

outcomes for the decisions, and accordingly, there will be many possible outcomes for the structure of the 

scenario tree. This is illustrated in Figure 4 with just a few of the many possible scenario-tree 

representations of Figure 3, where the endogenous parameters 𝜃1 and 𝜃2 each have two possible 

realizations (low (𝐿) or high (𝐻)). (Note that above each scenario in the alternative form of the tree, we 

indicate the possible realizations defined for that particular scenario.) We again assume that the 

uncertainty in a parameter is resolved immediately after an investment is made in its respective source. In 

the first case, Figure 4a, an investment is made in Source 1 at the beginning of the first time period. As a 

result, the value of 𝜃1 is immediately realized in all scenarios. Notice that non-anticipativity constraints 

still apply for the beginning of the first time period in the alternative form of the tree, just as they do in 

the exogenous case (i.e., we have the same red lines at 𝑡 = 0 as we do in Figure 2b). This is because at the 

beginning of the time horizon (prior to the implementation of the decisions for the first time period), we 

have yet to make any decisions, and no realizations have occurred. Thus, all scenarios must be 

indistinguishable at that time, regardless of the type of uncertainty being considered. 

 

 

                                                           
5 An ‘investment in a source’ broadly refers to any here-and-now decision that allows us to realize the values of the endogenous 

parameters associated with that source. 
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Figure 4. Four possible structures for a scenario tree with two endogenous parameters. 
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Continuing with the discussion of Figure 4a, we note that no other investments are made after the first-

stage decisions, so the value of 𝜃2 is never realized. Non-anticipativity constraints (shown in green) 

therefore restrict our decision-making such that, for the remainder of the time horizon, we must make all 

of the same decisions in scenarios 1 and 2, as well as all of the same decisions in scenarios 3 and 4. In the 

second case, Figure 4b, an investment is made in both Source 1 and Source 2 at the beginning of the first 

time period (this is the case that was previously described in relation to Figure 3). The values of 𝜃1 and 𝜃2 

are immediately realized in all scenarios, and the four scenarios are distinguishable for the remainder of 

the time horizon. In other words, by the end of the first time period, we are free to make independent 

decisions in all scenarios. In Figure 4c and Figure 4d, an asymmetric scenario tree results from making an 

investment in only two of the four scenarios. By simply swapping the order of investments, the alternative 

tree in Figure 4d looks very different from that of Figure 4c, in the sense that non-anticipativity 

constraints no longer apply solely between adjacent scenarios. We again emphasize that many other 

outcomes for the tree are possible, even with only four scenarios. 

 

Due to the conditional structure of the endogenous scenario tree, it is clearly impractical to model all 

possible outcomes with the standard form of the tree. To deal with this issue, we adopt the alternative 

form and create a superstructure in which non-anticipativity constraints are applied conditionally (as 

inspired by Gupta and Grossmann (2014a)). This is shown in Figure 5, where the dotted green lines 

represent these conditional NACs. Notice that the superstructure form of the tree accounts for all possible 

outcomes, and any of the alternative trees shown in Figure 4 can easily be recovered from Figure 5. 

 

 
Figure 5. A superstructure representation for endogenous scenario trees. 

 

Because we are now dealing with conditional NACs, the modeling approach is significantly different 

from the simple equality constraints for exogenous uncertainty. In the exogenous case, if two scenarios 

differ in the realization of uncertain parameter 𝜉𝑡 in time period 𝑡𝑋
∗ , the scenarios will be distinguishable 

by the end of that time period (since realizations occur automatically). Therefore, we apply non-

anticipativity constraints between these scenarios in all time periods up to, but not including, the end of 

𝑡𝑋
∗ . In the endogenous case, however, it is not this simple. Scenarios that differ in the possible realization 

of an uncertain parameter 𝜃𝑖 will remain indistinguishable until the uncertainty in that parameter is 

resolved; up until that point, 𝑡𝑁
∗ , the scenarios are identical. Because we do not know the value of 𝑡𝑁

∗  for 

these scenarios, we must conditionally apply NACs for all decisions in all time periods (excluding the 

decisions made at the beginning of the first time period and in other initial time periods, as well). The 

indistinguishability is determined at each point in time as part of the stochastic programming problem, 

and the NACs are enforced if the scenarios are indistinguishable and ignored if they are not. As opposed 
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to a fixed scenario tree in the exogenous case, the optimal structure of the endogenous scenario tree is 

determined by solving this stochastic program. The modeling of NACs will be discussed in greater detail 

later in this paper. 

3 Definitions and Notation 

3.1 Mathematical Description of Exogenous Uncertainty 

Let the time horizon be divided into a set of discrete time periods ≔ {𝑡:   𝑡 = 1, 2, … , 𝑇}, and let set 

 ≔ {𝑗:   𝑗 = 1, 2,… , 𝐽} define the index of each exogenous-uncertain parameter. We define 𝜉𝑗,𝑡 as 

exogenous parameter 𝑗 ∈  in time period 𝑡 ∈ . The exogenous parameter has a number of possible 

realizations given by the ordered set Ξ𝑗,𝑡 ≔ {𝜉𝑗,𝑡
𝑟 :   𝑟 = 1, 2, … , 𝑅𝑗,𝑡}, where 𝑟 refers to the index of one 

particular realization, and for convenience, we set 𝜉𝑗,𝑡
1 < 𝜉𝑗,𝑡

2 < ⋯ < 𝜉
𝑗,𝑡

𝑅𝑗,𝑡
. As an example of how we use 

this notation, if 𝑟 = 2 is the index of the actual realization for parameter 𝑗 in time period 𝑡, we will have 

𝜉𝑗,𝑡 = 𝜉𝑗,𝑡
2 . The total number of possible realizations for this parameter is given by |Ξ𝑗,𝑡| = 𝑅𝑗,𝑡. Note that 

because the uncertainty in parameter 𝑗 is exogenous, it is resolved automatically in each time period 𝑡, 

regardless of the decisions that have been made. In instances where there is only one exogenous 

parameter, we will frequently drop the 𝑗 subscript to simplify the notation. 

 

Each scenario in the model corresponds to one possible combination of realizations for the uncertain 

parameters. We assume that these parameters are independent (see the supplementary material) and that 

the complete set of scenarios corresponds to all possible combinations of their realizations. Accordingly, 

in the case where the uncertainty is purely exogenous, the complete set of scenarios 𝑋 is represented by 

a Cartesian product over the sets of realizations for the exogenous parameters: 

 

𝑋 ≔×𝑡∈ (×𝑗∈ Ξ𝑗,𝑡) = {(𝜉1,1
1 , … , 𝜉𝐽,𝑇

1 ),… , (𝜉1,1

𝑅1,1 , … , 𝜉𝐽,𝑇

𝑅𝐽,𝑇)} (1) 

 

where we use the subscript 𝑋 to indicate eXogenous. We enforce a lexicographical ordering on the 

Cartesian product (and all other Cartesian products in this paper) based on the index of each realization.
6
 

Set 𝑋 corresponds to a scenario tree constructed from all possible combinations of realizations of the 

exogenous parameters; e.g., Figure 2. Note that in this figure there is only one exogenous parameter, so 

we have dropped the 𝑗 subscript to simplify the notation, and we have 𝑋 = Ξ1 × Ξ2 = {𝜉1
𝐿, 𝜉1

𝐻} ×

{𝜉2
𝐿, 𝜉2

𝐻} = {(𝜉1
𝐿, 𝜉2

𝐿), (𝜉1
𝐿, 𝜉2

𝐻), (𝜉1
𝐻 , 𝜉2

𝐿), (𝜉1
𝐻 , 𝜉2

𝐻)}. The 𝐿 and 𝐻 superscripts here refer to the index of 

the low and high realizations for the uncertain parameter (𝑟 = 1 and 𝑟 = 2), respectively. The cardinality 

of 𝑋, or the number of exogenous scenarios, is simply equal to the product of the cardinality of all of the 

sets in the Cartesian product in Equation (1). In other words, the number of exogenous scenarios is equal 

to the product of the number of realizations for each exogenous parameter, 

 

𝑆𝑋 ≔ |𝑋| = ∏∏𝑅𝑗,𝑡

𝑗∈𝑡∈
 (2) 

                                                           
6 For example, tuple (𝜉1,1

1 , 𝜉1,2
1 ) would be placed before (𝜉1,1

1 , 𝜉1,2
2 ) based on a comparison of the realization indices (i.e., 

superscripts) for each respective element: 1 = 1 for the first element of the tuples, so we proceed to the second element and see 

that 1 ≤ 2. Tuple (𝜉1,1
1 , 𝜉1,2

2 ) would be placed before (𝜉1,1
2 , 𝜉1,2

1 ) since a comparison of the realization indices for the first element 

gives 1 < 2 (and we do not consider the other elements in such a case). 



12 

 

 

This allows us to index the exogenous scenarios by defining the ordered set of indices 𝑋 ≔

{𝑠:   𝑠 = 1, 2, … , 𝑆𝑋}. Applying this analysis to Figure 2, we have  = {1},  = {1, 2}, and 𝑅1 = 𝑅2 = 2, 

which gives 𝑆𝑋 = 𝑅1 ⋅ 𝑅2 = 2 ∙ 2 = 4. Accordingly, 𝑋 = {1, 2, 3, 4}. Note that if all exogenous 

parameters have the same number of realizations in all time periods (i.e., |Ξ𝑗,𝑡| = 𝑅  ∀ 𝑗 ∈ ,   𝑡 ∈ ), as 

they do in Figure 2, Equation (2) can be simplified to 𝑆𝑋 = 𝑅𝐽⋅𝑇. 

 

Since it will be necessary to know the realization of the exogenous parameter 𝜉𝑗,𝑡 in each scenario 𝑠 ∈

𝑋, we introduce the scenario index to this parameter to define 𝜉𝑗,𝑡
𝑠 . Notice, however, that in order to 

assign a realization value to 𝜉𝑗,𝑡
𝑠  for each scenario, we must first establish a link between the scenario 

index (i.e., 𝑠 ∈ 𝑋) and the actual scenario that it represents (i.e., the corresponding tuple in 𝑋). To do 

so, we first restate Equation (1) with the new notation: 𝑋 = {(𝜉1,1
𝑠 , … , 𝜉𝐽,𝑇

𝑠 ):   ∀ 𝑠 ∈ 𝑋}. We then equate 

the right-hand side of this expression with the right-hand side of Equation (1) to give the value of 𝜉𝑗,𝑡
𝑠  for 

all 𝑗 ∈ ,   𝑡 ∈ , and 𝑠 ∈ 𝑋. For instance, for scenario 𝑠 = 1, we are considering the first tuple in 𝑋. 

Thus, we have (𝜉1,1
1 , … , 𝜉𝐽,𝑇

1 ) = (𝜉1,1
1 , … , 𝜉𝐽,𝑇

1 ), which implies 𝜉1,1
1 = 𝜉1,1

1 , … , 𝜉𝐽,𝑇
1 = 𝜉𝐽,𝑇

1 . Similarly, for 

scenario 𝑠 = 𝑆𝑋, we are considering the final tuple in 𝑋. Now we have (𝜉1,1
𝑆𝑋 , … , 𝜉𝐽,𝑇

𝑆𝑋) = (𝜉1,1

𝑅1,1 , … , 𝜉𝐽,𝑇

𝑅𝐽,𝑇), 

which implies 𝜉1,1
𝑆𝑋 = 𝜉1,1

𝑅1,1 , … , 𝜉𝐽,𝑇
𝑆𝑋 = 𝜉𝐽,𝑇

𝑅𝐽,𝑇
. The same reasoning applies for all other scenarios in 𝑋. 

3.2 Mathematical Description of Endogenous Uncertainty 

Let set ≔ {𝑖:   𝑖 = 1, 2, … , 𝐼} represent the sources of endogenous uncertainty, and let set 𝑖 ≔

{ℎ:   ℎ = 1, 2, … ,𝐻𝑖} define the index of each endogenous-uncertain parameter associated with source 

𝑖 ∈ . We define 𝜃𝑖,ℎ as endogenous parameter ℎ ∈ 𝑖 for source 𝑖 ∈ . Recall that we must consider the 

source of uncertainty for each endogenous parameter because the realization for that parameter will only 

occur once a certain decision has been made for that source. For instance, if source 𝑖 = 1 is an oilfield 

that has not yet been drilled, the values of the associated endogenous parameters (e.g., oilfield size and 

initial deliverability) will only be resolved once the oilfield has been drilled. Parameter 𝜃𝑖,ℎ has a number 

of possible realizations given by the ordered set Θ𝑖,ℎ ≔ {𝜃𝑖,ℎ
𝑚 :   𝑚 = 1, 2,… ,𝑀𝑖,ℎ}, where 𝑚 refers to the 

index of one particular realization, and for convenience, we set 𝜃𝑖,ℎ
1 < 𝜃𝑖,ℎ

2 < ⋯ < 𝜃𝑖,ℎ

𝑀𝑖,ℎ. Thus, if 𝑚 = 2 

is the index of the actual realization for endogenous parameter ℎ of source 𝑖, we will have 𝜃𝑖,ℎ = 𝜃𝑖,ℎ
2 . The 

total number of possible realizations for this parameter is given by |Θ𝑖,ℎ| = 𝑀𝑖,ℎ. We emphasize that, 

unlike exogenous uncertainty, the resolution of uncertainty in 𝜃𝑖,ℎ depends on the timing of decisions 

related to source 𝑖 and is not an automatic occurrence in each time period. When there is only one 

endogenous parameter associated with each source of uncertainty, we will often drop the ℎ subscript to 

simplify the notation. 

 

In the case where the uncertainty is purely endogenous and the uncertain parameters are independent, the 

complete set of scenarios 𝑁 is represented by a Cartesian product over the sets of realizations for the 

endogenous parameters: 

 

𝑁 ≔×𝑖∈ (×ℎ∈𝑖
Θ𝑖,ℎ) = {(𝜃1,1

1 , … , 𝜃𝐼,𝐻𝐼

1 ),… , (𝜃1,1

𝑀1,1 , … , 𝜃𝐼,𝐻𝐼

𝑀𝐼,𝐻𝐼)} (3) 

 



13 

 

where we use the subscript 𝑁 to indicate eNdogenous. Set 𝑁 corresponds to a scenario tree constructed 

from all possible combinations of realizations of the endogenous parameters; e.g., Figure 5. Note that in 

this figure there is only one endogenous parameter associated with each of the two sources, so we have 

dropped the ℎ subscript for simplicity in the notation (as we did for the 𝑗 subscript in Figure 2), and we 

have 𝑁 = Θ1 × Θ2 = {�̂�1
𝐿, 𝜃1

𝐻} × {�̂�2
𝐿, 𝜃2

𝐻} = {(𝜃1
𝐿, 𝜃2

𝐿), (𝜃1
𝐿, 𝜃2

𝐻), (𝜃1
𝐻, 𝜃2

𝐿), (𝜃1
𝐻, 𝜃2

𝐻)}. The cardinality 

of 𝑁, or the number of endogenous scenarios, is simply equal to the product of the number of 

realizations for each endogenous parameter, 

 

𝑆𝑁 ≔ |𝑁| = ∏ ∏ 𝑀𝑖,ℎ

ℎ∈𝑖𝑖∈
 (4) 

 

This allows us to index the endogenous scenarios by defining the ordered set of indices 𝑁 ≔

{𝑠:   𝑠 = 1, 2, … , 𝑆𝑁}. In the context of Figure 5, we have  = {1, 2}, 1 = 2 = {1}, and 𝑀1 = 𝑀2 = 2. 

Thus, 𝑆𝑁 = 𝑀1 ⋅ 𝑀2 = 2 ∙ 2 = 4, and 𝑁 = {1, 2, 3, 4}. If all endogenous parameters have the same 

number of realizations (i.e., |Θ𝑖,ℎ| = 𝑀  ∀ 𝑖 ∈ ,   ℎ ∈ 𝑖), as is the case in Figure 5, Equation (4) can be 

simplified to 𝑆𝑁 = 𝑀∑ 𝐻𝑖𝑖∈ . 

 

As in the exogenous case, we also assign the index 𝑠 to the endogenous parameter 𝜃𝑖,ℎ to indicate the 

parameter’s realization in each scenario; i.e., 𝜃𝑖,ℎ
𝑠 . Using this notation, we restate Equation (3) as       

𝑁 = {(𝜃1,1
𝑠 , … , 𝜃𝐼,𝐻𝐼

𝑠 ):   ∀ 𝑠 ∈ 𝑁}, and equate the right-hand side of this expression with the right-hand 

side of Equation (3) to give the value of 𝜃𝑖,ℎ
𝑠  for all 𝑖 ∈ ,   ℎ ∈ 𝑖, and 𝑠 ∈ 𝑁. 

3.3 Mathematical Description of Endogenous and Exogenous Uncertainties 
We now consider the case where we have both endogenous and exogenous uncertain parameters. Because 

these parameters are entirely independent of one another, we must ensure that we can observe any 

possible combination of realizations for the exogenous parameters, regardless of the outcome for the 

endogenous parameters (and vice versa). Accordingly, we generate the complete set of scenarios  by the 

Cartesian product of all possible combinations of realizations of the endogenous parameters and all 

possible combinations of realizations of the exogenous parameters, 𝑁 × 𝑋: 

 

≔ 𝑁 × 𝑋 = {
(𝜃1,1

1 , … , 𝜃𝐼,𝐻𝐼

1 , 𝜉1,1
1 , … , 𝜉𝐽,𝑇

1 ),… , (𝜃1,1
1 , … , 𝜃𝐼,𝐻𝐼

1 , 𝜉1,1

𝑅1,1 , … , 𝜉𝐽,𝑇

𝑅𝐽,𝑇) , … ,

(𝜃1,1

𝑀1,1 , … , 𝜃𝐼,𝐻𝐼

𝑀𝐼,𝐻𝐼 , 𝜉1,1
1 , … , 𝜉𝐽,𝑇

1 ) ,… , (𝜃1,1

𝑀1,1 , … , 𝜃𝐼,𝐻𝐼

𝑀𝐼,𝐻𝐼 , 𝜉1,1

𝑅1,1 , … , 𝜉𝐽,𝑇

𝑅𝐽,𝑇)
} (5) 

 

Set  corresponds to a “composite” scenario tree that includes all possible combinations of realizations of 

the endogenous and exogenous parameters. Although there are other ways to generate such a set (e.g., 

𝑋 × 𝑁 (see the supplementary material)), we focus our attention on this approach since the resulting 

scenario tree has a structure that can be exploited to significantly reduce the dimensionality of the model 

(as will be discussed in section 5). For the remainder of this paper, we assume that the scenario tree has 

been generated in this manner. The total number of scenarios (i.e., the cardinality of ) is equal to the 

product of the number of endogenous scenarios and the number of exogenous scenarios, 

 

𝑆 ≔ || = 𝑆𝑁 ⋅ 𝑆𝑋 (6) 
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We index the set of scenarios by defining the ordered set of indices  ≔ {𝑠:   𝑠 = 1, 2, … , 𝑆}. We use this 

set to restate Equation (5) as  = {(𝜃1,1
𝑠 , … , 𝜃𝐼,𝐻𝐼

𝑠 , 𝜉1,1
𝑠 , … , 𝜉𝐽,𝑇

𝑠 ):   ∀ 𝑠 ∈ }, and we equate the right-hand 

side of this expression with the right-hand side of Equation (5) to give the values of 𝜃𝑖,ℎ
𝑠  and 𝜉𝑗,𝑡

𝑠  for all 

𝑖 ∈ ,   ℎ ∈ 𝑖,  
 𝑗 ∈ ,   𝑡 ∈ , and 𝑠 ∈ . 

 

The generation of the composite scenario tree is shown in Figure 6. We consider the case where we have 

one exogenous parameter with two realizations (low or high) in each time period, two endogenous 

parameters each with two realizations (also low or high), and a time horizon consisting of two time 

periods (i.e., 3 stages). In generating the full set of scenarios, it follows that set 𝑁 corresponds to the 

endogenous scenario tree in Figure 5, and set 𝑋 corresponds to the exogenous scenario tree in Figure 2. 

By equation (5), the composite scenario tree resulting from all possible combinations of realizations of 

these parameters will consist of the scenarios given by 

 = 𝑁 × 𝑋 = {(𝜃1
𝐿, 𝜃2

𝐿, 𝜉1
𝐿 , 𝜉2

𝐿),… , (𝜃1
𝐻, 𝜃2

𝐻 , 𝜉1
𝐻 , 𝜉2

𝐻)}. The number of scenarios in this composite tree is 

given by Equation (6), which yields 𝑆 = 4 ∙ 4 = 16. Thus,  = {1, 2, … ,16}. Figure 6a clarifies the 

mathematical procedure for generating the composite scenario tree by providing the graphical analogue: 

we simply copy the exogenous scenario tree (Figure 2) for each possible combination of realizations of 

the endogenous parameters. This gives rise to multiple “subtrees” (four in this case). Viewed another way, 

we have essentially replaced each scenario in the endogenous scenario tree (Figure 5) with an exogenous 

subtree. Here we use the alternative form of the exogenous tree, Figure 2b, so that we can easily apply 

scenario decomposition later in this paper. With the full set of scenarios in place, we then link these 

subtrees by adding first-period and endogenous non-anticipativity constraints (shown by solid and dotted 

green lines, respectively) which enforce equality between indistinguishable nodes. This process is 

partially illustrated in Figure 6b for the links between subtrees 1 and 2 only. By adding the remaining 

links between the subtrees, we end up with the complete composite scenario tree shown in Figure 6c. (We 

provide the reasoning behind our choice of these particular non-anticipativity constraints in section 5.) It 

is clear how quickly these problems can grow, as the composite tree is significantly more complex than 

either Figure 2 or Figure 5 alone. Note that in the figures, as before, we are only considering one 

exogenous parameter and one endogenous parameter for each of the two sources, so we have dropped the 

𝑗 and ℎ subscripts, respectively. 

 

Notice that within each subtree, all scenarios have the same possible endogenous realizations, and these 

endogenous realizations are the only distinguishing characteristic between each of the subtrees. Thus, if 

the uncertainty in the endogenous parameters is not resolved by the end of the time horizon, all of the 

subtrees will be exactly identical (since all of the conditional, dotted green lines will have become solid 

lines, enforcing non-anticipativity between the corresponding nodes). 

 

It is also interesting to note that if we assume expected values for each of the endogenous parameters, 

thereby neglecting the endogenous uncertainty, we recover the original exogenous tree (Figure 2). If we 

instead assume expected values for each of the exogenous parameters, thereby neglecting the exogenous 

uncertainty, we recover the original endogenous tree (Figure 5). 
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Figure 6. Procedure for generating a ‘composite’ scenario tree. This tree captures all possible 
combinations of realizations for both the endogenous and exogenous uncertain parameters. 

 

The concept of subtrees will be used extensively in the definitions of parameters and sets later in this 

paper, so we define parameter 𝑆𝑢𝑏(𝑠) to return the subtree number of each scenario in the composite tree. 

This number is calculated as the ceiling of the ratio of the scenario index 𝑠 and the number of scenarios in 

each subtree, 𝑆𝑋: 

 

𝑆𝑢𝑏(𝑠) ≔ ⌈𝑠/𝑆𝑋⌉         ∀ 𝑠 ∈  (7) 
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Note that 𝑆𝑋, defined in Equation (2), is the number of scenarios in each subtree since each subtree is 

simply an exogenous tree. For Figure 6c, scenarios 1–4 are in subtree 1, scenarios 5–8 are in subtree 2, 

scenarios 9–12 are in subtree 3, and scenarios 13–16 are in subtree 4. Accordingly, Equation (7) returns 

𝑆𝑢𝑏(2) = ⌈2/4⌉ = 1, 𝑆𝑢𝑏(6) = ⌈6/4⌉ = 2, 𝑆𝑢𝑏(10) = ⌈10/4⌉ = 3, and 𝑆𝑢𝑏(14) = ⌈14/4⌉ = 4. 

3.4 Realization Probabilities 
Following directly from the theory presented in the previous sections, we now briefly discuss realization 

probabilities. For each realization 𝑟 of exogenous parameter 𝜉𝑗,𝑡, there is a corresponding probability �̂�𝑗,𝑡
𝑟  

of this value occurring. The realization values are defined in set Ξ𝑗,𝑡 ≔ {𝜉𝑗,𝑡
𝑟 :   𝑟 = 1, 2, … , 𝑅𝑗,𝑡}, and we 

now define the set of probabilities Υ𝑗,𝑡 ≔ {�̂�𝑗,𝑡
𝑟 :   𝑟 = 1, 2, … , 𝑅𝑗,𝑡}. Note that this set is indexed in the same 

order as the realization values. For instance, if we consider the first realization, 𝑟 = 1, the realization 

value is given by set Ξ𝑗,𝑡 as 𝜉𝑗,𝑡
1 , and the corresponding probability is given by set Υ𝑗,𝑡 as �̂�𝑗,𝑡

1 . Also, note 

that since these realizations represent all possible outcomes for parameter 𝜉𝑗,𝑡 from a discretized 

probability distribution, the probabilities must sum to 1; i.e., ∑ �̂�𝑗,𝑡
𝑟𝑅𝑗,𝑡

𝑟=1 = 1  ∀ 𝑗 ∈ ,   𝑡 ∈ . 

 

Each realization 𝑚 of endogenous parameter 𝜃𝑖,ℎ also has a corresponding probability �̂�𝑖,ℎ
𝑚  that it will 

occur. The realization values are defined in set Θ𝑖,ℎ ≔ {𝜃𝑖,ℎ
𝑚 :   𝑚 = 1, 2,… ,𝑀𝑖,ℎ}, and we define the set of 

probabilities Ω𝑖,ℎ ≔ {�̂�𝑖,ℎ
𝑚 :   𝑚 = 1, 2,… ,𝑀𝑖,ℎ}. As is the case for the exogenous parameters, this set is 

indexed in the same order as the realization values. Thus, for 𝑚 = 1, we have the realization value 𝜃𝑖,ℎ
1  

from set Θ𝑖,ℎ, and the corresponding probability �̂�𝑖,ℎ
1  from set Ω𝑖,ℎ. Again, these realizations represent all 

possible outcomes for parameter 𝜃𝑖,ℎ from a discretized probability distribution, so the probabilities must 

sum to 1; i.e., ∑ �̂�𝑖,ℎ
𝑚𝑀𝑖,ℎ

𝑚=1 = 1  ∀ 𝑖 ∈ ,   ℎ ∈ 𝑖. 

 

Recall that set 𝑋 (Equation (1)), set 𝑁 (Equation (3)), and set  (Equation (5)) give the realization 

values for each scenario 𝑠 ∈ 𝑋, 𝑠 ∈ 𝑁, and 𝑠 ∈ , respectively. Since each of these realizations has a 

corresponding probability, we can find the set of realization probabilities for each scenario by simply 

substituting the realization values in each expression with their corresponding probabilities. Specifically, 

for the case where the uncertainty is purely exogenous, the set of realization probabilities for each 

scenario is defined by, 

 

𝑋 ≔×𝑡∈ (×𝑗∈ Υ𝑗,𝑡)                                                                                                             

= {(�̂�1,1
1 , … , �̂�𝐽,𝑇

1 ),… , (�̂�1,1

𝑅1,1 , … , �̂�𝐽,𝑇

𝑅𝐽,𝑇)}                                                                

= {(𝜐1,1
𝑠 , … , 𝜐𝐽,𝑇

𝑠 ):   ∀ 𝑠 ∈ 𝑋}                                                                                 

(8) 

 

where 𝜐𝑗,𝑡
𝑠  refers to the realization probability of exogenous parameter 𝜉𝑗,𝑡 in scenario 𝑠. In the case where 

the uncertainty is purely endogenous, the set of realization probabilities for each scenario is defined by, 

 

𝑁 ≔×𝑖∈ (×ℎ∈𝑖
Ω𝑖,ℎ)                                                                                                        

= {(�̂�1,1
1 , … , �̂�𝐼,𝐻𝐼

1 ),… , (�̂�1,1

𝑀1,1 , … , �̂�𝐼,𝐻𝐼

𝑀𝐼,𝐻𝐼)}                                                      

= {(𝜔1,1
𝑠 , … , 𝜔𝐼,𝐻𝐼

𝑠 ):   ∀ 𝑠 ∈ 𝑁}                                                                           

(9) 
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where 𝜔𝑖,ℎ
𝑠  refers to the realization probability of endogenous parameter 𝜃𝑖,ℎ in scenario 𝑠. And for the 

case of primary interest, where there are both endogenous and exogenous uncertainties, the set of 

realization probabilities for each scenario is defined by, 

 

 ≔ 𝑁 × 𝑋                                                                                                                  

= {(�̂�1,1
1 , … , �̂�𝐼,𝐻𝐼

1 , �̂�1,1
1 , … , �̂�𝐽,𝑇

1 ),… , (�̂�1,1

𝑀1,1 , … , �̂�𝐼,𝐻𝐼

𝑀𝐼,𝐻𝐼 , �̂�1,1

𝑅1,1 , … , �̂�𝐽,𝑇

𝑅𝐽,𝑇)} 

= {(𝜔1,1
𝑠 , … , 𝜔𝐼,𝐻𝐼

𝑠 , 𝜐1,1
𝑠 , … , 𝜐𝐽,𝑇

𝑠 ):   ∀ 𝑠 ∈ }                                                   

(10) 

 

The probability of each scenario is given by 𝑝𝑠, and is equal to the product of all of the realization 

probabilities in scenario 𝑠: 

 

𝑝𝑠 = (∏ ∏ 𝜔𝑖,ℎ
𝑠

ℎ∈𝑖𝑖∈
) ⋅ (∏∏𝜐𝑗,𝑡

𝑠

𝑗∈𝑡∈
)   ∀ 𝑠 ∈  (11) 

 

Since the elements sum to 1 in each set of realization probabilities (Υ𝑗,𝑡 and Ω𝑖,ℎ), and we are simply 

taking the product of each possible combination of all of these elements, the sum over all of these 

products must also be 1 (see the supplementary material for the simple proof). In other words, the total 

probability over all scenarios must sum to 1: ∑ 𝑝𝑠
𝑠∈ = 1. 

4 Models 
A simple MILP formulation for a deterministic multi-period planning problem is given in model (MPD). 

Variable vectors 𝑦𝑡 represent investment and operation decisions that are made at the beginning of each 

time period 𝑡 (e.g., whether or not to drill a particular oilfield, the processing capacity of a new offshore 

oil facility, etc.), and variable vectors 𝑥𝑡 represent operation decisions that typically follow these 

investment decisions (e.g., the oil flow rate from a field to a newly-installed facility). Variable vectors 𝑤𝑡 

are commonly referred to as state variables and represent calculated quantities associated with each time 

period, such as intermediate flow rates and economic values like total operating cost. Vectors 𝑦𝑡, 𝑥𝑡, and 

𝑤𝑡 may each have integer and continuous components. 

 

(MPD) 

min
𝑦,𝑥

𝜙𝐷 = ∑( 𝑐𝑡 
𝑦 𝑦𝑡 + 𝑐𝑡 

𝑥 𝑥𝑡 + 𝑐𝑡 
𝑤 𝑤𝑡)

𝑡∈ 

 (12) 

s. t. ∑( 𝐴𝜏,𝑡 
𝑦 𝑦𝜏 + 𝐴𝜏,𝑡 

𝑥 𝑥𝜏 + 𝐴𝜏,𝑡 
𝑤 𝑤𝜏)

𝑡

𝜏=1

≤ 𝑎𝑡 ∀ 𝑡 ∈  (13) 

 𝑦𝑡 ∈ 𝑡 ,  
 𝑥𝑡 ∈ 𝑡,  

 𝑤𝑡 ∈ 𝑡 ∀ 𝑡 ∈  (14) 

 

The objective function, Equation (12), minimizes the total cost associated with decisions 𝑦𝑡 and 𝑥𝑡, and 

state variables 𝑤𝑡. For convenience, we adopt the notation of Goel and Grossmann (2006) and specify the 

corresponding cost coefficients through row vectors 𝑐𝑡 
𝑦 , 𝑐𝑡 

𝑥 , and 𝑐𝑡 
𝑤 , respectively. Equation (13) 

represents constraints that govern the decisions in each time period 𝑡 ∈ , as well as constraints that link 

decisions across time periods. This equation also includes equality constraints such as those that assign 
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values to 𝑤𝑡. The constraint coefficients for variables 𝑦𝑡, 𝑥𝑡, and 𝑤𝑡 are given by matrices 𝐴𝜏,𝑡 
𝑦 , 𝐴𝜏,𝑡 

𝑥 , 

and 𝐴𝜏,𝑡 
𝑤 , respectively, and the right-hand side is given by column vectors 𝑎𝑡. Bounds and integrality 

restrictions on the variables are specified by mixed-integer sets 𝑡, 𝑡, and 𝑡 in Equation (14). 

 

In the following subsections, we will show how this model is transformed into a multistage stochastic 

programming problem in the case of: (1) exogenous uncertainty, (2) endogenous uncertainty, and (3) both 

endogenous and exogenous uncertainties. These stochastic programming models (largely inspired by the 

work of Goel and Grossmann (2006)) will be presented in deterministic-equivalent form using the non-

anticipativity approach. For additional background, we refer the reader to Rockafellar and Wets (1991), 

Ruszczyński (1997), and Birge and Louveaux (2011). 

4.1 MSSP Formulation for Exogenous Uncertainty 
The multistage stochastic programming formulation of model (MPD) in the case of exogenous 

uncertainties is given in model (MSSPX). Notice that variables 𝑦𝑡, 𝑥𝑡, and 𝑤𝑡 have been indexed for each 

scenario 𝑠 ∈ 𝑋 to indicate the respective decisions and calculated quantities in each scenario. As we are 

now modeling under a multistage stochastic programming framework, the decision-making process is 

structured as shown in Figure 1. Specifically, variables 𝑦𝑡
𝑠 refer to here-and-now decisions, and variables 

𝑥𝑡
𝑠 refer to recourse decisions. Recall that decisions 𝑦𝑡

𝑠 are implemented at the beginning of each time 

period 𝑡 of scenario 𝑠. At some point after these decisions are made, but during 𝑡, the uncertainty in 

exogenous parameter 𝜉𝑗,𝑡 is resolved. Recourse decisions 𝑥𝑡
𝑠 are then made as corrective action at the end 

of the period in response to this new information. Based on the values of 𝑦𝑡
𝑠 and 𝑥𝑡

𝑠, state variables 𝑤𝑡
𝑠 are 

calculated. 

 

(MSSPX) 

min
𝑦,𝑥

𝜙𝑋 = ∑ 𝑝𝑠

𝑠∈𝑋

∑( 𝑐 
𝑦

𝑡
𝑠𝑦𝑡

𝑠 + 𝑐 
𝑥

𝑡
𝑠𝑥𝑡

𝑠 + 𝑐 
𝑤

𝑡
𝑠𝑤𝑡

𝑠)

𝑡∈ 

 (15) 

s. t. ∑( 𝐴 
𝑦

𝜏,𝑡
𝑠 𝑦𝜏

𝑠 + 𝐴 
𝑥

𝜏,𝑡
𝑠 𝑥𝜏

𝑠 + 𝐴 
𝑤

𝜏,𝑡
𝑠 𝑤𝜏

𝑠)

𝑡

𝜏=1

≤ 𝑎𝑡
𝑠 ∀ 𝑡 ∈ ,   𝑠 ∈ 𝑋 (16) 

 𝑦1
𝑠 = 𝑦1

𝑠′
 ∀ (𝑠, 𝑠′) ∈ 𝐹 (17) 

 𝑥𝑡
𝑠 = 𝑥𝑡

𝑠′
 ∀ (𝑡, 𝑠, 𝑠′) ∈ 𝑋 (18) 

 𝑦𝑡+1
𝑠 = 𝑦𝑡+1

𝑠′
 ∀ (𝑡, 𝑠, 𝑠′) ∈ 𝑋 (19) 

 𝑦𝑡
𝑠 ∈ 𝑡

𝑠,   𝑥𝑡
𝑠 ∈ 𝑡

𝑠,   𝑤𝑡
𝑠 ∈𝑡

𝑠 ∀ 𝑡 ∈ ,   𝑠 ∈ 𝑋 (20) 

 

Notice that only fairly simple changes are required to convert the deterministic model (MPD) to the 

multistage stochastic programming model (MSSPX). In particular, the objective function, Equation (15), 

now minimizes the total expected cost by taking the weighted sum of the costs in each scenario based on 

the probability of each scenario, 𝑝𝑠. The cost coefficients have been indexed for all 𝑠 ∈ 𝑋 to allow for 

the possibility of different cost realizations in each scenario. Additionally, the constraints governing the 

decisions in each time period, represented by Equation (16), are simply applied for each 𝑠 ∈ 𝑋. Note that 

like the cost coefficients, the constraint coefficients and right-hand side have also been indexed for 𝑠 to 
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allow for different realizations in each scenario. In other words, exogenous parameters 𝜉𝑗,𝑡 may enter the 

model through the objective function and/or the constraints (via the constraint coefficients and/or the 

right-hand side). 

 

The most significant difference between the models is the introduction of non-anticipativity constraints, 

given by Equations (17)-(19). Each scenario in model (MSSPX) represents a different instance of the 

deterministic planning problem with different realizations for the uncertain parameters, and the non-

anticipativity constraints link these scenarios together, as shown in Figure 2b. 

 

Equation (17) enforces non-anticipativity between all scenarios at the beginning of the first time period. 

As previously stated, this is due to the fact that all scenarios are indistinguishable at this time, and we 

must make the same here-and-now decisions (first-stage decisions) in all scenarios. For the remainder of 

this paper, we will simply refer to these constraints as first-period NACs. Note that when discussing 

indistinguishability, we refer specifically to the indistinguishability between two scenarios 𝑠 and 𝑠′. 

Accordingly, we will consider pairs of indistinguishable scenarios (𝑠, 𝑠′) in each time period 𝑡 for which 

we must enforce non-anticipativity. We will also define sets of these tuples in order to simplify the 

notation in our models. For the first-period NACs, the corresponding first-period scenario pairs are 

elements of set 𝐹, given by: 

 

𝐹 ≔  (21) 
 

where  is the set of scenario pairs for which 𝑠 and 𝑠′ are adjacent. This will be discussed in greater 

detail in section 5.1 (see Equation (47)). 

 

Equations (18) and (19) represent non-anticipativity constraints for all remaining stages. In particular, if 

scenarios 𝑠 and 𝑠′ are indistinguishable in time period 𝑡 in terms of the resolution of exogenous 

uncertainty, we must make the same recourse decisions at the end of this period (enforced by Equation 

(18)), as well as the same here-and-now decisions at the beginning of the next time period, 𝑡 + 1 

(enforced by Equation (19)). We will refer to these constraints as exogenous NACs. The corresponding set 

of exogenous scenario pairs is given by set 𝑋 and is defined as: 

 

𝑋 ≔ {(𝑡, 𝑠, 𝑠′):   𝑡 ∈ \{𝑇},   (𝑠, 𝑠′) ∈ ,   𝑆𝑢𝑏(𝑠) = 𝑆𝑢𝑏(𝑠′),   𝑄𝑡
𝑠,𝑠′

= 𝑇𝑟𝑢𝑒} (22) 

 

where 𝑆𝑢𝑏(𝑠) = 𝑆𝑢𝑏(𝑠′) ensures that 𝑠 and 𝑠′ are in the same subtree, and 𝑄𝑡
𝑠,𝑠′

 is a Boolean parameter 

that indicates whether or not these scenarios are indistinguishable in time period 𝑡. This will be discussed 

in section 5.2 (see Equations (48) and (49)). 

 

Notice that at the beginning of the final time period, the NACs for the here-and-now decisions correspond 

to Equation (19) with 𝑡 = 𝑇 − 1. Also, specifically in the exogenous case, NACs never apply for the 

recourse decisions at the end of the final time period (final-stage decisions); this is because the leaf nodes 

must refer to independent states or else we would have duplicate scenarios in the tree (see Figure 2). It 

follows, then, that we can entirely exclude time period 𝑡 = 𝑇 from the definition of set 𝑋, as indicated 

in Equation (22). 
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We also note that we never express NACs for state variables 𝑤𝑡
𝑠, in any time period, since these variables 

are calculated based on the values of decision variables 𝑦𝑡
𝑠 and 𝑥𝑡

𝑠. In other words, non-anticipativity for 

𝑤𝑡
𝑠 is implicitly enforced by Equations (17)-(19). 

 

Similar to the deterministic formulation, bounds and integrality restrictions on the variables are specified 

by the mixed-integer sets in Equation (20). 

4.2 MSSP Formulation for Endogenous Uncertainty 
The multistage stochastic programming formulation of model (MPD) in the case of endogenous 

uncertainties is given in model (MSSPN). This model has been adapted from Goel and Grossmann (2006) 

and is presented in hybrid mixed-integer linear disjunctive form. 

 

Previously, we used vector 𝑦𝑡
𝑠 to represent all here-and-now decisions in each time period 𝑡 of scenario 𝑠. 

In the case of endogenous uncertainties, however, this approach does not provide us with particularly 

detailed information. As can be seen in Figure 3, it is not immediately obvious which decisions are 

associated with a source 𝑖 ∈ . This is a very important modeling consideration, since such decisions 

uniquely determine whether or not the uncertainty in parameter 𝜃𝑖,ℎ can be resolved in scenario 𝑠. 

Accordingly, we define vector 𝑏𝑖,𝑡
𝑠  to identify those binary decisions that are strictly associated with a 

particular source 𝑖 (e.g., to drill an oilfield of uncertain size and initial deliverability). To keep the 

notation simple, we will continue to use 𝑦𝑡
𝑠 to represent all other here-and-now decisions. 

 

It is often the case that the uncertainty in some (or all) endogenous parameters cannot be resolved within 

the first few time periods of the planning horizon. For instance, in an oilfield development planning 

problem, we may assume that any oilfield must be in production for a certain number of years before the 

size of the field can be established. Before that amount of time has passed, the sizes of all fields are 

uncertain, and any scenarios that differ only in the possible realizations of field sizes must be 

indistinguishable. Thus, for these initial time periods, the corresponding conditional NACs can be 

expressed as equality constraints (Colvin and Maravelias, 2010; Gupta and Grossmann, 2014a). To model 

this, we denote the number of initial ‘equality’ periods as 𝑇𝐸
𝑖′ , and partition the set of time periods  into 

the set of these initial periods 𝐸
𝑖′ ≔ {𝑡:   𝑡 = 1,… , 𝑇𝐸

𝑖′} and the set of remaining ‘conditional’ time 

periods 𝐶
𝑖′ ≔ {𝑡:   𝑡 = 𝑇𝐸

𝑖′ + 1,… , 𝑇}, where 𝑇𝐸
𝑖′ < 𝑇, for all 𝑖′ ∈ . We use index 𝑖′ in these definitions 

so as not to conflict with index 𝑖 of 𝑏𝑖,𝑡
𝑠 . Note that if 𝑇𝐸

𝑖′ = 0, the corresponding sets reduce to 𝐸
𝑖′ ≔ ∅ 

and 𝐶
𝑖′ ≔ . Further note that these parameters and subsets are defined for each 𝑖′ ∈  since the number 

of initial periods may not be the same for all sources of endogenous uncertainty. 

 

(MSSPN) 

min
𝑏,𝑦,𝑥

𝜙𝑁 = ∑ 𝑝𝑠

𝑠∈𝑁

∑ ( 𝑐 
𝑦

𝑡
𝑠𝑦𝑡

𝑠 + 𝑐 
𝑥

𝑡
𝑠𝑥𝑡

𝑠 + 𝑐 
𝑤

𝑡
𝑠𝑤𝑡

𝑠 + ∑ 𝑐 
𝑏

𝑖,𝑡
𝑠 𝑏𝑖,𝑡

𝑠

𝑖∈
)

𝑡∈ 

 (23) 

s. t. ∑( 𝐴 
𝑦

𝜏,𝑡
𝑠 𝑦𝜏

𝑠 + 𝐴 
𝑥

𝜏,𝑡
𝑠 𝑥𝜏

𝑠 + 𝐴 
𝑤

𝜏,𝑡
𝑠 𝑤𝜏

𝑠 + ∑ 𝐴 
𝑏

𝑖,𝜏,𝑡
𝑠 𝑏𝑖,𝜏

𝑠

𝑖∈
)

𝑡

𝜏=1

≤ 𝑎𝑡
𝑠 ∀ 𝑡 ∈ ,   𝑠 ∈ 𝑁 (24) 

 𝑏𝑖,1
𝑠 = 𝑏𝑖,1

𝑠′
 ∀ (𝑠, 𝑠′) ∈ 𝐹 ,   𝑖 ∈  (25) 
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 𝑦1
𝑠 = 𝑦1

𝑠′
 ∀ (𝑠, 𝑠′) ∈ 𝐹 (17) 

 𝑥𝑡
𝑠 = 𝑥𝑡

𝑠′
 ∀ (𝑡, 𝑠, 𝑠′) ∈ 𝑁,   𝑡 ∈ 𝐸

𝑖′ ,   {𝑖′} = ̂𝑠,𝑠′

 (26) 

 𝑏𝑖,𝑡+1
𝑠 = 𝑏𝑖,𝑡+1

𝑠′
 ∀ (𝑡, 𝑠, 𝑠′) ∈ 𝑁,   𝑡 ∈ 𝐸

𝑖′ ,   {𝑖′} = ̂𝑠,𝑠′

,   𝑖 ∈  (27) 

 𝑦𝑡+1
𝑠 = 𝑦𝑡+1

𝑠′
 ∀ (𝑡, 𝑠, 𝑠′) ∈ 𝑁,   𝑡 ∈ 𝐸

𝑖′ ,   {𝑖′} = ̂𝑠,𝑠′

 (28) 

 

[
 
 
 
 
 𝑍𝑡

𝑠,𝑠′

                                        

𝑥𝑡
𝑠 = 𝑥𝑡

𝑠′
                                      

𝑏𝑖,𝑡+1
𝑠 = 𝑏𝑖,𝑡+1

𝑠′
 ∀ 𝑖 ∈ ,   𝑡 < 𝑇

𝑦𝑡+1
𝑠 = 𝑦𝑡+1

𝑠′
                     𝑡 < 𝑇

 ]
 
 
 
 
 

∨ [¬𝑍𝑡
𝑠,𝑠′

] ∀ (𝑡, 𝑠, 𝑠′) ∈ 𝑁,   𝑡 ∈ 𝐶
𝑖′ ,   {𝑖′} = ̂𝑠,𝑠′

 (29) 

 𝑍𝑡
𝑠,𝑠′  

⇔𝐹(𝑏𝑖′,1
𝑠 , 𝑏𝑖′,2

𝑠 , … , 𝑏𝑖′,𝑡
𝑠 ) ∀ (𝑡, 𝑠, 𝑠′) ∈ 𝑁,   𝑡 ∈ 𝐶

𝑖′ ,   {𝑖′} = ̂𝑠,𝑠′

 (30) 

 𝑏𝑖,𝑡
𝑠 ∈ {0,1},   𝑦𝑡

𝑠 ∈ 𝑡
𝑠,   𝑥𝑡

𝑠 ∈ 𝑡
𝑠,   𝑤𝑡

𝑠 ∈𝑡
𝑠 ∀ 𝑖 ∈ ,   𝑡 ∈ ,   𝑠 ∈ 𝑁 (31) 

 𝑍𝑡
𝑠,𝑠′

∈ {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒} ∀ (𝑡, 𝑠, 𝑠′) ∈ 𝑁,   𝑡 ∈ 𝐶
𝑖′ ,   {𝑖′} = ̂𝑠,𝑠′

 (32) 

 

The objective function, Equation (23), is very similar to that of model (MSSPX). Notice that the only 

differences from Equation (15) are the following: we have now introduced decision variables 𝑏𝑖,𝑡
𝑠  and the 

corresponding row vector of cost coefficients, 𝑐 
𝑏

𝑖,𝑡
𝑠  (which requires a summation over all sources 𝑖 ∈ ), 

and the set of scenarios is now given by 𝑁. Likewise, Equation (24) only differs from Equation (16) by 

the same changes, except the corresponding coefficient matrix is 𝐴 
𝑏

𝑖,𝜏,𝑡
𝑠 . Endogenous parameters 𝜃𝑖,ℎ may 

enter the model through the objective function and/or the constraints, as was the case for exogenous 

parameters 𝜉𝑗,𝑡 in model (MSSPX). First-period NACs still apply, and accordingly, we express them for 

our here-and-now decisions in Equation (25) and (from model (MSSPX)) Equation (17). 

 

Each scenario pair of time period 𝑡 ∈ 𝐸
𝑖′

 in set 𝑁 represents two scenarios 𝑠 and 𝑠′ that are 

indistinguishable at that time in terms of the resolution of endogenous uncertainty. This set of endogenous 

scenario pairs, 𝑁, is given by: 

 

𝑁
𝑖′,ℎ,𝑙 ≔ {(𝑡, 𝑠, 𝑠′):  𝑡 ∈ ,   𝑠, 𝑠′ ∈ ( 𝑖′,ℎ

𝑙

 

𝑁
∩𝑡

𝑖′,ℎ) ,

  𝑠′ = min
�̂�′

(�̂�′ ∈ ( 𝑖′,ℎ
𝑙

 

𝑁
∩𝑡

𝑖′,ℎ) ,   �̂�′ > 𝑠) ,

  𝑠 < max
�̂�

(�̂� ∈ ( 𝑖′,ℎ
𝑙

 

𝑁
∩𝑡

𝑖′,ℎ)) ,   {(𝑖′, ℎ)} = 𝑠,𝑠′
}  ∀ 𝑙 ∈ 𝑖′,ℎ ,   𝑖′ ∈ ,

  ℎ ∈ 𝑖′ 

(33) 

𝑁 ≔ ⋃ ( ⋃ ( ⋃ 𝑁
𝑖′,ℎ,𝑙

𝑙∈𝑖′,ℎ

)

ℎ∈𝑖′

)

𝑖′∈
 (34) 

 

where, in Equation (33), we first determine the set of scenario pairs in each time period 𝑡 corresponding 

to endogenous parameter 𝜃𝑖′,ℎ for all 𝑖′ ∈  and ℎ ∈ 𝑖′ . We then take the union of all of these sets in 

Equation (34). 
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Given the complexity of Equation (33), before continuing, we briefly describe the primary aspects of this 

expression. Sets 𝑖′,ℎ
𝑙

 

𝑁
, indexed by 𝑙 ∈ 𝑖′,ℎ, represent endogenous scenario groups corresponding to 

𝜃𝑖′,ℎ. For each endogenous parameter 𝜃𝑖′,ℎ, set 𝑡
𝑖′,ℎ

 provides a sufficient subset of scenarios that are 

available for pairing from that parameter’s respective groups in time period 𝑡. These sets, 𝑡
𝑖′,ℎ

, are 

defined in a sequential manner in which we successively eliminate scenarios based on the pairs that have 

already been formed. We then obtain a sufficient subset of each group specific to time period 𝑡 via sets 

𝑖′,ℎ
𝑙

 

𝑁
∩𝑡

𝑖′,ℎ
, which we refer to as reduced endogenous scenario groups. We pair off consecutive 

scenarios in each of these reduced groups, where set 𝑠,𝑠′
 indicates the specific parameter 𝜃𝑖′,ℎ for which 

𝑠 and 𝑠′ differ in possible realizations. This will be discussed in detail in section 5.3. 

 

Accordingly, for each of the scenario pairs of time period 𝑡 ∈ 𝐸
𝑖′

 in set 𝑁, we enforce non-

anticipativity between the respective scenarios 𝑠 and 𝑠′ as shown in Equations (26), (27), and (28), 

exactly as we would in the exogenous case (see Equations (18) and (19) for comparison). Notice that the 

only differences here are that we are considering different scenario pairs, and the set of time periods is 

source dependent. The particular source 𝑖′ of set 𝐸
𝑖′

 is determined by set ̂𝑠,𝑠′

; specifically, this set 

indicates the source in which scenarios 𝑠 and 𝑠′ differ in the possible realization of some endogenous 

parameter (see Equation (66) in section 5.3). Note that we will refer to these equality constraints as fixed 

endogenous NACs. 

 

Each scenario pair of time period 𝑡 ∈ 𝐶
𝑖′

 in set 𝑁 represents two scenarios 𝑠 and 𝑠′ that may be 

indistinguishable at that time (where the particular source 𝑖′ of set 𝐶
𝑖′

 is determined by set ̂𝑠,𝑠′

). Recall 

that in the exogenous case, we know in advance whether two scenarios will differ in parameter 

realizations in time period 𝑡. For endogenous parameters, however, the timing of realizations depends on 

decisions 𝑏𝑖,𝑡
𝑠 , so we can no longer use simple equality constraints to apply non-anticipativity. Instead, we 

conditionally enforce non-anticipativity between these scenarios (see Figure 5), as shown by the 

disjunctive constraints in Equation (29). Boolean variable 𝑍𝑡
𝑠,𝑠′

 indicates whether 𝑠 and 𝑠′ are 

indistinguishable by the end of time period 𝑡, and if so, the value is 𝑇𝑟𝑢𝑒 and the NACs are enforced. If 

they are distinguishable, the value is 𝐹𝑎𝑙𝑠𝑒 and the constraints are ignored. We will refer to these 

conditional constraints as conditional endogenous NACs. Note that since we make here-and-now 

decisions for the next time period (𝑡 + 1) based on indistinguishability information revealed up until the 

current time 𝑡, NACs for decisions 𝑏𝑖,𝑡+1
𝑠  and 𝑦𝑡+1

𝑠  must be restricted to 𝑡 < 𝑇; this is, of course, because 

we cannot make new here-and-now decisions at the end of the time horizon. This restriction is implicit in 

the exogenous model because non-anticipativity does not apply at the end of the final time period. 

 

Using a big-M reformulation (Trespalacios and Grossmann, 2014), we can rewrite the disjunctive 

constraints (29) as inequality constraints (35)-(37), where 𝑈𝐵 denotes the upper bound of the respective 

variable.
7
 

 

                                                           
7 We substitute variable upper bounds for big-M parameters; however, for a specific problem instance, tighter bounds can often 

be established. 
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−𝑥𝑡
𝑈𝐵 (1 − 𝑧𝑡

𝑠,𝑠′

) ≤ 𝑥𝑡
𝑠 − 𝑥𝑡

𝑠′
≤ 𝑥𝑡

𝑈𝐵 (1 − 𝑧𝑡
𝑠,𝑠′

)      ∀ (𝑡, 𝑠, 𝑠′) ∈ 𝑁,   𝑡 ∈ 𝐶
𝑖′ ,   {𝑖′} = ̂𝑠,𝑠′

 (35) 

−(1 − 𝑧𝑡
𝑠,𝑠′

) ≤ 𝑏𝑖,𝑡+1
𝑠 − 𝑏𝑖,𝑡+1

𝑠′
≤ (1 − 𝑧𝑡

𝑠,𝑠′

)      ∀ (𝑡, 𝑠, 𝑠′) ∈ 𝑁,   𝑡 ∈ 𝐶
𝑖′ ,   𝑡 < 𝑇,

                                                                                {𝑖′} = ̂𝑠,𝑠′

,   𝑖 ∈  
(36) 

−𝑦𝑡+1
𝑈𝐵 (1 − 𝑧𝑡

𝑠,𝑠′

) ≤ 𝑦𝑡+1
𝑠 − 𝑦𝑡+1

𝑠′
≤ 𝑦𝑡+1

𝑈𝐵 (1 − 𝑧𝑡
𝑠,𝑠′

)      ∀ (𝑡, 𝑠, 𝑠′) ∈ 𝑁,   𝑡 ∈ 𝐶
𝑖′ ,   𝑡 < 𝑇,

                                                                                  {𝑖′} = ̂𝑠,𝑠′

 
(37) 

𝑧𝑡
𝑠,𝑠′

∈ {0, 1}      ∀ (𝑡, 𝑠, 𝑠′) ∈ 𝑁,   𝑡 ∈ 𝐶
𝑖′ ,   {𝑖′} = ̂𝑠,𝑠′

 (38) 

 

Note that 𝑧𝑡
𝑠,𝑠′

, defined in Equation (38), is the binary equivalent of Boolean variable 𝑍𝑡
𝑠,𝑠′

; i.e., (𝑧𝑡
𝑠,𝑠′

=

1) ⇔ (𝑍𝑡
𝑠,𝑠′

= 𝑇𝑟𝑢𝑒) and (𝑧𝑡
𝑠,𝑠′

= 0) ⇔ (𝑍𝑡
𝑠,𝑠′

= 𝐹𝑎𝑙𝑠𝑒). The fixed endogenous NACs can be viewed 

as a special case of these constraints with 𝑧𝑡
𝑠,𝑠′

= 1. Specifically, in the initial time periods, each double-

sided inequality collapses into a single equality constraint, thereby providing us with a smaller, tighter 

formulation (Colvin and Maravelias, 2010). 

 

The value of 𝑍𝑡
𝑠,𝑠′

 is determined by an uncertainty-resolution rule, as stated in general form in Equation 

(30) (Gupta and Grossmann, 2014a). This rule uses the values of all decisions 𝑏𝑖′,𝑡
𝑠  up to and including the 

current time period to determine whether uncertainty has been resolved in a given source 𝑖′ ∈ . 

 

The simplest uncertainty-resolution rule, given in Equation (39) and referred to as immediate resolution, 

assumes that the uncertainty in endogenous parameter 𝜃𝑖′,ℎ is resolved immediately in scenario 𝑠 after an 

investment is made in source 𝑖′ ∈  for the first time (i.e., 𝑏𝑖′,𝑡
𝑠 = 1 and 𝑏𝑖′,𝜏

𝑠 = 0 ∀ 𝜏 < 𝑡,   𝑡, 𝜏 ∈ ) (Goel 

and Grossmann, 2006).
8
 

 

𝑍𝑡
𝑠,𝑠′  

⇔[⋀(¬𝑏𝑖′,𝜏
𝑠 )

𝑡

𝜏=1

]      ∀ (𝑡, 𝑠, 𝑠′) ∈ 𝑁,   𝑡 ∈ 𝐶
𝑖′ ,   {𝑖′} = ̂𝑠,𝑠′

 (39) 

 

Prior to this time 𝑡, 𝑍𝜏
𝑠,𝑠′

= 𝑇𝑟𝑢𝑒 and the scenarios 𝑠 and 𝑠′ that differ in the possible realization of 𝜃𝑖′,ℎ 

are indistinguishable. After the investment at time 𝑡, 𝑍𝑡
𝑠,𝑠′

= 𝐹𝑎𝑙𝑠𝑒 and the scenarios are distinguishable; 

thus, non-anticipativity constraints no longer apply between 𝑠 and 𝑠′. Note that we previously used this 

concept in the discussion of Figure 4. Logic constraints (39) can be rewritten as linear integer inequality 

constraints (40) and (41) by applying the reformulations described in Williams (2013) and Raman and 

Grossmann (1991). 

 

1 − ∑𝑏𝑖′,𝜏
𝑠

𝑡

𝜏=1

≤ 𝑧𝑡
𝑠,𝑠′

      ∀ (𝑡, 𝑠, 𝑠′) ∈ 𝑁,   𝑡 ∈ 𝐶
𝑖′ ,   {𝑖′} = ̂𝑠,𝑠′

 (40) 

                                                           
8 We treat binary variable 𝑏𝑖′,𝜏

𝑠  as Boolean to keep the notation simple. 
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𝑧𝑡
𝑠,𝑠′

≤ 1 − 𝑏𝑖′,𝜏
𝑠       ∀ (𝑡, 𝑠, 𝑠′) ∈ 𝑁,   𝑡, 𝜏 ∈ 𝐶

𝑖′ ,   𝜏 ≤ 𝑡,   {𝑖′} = ̂𝑠,𝑠′

 (41) 

 

Making this replacement and substituting disjunctive constraints (29) for constraints (35)-(38) transforms 

model (MSSPN) into an MILP. Bounds and integrality restrictions on the variables are given in Equations 

(31), (32), and (38). 

4.3 MSSP Formulation for Endogenous and Exogenous Uncertainties 
In the case of both endogenous and exogenous uncertainties, the multistage stochastic programming 

formulation of model (MPD) is given by model (MSSP). This model is also adapted from the work of 

Goel and Grossmann (2006) and will be our primary focus for the remainder of this paper. Just as the 

scenario tree for this class of problems is represented by a composite scenario tree (Figure 6c), the 

corresponding model can also be seen as a composite of the exogenous model (MSSPX) and the 

endogenous model (MSSPN). In particular, all of their respective NACs and logic constraints appear 

together in (MSSP). 

 

(MSSP) 

min
𝑏,𝑦,𝑥

𝜙 = ∑𝑝𝑠

𝑠∈
∑ ( 𝑐 

𝑦
𝑡
𝑠𝑦𝑡

𝑠 + 𝑐 
𝑥

𝑡
𝑠𝑥𝑡

𝑠 + 𝑐 
𝑤

𝑡
𝑠𝑤𝑡

𝑠 + ∑ 𝑐 
𝑏

𝑖,𝑡
𝑠 𝑏𝑖,𝑡

𝑠

𝑖∈
)

𝑡∈ 

 (42) 

s. t. ∑( 𝐴 
𝑦

𝜏,𝑡
𝑠 𝑦𝜏

𝑠 + 𝐴 
𝑥

𝜏,𝑡
𝑠 𝑥𝜏

𝑠 + 𝐴 
𝑤

𝜏,𝑡
𝑠 𝑤𝜏

𝑠 + ∑ 𝐴 
𝑏

𝑖,𝜏,𝑡
𝑠 𝑏𝑖,𝜏

𝑠

𝑖∈
)

𝑡

𝜏=1

≤ 𝑎𝑡
𝑠 ∀ 𝑡 ∈ ,   𝑠 ∈  (43) 

 𝑏𝑖,1
𝑠 = 𝑏𝑖,1

𝑠′
 ∀ (𝑠, 𝑠′) ∈ 𝐹 ,   𝑖 ∈  (25) 

 𝑦1
𝑠 = 𝑦1

𝑠′
 ∀ (𝑠, 𝑠′) ∈ 𝐹 (17) 

 𝑥𝑡
𝑠 = 𝑥𝑡

𝑠′
 ∀ (𝑡, 𝑠, 𝑠′) ∈ 𝑋 (18) 

 𝑏𝑖,𝑡+1
𝑠 = 𝑏𝑖,𝑡+1

𝑠′
 ∀ (𝑡, 𝑠, 𝑠′) ∈ 𝑋 ,   𝑖 ∈  (44) 

 𝑦𝑡+1
𝑠 = 𝑦𝑡+1

𝑠′
 ∀ (𝑡, 𝑠, 𝑠′) ∈ 𝑋 (19) 

 𝑥𝑡
𝑠 = 𝑥𝑡

𝑠′
 ∀ (𝑡, 𝑠, 𝑠′) ∈ 𝑁,   𝑡 ∈ 𝐸

𝑖′ ,   {𝑖′} = ̂𝑠,𝑠′

 (26) 

 𝑏𝑖,𝑡+1
𝑠 = 𝑏𝑖,𝑡+1

𝑠′
 ∀ (𝑡, 𝑠, 𝑠′) ∈ 𝑁,   𝑡 ∈ 𝐸

𝑖′ ,   {𝑖′} = ̂𝑠,𝑠′

,   𝑖 ∈  (27) 

 𝑦𝑡+1
𝑠 = 𝑦𝑡+1

𝑠′
 ∀ (𝑡, 𝑠, 𝑠′) ∈ 𝑁,   𝑡 ∈ 𝐸

𝑖′ ,   {𝑖′} = ̂𝑠,𝑠′

 (28) 

 

[
 
 
 
 
 𝑍𝑡

𝑠,𝑠′

                                        

𝑥𝑡
𝑠 = 𝑥𝑡

𝑠′
                                      

𝑏𝑖,𝑡+1
𝑠 = 𝑏𝑖,𝑡+1

𝑠′
 ∀ 𝑖 ∈ ,   𝑡 < 𝑇

𝑦𝑡+1
𝑠 = 𝑦𝑡+1

𝑠′
                     𝑡 < 𝑇

 ]
 
 
 
 
 

∨ [¬𝑍𝑡
𝑠,𝑠′

] ∀ (𝑡, 𝑠, 𝑠′) ∈ 𝑁,   𝑡 ∈ 𝐶
𝑖′ ,   {𝑖′} = ̂𝑠,𝑠′

 (29) 

 𝑍𝑡
𝑠,𝑠′  

⇔𝐹(𝑏𝑖′,1
𝑠 , 𝑏𝑖′,2

𝑠 , … , 𝑏𝑖′,𝑡
𝑠 ) ∀ (𝑡, 𝑠, 𝑠′) ∈ 𝑁,   𝑡 ∈ 𝐶

𝑖′ ,   {𝑖′} = ̂𝑠,𝑠′

 (30) 

 𝑏𝑖,𝑡
𝑠 ∈ {0,1},   𝑦𝑡

𝑠 ∈ 𝑡
𝑠,   𝑥𝑡

𝑠 ∈ 𝑡
𝑠,   𝑤𝑡

𝑠 ∈𝑡
𝑠 ∀ 𝑖 ∈ ,   𝑡 ∈ ,   𝑠 ∈  (45) 
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 𝑍𝑡
𝑠,𝑠′

∈ {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒} ∀ (𝑡, 𝑠, 𝑠′) ∈ 𝑁,   𝑡 ∈ 𝐶
𝑖′ ,   {𝑖′} = ̂𝑠,𝑠′

 (32) 

 

Like model (MSSPN), this formulation represents a hybrid mixed-integer linear disjunctive programming 

problem due to the presence of the conditional endogenous constraints (29) and logic constraints (30). 

The disjunctive constraints can be replaced by constraints (35)-(38), and if immediate resolution of 

uncertainty is assumed, the logic constraints can be replaced by inequalities (40) and (41). These steps 

transform model (MSSP) into standard mixed-integer linear form. 

 

Notice that the objective function (42) and constraints (43) have only been updated from their respective 

counterparts in model (MSSPN) to reflect the fact that the set of scenarios is now given by . This is also 

true for the bounds and integrality restrictions specified in Equation (45). The only new addition to the 

model is Equation (44), which gives the exogenous non-anticipativity constraints for 𝑏𝑖,𝑡
𝑠 , as these 

variables were not originally defined in the exogenous model (MSSPX). Exogenous parameters 𝜉𝑗,𝑡 and 

endogenous parameters 𝜃𝑖,ℎ may enter the model through the objective function and/or the constraints. 

 

It is interesting to note that if we assume expected values for the endogenous parameters, then we have 

𝑁 = ∅,  = 𝑋, and model (MSSP) reduces to the exogenous model (MSSPX). Similarly, if we 

assume expected values for the exogenous parameters, then we have 𝑋 = ∅,  = 𝑁, and model 

(MSSP) reduces to the endogenous model (MSSPN). 

 

The multistage stochastic programming problem (MSSP) may appear to be simply a larger version of the 

purely-exogenous and purely-endogenous formulations previously discussed; however, there is a great 

deal of complexity contained in scenario-pair sets 𝐹, 𝑋, and 𝑁. Specifically, we must carefully 

account for the presence of both types of uncertainty when defining these sets. Notice that in the 

exogenous formulation (MSSPX), NACs are applied in time period 𝑡 for all pairs of scenarios that are 

indistinguishable in terms of the resolution of exogenous uncertainty. In the endogenous formulation 

(MSSPN), NACs are applied in time period 𝑡 for all pairs of scenarios that must be indistinguishable, and 

conditionally applied for those that may be indistinguishable, in terms of the resolution of endogenous 

uncertainty. As can be seen in the composite scenario tree (Figure 6c), this is not the case when 

endogenous and exogenous uncertainties are both present. First-period NACs link all scenarios at the 

beginning of the first time period, as always, but exogenous NACs now link scenarios in time period 𝑡 

that are indistinguishable in terms of the resolution of exogenous uncertainty and are identical in all 

possible realizations of the endogenous parameters. In other words, exogenous NACs are applied between 

scenarios within each subtree. Endogenous NACs now link scenarios in time period 𝑡 that differ in the 

possible realization of one endogenous parameter and are identical in all realizations of the exogenous 

parameters. Thus, endogenous NACs are applied between scenarios in different subtrees. This is an 

interesting modeling challenge and will be discussed in detail in the next section. 

5 Scenario Pairs and Reduction Properties 
In defining each of the scenario-pair sets 𝐹, 𝑋, and 𝑁, we begin with a naïve approach in which 

we specify only 𝑠, 𝑠′ ∈  and 𝑠 ≠ 𝑠′, along with the additional indistinguishability conditions specific to 

either first-period NACs, exogenous NACs, or endogenous NACs; i.e., 
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{(𝑠, 𝑠′):   𝑠, 𝑠′ ∈ ,   𝑠 ≠ 𝑠′,   conditions for indistinguishability} (46) 
 

As stated in the following property, however, the condition 𝑠 ≠ 𝑠′ is not particularly restrictive and leaves 

us with many redundant scenario pairs. 

 

Property 1. Scenario pairs (𝑠, 𝑠′) and (𝑠′, 𝑠) refer to the same pair. Thus, it is sufficient to enforce non-

anticipativity constraints for only pairs (𝑠, 𝑠′) where 𝑠 < 𝑠′ (Goel and Grossmann, 2006). 

 

Proof. See Appendix section A.1. A brief, qualitative proof can also be found in Goel and Grossmann 

(2006). 

 

This simple symmetry argument eliminates half of the scenario pairs generated by Equation (46). We 

place special emphasis on reduction properties such as Property 1 since NACs are expressed for each pair 

of scenarios, and the number of pairs can be extremely large in instances with a large number of 

scenarios. In the following sections, we will define additional reduction properties to exclude all 

redundant pairs from each of our set definitions. We begin with scenario-pair set 𝐹 for first-period 

NACs. 

5.1 First-period Scenario Pairs 
As was the case for purely-exogenous and purely-endogenous uncertainties, at the beginning of the first 

time period, no decisions have been implemented and no uncertainties have been resolved. Hence, all 

scenarios are indistinguishable at that time and we must make the same here-and-now decisions in all 

scenarios. To define the set of scenario pairs required for these non-anticipativity constraints, we rely on 

the following property. 

 

Property 2a. For first-period NACs, it is sufficient to consider only scenario pairs (𝑠, 𝑠′) for which 𝑠 and 

𝑠′ are adjacent. 

 

Proof. See Appendix section A.2. 

 

Accordingly, we define the set of all pairs of adjacent scenarios, : 

 

 ≔ {(𝑠, 𝑠′):   𝑠, 𝑠′ ∈ ,   𝑠′ = 𝑠 + 1,   𝑠 < 𝑆} (47) 
 

Note that the condition 𝑠 < 𝑠′ is implicit in this definition since we are only considering consecutive 

scenarios in the ‘forward’ direction. The set of all scenario pairs for first-period NACs is then simply 

equal to set , as we define in Equation (21). 

 

𝐹 ≔  (21) 
 

This is the minimum number of scenario pairs, as stated in the following proposition. 

 

Proposition 1. First-period scenario-pair set 𝐹 contains the minimum number of scenario pairs. 

 

Proof. See Appendix section A.3. 
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Note that the respective scenario pairs in set 𝐹 are non-unique. In other words, different formulations 

with the same cardinality are possible; e.g., we may instead choose to link the first scenario to every other 

scenario. Such alternative pairing approaches have been shown to perform better in Lagrangean 

decomposition (Oliveira et al., 2013); however, for convenience, we limit our current discussion to the 

consecutive-pairing approach. 

5.2 Exogenous Scenario Pairs 

Excluding the beginning of the first time period, scenarios 𝑠 and 𝑠′ are indistinguishable in time period 𝑡 

if they are identical in the realizations of all exogenous parameters up to this point and they have all of the 

same possible realizations for the endogenous parameters. These scenario pairs are required for 

exogenous non-anticipativity constraints. 

 

Rather than explicitly checking that each pair of scenarios has the same possible endogenous realizations, 

it is clear from Figure 6 that due to the manner in which we generate the scenario set, this condition is 

implicitly satisfied for any 𝑠 and 𝑠′ in the same subtree. Recall that this is because each subtree represents 

an exogenous scenario tree, and by definition, all scenarios in this tree must have the same endogenous 

realizations (see section 3.3). Furthermore, different subtrees have different possible endogenous 

realizations, so 𝑠 and 𝑠′ can only be in the same subtree. This argument also allows us to invoke the 

following reduction property. 

 

Property 2b. For exogenous NACs, it is sufficient to consider only scenario pairs (𝑠, 𝑠′) for which 𝑠 and 

𝑠′ are adjacent. 

 

Proof. See Appendix section A.4. 

 

Hence, we state that adjacent scenarios 𝑠 and 𝑠′ will be indistinguishable in the first time period if they 

have the same realizations for all exogenous parameters in this period and they are in the same subtree. 

Let Boolean parameter 𝑄𝑡
𝑠,𝑠′

 represent the indistinguishability of adjacent scenarios 𝑠 and 𝑠′ in time 

period 𝑡, where 𝑄𝑡
𝑠,𝑠′

= 𝑇𝑟𝑢𝑒 if the scenarios are indistinguishable, and 𝑄𝑡
𝑠,𝑠′

= 𝐹𝑎𝑙𝑠𝑒 otherwise. Then, 

 

𝑄1
𝑠,𝑠′

= {
𝑇𝑟𝑢𝑒,   if 𝜉𝑗,1

𝑠 = 𝜉𝑗,1
𝑠′

  ∀ 𝑗 ∈ 
𝐹𝑎𝑙𝑠𝑒,   otherwise                  

      ∀ (𝑠, 𝑠′) ∈ ,   𝑆𝑢𝑏(𝑠) = 𝑆𝑢𝑏(𝑠′) (48) 

 

where the subtree condition 𝑆𝑢𝑏(𝑠) = 𝑆𝑢𝑏(𝑠′) relies on the definition provided by Equation (7). 

 

For all subsequent time periods, the scenarios are indistinguishable if they were indistinguishable in the 

previous time period, they have the same exogenous realizations in the current time period, and they are 

in the same subtree: 

 

𝑄𝑡
𝑠,𝑠′

= {
𝑇𝑟𝑢𝑒,   if 𝑄𝑡−1

𝑠,𝑠′

= 𝑇𝑟𝑢𝑒 and 𝜉𝑗,𝑡
𝑠 = 𝜉𝑗,𝑡

𝑠′
  ∀ 𝑗 ∈ 

𝐹𝑎𝑙𝑠𝑒,   otherwise                                                   
 

𝑡 = 2, 3,… , 𝑇,   ∀ (𝑠, 𝑠′) ∈ ,
  𝑆𝑢𝑏(𝑠) = 𝑆𝑢𝑏(𝑠′)                      

(49) 

 

As an example, scenarios 1 and 2 in Figure 6c have the same realizations for the exogenous parameter in 

the first time period; i.e., 𝜉1
1 = 𝜉1

2. Thus, these scenarios are indistinguishable at the end of this period and 

𝑄1
1,2 = 𝑇𝑟𝑢𝑒. They have different realizations in the second time period (i.e., 𝜉2

1 ≠ 𝜉2
2), so the scenarios 



28 

 

are distinguishable at that time and 𝑄2
1,2 = 𝐹𝑎𝑙𝑠𝑒. Since the leaf nodes in each subtree refer to 

independent states, it is in fact the case that all adjacent scenarios in the same subtree will be 

distinguishable by the end of the final time period; i.e., 𝑄𝑇
𝑠,𝑠′

= 𝐹𝑎𝑙𝑠𝑒. Thus, it is unnecessary to evaluate 

Equation (49) for 𝑡 = 𝑇. We also note that because 𝑄𝑡
𝑠,𝑠′

 is the same for all subtrees, it is most efficient to 

calculate 𝑄𝑡
𝑠,𝑠′

 only for the first subtree and then to duplicate the results for all others. 

 

The set of all scenario pairs (𝑠, 𝑠′) in each time period 𝑡, such that 𝑠 and 𝑠′ are indistinguishable in terms 

of the resolution of exogenous uncertainty and are identical in all possible realizations of the endogenous 

parameters, can then be defined as: 

 

𝑋 ≔ {(𝑡, 𝑠, 𝑠′):   𝑡 ∈ \{𝑇},   (𝑠, 𝑠′) ∈ ,   𝑆𝑢𝑏(𝑠) = 𝑆𝑢𝑏(𝑠′),   𝑄𝑡
𝑠,𝑠′

= 𝑇𝑟𝑢𝑒} (22) 

 

Equation (22) is also applicable in purely-exogenous problems since, in that case, 𝑆𝑢𝑏(𝑠) = 1 for all 

𝑠 ∈ . This is the reasoning behind the use of set 𝑋 in model (MSSPX). 

 

We now define exogenous scenario ‘groups’ in each time period 𝑡 ∈ \{𝑇}, where each group is a set of 

indistinguishable scenarios that refer to the same state.
9
 Specifically, each group is the direct result of 

splitting a single node into indistinguishable copies for each scenario, as discussed in the proof of 

Property 2b. For example, at the end of the first time period in Figure 6c, scenarios 1 and 2 refer to the 

same unique state and can be grouped together. Scenarios 3 and 4 refer to another unique state and can be 

placed into a second group. Continuing this process, we end up with 8 different groups of two scenarios 

each, as shown in Figure 7. Blue groups consist of scenarios with a low realization for exogenous 

parameter 𝜉1, and green groups consist of scenarios with a high realization for that parameter. We 

typically do not define scenario groups for the final time period, since (as previously mentioned) adjacent 

leaf nodes in the same subtree are unique; in other words, there would be 𝑆 groups of one scenario each in 

time period 𝑇 (e.g., 16 groups of one scenario each in Figure 7). 

 

 
Figure 7. Exogenous scenario groups. 

 

To generalize this grouping process, we first define parameter 𝐺𝑋(𝑡, 𝑠) to return the group number of each 

scenario 𝑠 ∈  in time period 𝑡 ∈ \{𝑇}. Next, we assign the first scenario in each of these time periods 

to group 1 by specifying 𝐺𝑋(𝑡, 1) = 1  ∀ 𝑡 ∈ \{𝑇}. We then use Equation (50) to assign group numbers 

to all other scenarios: 

                                                           
9 We will frequently refer to exogenous scenario groups in time period 𝑡. This will be understood to mean the end of time period 

𝑡, after all realizations in that period have occurred. 



29 

 

 

𝐺𝑋(𝑡, 𝑠) = 𝐺𝑋(𝑡, 𝑠 − 1) + ∑ [1]

(𝑡,𝑠−1,𝑠)∉𝑋

        ∀ 𝑡 ∈ \{𝑇},   𝑠 = 2, 3,… , 𝑆 (50) 

 

The general idea behind this equation is that the group number of scenario 𝑠 will be equal to the group 

number of the previous scenario 𝑠 − 1, given by 𝐺𝑋(𝑡, 𝑠 − 1), as long as these two adjacent scenarios are 

indistinguishable based on the definition of set 𝑋. If they are not indistinguishable in this sense (i.e., 

(𝑡, 𝑠 − 1, 𝑠) ∉ 𝑋), then the scenarios have different realizations for some of the uncertain parameters 

and scenario 𝑠 belongs in a new group; thus, the group number is incremented by 1. For instance, at 𝑡 = 1 

in Figure 7, scenario 1 is first assigned a group number of 1. Scenario 2 is indistinguishable from scenario 

1, so must also be assigned to group 1. Scenario 3, however, is distinguishable from scenario 2 since 

𝜉1
2 ≠ 𝜉1

3, and (1, 2, 3) ∉ 𝑋. Thus, we increment the group number and assign scenario 3 to group 2. 

We repeat this process for all remaining scenarios in this time period. 

 

We index these groups by defining the set of indices 𝑡, 

 

𝑡 ≔ {𝑘:   𝑘 = 1, 2,… , 𝐺𝑋(𝑡, 𝑆)}   ∀ 𝑡 ∈ \{𝑇} (51) 

 

where 𝐺𝑋(𝑡, 𝑆) gives the total number of groups in time period 𝑡 (since it is the group number for the final 

scenario in time period 𝑡). In Figure 7, this corresponds to 𝐺𝑋(1, 16) = 8; therefore, 1 ≔ {1, 2, … , 8}. 

 

We then use the group numbers to define the set of scenarios for each group: 

 

𝑡
𝑘

 

𝑋
≔ {𝑠:   𝑠 ∈ ,   𝐺𝑋(𝑡, 𝑠) = 𝑘}   ∀ 𝑘 ∈ 𝑡 ,  

 𝑡 ∈ \{𝑇} (52) 

 

For example, at 𝑡 = 1 in Figure 7, scenario 1 has a group number of 1 (i.e., 𝐺𝑋(1, 1) = 1) and scenario 2 

has a group number of 1 (i.e., 𝐺𝑋(1, 2) = 1). Accordingly, exogenous scenario group 1 in the first time 

period is given by 1
1

 

𝑋
= {1, 2}. We similarly define 1

2

 

𝑋
= {3, 4}, 1

3

 

𝑋
= {5, 6},… , 1

8

 

𝑋
= {15, 16}. 

 

The exogenous scenario-group definitions allow us to state the following proposition. 

 

Proposition 2. Exogenous scenario-pair set 𝑋 contains the minimum number of scenario pairs. 

 

Proof. See Appendix section A.5. 

 

Like set 𝐹, the respective scenario pairs in set 𝑋 are non-unique. The concept of exogenous 

scenario groups will be used again in the next section to derive endogenous scenario-pair set 𝑁. As 

will be shown, the definition of this set is quite complex. 

5.3 Endogenous Scenario Pairs 

Excluding the beginning of the first time period, scenarios 𝑠 and 𝑠′ are indistinguishable in the initial time 

periods 𝑡 ∈ 𝐸
𝑖′

 if they differ in the possible realizations of one or more endogenous parameters and they 

are identical in the realizations of all exogenous parameters that have been realized up until that time. 
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Recall that these scenarios must be indistinguishable here because the endogenous uncertainty cannot yet 

be resolved. These scenario pairs are used to generate fixed endogenous NACs. 

 

For the remaining time periods 𝑡 ∈ 𝐶
𝑖′

, the uncertainty can be resolved at some point, but we do not 

know when this will occur (or if it will at all). Scenarios 𝑠 and 𝑠′ will be indistinguishable until this 

unknown point in time. Thus, we state that under the same conditions given for 𝑡 ∈ 𝐸
𝑖′

, scenarios 𝑠 and 𝑠′ 

in 𝑡 ∈ 𝐶
𝑖′

 may be indistinguishable. These scenario pairs are used to generate conditional endogenous 

NACs. Notice that due to the conditional nature of these constraints, set 𝑁 may contain several 

scenario pairs that we do not need. This is in sharp contrast to the exogenous scenario-pair set 𝑋, 

where every scenario pair is required because all of the NACs are fixed. 

 

Before we derive the endogenous scenario-pair set 𝑁, it is possible to significantly strengthen the 

indistinguishability requirements. We begin with the following reduction property. 

 

Property 3. For endogenous NACs, it is sufficient to consider only scenario pairs (𝑠, 𝑠′) for which 𝑠 and 

𝑠′ differ in the possible realization of a single endogenous parameter and are identical in the realizations 

of all exogenous parameters in all time periods. 

 

Proof. See Goel and Grossmann (2006). 

 

Example. Due to the complexity of Property 3, and its importance to this work, we provide an illustrative 

example of the proof. Consider Figure 8, where we have isolated scenarios 1, 5, and 13 from Figure 6c for 

an arbitrary time period 𝑡 = 𝜏. Scenario 1 differs from scenario 5 in the possible realization of 

endogenous parameter 𝜃2. Scenario 5 differs from scenario 13 in the possible realization of endogenous 

parameter 𝜃1. Scenario 1 differs from scenario 13, however, in the possible realizations of both 𝜃1 and 𝜃2. 

The three scenarios have identical realizations for exogenous parameter 𝜉𝑡 in all time periods. 

 

Disregarding the possibility of initial ‘equality’ periods, we will have three conditional links between the 

scenarios, as shown at the top of Figure 8: (1, 5) and (5, 13), as shown in green, and (1, 13), as shown in 

orange. There are four possible outcomes depending upon the way the uncertainty is resolved. In Case 1, 

both endogenous parameters have been realized by the end of this time period. Accordingly, the scenarios 

are distinguishable and non-anticipativity does not apply. In Case 2, only the value of 𝜃1 has been realized 

and NACs are enforced between scenarios 1 and 5. If we consider only variables 𝑦𝜏
𝑠, the corresponding 

NAC is 𝑦𝜏
1 = 𝑦𝜏

5. Similarly, in Case 3, only the value of 𝜃2 has been realized and NACs are enforced 

between scenarios 5 and 13; e.g., 𝑦𝜏
5 = 𝑦𝜏

13. When neither of the parameters has been realized in Case 4, 

all three conditional links are enforced: 𝑦𝜏
1 = 𝑦𝜏

5, 𝑦𝜏
5 = 𝑦𝜏

13, and 𝑦𝜏
1 = 𝑦𝜏

13. 

 

Notice that Case 4 is the only case in which we apply non-anticipativity for scenario pair (1, 13), and it 

applies only at the same time as the non-anticipativity for pairs (1, 5) and (5, 13). Thus, by a simple 

transitivity argument, it is clear that constraint 𝑦𝜏
1 = 𝑦𝜏

13 is implied by constraints 𝑦𝜏
1 = 𝑦𝜏

5 and 𝑦𝜏
5 = 𝑦𝜏

13. 

Accordingly, scenario pair (1, 13) can be excluded entirely. This leaves us with two pairs that differ only 

in the possible realization of a single endogenous parameter. 
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Figure 8. Illustration of Property 3. 

 

Recall that scenarios 1, 5, and 13 have identical realizations for the exogenous parameter in all time 

periods. We now extend this example to include scenario 2, which has a different exogenous realization in 

the second period. Here, we illustrate the second part of Property 3; specifically, that the corresponding 

scenario pairs (𝑠, 𝑠′) consist of scenarios 𝑠 and 𝑠′ that are identical in the realizations of all exogenous 

parameters in all time periods, rather than just identical in the exogenous realizations that have been 

revealed up until the current time period. This is shown in Figure 9. 

 

 
Figure 9. Property 3 as applied to endogenous and exogenous uncertainties. 

 

Figure 9 includes additional scenario pairs (2, 5) and (2, 13), as shown in orange. Notice, however, that 

scenario 2 is identical to scenario 1 aside from the different exogenous realization in the second time 

period (i.e., 𝜉2
1 ≠ 𝜉2

2). This means that in the first period, non-anticipativity for pairs (2, 5) and (1, 5) will 
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apply at the same time, non-anticipativity for pairs (2, 13) and (1, 13) will apply at the same time,
10

 and 

we have the exogenous non-anticipativity constraint 𝑦𝜏
1 = 𝑦𝜏

2 between scenarios 1 and 2 (shown in red). 

 

Thus, by transitivity, pair (2, 5) can be eliminated since constraints 𝑦𝜏
1 = 𝑦𝜏

2 and 𝑦𝜏
1 = 𝑦𝜏

5 imply 𝑦𝜏
2 = 𝑦𝜏

5. 

Likewise, pair (2, 13) can also be eliminated since constraints 𝑦𝜏
1 = 𝑦𝜏

2, 𝑦𝜏
1 = 𝑦𝜏

5, and 𝑦𝜏
5 = 𝑦𝜏

13 imply 

𝑦𝜏
2 = 𝑦𝜏

13. Notice that we have eliminated any endogenous scenario pairs (𝑠, 𝑠′) for which 𝑠 and 𝑠′ are 

not identical in the realizations of all exogenous parameters in all time periods. 

 

As proved rigorously in Goel and Grossmann (2006), Property 3 always holds, provided that the set of 

scenarios consists of all possible combinations of realizations of the endogenous parameters. The authors 

also showed that this property extends to the general case where there are multiple parameters associated 

with each source of endogenous uncertainty (as we have considered throughout this paper with the use of 

parameter 𝜃𝑖,ℎ). 

 

By Property 3, we may now state that scenarios 𝑠 and 𝑠′ are indistinguishable in time period 𝑡 if they 

differ in the possible realization of exactly one endogenous parameter and they are identical in the 

realizations of all exogenous parameters in all time periods. We first address the latter part of this 

statement. 

 

Recall from the previous section that scenarios in the same subtree must have the same endogenous 

realizations. Thus, for 𝑠 and 𝑠′ to differ in any endogenous realizations, they must belong to different 

subtrees. Furthermore, for these scenarios to have exactly the same exogenous realizations, they must 

have the same position in both subtrees; for example, the first scenario in both, as in scenarios 1 and 5. 

This is because we generate the composite tree by starting with a single exogenous tree that has no 

duplicate scenarios. It follows that when we duplicate the exogenous tree for each possible combination 

of realizations of the endogenous parameters, scenarios in the same position in different subtrees have 

originated from the same scenario. Therefore, they must have all of the same exogenous realizations. 

Because there were no duplicates in the original exogenous tree, these are the only scenarios for which 

this holds. 

 

We define parameter 𝑃𝑜𝑠(𝑠) to return the position of scenario 𝑠 from the viewpoint of its respective 

subtree; in other words, the index that scenario 𝑠 would have if it were in subtree 1: 

 

𝑃𝑜𝑠(𝑠) = 𝑠 − 𝑆𝑋(𝑆𝑢𝑏(𝑠) − 1)    ∀ 𝑠 ∈  (53) 

 

Equation (53) calculates this normalized scenario index for 𝑠 by subtracting off the appropriate number of 

scenarios according to the subtree that 𝑠 belongs to. Recall that 𝑆𝑋 is just the number of scenarios in each 

subtree. As a simple example, consider scenarios 1, 5, 9, and 13 in Figure 6c. Since these scenarios refer 

to the first scenario in each subtree, respectively, Equation (53) gives 𝑃𝑜𝑠(1) = 1 − 4(1 − 1) = 1, 

𝑃𝑜𝑠(5) = 5 − 4(2 − 1) = 1, 𝑃𝑜𝑠(9) = 9 − 4(3 − 1) = 1, and 𝑃𝑜𝑠(13) = 13 − 4(4 − 1) = 1. 

 

                                                           
10 Recall from the discussion surrounding Figure 8 that scenario pair (1, 13) is implied by pairs (1, 5) and (5, 13). 
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Thus, to indicate that 𝑠 and 𝑠′ are identical in all exogenous realizations, but differ in at least one possible 

endogenous realization, it is sufficient to state 𝑃𝑜𝑠(𝑠) = 𝑃𝑜𝑠(𝑠′), with 𝑠 < 𝑠′. Note that this implies that 

the two scenarios are in different subtrees, so it is unnecessary to specify 𝑆𝑢𝑏(𝑠) ≠ 𝑆𝑢𝑏(𝑠′). 

 

We now address the first part of Property 3; namely, that scenarios 𝑠 and 𝑠′ differ in the possible 

realization of exactly one endogenous parameter. To do so, we define sets 𝑠,𝑠′
, composed of pairs of 

indices (𝑖′, ℎ), to indicate the endogenous parameters 𝜃𝑖′,ℎ for which scenarios 𝑠 and 𝑠′ differ in possible 

realizations:
11

 

 

𝑠,𝑠′
≔ {(𝑖′, ℎ):   𝑖′ ∈ ,   ℎ ∈ 𝑖′ ,  

 𝜃𝑖′,ℎ
𝑠 ≠ 𝜃𝑖′,ℎ

𝑠′
}  ∀ 𝑠, 𝑠′ ∈ ,   𝑠 < 𝑠′,   𝑃𝑜𝑠(𝑠) = 𝑃𝑜𝑠(𝑠′) (54) 

 

Property 3 then requires that |𝑠,𝑠′
| = 1 for all endogenous scenario pairs. In other words, the 

corresponding set of pairs for all time periods is given by: 

 

𝑁3 ≔ {(𝑡, 𝑠, 𝑠′):   𝑡 ∈ ,   𝑠, 𝑠′ ∈ ,   𝑠 < 𝑠′,   𝑃𝑜𝑠(𝑠) = 𝑃𝑜𝑠(𝑠′),   |𝑠,𝑠′
| = 1} (55) 

 

Note that the same pairs are present in each period. 

 

As pointed out by Gupta and Grossmann (2011), however, when we consider 3 or more possible 

realizations for any of the endogenous parameters, there are additional redundant scenario pairs that are 

not removed by this property. This is illustrated in Figure 10. Here we consider a group of three scenarios 

(�̂�, �̂�′, and �̂�′′), in an arbitrary time period 𝑡 = 𝜏, that all differ in the possible realization of a single 

endogenous parameter 𝜃�̂�,ℎ̂. These scenarios will be distinguishable in time period 𝜏 if parameter 𝜃�̂�,ℎ̂ has 

been realized (Case 1), or indistinguishable if the parameter has not yet been realized (Case 2). 

 

 
Figure 10. Property 3 fails to eliminate all redundant scenario pairs when there are 3 or more possible 

realizations for any of the endogenous parameters. 
 

                                                           
11 Recall that we index the sources with 𝑖′ so as not to conflict with index 𝑖 of 𝑏𝑖,𝑡

𝑠  in models (MSSPN) and (MSSP). 
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Using Property 3, we generate three scenario pairs: (�̂�, �̂�′) and (�̂�′, �̂�′′), as shown in green, and (�̂�, �̂�′′), as 

shown in orange. Since the corresponding NACs all apply at the same time or are all ignored at the same 

time, it is clear that scenario pair (�̂�, �̂�′′) is redundant and can be eliminated. This follows directly from 

the simple transitivity arguments previously used in the example of Property 3. Because |�̂�,�̂�′′
| = 1 and 

yet (�̂�, �̂�′′) is redundant, it is also clear that we must rely on an alternative approach to exclude such 

scenario pairs. 

 

A simple remedy for this, as proposed by Gupta and Grossmann (2011), is to first generate all ‘groups’ of 

scenarios like that shown in Figure 10, and then link consecutive scenarios in each of these groups.
12

 Each 

group is the set of all scenarios that differ only in the possible realization of a single endogenous 

parameter ℎ of source 𝑖′ (i.e., 𝜃𝑖′,ℎ). As previously noted, these scenarios will be indistinguishable as long 

as this parameter is unrealized. 

 

Thus, for each 𝑖′ ∈  and ℎ ∈ 𝑖′ , we define parameter 𝐺𝑁(𝑖′, ℎ, 𝑠) to identify the index of the group that 

scenario 𝑠 ∈  belongs to. We refer to this as the group number, represented here by index 𝑙, and propose 

the following algorithm to assign group numbers to all scenarios. Notice that unlike the exogenous case, 

an algorithm is required here because the groups consist of nonconsecutively-indexed scenarios. 

 
Endogenous Scenario-Group Algorithm 

Step 1:  Initialize the group numbers to zero for all scenarios; i.e., 𝐺𝑁(𝑖′, ℎ, 𝑠) ≔ 0   ∀ 𝑖′ ∈ ,   ℎ ∈

𝑖′ ,  
 𝑠 ∈ . Also, define a group counter, GroupCount, to keep track of the current group number in 

each iteration. 
 

Step 2:  For each endogenous parameter, define all groups of scenarios that differ in the possible 

realization of only this parameter. This is done as follows. 
 

For each 𝑖′ ∈  and ℎ ∈ 𝑖′: 
 
Step 2a: Reset the group counter (i.e., GroupCount ≔ 0). 

 
Step 2b: Fix 𝑠 to the next available scenario in  (i.e., 𝑠 has not already been assigned to a group, so 

𝐺𝑁(𝑖′, ℎ, 𝑠) = 0), and then search for all other scenarios from which 𝑠 differs in the possible 

realization of only 𝜃𝑖′,ℎ. Such scenarios must be in the same group as 𝑠. 

 
Specifically, for 𝑠 = 1, 2, … , 𝑆, where 𝐺𝑁(𝑖′, ℎ, 𝑠) = 0: 
 
i) Increment the group counter (i.e., GroupCount ≔ GroupCount + 1). 

 
ii) Set the group number of scenario 𝑠 to the current group number: 

 

𝐺𝑁(𝑖′, ℎ, 𝑠) ≔ GroupCount (56) 
 

                                                           
12 The scope of Gupta and Grossmann (2011) is limited to purely-endogenous MSSP problems with no initial ‘equality’ time 

periods and only one parameter associated with each source of uncertainty. 



35 

 

iii) Search for scenarios 𝑠′ ∈  that differ from 𝑠 in the possible realization of the same 

endogenous parameter; i.e., 𝑠,𝑠′
= {(𝑖′, ℎ)}. For each 𝑠′ that satisfies this condition, set the 

group number of that scenario to the same group number as scenario 𝑠; i.e., 
 

𝐺𝑁(𝑖′, ℎ, 𝑠′) ≔ 𝐺𝑁(𝑖′, ℎ, 𝑠)      ∀ 𝑠′ ∈ ,   𝑠′ > 𝑠,   𝑃𝑜𝑠(𝑠′) = 𝑃𝑜𝑠(𝑠),   𝑠,𝑠′
= {(𝑖′, ℎ)} (57) 

 

For instance, in Figure 10, assume that scenario �̂� is in group 𝑙 corresponding to endogenous 

parameter 𝜃�̂�,ℎ̂. Also, assume that 𝑠 = �̂�. In this step of the algorithm, we would first identify 

�̂�′ as belonging to the same group as �̂�, and then the same for �̂�′′, since �̂�,�̂�′
= �̂�,�̂�′′

=

{(𝑖,̂ ℎ̂)}. Thus, we would have 𝐺𝑁(𝑖,̂ ℎ̂, �̂�) = 𝐺𝑁(𝑖,̂ ℎ̂, �̂�′) = 𝐺𝑁(�̂�, ℎ̂, �̂�′′) = 𝑙. 
 
Notice that, aside from the fact that the 𝑠 index is fixed, the restrictions on the scenarios in 

Equation (57) are the same as those for Property 3 (see the definition of set 𝑁3 in Equation 

(55)), with the condition 𝑠,𝑠′
= {(𝑖′, ℎ)} in place of |𝑠,𝑠′

| = 1. This condition is inspired 

by Gupta and Grossmann (2011) and implies that |𝑠,𝑠′
| = 1. 

 
Step 2c: Use the final group number to define the set of indices for all groups corresponding to 𝜃𝑖′,ℎ: 

 

𝑖′,ℎ, ≔ {𝑙:  𝑙 = 1, 2,… , GroupCount} (58) 
 
We index the endogenous scenario groups as 𝑙 ∈ 𝑖′,ℎ. 

 

For each endogenous parameter 𝜃𝑖′,ℎ, the group-number parameter gives the particular index 𝑙 for each 

𝑠 ∈  (i.e., 𝐺𝑁(𝑖′, ℎ, 𝑠) = 𝑙). We can use this information to define the set of scenarios for each group: 

 

𝑖′,ℎ
𝑙

 

𝑁
≔ {𝑠:  𝑠 ∈ ,   𝐺𝑁(𝑖′, ℎ, 𝑠) = 𝑙}   ∀ 𝑙 ∈ 𝑖′,ℎ ,   𝑖′ ∈ ,   ℎ ∈ 𝑖′  (59) 

 

Note that it is unnecessary to define these groups for every time period, since endogenous realizations are 

not explicitly associated with any particular time 𝑡. 

 

We now define the corresponding set of endogenous scenario pairs, which is at least as restrictive as 

𝑁3 (we will prove this momentarily), by first linking consecutive scenarios in each group. This is 

handled separately for each group, as shown in Equation (60). 

 

𝑁4
𝑖′,ℎ,𝑙

≔ {(𝑡, 𝑠, 𝑠′):  𝑡 ∈ ,   𝑠, 𝑠′ ∈ 𝑖′,ℎ
𝑙

 

𝑁
,   𝑠′ = min

�̂�′
(�̂�′ ∈ 𝑖′,ℎ

𝑙

 

𝑁
,   �̂�′ > 𝑠) ,

            𝑠 < max
�̂�

(�̂� ∈ 𝑖′,ℎ
𝑙

 

𝑁
) ,   {(𝑖′, ℎ)} = 𝑠,𝑠′

}  ∀ 𝑙 ∈ 𝑖′,ℎ,  
 𝑖′ ∈ ,   ℎ ∈ 𝑖′ 

(60) 

 

Although seemingly complex, the expression 𝑠′ = min�̂�′ (�̂�′ ∈ 𝑖′,ℎ
𝑙

 

𝑁
,   �̂�′ > 𝑠) simply ensures that 

scenario 𝑠′ is the next-highest-indexed scenario immediately following scenario 𝑠. The expression 

𝑠 < max�̂� (�̂� ∈ 𝑖′,ℎ
𝑙

 

𝑁
) simply excludes the highest-indexed scenario from the group, since there is no 

scenario following it with which to form a pair. This is the same concept used to define the set of adjacent 

scenarios, , previously defined in Equation (47) and used in our consecutive pairing approach for first-
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period and exogenous scenario pairs. The endogenous case is merely a more general formulation that 

allows us to pair off consecutive scenarios that are nonconsecutively indexed. To prove that this is the 

case, consider the following: if we replace 𝑖′,ℎ
𝑙

 

𝑁
 with  in the two expressions under discussion, we 

arrive at 𝑠′ = 𝑠 + 1 from the first and 𝑠 < 𝑆 from the second. These are the same two conditions that 

appear in the definition of set . 

 

Returning to Equation (60), for a given scenario pair (𝑠, 𝑠′), the indices 𝑖′ and ℎ are given by {(𝑖′, ℎ)} =

𝑠,𝑠′
 and correspond to the specific endogenous parameter 𝜃𝑖′,ℎ for which scenarios 𝑠 and 𝑠′ differ in 

possible realizations. Also, notice that the pairs for each group are explicitly generated for every time 

period, even though they are the same in each period (the reasoning here will become apparent later in 

this section). Finally, to offer a brief insight into the use of this equation, consider an arbitrary group 𝑙 in 

the context of Figure 10: �̂�,ℎ̂
𝑙

 

𝑁
= {�̂�, �̂�′, �̂�′′}.13

 By Equation (60), we generate scenario pairs (�̂�, �̂�′) and 

(�̂�′, �̂�′′) for each time period; the third, redundant pair (�̂�, �̂�′′) is implicitly eliminated. (More specifically, 

for an arbitrary time period 𝑡 = 𝜏, we will have tuples (𝜏, �̂�, �̂�′), (𝜏, �̂�′, �̂�′′) ∈ 𝑁4
�̂�,ℎ̂,𝑙

, and (𝜏, �̂�, �̂�′′) ∉

𝑁4
�̂�,ℎ̂,𝑙

.) 

 

After evaluating Equation (60), there will be one set of pairs for each endogenous scenario group. The 

union of all of these sets gives the complete set of endogenous scenario pairs, as shown in Equation (61). 

 

𝑁4 ≔ ⋃ ( ⋃ ( ⋃ 𝑁4
𝑖′,ℎ,𝑙

𝑙∈𝑖′,ℎ

)

ℎ∈𝑖′

)

𝑖′∈
 (61) 

 

Since this set is at least as restrictive as 𝑁3, as previously noted, we claim that 𝑁4 ⊆ 𝑁3. We 

now formally state Property 4, by which we prove this claim. 

 

Property 4. For endogenous NACs, it is sufficient to consider only scenario pairs (𝑠, 𝑠′) for which 𝑠 and 

𝑠′ are consecutive scenarios in an endogenous scenario group. 

 

Proof. See Appendix section A.6. 

 

The following proposition states that, under special circumstances, the proposed approach leads to the 

minimum number of endogenous scenario pairs. 

 

Proposition 3. In the case of purely endogenous uncertainty, with no initial ‘equality’ periods and only 

one parameter associated with each source, the approach described in Property 4 gives the minimum 

number of endogenous scenario pairs. 

 

Proof. See Appendix section A.7. 

 

                                                           
13 Note that we cannot provide an example in the context of Figure 6c, since there are only 2 possible realizations for each 

endogenous parameter in that case. 
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In the general case considered here, however, it is clear that Proposition 3 does not apply. For instance, 

with both endogenous and exogenous parameters present in the model, some of the endogenous NACs 

can be implied through the use of exogenous NACs. A simple example of this can be seen with scenario 

pairs (1, 5) and (2, 6) at the end of the first time period/beginning of the second time period in Figure 6c. 

We isolate the corresponding scenarios (1, 2, 5, and 6) in Figure 11 to clearly illustrate the issue. Notice 

that if we consider only variables 𝑦𝜏
𝑠, we have the exogenous NACs 𝑦2

1 = 𝑦2
2 and 𝑦2

5 = 𝑦2
6 for the 

beginning of the second period (shown in red). We also have the conditional endogenous NACs 𝑦2
1 = 𝑦2

5 

(shown in green) and 𝑦2
2 = 𝑦2

6 (shown in orange), which are enforced together as long as endogenous 

parameter 𝜃2 is unrealized. Recall that the exogenous NACs always hold. We can thus use the two 

exogenous constraints to rewrite the first endogenous constraint as 𝑦2
2 = 𝑦2

6. This, of course, is the second 

endogenous constraint. Accordingly, we can eliminate the endogenous scenario pair (2, 6) since it is 

already implied by existing pairs. 

 

Because all scenarios in an exogenous scenario group refer to the same state at that point in time, it is 

only necessary to consider a single endogenous scenario pair between any two exogenous scenario 

groups. This transitivity argument is formally stated in the following reduction property. 

 

 
Figure 11. Illustration of Property 5. 

 

Property 5. For any two exogenous scenario groups in time period 𝑡 = 𝜏 (say, 𝜏
�̂�

 

𝑋
 and 𝜏

�̃�

 

𝑋
), it is 

sufficient to consider only one endogenous scenario pair (𝑠, 𝑠′) such that 𝑠 is in one group and 𝑠′ is in the 

other (i.e., 𝑠 ∈ 𝜏
�̂�

 

𝑋
 and 𝑠′ ∈ 𝜏

�̃�

 

𝑋
, or vice versa). 

 

Proof. See Appendix section A.8. 

 

Since we require only one endogenous scenario pair between each exogenous scenario group, it is 

sufficient to consider only a subset of scenarios when generating these endogenous pairs. Specifically, for 

each time period 𝑡 ∈ \{𝑇}, rather than considering all scenarios in , we select a single ‘representative’ 

scenario from each exogenous scenario group. This gives us a set of unique scenarios, ̃𝑡, in each period. 

We use the term ‘unique’ because all of the scenarios in set ̃𝑡 have different realizations for the 

exogenous parameters up until that point in time and/or different possible realizations for the endogenous 

parameters. 

 

In selecting these ‘representative’ scenarios, we must ensure that the corresponding scenario pairs can 

satisfy Property 3; i.e., 𝑃𝑜𝑠(𝑠) = 𝑃𝑜𝑠(𝑠′), where 𝑠 < 𝑠′, and |𝑠,𝑠′
| = 1. We do this by selecting one 
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scenario from each exogenous scenario group in the first subtree, and then selecting only scenarios with 

the same position in every other subtree. This procedure is repeated for all 𝑡 ∈ \{𝑇}. 

 

For example, consider 𝑡 = 1 in Figure 7. If we select scenario 1 from the first group in subtree 1, we must 

also select scenario 5 from subtree 2, scenario 9 from subtree 3, and scenario 13 from subtree 4. The 

resulting pairs can satisfy Property 3 since 𝑃𝑜𝑠(1) = 𝑃𝑜𝑠(5) = 𝑃𝑜𝑠(9) = 𝑃𝑜𝑠(13) = 1. Similarly, if we 

select scenario 4 from the second group in subtree 1, we must also select scenario 8 from subtree 2, 

scenario 12 from subtree 3, and scenario 16 from subtree 4. The corresponding pairs can satisfy Property 

3 since 𝑃𝑜𝑠(4) = 𝑃𝑜𝑠(8) = 𝑃𝑜𝑠(12) = 𝑃𝑜𝑠(16) = 4. The set of unique scenarios in this case is then 

given by ̃1 = {1, 4, 5, 8, 9, 12, 13, 16}. 

 

For convenience, we simply select the lowest-indexed scenario from each exogenous scenario group (i.e., 

the first scenario in each group), as shown in Equation (62). Specifically, ̃𝑡 is expressed as the union of 

all of these single-scenario sets: 

 

̃𝑡 ≔ ⋃ {𝑠:   𝑠 = min
�̂�

(�̂� ∈ 𝑡
𝑘

 

𝑋
)}

𝑘∈𝑡

  ∀ 𝑡 ∈ \{𝑇} (62) 

 

We let ̃𝑇 ≔ , since there are no exogenous scenario groups defined for 𝑡 = 𝑇. Notice that the time 

index, which was not strictly required in Equation (60), will now play a significant role in the definition 

of the set of endogenous scenario pairs. 

 

In order to define the set of pairs for each endogenous scenario group, 𝑁5
𝑖′,ℎ,𝑙

, corresponding to the 

addition of Property 5, we first restate our earlier definition corresponding to Property 4 (see Equation 

(60)). Our only change is to replace set 𝑖′,ℎ
𝑙

 

𝑁
 with set 𝑖′,ℎ

𝑙

 

𝑁
∩ , as follows: 

 

𝑁4
𝑖′,ℎ,𝑙

≔ {(𝑡, 𝑠, 𝑠′):  𝑡 ∈ ,   𝑠, 𝑠′ ∈ ( 𝑖′,ℎ
𝑙

 

𝑁
∩ ) ,

              𝑠′ = min
�̂�′

(�̂�′ ∈ ( 𝑖′,ℎ
𝑙

 

𝑁
∩ ) ,   �̂�′ > 𝑠) ,

              𝑠 < max
�̂�

(�̂� ∈ ( 𝑖′,ℎ
𝑙

 

𝑁
∩ )) ,   {(𝑖′, ℎ)} = 𝑠,𝑠′

}  ∀ 𝑙 ∈ 𝑖′,ℎ ,   𝑖′ ∈ ,

              ℎ ∈ 𝑖′  

(63) 

 

Because  refers to the complete set of scenarios, the intersection of 𝑖′,ℎ
𝑙

 

𝑁
 and  is redundant; there are 

no scenarios removed from each group, and accordingly, Equation (63) is equivalent to Equation (60). For 

Property 5, however, we simply replace set  in this intersection with a subset of unique scenarios, ̃𝑡. 

The resulting set, 𝑖′,ℎ
𝑙

 

𝑁
∩ ̃𝑡, further restricts 𝑁4

𝑖′,ℎ,𝑙
 such that the endogenous scenario pairs can only 

be formed among unique scenarios in each of the endogenous scenario groups in each time period. This 

further-restricted set is defined as 𝑁5
𝑖′,ℎ,𝑙

 in Equation (64). 
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𝑁5
𝑖′,ℎ,𝑙

≔ {(𝑡, 𝑠, 𝑠′):  𝑡 ∈ ,   𝑠, 𝑠′ ∈ ( 𝑖′,ℎ
𝑙

 

𝑁
∩ ̃𝑡) ,

          𝑠′ = min
�̂�′

(�̂�′ ∈ ( 𝑖′,ℎ
𝑙

 

𝑁
∩ ̃𝑡) ,   �̂�′ > 𝑠) ,

          𝑠 < max
�̂�

(�̂� ∈ ( 𝑖′,ℎ
𝑙

 

𝑁
∩ ̃𝑡)) ,   {(𝑖′, ℎ)} = 𝑠,𝑠′

}  ∀ 𝑙 ∈ 𝑖′,ℎ,  
 𝑖′ ∈ ,

          ℎ ∈ 𝑖′ 

(64) 

 

Note that we will refer to sets 𝑖′,ℎ
𝑙

 

𝑁
∩ ̃𝑡 as reduced endogenous scenario groups, since for each 

𝑙 ∈ 𝑖′,ℎ, 𝑖′ ∈ , and ℎ ∈ 𝑖′ , this intersection produces a subset of group 𝑖′,ℎ
𝑙

 

𝑁
 specific to time period 

𝑡 ∈ . (For the case of 𝑡 = 𝑇, it is also worth noting that 𝑖′,ℎ
𝑙

 

𝑁
∩ ̃𝑇 = 𝑖′,ℎ

𝑙

 

𝑁
 since ̃𝑇 ≔ .) 

 

We then take the union of all of the sets of pairs from Equation (64) in order to produce the complete set 

of endogenous scenario pairs, 𝑁5, as shown in Equation (65). Note that this is the same approach 

previously used in Equation (61) in the context of Property 4. 

 

𝑁5 ≔ ⋃ ( ⋃ ( ⋃ 𝑁5
𝑖′,ℎ,𝑙

𝑙∈𝑖′,ℎ

)

ℎ∈𝑖′

)

𝑖′∈
 (65) 

 

We state that 𝑁5 ⊆ 𝑁4 based on the proof of Property 5 (see Appendix section A.8); in other words, 

Property 5 may eliminate additional pairs that cannot be removed by Property 4. This conclusion can also 

be reached by comparing Equation (64) to Equation (63). 

 

For illustrative purposes, we apply Property 5 to Figure 6c in order to remove endogenous scenario pair 

(2, 6) and all other similar pairs at the end of the first time period/beginning of the second time period. 

Here, we have endogenous scenario groups 1
1

 

𝑁
= {1, 9}, 1

2

 

𝑁
= {2, 10}, 1

3

 

𝑁
= {3, 11},… , 1

8

 

𝑁
=

{8, 16} corresponding to 𝜃1, and 2
1

 

𝑁
= {1, 5}, 2

2

 

𝑁
= {2, 6}, 2

3

 

𝑁
= {3, 7}, … , 2

8

 

𝑁
= {12, 16} 

corresponding to 𝜃2. The set of unique scenarios from Property 5 is given by 

̃1 = {1, 3, 5, 7, 9, 11, 13, 15}. The intersection 𝑖′,ℎ
𝑙

 

𝑁
∩ ̃1 then yields the following: 1

1

 

𝑁
∩ ̃1 =

{1, 9}, 1
2

 

𝑁
∩ ̃1 = ∅, 1

3

 

𝑁
∩ ̃1 = {3, 11},… , 1

8

 

𝑁
∩ ̃1 = ∅, and 2

1

 

𝑁
∩ ̃1 = {1, 5}, 2

2

 

𝑁
∩ ̃1 =

∅, 2
3

 

𝑁
∩ ̃1 = {3, 7}, … , 2

8

 

𝑁
∩ ̃1 = ∅, respectively. For the groups listed, this corresponds to 

scenario pairs (1, 5), (1, 9), (3, 7), and (3, 11) (or, more specifically, tuples 

(1, 1, 5), (1, 1, 9), (1, 3, 7), (1, 3, 11) ∈ 𝑁5). The respective pairs are illustrated in Figure 12, along 

with all remaining (non-listed) pairs for the end of the first time period and the end of the second time 

period. Notice that at 𝑡 = 1, all conditional endogenous NACs involving non-unique scenarios have been 

removed. Also, note that this reduction does not apply in the final time period; at that time, there are no 

exogenous scenarios groups that we can exploit (see Figure 7), and all pairs in 𝑁4 are present in 𝑁5 

for 𝑡 = 𝑇. This can easily be seen by comparing Equation (63) to Equation (64) with ̃𝑇 ≔ . 
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Figure 12. Property 5 as applied to Figure 6c. 

 

In certain cases (such as Figure 6c), the addition of Property 5 leads to the minimum number of 

endogenous scenario pairs. This is formally stated in the following proposition. 

 

Proposition 4. In the case of both endogenous and exogenous uncertainties, with no initial ‘equality’ 

periods and only one parameter associated with each source, the approach described in Property 4 and 

supplemented by Property 5 gives the minimum number of endogenous scenario pairs. 

 

Proof. See Appendix section A.9. 

 

As was the case with Proposition 3, this proposition does not apply in the general case considered here. 

This is because we may have: (1) endogenous parameters that cannot be realized in some of the initial 

time periods; and/or (2) multiple endogenous parameters associated with some of the sources of 

uncertainty. Both of these possibilities have a similar effect on the model. 

 

For the first case, we have fixed endogenous NACs, as previously introduced in section 4.2 (see Equations 

(26)-(28)). An example of this is shown in Figure 13. Here we consider scenarios 1, 5, 9, and 13 from 

Figure 6c and assume that endogenous parameter 𝜃2 cannot be realized in the first time period. The four 

scenarios have identical realizations for the exogenous parameter, and we have four endogenous scenario 

pairs: (1, 5) and (9, 13), as indicated by solid green lines; (1, 9), as indicated by a dotted green line; and 

(5, 13), as indicated by a dotted orange line. Notice that scenarios 1 and 5 differ in the possible 

realization of 𝜃2 but must be indistinguishable in the first time period because 𝜃2 cannot be realized at 

that time. The same is true of scenarios 9 and 13. 
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If we consider only variables 𝑦𝜏
𝑠, we have the fixed endogenous NACs 𝑦2

1 = 𝑦2
5 and 𝑦2

9 = 𝑦2
13 for the 

beginning of the second period. We also have the conditional endogenous NACs 𝑦2
1 = 𝑦2

9 and 𝑦2
5 = 𝑦2

13, 

which must be enforced together as long as endogenous parameter 𝜃1 is unrealized. It follows that we can 

use the two fixed endogenous constraints to rewrite the first conditional endogenous constraint as 

𝑦2
5 = 𝑦2

13. Notice that this is the second conditional endogenous constraint. Accordingly, we can 

eliminate the endogenous scenario pair (5, 13) since it is already implied by existing pairs. Recall that 

this result is very similar to what we previously observed in Figure 11 with Property 5. 

 

 
Figure 13. Illustration of Property 6 for endogenous parameters that cannot be realized in some of the 

initial time periods. 
 

For the second case, we have multiple endogenous parameters associated with some of the sources of 

uncertainty. We use Figure 14 to illustrate this and consider 4 scenarios (�̂�, �̂�′, �̂�′′, and �̂�′′′) in an arbitrary 

time period 𝑡 = 𝜏. There are 2 endogenous parameters (ℎ = 1 and ℎ = 2) associated with a single source 

𝑖.̂ It is assumed that the scenarios have identical realizations for all exogenous parameters. 

 

 
Figure 14. Illustration of Property 6 for multiple parameters associated with a single source of 

endogenous uncertainty. 
 

By our existing reduction properties, we generate four scenario pairs: (�̂�, �̂�′), (�̂�, �̂�′′), and (�̂�′′, �̂�′′′), as 

shown in green, and (�̂�′, �̂�′′′), as shown in orange. Each of these pairs consists of scenarios 𝑠 and 𝑠′ that 

differ in the possible realization of an endogenous parameter of the same source 𝑖.̂ This means that if the 

uncertainty in source 𝑖 ̂ has been resolved by the end of time period 𝜏, then all of the scenarios will be 

distinguishable, and the corresponding NACs will be jointly ignored (Case 1). If the uncertainty has not 
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yet been resolved, then all of the scenarios will be indistinguishable, and the NACs will be jointly 

enforced (Case 2). Notice that from a modeling perspective, it is only necessary for us to consider Case 2, 

where the NACs can be viewed as equality constraints. From this viewpoint, it is clear that scenario pair 

(�̂�′, �̂�′′′) is redundant and can be eliminated. Recall that this discussion is very similar to what we 

previously observed in Figure 10 in relation to Property 4. 

 

What we see in these two cases is that some of the endogenous NACs can in fact be implied by other 

endogenous NACs. To eliminate the corresponding redundant scenario pairs, we extend our definition of 

unique scenarios. 

 

First, recall that set ̃𝑡 from Property 5 provides a sufficient subset of scenarios (in place of the complete 

set of scenarios, ) that can be considered when generating endogenous scenario pairs. This is based on 

the presence of exogenous scenario pairs. In a similar manner, provided that the endogenous scenario 

pairs are generated in sequential order, we may use the existing endogenous pairs to eliminate additional 

scenarios from set ̃𝑡 at each step. For example, in the context of Figure 13, after generating scenario 

pairs (1, 5) and (9, 13) from the endogenous scenario groups corresponding to 𝜃2, it is clear that there is 

no further need to consider scenarios 5 and 13; thus, we may remove these scenarios from the groups for 

𝜃1. 

 

We use this concept to define set 𝑡
𝑖′,ℎ

 for each endogenous parameter 𝜃𝑖′,ℎ and time period 𝑡 ∈ . Each 

set indicates the unique scenarios available for forming pairs from the groups corresponding to 𝜃𝑖′,ℎ, 

taking into account all endogenous pairs formed before this point. The specific definitions for these sets, 

as well as the order in which to define them, are given by the unique scenarios algorithm, which we 

present in Appendix section A.10. Note that there is no need to index sets 𝑡
𝑖′,ℎ

 for 𝑙 ∈ 𝑖′,ℎ, since the 

groups corresponding to 𝜃𝑖′,ℎ each contain different scenarios, and any reductions would thus have no 

effect until we begin forming pairs from the groups of the next endogenous parameter. 

 

Next, we formally state the final reduction property, by which we justify the use of the unique scenarios 

algorithm. 

 

Property 6. For endogenous NACs, it is sufficient to consider only scenario pairs (𝑠, 𝑠′) for which 𝑠 and 

𝑠′ are unique, as defined by the unique scenarios algorithm. 

 

Proof. See Appendix section A.11. 

 

This leads to the following proposition. 

 

Proposition 5. In the general case considered throughout this paper, the approach described in Property 4 

and supplemented by Property 5 and Property 6 gives the minimum number of endogenous scenario pairs. 

 

Proof. See Appendix section A.12. 

 

We now define the set of all scenario pairs (𝑠, 𝑠′) in each time period 𝑡, such that 𝑠 and 𝑠′ differ in the 

possible realization of one endogenous parameter and are identical in all exogenous realizations, with 
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additional redundant pairs eliminated by Properties 4–6. We apply the same general approach as 

described in Equations (60) and (64). Specifically, for each endogenous parameter 𝜃𝑖′,ℎ, we first link 

consecutive scenarios in each of the associated endogenous scenario groups 𝑙 ∈ 𝑖′,ℎ. We define a 

separate set for each of these groups in Equation (33). Note that in keeping with the notation of the 

previous sets in this section (e.g., 𝑁4
𝑖′,ℎ,𝑙

 and 𝑁5
𝑖′,ℎ,𝑙

), this set should be named 𝑁6
𝑖′,ℎ,𝑙

; however, since 

we will make no further modifications to the following definition, we will simply refer to this set as 

𝑁
𝑖′,ℎ,𝑙

. 

 

𝑁
𝑖′,ℎ,𝑙 ≔ {(𝑡, 𝑠, 𝑠′):  𝑡 ∈ ,   𝑠, 𝑠′ ∈ ( 𝑖′,ℎ

𝑙

 

𝑁
∩𝑡

𝑖′,ℎ) ,

  𝑠′ = min
�̂�′

(�̂�′ ∈ ( 𝑖′,ℎ
𝑙

 

𝑁
∩𝑡

𝑖′,ℎ) ,   �̂�′ > 𝑠) ,

  𝑠 < max
�̂�

(�̂� ∈ ( 𝑖′,ℎ
𝑙

 

𝑁
∩𝑡

𝑖′,ℎ)) ,   {(𝑖′, ℎ)} = 𝑠,𝑠′
}  ∀ 𝑙 ∈ 𝑖′,ℎ ,   𝑖′ ∈ ,

  ℎ ∈ 𝑖′ 

(33) 

 

Notice that the only change from Equation (64) is that we have replaced the reduced endogenous scenario 

groups 𝑖′,ℎ
𝑙

 

𝑁
∩ ̃𝑡 with a further reduced set, 𝑖′,ℎ

𝑙

 

𝑁
∩𝑡

𝑖′,ℎ
, based on Property 6. A brief example of 

the use of Equation (33) is provided at the end of Appendix section A.10. 

 

Finally, we take the union of all of the individual scenario-pair sets in Equation (34) to obtain set 𝑁, 

the complete set of endogenous scenario pairs. (Again, note that since we will make no further 

modifications to the following definition, we will refer to this set as 𝑁 rather than 𝑁6.) This is 

simply an updated form of Equation (65) in which we have replaced set 𝑁5
𝑖′,ℎ,𝑙

 with 𝑁
𝑖′,ℎ,𝑙

. 

 

𝑁 ≔ ⋃ ( ⋃ ( ⋃ 𝑁
𝑖′,ℎ,𝑙

𝑙∈𝑖′,ℎ

)

ℎ∈𝑖′

)

𝑖′∈
 (34) 

 

Since Property 6 may eliminate additional scenario pairs that cannot be removed by Property 5, we state 

that 𝑁 ⊆ 𝑁5 by the proof of Property 6 (see Appendix section A.11). This can also be seen by 

comparing Equation (33) to Equation (64). It follows that 𝑁 ⊆ 𝑁5 ⊆ 𝑁4 ⊆ 𝑁3. Like sets 𝐹 

and 𝑋, the respective scenario pairs in set 𝑁 are also non-unique. 

 

In the case of purely endogenous uncertainty, it is worth noting that ̃𝑡 =  for all 𝑡 ∈  (since, in each 

time period, scenario 1 will be assigned to exogenous scenario group 1, and every other scenario will be 

assigned to a separate group by Equation (50) (due to 𝑋 = ∅)). Thus, Equations (33) and (34) are also 

applicable for purely-endogenous problems, as previously suggested with the use of 𝑁 in model 

(MSSPN). 

 

We now formulate one final set in this section. Recall that in model (MSSP) (and accordingly, model 

(MSSPN)), there are many cases where we require the source 𝑖′ of the endogenous parameter for which 

scenarios 𝑠 and 𝑠′ differ in possible realizations. The reason, of course, is that there is some information 

that is specific to the source itself. 
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For example, we may make an investment in a source to reveal uncertain parameter values, and there may 

be a certain number of initial time periods (i.e., a lead time) before we can observe these values. The 

investment decision 𝑏𝑖′,𝑡
𝑠  and hence the indistinguishability of scenarios are both specific to the source 𝑖′. 

We require this index to evaluate our uncertainty-resolution rule (see Equation (30)). The set of initial 

‘equality’ time periods 𝐸
𝑖′

 and thus the remaining ‘conditional’ periods 𝐶
𝑖′

 are also both specific to the 

source. Accordingly, the index 𝑖′ is required in all endogenous non-anticipativity constraints. To further 

emphasize our point, notice that 𝑏𝑖′,𝑡
𝑠 , 𝐸

𝑖′
, and 𝐶

𝑖′
 are not indexed for any particular parameter ℎ. 

 

The previously-defined set 𝑠,𝑠′
 indicates the specific parameter 𝜃𝑖′,ℎ for which 𝑠 and 𝑠′ differ in 

possible realizations. We now define set ̂𝑠,𝑠′

 to indicate only the associated source, 𝑖′: 

 

̂𝑠,𝑠′

≔ {𝑖′:   𝑖′ ∈ ,   ∃ ℎ ∈ 𝑖′  
 s. t.   (𝑖′, ℎ) ∈ 𝑠,𝑠′

}  ∀ 𝑠, 𝑠′ ∈ ,   𝑠 < 𝑠′,   𝑃𝑜𝑠(𝑠) = 𝑃𝑜𝑠(𝑠′) (66) 

 

where we specify that there exists at least one endogenous parameter ℎ associated with source 𝑖′ for 

which scenarios 𝑠 and 𝑠′ differ in possible realizations. (Due to Property 3, there will be exactly one 

endogenous parameter ℎ in each case.) 

5.4 Summary of Scenario Pairs and Reduction Properties 
In the previous sections, we have presented 6 theoretical reduction properties that eliminate all redundant 

scenario pairs. This, in turn, eliminates all redundant non-anticipativity constraints, which can 

significantly reduce the dimensionality of our multistage stochastic programming model, (MSSP), as 

compared to the case where no reduction properties are applied. 

 

Note that in the reduced form of the model, first-period scenario-pair set 𝐹 is defined in Equations (21) 

and (47), exogenous scenario-pair set 𝑋 is defined in Equation (22), and endogenous scenario-pair set 

𝑁 is defined in Equations (33) and (34). The NACs in model (MSSP) are expressed in terms of these 

sets. In other words, with the stated definitions, this model is in reduced form, and no further reduction is 

possible.
14

 

6 Solution Methods 
Even after eliminating redundant scenario pairs with properties 1–6, model (MSSP) is often still too large 

to solve directly with commercial MILP solvers. We thus rely on alternative solution methods. 

Specifically, we consider a novel sequential scenario decomposition heuristic and Lagrangean 

decomposition. 

6.1 Sequential Scenario Decomposition Heuristic 
The first alternative solution method that we will discuss is a heuristic that we refer to as sequential 

scenario decomposition (SSD). The basic idea behind this algorithm is that we sequentially solve 

endogenous MILP subproblems to determine the binary investment decisions, fix these decisions to 

                                                           
14 The same can be said of models (MSSPX) and (MSSPN), which are simply special cases of model (MSSP). Also, note that this 

statement applies to the general formulations considered in this paper; further reduction may be possible in specific problem 

instances. 
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satisfy the corresponding first-period and exogenous NACs, and then solve the resulting model to obtain a 

feasible solution to the original problem. 

 

 
Figure 15. Sequential scenario decomposition heuristic (first subproblem). 

 

More specifically, we start at 𝑡 = 1 in model (MSSP) and select one scenario from each exogenous 

scenario group. This subset of scenarios will be connected by only first-period and endogenous NACs, 

since we have effectively removed all of the exogenous constraints by disregarding many of the scenarios. 

We then solve this endogenous MILP subproblem (a modified form of model (MSSPN)) and extract the 
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binary investment decisions from the solution. Returning to the original problem, we fix the respective 

binary first-stage decisions in all scenarios, and for all other time periods, we fix the binary here-and-now 

decisions in all scenarios that belong to the same exogenous scenario groups as the subproblem scenarios. 

We then proceed to the next time period and repeat this process (excluding the consideration of binary 

first-stage decisions, as these have already been fixed), selecting only scenarios that have not been 

considered in any previous subproblem. We continue until we reach 𝑡 = 𝑇 − 1; this is the last 

subproblem, as we are solving for binary here-and-now decisions for the next time period, and there are 

no such decisions for 𝑡 = 𝑇. After this process is complete, all binary investment decisions will be fixed 

in model (MSSP). This means that the scenario tree is fixed and we no longer have conditional 

constraints. The solution of this model gives a feasible solution to the original problem. In Figure 15, we 

demonstrate the first iteration of the algorithm. 

 

The primary motivation for this procedure is that the subproblems should be considerably easier to solve 

than the original model. Furthermore, as shown in Figure 15, the first “easy” subproblem includes all of 

the unique scenarios in the first time period; thus, at the beginning of the planning horizon, we have the 

same level of information as the original model. The quality of information gradually deteriorates as we 

proceed forward in time since (by design) some required scenarios are not considered until later 

subproblems. For instance, in Figure 15, scenarios 3, 7, 11, and 15 are excluded from the first subproblem 

and thus the model is unaware of the possibility of a high demand in the second time period. This demand 

is accounted for in the next subproblem, after investment decisions have already been fixed in all 

scenarios at the beginning of the first and second time periods and in half of the scenarios at the beginning 

of the third time period, based on partial information (see Figure 15c). To our benefit, however, this is 

typically not a significant concern. In problems with endogenous uncertainty, investment decisions are 

often made early in the planning horizon, at which point we still have “mostly complete” information. 

Hence, the subproblem data may not be extensive enough to determine optimal values for the continuous 

variables, but should be sufficient to approximate the optimal “yes” or “no” investment decisions. 

 

We assume that fixing binary decisions for time period 𝑡 does not render any later-period subproblems 

infeasible. Note that when we refer to “binary decisions,” we are referring to all binary here-and-now 

decisions 𝑏𝑖,𝑡
𝑠 , as well as any binary components of variable vector 𝑦𝑡

𝑠. For convenience of notation, 

however, we will represent all such binary decisions as 𝑏𝑖,𝑡
𝑠  in this section. We next present the algorithm. 

 

Sequential Scenario Decomposition Algorithm 

Step 1:  Generate all parameters and sets required for model (MSSP). 
 

Step 2:  Determine the set of scenarios 𝑆𝑆𝐷
�̂�

 for each subproblem �̂� ∈ \{𝑇}. This is done as follows: for 

each subproblem �̂�, select one scenario from each exogenous scenario group in this time period (i.e., 

𝑠 ∈ ̃�̂�), excluding all scenarios in previous subproblems (i.e., 𝑠 ∉ ⋃ 𝑆𝑆𝐷
�̂�

�̂�∈,  �̂�<�̂� ). We exclude the 

final time period because there are no exogenous scenario groups defined for 𝑡 = 𝑇, and we cannot 

make new here-and-now decisions at the end of the time horizon. Set 𝑆𝑆𝐷
�̂�

 is then given by: 
 

𝑆𝑆𝐷
�̂� ≔ {𝑠:   𝑠 ∈ ̃�̂�\ ⋃ 𝑆𝑆𝐷

�̂�

�̂�∈,  �̂�<�̂�

}   ∀ �̂� ∈ ,   �̂� < 𝑇 (67) 
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In Figure 15, the set of scenarios for the first subproblem is given by 𝑆𝑆𝐷
1 ≔ {𝑠:   𝑠 ∈ {1, 5, 9, 13}\

∅} = {1, 5, 9, 13}. For the second subproblem (not shown), 𝑆𝑆𝐷
2 ≔ {𝑠:   𝑠 ∈ {1, 3, 5, 7, 9, 11, 13, 15}\

{1, 5, 9, 13}} = {3, 7, 11, 15}. 
 
Step 3:  For �̂� = 1, 2, … , 𝑇 − 1: 
 

Step 3a: Redefine set  (Equation (47)), and thus set 𝐹 (Equation (21)), using the set of scenarios 

for subproblem �̂� (i.e.,  ≔ 𝑆𝑆𝐷
�̂�

 and 𝑆 ≔ |𝑆𝑆𝐷
�̂� |). 

 
Step 3b: Generate subproblem �̂�, as shown in Figure 15b. This is a modified form of model (MSSPN), 

where 𝑁 ≔ 𝑆𝑆𝐷
�̂�

 and the non-anticipativity constraints for 𝑏𝑖,𝑡
𝑠  depend on the subproblem 

number, �̂�. Accordingly, replace first-period NACs (25), fixed endogenous NACs (27), and 

conditional endogenous NACs (36) (assuming a big-M reformulation is used) with constraints 

(68)–(70), respectively. The idea behind these modifications is that first-period NACs for 𝑏𝑖,𝑡
𝑠  are 

no longer needed after the corresponding decisions are fixed in the first subproblem. Thus, 

Equation (68) enforces them for only the first subproblem, �̂� = 1. Similarly for the endogenous 

constraints, at time 𝑡, decisions 𝑏𝑖,𝑡
𝑠  will have been fixed in all earlier time periods 𝑡 < �̂� by 

previous subproblems; hence, we consider these constraints for only �̂� ≤ 𝑡 < 𝑇 in Equations (69) 

and (70). 
 

𝑏𝑖,1
𝑠 = 𝑏𝑖,1

𝑠′
          �̂� = 1,   ∀ (𝑠, 𝑠′) ∈ 𝐹 ,   𝑖 ∈  (68) 

𝑏𝑖,𝑡+1
𝑠 = 𝑏𝑖,𝑡+1

𝑠′
      ∀ (𝑡, 𝑠, 𝑠′) ∈ 𝑁,   𝑡 ∈ 𝐸

𝑖′ ,   𝑡 ≥ �̂�,   {𝑖′} = ̂𝑠,𝑠′

,   𝑖 ∈  (69) 

−(1 − 𝑧𝑡
𝑠,𝑠′

) ≤ 𝑏𝑖,𝑡+1
𝑠 − 𝑏𝑖,𝑡+1

𝑠′
≤ (1 − 𝑧𝑡

𝑠,𝑠′

)     ∀ (𝑡, 𝑠, 𝑠′) ∈ 𝑁,   𝑡 ∈ 𝐶
𝑖′ ,   �̂� ≤ 𝑡 < 𝑇,

                                                                  {𝑖′} = ̂𝑠,𝑠′

,   𝑖 ∈  
(70) 

 
Next, solve subproblem �̂�. Note that we preserve all endogenous NACs in each time period, so 

there is no need to update set 𝑁. 
 
In some cases, the heuristic subproblem may be too difficult to solve directly. One viable option 

here is Lagrangean decomposition; specifically, we may apply the endogenous scenario grouping 

approach described in Gupta and Grossmann (2014a), since these are purely-endogenous 

problems. 
 

Step 3c: If �̂� = 1, this is the first subproblem. Use the binary first-stage decisions from this 

subproblem (i.e., 𝑏𝑖,1
�̂�  ∀ 𝑖 ∈ ,   �̂� ∈ 𝑆𝑆𝐷

�̂�
) to fix the binary first-stage decisions in all scenarios 

(i.e., 𝑏𝑖,1
𝑠  ∀ 𝑖 ∈ ,   𝑠 ∈ ). This is shown in Figure 15c, where the nodes at the beginning of the 

first time period (originally white in Figure 15a) have now been shaded in blue. Because the first-

stage decisions must be identical in all scenarios, we arbitrarily use only the decisions from the 

first scenario, �̂� = 1, instead of considering all �̂� ∈ 𝑆𝑆𝐷
�̂�

. Decisions are fixed as shown in 

Equation (71). Note that this step allows us to satisfy the first-period NACs in the original 

problem, (MSSP). 
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𝑏𝑖,1
𝑠 ≔ 𝑏𝑖,1

�̂�         �̂� = 1,   ∀ 𝑖 ∈ ,   𝑠 ∈  (71) 

 
Step 3d: Fix binary here-and-now decisions in all other time periods. This is done as follows: for 

each subproblem scenario �̂� ∈ 𝑆𝑆𝐷
�̂�

, start at 𝑡 = �̂� and fix decisions 𝑏𝑖,�̂�+1
�̂�  in all scenarios in the 

same exogenous scenario group as �̂�. We use the condition 𝐺𝑋(𝑡, 𝑠) = 𝐺𝑋(𝑡, �̂�) to check that 

scenario 𝑠 ∈  is in the same group as �̂�.
15

 For each remaining time period 𝑡 < 𝑇, we repeat this 

process of fixing decisions 𝑏𝑖,𝑡+1
�̂�  in the respective scenario groups. In Figure 15c, for instance, 

scenario �̂� = 1 is considered in the first subproblem. Since scenarios 𝑠 = 1, 2, 3, and 4 are all in 

the same group as �̂� in time period 1, we fix their binary decisions in that period based on those of 

�̂�. In time period 2, scenarios 𝑠 = 1 and 2 are in the same group as �̂�, and we fix their binary 

decisions in an identical manner. This is represented by a change in color of the nodes as 

compared to Figure 15a. Note that we solve each subproblem for the full time horizon 𝑡 ∈ , but 

we only fix decisions for �̂� ≤ 𝑡 < 𝑇 since the decisions for all previous time periods have already 

been fixed in the previous subproblems. This step allows us to satisfy the exogenous NACs in the 

original problem, (MSSP). 
 

𝑏𝑖,𝑡+1
𝑠 ≔ 𝑏𝑖,𝑡+1

�̂�    ∀ 𝑖 ∈ ,   𝑡 ∈ ,   �̂� ≤ 𝑡 < 𝑇,   𝑠 ∈ ,   �̂� ∈ 𝑆𝑆𝐷
�̂� ,   𝐺𝑋(𝑡, 𝑠) = 𝐺𝑋(𝑡, �̂�) (72) 

 
Step 4:  At this point, the binary here-and-now decisions 𝑏𝑖,𝑡

𝑠  have been fixed for all 𝑖 ∈ , 𝑡 ∈ , and 

𝑠 ∈ . (In Figure 15, this would occur after one more iteration.) Thus, in model (MSSP), drop all 

NACs related to these decisions. This includes the first-period NACs given by Equation (25), the 

exogenous NACs given by Equation (44), the fixed endogenous NACs given by Equation (27), and 

the conditional endogenous NACs given by either Equation (36) or the third line of Equation (29). 

Note that the scenario tree is fixed at this point, since indistinguishability can be determined by 

directly calculating 𝑍𝑡
𝑠,𝑠′

 (and thus 𝑧𝑡
𝑠,𝑠′

) from the known values of 𝑏𝑖,𝑡
𝑠 . 

 
Next, redefine set  and set 𝐹 using the complete set of scenarios (i.e., 𝑆 ≔ || by Equation (6) 

and  ≔ {𝑠:   𝑠 = 1, 2, … , 𝑆}). Then, solve the resulting form of model (MSSP). This provides a 

feasible, but not necessarily optimal, solution to (MSSP). 
 
Note that since the scenario tree is fixed in the final form of model (MSSP), the timing of all 

realizations is known in advance; thus, all uncertainties can be viewed as exogenous. This model, 

however, is not in the form of a purely-exogenous stochastic program (i.e., (MSSPX)). For large 

instances where a direct-solution approach is impractical, we have two basic options: (1) preserve the 

structure and apply Lagrangean decomposition, as discussed in the next section; or (2) reformulate the 

problem into the form of model (MSSPX), as shown graphically in section 7.1. In the latter case, we 

can take advantage of effective solution methods for purely-exogenous MSSP problems, such as the 

branch-and-fix coordination scheme by Escudero et al. (2009). 

 

This heuristic can be used to obtain an initial upper bound in a Lagrangean decomposition algorithm, as 

discussed in the next section. 

                                                           
15 Rather than the conditions 𝑠 ∈ ,   𝐺𝑋(𝑡, 𝑠) = 𝐺𝑋(𝑡, �̂�) in Equation (72), we could state 𝑠 ∈ 𝑡

�̂�

 

𝑋
, where �̂� is the group number 

corresponding to �̂�, given by �̂� = 𝐺𝑋(𝑡, �̂�). 
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6.2 Lagrangean Decomposition 
From Figure 6c, it is clear that if we remove all non-anticipativity constraints, then the scenario tree 

decomposes into independent scenarios. This is shown in Figure 16. The appealing aspect of this structure 

is that independent scenario subproblems should be considerably easier to solve than the full model. Such 

reasoning is the primary motivation behind Lagrangean decomposition, in which ‘complicating’ (i.e., 

‘linking’) constraints are dualized in order to achieve a similar relaxation of the original model (Carøe and 

Schultz, 1999; Goel and Grossmann, 2006; Gupta and Grossmann, 2011; Escudero et al., 2016). In this 

context, the complicating constraints are the NACs. 

 

 
Figure 16. A scenario tree decomposes into independent scenarios when all NACs are removed. 

 

As described in Gupta and Grossmann (2014a), in the case of standard Lagrangean decomposition for 

MSSP problems with endogenous uncertainties, the first step is to relax all of the conditional endogenous 

NACs. We then form the Lagrangean relaxation (Guignard, 2003) by dualizing the first-period and fixed 

endogenous NACs. This entails moving these constraints to the objective function as penalty terms 

multiplied by Lagrange multipliers. In our case, we must also dualize the exogenous NACs (Goel and 

Grossmann, 2006). We use a simplified form of model (MSSP) to illustrate this, (MSSPS), where for 

simplicity we keep only decision variables 𝑦𝑡
𝑠. We also assume that the set of initial ‘equality’ periods is 

identical for all sources of endogenous uncertainty; i.e., 𝐸
𝑖′ = 𝐸, and thus 𝐶

𝑖′ = 𝐶, for all 𝑖′ ∈ . 

 

(MSSPS) 

min
𝑦

𝜙 = ∑𝑝𝑠

𝑠∈
∑ 𝑐 

𝑦
𝑡
𝑠𝑦𝑡

𝑠

𝑡∈ 

 (73) 

s. t. ∑ 𝐴 
𝑦

𝜏,𝑡
𝑠 𝑦𝜏

𝑠

𝑡

𝜏=1

≤ 𝑎𝑡
𝑠 ∀ 𝑡 ∈ ,   𝑠 ∈  (74) 

 𝑦1
𝑠 = 𝑦1

𝑠′
 ∀ (𝑠, 𝑠′) ∈ 𝐹 (17) 

 𝑦𝑡+1
𝑠 = 𝑦𝑡+1

𝑠′
 ∀ (𝑡, 𝑠, 𝑠′) ∈ 𝑋 (19) 

 𝑦𝑡+1
𝑠 = 𝑦𝑡+1

𝑠′
 ∀ (𝑡, 𝑠, 𝑠′) ∈ 𝑁,   𝑡 ∈ 𝐸 (28) 

 −𝑦𝑡+1
𝑈𝐵 (1 − 𝑧𝑡

𝑠,𝑠′

) ≤ 𝑦𝑡+1
𝑠 − 𝑦𝑡+1

𝑠′
≤ 𝑦𝑡+1

𝑈𝐵 (1 − 𝑧𝑡
𝑠,𝑠′

) ∀ (𝑡, 𝑠, 𝑠′) ∈ 𝑁,   𝑡 ∈ 𝐶 ,   𝑡 < 𝑇 (37) 

 𝑍𝑡
𝑠,𝑠′  

⇔𝐹(𝑦1
𝑠, 𝑦2

𝑠, … , 𝑦𝑡
𝑠) ∀ (𝑡, 𝑠, 𝑠′) ∈ 𝑁,   𝑡 ∈ 𝐶 (75) 

 𝑦𝑡
𝑠 ∈ 𝑡

𝑠 ∀ 𝑡 ∈ ,   𝑠 ∈  (76) 
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 𝑍𝑡
𝑠,𝑠′

∈ {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒} ∀ (𝑡, 𝑠, 𝑠′) ∈ 𝑁,   𝑡 ∈ 𝐶 (32) 

 𝑧𝑡
𝑠,𝑠′

∈ {0,1} ∀ (𝑡, 𝑠, 𝑠′) ∈ 𝑁,   𝑡 ∈ 𝐶 (38) 

 

In the simplified Lagrangean relaxation problem, (MSSPS-LD), we remove endogenous constraints (37), 

(75), (32), and (38), and dualize constraints (17), (19), and (28). 

 

(MSSPS-LD) 

min
𝑦

𝜙𝐿𝐷(𝜆) = ∑𝑝𝑠

𝑠∈
∑ 𝑐 

𝑦
𝑡
𝑠𝑦𝑡

𝑠

𝑡∈ 

+ ∑ 𝜆1
𝑠,𝑠′

 
𝐹 (𝑦1

𝑠 − 𝑦1
𝑠′
)

(𝑠,𝑠′)∈𝐹

+ ∑ 𝜆𝑡
𝑠,𝑠′

 
𝑋 (𝑦𝑡+1

𝑠 − 𝑦𝑡+1 
𝑠′ )

(𝑡,𝑠,𝑠′)∈𝑋

+ ∑ 𝜆𝑡
𝑠,𝑠′

 
𝑁 (𝑦𝑡+1

𝑠 − 𝑦𝑡+1 
𝑠′ )

(𝑡,𝑠,𝑠′)∈𝑁
𝑡∈𝐸

 
(77) 

s. t. ∑ 𝐴 
𝑦

𝜏,𝑡
𝑠 𝑦𝜏

𝑠

𝑡

𝜏=1

≤ 𝑎𝑡
𝑠 ∀ 𝑡 ∈ ,   𝑠 ∈  (74) 

 𝑦𝑡
𝑠 ∈ 𝑡

𝑠 ∀ 𝑡 ∈ ,   𝑠 ∈  (76) 

 

Notice that all complicating constraints have now been either removed or dualized, and Equations (74) 

and (76) apply only to individual scenarios. Further notice, however, that the objective function, Equation 

(77), still contains variables 𝑦𝑡
𝑠 and 𝑦𝑡

𝑠′
, so we cannot yet decompose the problem by scenario. We expand 

this expression, swap indices 𝑠 and 𝑠′ in certain summations, and then simplify in order to rewrite the 

objective function as Equation (78) (see the supplementary material for further details). 

 

min
𝑦

𝜙𝐿𝐷(𝜆) = ∑(𝑝𝑠 ∑ 𝑐 
𝑦

𝑡
𝑠𝑦𝑡

𝑠

𝑡∈ 

+ 𝑦1
𝑠 ( ∑ 𝜆1

𝑠,𝑠′

 
𝐹

(𝑠,𝑠′)∈𝐹

− ∑ 𝜆1
𝑠′,𝑠

 
𝐹

(𝑠′,𝑠)∈𝐹

)

𝑠∈

+ ∑ 𝑦𝑡+1
𝑠 ( ∑ 𝜆𝑡

𝑠,𝑠′

 
𝑋

(𝑡,𝑠,𝑠′)∈𝑋

− ∑ 𝜆𝑡
𝑠′,𝑠

 
𝑋

(𝑡,𝑠′,𝑠)∈𝑋

)

𝑡∈\{𝑇}

+ ∑ 𝑦𝑡+1
𝑠 ( ∑ 𝜆𝑡

𝑠,𝑠′

 
𝑁

(𝑡,𝑠,𝑠′)∈𝑁

− ∑ 𝜆𝑡
𝑠′,𝑠

 
𝑁

(𝑡,𝑠′,𝑠)∈𝑁

)

𝑡∈𝐸

) 

(78) 

 

The variables in the objective function now involve only scenario 𝑠, and all other terms are constants. 

Accordingly, the problem can be decomposed into independent scenario subproblems that can be solved 

in parallel. This is done in an iterative fashion, as shown in Figure 17 (adapted from Gupta and 

Grossmann (2011)). In each iteration, we first solve the subproblems with fixed multipliers to obtain a 

lower bound to the original problem (MSSPS). The lower bound is simply equal to the sum of the 

subproblem objective function values, and an upper bound is determined by a simple heuristic. In this 

heuristic, we selectively fix decisions from the subproblems in the original problem to obtain a feasible 

solution (see the supplementary material for complete details). The solution from the sequential scenario 

decomposition heuristic may be used as an initial upper bound; however, this is not required. We then 
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apply the subgradient method (Fisher, 1985) to update the multipliers for the Lagrangean problem,
16

 and 

repeat this process until the difference between the upper bound and lower bound lies within a pre-

specified tolerance or until a maximum iteration limit is reached. Note that if we are unable to sufficiently 

close the gap, it may be necessary to implement a branch-and-bound algorithm such as the one proposed 

by Goel and Grossmann (2006) and Goel et al. (2006). 

 

 
Figure 17. Algorithm for Lagrangean decomposition. 

7 Numerical Results 

7.1 Motivating Example 
Consider the simple process network shown in Figure 18, as adapted from Goel and Grossmann (2006). 

In this example, a product A is produced in Process III which has an existing capacity of 3 tons/hr and a 

known yield of 70%. This process requires a feed of chemical B that is currently purchased. The demand 

of product A is uncertain but must be satisfied for each time period in the planning horizon. If the demand 

cannot be met by production, product A is purchased from a competitor. 

 

 
Figure 18. Process network for the motivating example. 

                                                           
16 There are many alternative multiplier-update procedures. See Escudero, Garín, Pérez, and Unzueta (2013), as well as Oliveira 

et al. (2013) and the references therein. 
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Due to the high price of B, it is proposed that some (or all) of this chemical be manufactured from raw 

material C in a new process, Process I, or from raw material D in a second new process, Process II. These 

processes are not exclusive, and neither, one, or both may be installed. 

 

The yield of Process I is uncertain, with possible realizations {0.69, 0.81}, both with an equal probability 

of 0.5. The yield of Process II is also uncertain, with possible realizations {0.62, 0.85}, both with equal 

probabilities. The objective is to determine the optimal investment and operation decisions over a 2-year 

planning horizon in order to maximize the total expected profit from the sales of A. Over this time 

horizon, the demand of product A has possible realizations {1.10, 3.10} tons/hr in time period 1 and 

{2.25, 4.25} tons/hr in time period 2, each with probability 0.5. We do not provide the remaining problem 

data here; however, this data is available upon request. 

 

Regarding the types of uncertainty, the yields of Process I and Process II represent endogenous 

parameters (𝜃1 and 𝜃2, respectively), since they are uncertain until the units are installed and operated. 

For simplicity, we assume that the units are operated immediately after they are installed. The demand of 

product A is an exogenous parameter (𝜉𝑡), as it is a market value that will be realized automatically in 

each time period. There are 4 possible combinations of realizations for the endogenous parameters and 4 

possible combinations of realizations for the exogenous parameters. This gives rise to a 3-stage, 16-

scenario stochastic programming problem. Note that this corresponds to the composite scenario tree 

previously introduced in Figure 6c. We first use a direct-solution approach to solve the fullspace model 

(i.e., model (MSSP) with no reduction properties applied) and the reduced model (i.e., model (MSSP) in 

its current form, with all reduction properties applied). We then apply the sequential scenario 

decomposition (SSD) heuristic and Lagrangean decomposition (LD). The corresponding model statistics 

are provided in Table 1. 

 

Table 1. Model statistics for the motivating example. 

Problem Type Scenarios Constraints 
Continuous 

Variables 

Binary 

Variables 

Fullspace 16 5,985 913 240 

Reduced Model 16 1,472 913 120 

SSD (Sub 1) 8 784 457 64 

SSD (Final) 16 1,355 913 24 

LD 4 286 229 24 

 

First, we observe that by applying Properties 1–6 through the set definitions proposed in section 5, we are 

able to reduce the total number of constraints from 5,985 to 1,472; a 75% reduction, based solely on the 

removal of redundant NACs. We are also able to eliminate half of the binary variables (specifically, the 

indistinguishability variables 𝑧𝑡
𝑠,𝑠′

 associated with redundant conditional endogenous NACs). This effect 

can be even more pronounced in larger problem instances, as will be shown in the next section. 
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Furthermore, the SSD heuristic requires only one subproblem to fix all of the binary here-and-now 

decisions. This subproblem consists of scenarios 1, 3, 5, 7, 9, 11, 13, and 15 (see Figure 6c). Recall that 

we fix the respective binary decisions in these scenarios, and all remaining scenarios, in order to satisfy 

the corresponding first-period and exogenous non-anticipativity constraints. 

 

Table 1 also indicates that there are still binary variables in the final SSD problem, SSD (Final). This is 

due to the indistinguishability variables 𝑧𝑡
𝑠,𝑠′

, which are simply calculated quantities given the fixed 

values of 𝑏𝑖,𝑡
𝑠 . We may choose to either fix these variables prior to generating the model, or allow the 

solver to perform these calculations. For convenience, we choose the latter option in this case. Note that 

when there are no other integer variables in the problem, and indistinguishability is determined by 

Equations (40) and (41), we may obtain the optimal solution of the final SSD problem by solving its LP 

relaxation. This is because, by these inequalities, 𝑧𝑡
𝑠,𝑠′

 must be 0 or 1 if 𝑏𝑖,𝑡
𝑠  is also binary. 

 

The problem size reported for Lagrangean decomposition corresponds to the size of each Lagrangean-

dual subproblem. For this example, we decompose the problem such that each subproblem corresponds to 

one subtree (i.e., 4 scenarios with all non-anticipativity constraints intact), rather than one individual 

scenario. Thus, we must dualize only 3 sets of first-period NACs, which gives 4 independent subproblems 

of 4 scenarios each. 

 

Note that this Lagrangean-decomposition strategy is inspired by the scenario clustering approach of 

Escudero et al. (2016); we will use a similar strategy for our LD implementations in the following two 

sections as well. While, in principle, we may also merge indistinguishable nodes within each subtree such 

that all non-dualized first-period and exogenous NACs are implicitly enforced (i.e., for each subtree, we 

may adopt the standard form shown in Figure 2a), this would require significantly more complex notation 

which we wish to avoid. 

 

We solve the motivating example in GAMS 24.3.3, with CPLEX 12.6.0.1, on a machine with a 2.50 GHz 

Intel Core i5 CPU and 4 GB of RAM. The optimal solution is to install Process I at the beginning of the 

first time period with a capacity of 3.704 tons/hr and perform no expansions. The total expected profit is 

$5.069 MM. The computational results are given in Table 2. Note that each reported solution time reflects 

only the solver time and does not include the model generation time. Given the complexity of the 

parameters and sets defined in section 5, it is also worth noting that the generation time for the reduced 

model is less than one minute for all example problems in this paper. 

 

Table 2. Numerical results for the motivating example. 

Problem Type 
Total Expected Profit ($MM) Optimality 

Gap 

Solution 

Time (s) Lower Bound Upper Bound 

Fullspace 5.069 5.069 0% 0.08 

Reduced Model 5.069 5.069 0% 0.06 

SSD 5.069 - - 0.11 

LD 5.069 5.069 0.006% 11.70 

 



54 

 

We observe that the SSD heuristic obtains the optimal solution as a lower bound, and after 14 iterations, 

the Lagrangean decomposition algorithm converges to the optimal solution. Figure 19 shows the best 

bounds obtained by LD at each iteration of the algorithm. Since this is a very simple example, it is faster 

in this case to directly solve the reduced model than it is to solve subproblems in the alternative solution 

methods. For larger instances, these alternative methods yield considerable savings in computational time, 

as will be seen in the next section. 

 

 
Figure 19. Best bounds on the optimal solution of the motivating example, as obtained by Lagrangean 

decomposition. 
 

The optimal structure of the composite scenario tree is shown in Figure 20. Notice that, starting from the 

superstructure form in Figure 6c, the dotted green lines have transitioned into solid green lines for active 

NACs and have disappeared entirely for inactive NACs. We also show that by taking advantage of the 

active NACs and the known timing of the endogenous realizations, we are able to recover the standard 

form of the scenario tree. This form is significantly easier to interpret, as can be seen in Figure 20. 

 

Note that unlike the two-stage case, the value of the stochastic solution (VSS) is not a trivial calculation 

for multistage problems. We do not perform this calculation here; however, we refer the reader to 

Escudero et al. (2007) and Maggioni et al. (2014) for further information on this topic. 

7.2 Example 1: Capacity Expansion of a Process Network 
We now consider a larger instance of the motivating example. Specifically, we extend the time horizon to 

8 years and consider 2 possible realizations for the demand of product A in each period, as well as 3 

possible realizations for the yield of Process I and Process II. This gives 9 possible combinations of 

realizations for the endogenous parameters, and 256 possible combinations of realizations for the 

exogenous parameters. The result is a 9-stage stochastic programming problem with 2,304 scenarios. The 

corresponding model statistics for the fullspace model, the reduced model, and the SSD and LD problems 

are provided in Table 3. Notice in particular that the fullspace model for this instance has more than 176 

million constraints and approximately 4.8 million binary variables. Such a model is clearly intractable in 

its current state. With the application of the reduction properties, we are able to reduce the number of 

constraints to about 838,000 – a 99.5% reduction. The number of binary variables is also reduced to about 

61,000, which is a 98.7% reduction. 
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Figure 20. Optimal structure of the composite scenario tree for the motivating example, and the 

procedure for converting this tree into its equivalent standard form. 
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Table 3. Model statistics for Example 1. 

Problem Type Scenarios Constraints 
Continuous 

Variables 

Binary 

Variables 

Fullspace 2,304 176,203,009 518,401 4,755,456 

Reduced Model 2,304 838,318 518,401 61,416 

SSD (Sub 1) 18 9,196 4,051 624 

SSD (Sub 2) 18 8,569 4,051 492 

SSD (Sub 3) 36 15,943 8,101 828 

SSD (Sub 4) 72 29,395 16,201 1,344 

SSD (Sub 5) 144 53,611 32,401 2,064 

SSD (Sub 6) 288 96,475 64,801 2,880 

SSD (Sub 7) 576 170,683 129,601 3,264 

SSD (Final) 2,304 771,595 518,401 6,120 

LD 256 78,862 57,601 6,144 

 

Because of the longer time horizon, there are now more subproblems required for the sequential scenario 

decomposition heuristic. Each of these problems is significantly larger than the one in the motivating 

example; however, the model growth is slightly non-intuitive. Specifically, note the decrease in the 

problem size in the second subproblem, SSD (Sub 2). The reason for this is as follows. 

 

At �̂� = 1, there are 9 subtrees, each containing 2 exogenous scenario groups. We select one scenario from 

each of these groups. In other words, we consider 18 scenarios in the first subproblem, and at this point, 

no binary here-and-now decisions have been fixed. In the second subproblem, �̂� = 2, we first consider 36 

scenarios (i.e., 9 subtrees, each containing 4 exogenous scenario groups). The binary decisions have 

already been fixed in 18 of these scenarios. Accordingly, we neglect these 18 scenarios and consider only 

the remaining 18. Notice that this is the same number of scenarios as the first subproblem (see the 

supplementary material for further details); however, the binary here-and-now decisions for the previous 

time periods have already been fixed. This means that there will be fewer constraints and binary variables, 

as can be seen in Table 3. 

 

In the third subproblem, �̂� = 3, we first consider 72 scenarios. The binary decisions have already been 

fixed in 36 of them, so we consider only the remaining 36. Notice that at this point, the number of 

scenarios in each subproblem begins to double (see the supplementary material). The problem size, 

however, does not double. This can be seen in the corresponding number of binary variables reported in 

Table 3. Since in each subproblem the binary decisions in all previous time periods have already been 

fixed, we are able to effectively slow the problem growth. 
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We emphasize that the SSD subproblems are significantly smaller than the reduced model. At most, we 

consider 576 scenarios in subproblem 7. This is only 25% of the total number of scenarios. Moreover, this 

particular subproblem contains only 20% of the constraints of the reduced model and 5% of the binary 

variables. 

 

In the Lagrangean decomposition algorithm, we again decompose the problem by subtrees (rather than by 

individual scenarios). This gives 9 subproblems of 256 scenarios each. Like for the SSD heuristic, these 

subproblems are considerably larger than those in the motivating example. 

 

We solve this problem instance in GAMS 24.3.3, with CPLEX 12.6.0.1, on a machine with a 2.50 GHz 

Intel Core i5 CPU and 4 GB of RAM. The results are summarized in Table 4. 

 

Table 4. Numerical results for Example 1. 

Problem Type 
Total Expected Profit ($MM) Optimality 

Gap 

Solution 

Time (s) Lower Bound Upper Bound 

Fullspace - - - - 

Reduced Model 142.411 143.828 0.99% 3,670 

SSD 142.411 - - 61 

LD 142.411 144.424 1.41% 913 

 

As would be expected, the fullspace model cannot be loaded into memory. After applying the reduction 

properties, however, we are in fact able to solve this instance to a 0.99% optimality gap in about 1 hour. 

The best feasible solution obtained from the reduced model is $142.411 MM. 

 

As shown in Table 4, the SSD heuristic provides the same feasible solution as the reduced model in just 

61 seconds. We use this value as the initial lower bound for the Lagrangean decomposition algorithm. 

After 20 iterations, the lower bound does not improve, and we obtain an upper bound of $144.424 MM. 

This then provides us with bounds on the optimal solution; specifically, within a 1.41% optimality gap. 

The total time for lower- and upper-bound generation for the alternative solution methods is 974 seconds 

– a 73% reduction from solving the reduced model directly. 

7.3 Example 2: Oilfield Development Planning 
We consider a modified form of the MILP described in Gupta and Grossmann (2014a) (see Case (i)) for 

maximizing the total expected NPV in the development planning of an offshore oilfield. There are 3 

oilfields; 3 potential Floating Production, Storage, and Offloading vessels (FPSOs); and 9 possible field-

FPSO connections. A total of 30 wells can be drilled over a 5-year planning horizon: 7 for field I, 11 for 

field II, and 12 for field III. There is also a 3-year lead time for FPSO construction and a 1-year lead time 

for FPSO expansion. Fields II and III have a known recoverable oil volume (size); however, the size of 

field I is uncertain. Specifically, there are 2 possible realizations for the size of field I, both with equal 

probabilities. The oil and gas prices are also uncertain, with 2 possible realizations with equal 

probabilities in each time period. These prices are assumed to be correlated. The network superstructure 

for this problem instance is shown in Figure 21. 
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Figure 21. Network superstructure for the oilfield development planning problem. (FPSO images from 

www.rigzone.com.) 

 

Notice that the size of field I is an endogenous parameter, since this information cannot be realized until 

we drill the field and begin producing from it. The oil and gas prices are exogenous parameters, as they 

are market values that will be realized automatically in each time period. We have 2 possible 

combinations of realizations for the endogenous parameters and 32 possible combinations of realizations 

for the exogenous parameters. Using the scenario-generation procedure described in section 3, this gives 

rise to a 6-stage, 64-scenario stochastic programming problem. The corresponding model statistics are 

shown in Table 5. In particular, notice that the fullspace model consists of 333,249 constraints and 7,360 

binary variables. After applying the theoretical reduction properties, there are 124,980 constraints and 

7,000 binary variables. This is a 62% reduction in the number of constraints. The number of binary 

variables is reduced by approximately 5%. 

 

Model statistics for the heuristic and Lagrangean decomposition are also provided in Table 5. Note that 

for the Lagrangean decomposition algorithm, we again choose not to decompose the problem by 

individual scenarios. However, rather than decomposing by subtrees, as this leads to very difficult 

subproblems, we instead consider 32 subproblems of 2 adjacent scenarios each. 

 

Table 5. Model statistics for Example 2. 

Problem Type Scenarios Constraints 
Continuous 

Variables 

Binary 

Variables 

Fullspace 64 333,249 70,465 7,360 

Reduced Model 64 124,980 70,465 7,000 

SSD (Sub 1) 4 7,589 4,333 440 

SSD (Sub 2) 4 7,415 4,333 356 

SSD (Sub 3) 8 14,655 8,665 664 

SSD (Sub 4) 16 28,687 17,329 1,224 

SSD (Final) 64 116,787 69,313 4,504 

LD 2 3,776 2,203 218 
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The problem was modeled in GAMS 24.3.3 and solved with CPLEX 12.6.0.1 on a machine with a 2.93 

GHz Intel Core i7 CPU and 12 GB of RAM. Table 6 summarizes the results for the different solution 

approaches. In the case of solving the reduced model directly, the optimality gap cannot be improved past 

50% after more than 11 hours. In contrast, the sequential scenario decomposition heuristic finds a high-

quality feasible solution ($7.166 billion) in only 41 seconds. We initialize the lower bound of the 

Lagrangean decomposition algorithm to this objective value. After only 14 seconds, the LD algorithm 

finds a high-quality upper bound ($7.180 billion); the lower bound does not improve. This implies that 

the SSD solution is within 0.20% of the optimum. Notice that we obtain this information in less than one 

minute of CPU time. 

 

Table 6. Numerical results for Example 2. 

Problem Type 
Total Expected NPV ($10

9
) Optimality 

Gap 

Solution 

Time (s) Lower Bound Upper Bound 

Reduced Model 6.968 10.495 50.61% 40,562 

SSD 7.166 - - 41 

LD 7.166 7.180 0.20% 14 

 

The network structure corresponding to the best feasible solution ($7.166 billion, as obtained by the SSD 

heuristic) is shown in Figure 22. This solution indicates that we begin installing the necessary 

infrastructure in the first year. This includes FPSO I and FPSO II, as well as 3 of the 9 possible field-

FPSO connections: field I to FPSO I, field II to FPSO I, and field III to FPSO II. Notice that due to the 

inherent risk in the size of field I, FPSO I is shared among fields I and II rather than devoting a separate 

FPSO solely to field I. 

 

 
Figure 22. Network structure for the best feasible solution of Example 2. (FPSO images from 

www.rigzone.com.) 

 

The corresponding drilling schedule is shown in Figure 23. Since it takes 3 years for the FPSOs to be 

fully operational, drilling cannot begin until the fourth year. For Field II, we drill 10 wells in year 4 and 1 

well in year 5. Similarly for Field III, we drill 10 wells in year 4 and 2 wells in year 5. For Field I, 

however, we wait until year 5 and then drill 7 wells. The strategy here is to drill fields of known size first 

(as this carries less risk), and then drill the field with an uncertain size. Notice that by the end of the 

planning horizon, we have drilled the maximum number of wells in all fields. 
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Figure 23. Drilling schedule for the best feasible solution of Example 2. 

8 Conclusions 
In this paper, we have addressed the general class of multistage stochastic programming problems that 

involve both endogenous and exogenous uncertain parameters. As little work has been done in this area, 

we have first provided an extensive review of these two types of uncertainty. Next, we have proposed a 

superstructure representation for endogenous scenario trees, as well as a composite scenario tree that 

captures both endogenous and exogenous realizations. This representation serves as the basis for our 

multistage stochastic programming formulation, model (MSSP). 

 

Using this composite tree, we have also proposed new theoretical properties that can significantly reduce 

the dimensionality of the model by eliminating all redundant non-anticipativity constraints. Graphical and 

theoretical proofs have been provided to this effect. The impact of these reduction properties has been 

demonstrated in a large process network instance, where we have been able to reduce the number of 

constraints from over 176 million to fewer than 1 million, and the number of binary variables from 

approximately 4.8 million to 61,000. Put simply, this is the difference between a problem that cannot be 

loaded into memory and a problem that can be solved efficiently with our alternative solution approaches. 

 

The alternative solution approaches that we have proposed include a novel sequential scenario 

decomposition heuristic and Lagrangean decomposition. We have applied these techniques to solve two 

example problems: the capacity expansion of process networks (as previously mentioned), and the 

development of oilfields. Our numerical results indicate that these solution methods are quite effective at 

solving problems of this class. In particular, the heuristic can quickly find high-quality feasible solutions, 

yielding orders-of-magnitude reduction in CPU times. This is especially apparent in the oilfield problem, 

where the reduced model cannot be solved after more than 11 hours with a direct approach, but can be 

solved in just 41 seconds with the heuristic. 
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A Appendix 

A.1 Proof of Property 1 

Consider two indistinguishable scenarios �̂�, �̂�′ ∈  in time period 𝜏, where �̂� < �̂�′. For simplicity, 

consider only variables 𝑦𝜏
�̂� and 𝑦𝜏

�̂�′
. By Equation (46), we generate two scenario pairs: (�̂�, �̂�′) and (�̂�′, �̂�). 

Scenario pair (�̂�, �̂�′) corresponds to non-anticipativity constraint 𝑦𝜏
�̂� = 𝑦𝜏

�̂�′
. Scenario pair (�̂�′, �̂�) 

corresponds to non-anticipativity constraint 𝑦𝜏
�̂�′

= 𝑦𝜏
�̂�, which is the same equality constraint. By 

symmetry, we may replace the condition 𝑠 ≠ 𝑠′ in Equation (46) with 𝑠 < 𝑠′. In this case, we only 

generate the first pair, and we avoid the second, redundant constraint.  ∎ 

A.2 Proof of Property 2a 
Because all scenarios are indistinguishable at the beginning of the first time period, adjacent scenarios 

must also be indistinguishable at that time. Thus, we can enforce non-anticipativity between all scenarios 

by linking consecutive nodes; e.g., 𝑦1
1 = 𝑦1

2, 𝑦1
2 = 𝑦1

3, … , 𝑦1
𝑆−1 = 𝑦1

𝑆.  ∎ 

A.3 Proof of Proposition 1 

We generate set 𝐹 by pairing off all 𝑆 scenarios in consecutive order. This gives 𝑆 − 1 independent 

links (i.e., scenario pairs), which is the minimum number of links required to connect 𝑆 elements.  ∎ 

https://www.krannert.purdue.edu/programs/phd/working-papers-series/2004/1167.pdf
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A.4 Proof of Property 2b 

As previously stated, exogenous NACs apply only between scenarios 𝑠 and 𝑠′ in the same subtree. 

Because each subtree represents an exogenous scenario tree, non-anticipativity constraints within that tree 

apply as if the uncertainty were purely exogenous. (Note that in the case of purely-exogenous uncertainty, 

the adjacent-scenario approach to non-anticipativity is well known (see, for example, Colvin and 

Maravelias (2011)). However, we provide the rest of the proof for completeness.) 

 

Accordingly, consider an exogenous scenario tree in its standard form, as shown in Figure 2a. For each 

time period 𝑡 ∈ ,   𝑡 < 𝑇, each scenario passes through a node that is shared among one or more 

scenarios. All scenarios that pass through one such node at time 𝑡 must be indexed consecutively, since 

they all refer to the same path up until this time (i.e., they have the same history). When we duplicate this 

node to give each scenario its own respective copy, we create consecutive, indistinguishable nodes that 

refer to the same state and must be linked together with non-anticipativity constraints (see Figure 2b). 

One natural approach to enforce non-anticipativity between these indistinguishable scenarios in time 

period 𝑡 is to link them together in consecutive order.  ∎ 

A.5 Proof of Proposition 2 

In each time period, excluding 𝑡 = 𝑇, we partition the set of scenarios into exogenous scenario-group 

subsets 𝑡
𝑘

 

𝑋
  ∀ 𝑘 ∈ 𝑡. Since each scenario must be assigned to one group (scenario 1 to group 1, and all 

others by Equation (50)), the union of all such groups in each time period must give the complete set of 

scenarios; i.e., 

 

⋃ 𝑡
𝑘

 

𝑋

𝑘∈𝑡

=     ∀ 𝑡 ∈ \{𝑇} 

 

Thus, we are considering all scenarios in each time period where exogenous NACs apply. 

 

We enforce non-anticipativity between consecutive scenarios in each of the exogenous scenario groups. 

By Equation (22), the corresponding scenario pairs for 𝑡 ∈ \{𝑇} must be in set 𝑋 because they are 

adjacent (i.e., (𝑠, 𝑠′) ∈ ), in the same subtree (i.e., 𝑆𝑢𝑏(𝑠) = 𝑆𝑢𝑏(𝑠′)), and indistinguishable (i.e., 

𝑄𝑡
𝑠,𝑠′

= 𝑇𝑟𝑢𝑒). Since each group has different realizations for the exogenous parameters and/or different 

possible realizations for the endogenous parameters, no links between the groups are possible, and such 

pairs cannot be in set 𝑋. Thus, the pairs in each group are the only possible exogenous scenario pairs in 

each time period. It follows that the union of these sets of tuples must be equivalent to set 𝑋: 

 

⋃ [ ⋃ {(𝑡, 𝑠, 𝑠′):   𝑠, 𝑠′ ∈ 𝑡
𝑘

 

𝑋
,   (𝑠, 𝑠′) ∈ }

𝑘∈𝑡

]

𝑡∈\{𝑇}

= 𝑋 

 

Now, consider the scenario pairs in each exogenous scenario group in time period 𝑡 ∈ \{𝑇}. Because we 

link consecutive scenarios, this gives | 𝑡
𝑘

 

𝑋
| − 1 scenario pairs in each group, which is the minimum 

number of links required to connect | 𝑡
𝑘

 

𝑋
| elements. These pairs cannot be implied through the use of any 

endogenous scenario pairs, since we generate the exogenous pairs first. Thus, we have the minimum 
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number of scenario pairs in each group. We have shown that these are the only possible exogenous 

scenario pairs in each time period, and the union of these sets of tuples is equivalent to set 𝑋. Hence, 

set 𝑋 contains the minimum number of exogenous scenario pairs.  ∎ 

A.6 Proof of Property 4 

By Property 3, endogenous NACs are expressed between scenarios 𝑠 and 𝑠′ that differ in the possible 

realization of a single endogenous parameter 𝜃𝑖′,ℎ and are identical in the realizations of all exogenous 

parameters in all time periods. Accordingly, for each 𝑖′ ∈  and ℎ ∈ 𝑖′ , we seek to identify the 

minimum number of scenario pairs (𝑠, 𝑠′) that satisfy these conditions. 

 

To this end, in an arbitrary time period 𝑡 = 𝜏, we partition the set of scenarios into endogenous scenario-

group subsets. These subsets are given by 𝑖′,ℎ
𝑙

 

𝑁
 and are indexed by 𝑙 ∈ 𝑖′,ℎ for each 𝑖′ ∈  and ℎ ∈

𝑖′ . By the endogenous scenario-group algorithm, each scenario must be assigned to one such group for 

each 𝑖′ ∈  and ℎ ∈ 𝑖′ . In other words, the union of all of these groups must give the complete set of 

scenarios; i.e., 

 

⋃ 𝑖′,ℎ
𝑙

 

𝑁

𝑙∈𝑖′,ℎ

=     ∀ 𝑖′ ∈ ,   ℎ ∈ 𝑖′  

 

Thus, we are considering all scenarios in each case where endogenous NACs may apply. 

 

We enforce non-anticipativity between consecutive scenarios in each of the endogenous scenario groups, 

as indicated by Equation (60). This gives | 𝑖′,ℎ
𝑙

 

𝑁
| − 1 scenario pairs in each group, which is the minimum 

number of links required to connect | 𝑖′,ℎ
𝑙

 

𝑁
| elements. Other connections between the scenarios are 

implied by transitivity. 

 

Furthermore, by Property 3, it is sufficient to consider only the pairs formed in each endogenous scenario 

group. This is because there are no links between groups, other than those that already exist in another 

group. We can prove this by contradiction. 

 

First, suppose that we have a link between two scenarios, �̂� and �̂�′. By Property 3, these scenarios must 

differ only in the possible realization of a single endogenous parameter 𝜃�̂�,ℎ̂. Second, assume that this link 

cannot be formed by pairing two scenarios in the same endogenous scenario group. In other words, these 

scenarios belong to two separate groups corresponding to parameter 𝜃�̂�,ℎ̂, and by the endogenous 

scenario-group algorithm, we have 𝐺𝑁(�̂�, ℎ̂, �̂�) = 𝑙 and 𝐺𝑁(𝑖,̂ ℎ̂, �̂�′) = 𝑙. It follows that the respective 

groups from Equation (59) are �̂�,ℎ̂
𝑙

 

𝑁
 and �̂�,ℎ̂

𝑙

 

𝑁
. Note that the scenarios in one group must differ from the 

scenarios in the other group in terms of the possible realization of at least one uncertain parameter other 

than 𝜃�̂�,ℎ̂. (If this were not the case, then �̂�,ℎ̂
𝑙

 

𝑁
 and �̂�,ℎ̂

𝑙

 

𝑁
 would be a single group.) Since �̂� and �̂�′ differ 

in the possible realization of 𝜃�̂�,ℎ̂ and belong to two separate groups, these scenarios must differ in the 

possible realizations of at least two uncertain parameters. This violates Property 3. Thus, the original 
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assumption is false and any endogenous scenario pair must be formed between two scenarios in the same 

endogenous scenario group. 

 

At this point, we have shown that if we consider only scenario pairs (𝑠, 𝑠′) for which 𝑠 and 𝑠′ are 

consecutive scenarios in an endogenous scenario group: (1) we are able to link all scenarios in each 

group; and (2) from this linking, we are able to produce all endogenous scenario pairs generated by 

Property 3 (either explicitly, or implicitly through the use of some explicitly-generated pairs). Note that 

since the endogenous scenario groups are defined in terms of Property 3, Property 4 must also be at least 

as restrictive as Property 3. In other words, 𝑁4 ⊆ 𝑁3, and this approach cannot produce any 

additional scenario pairs that cannot be obtained from Property 3. It follows that Property 4 is a sufficient 

condition for endogenous scenario-pair generation.  ∎ 

A.7 Proof of Proposition 3 
This is the case described in Gupta and Grossmann (2011). We approach this proof from a different angle 

and continue from the proof of Property 4. 

 

So far, we have shown that Property 4 gives the minimum number of pairs among the scenarios in each 

endogenous scenario group, and that it is sufficient to consider only these pairs. Recall that by Equation 

(60), we generate one such set of pairs for each group. The complete set of endogenous scenario pairs is 

given by the union of these sets, as defined in Equation (61). To prove that this resulting set contains the 

minimum number of pairs, it is only necessary for us to show that the pairs in each group cannot be 

implied by any other pairs. 

 

First, in the general case, we cannot guarantee that any uncertain parameters will be realized at the same 

time, since we have assumed that each parameter is associated with a different source. Second, we cannot 

guarantee that any of the parameters will be unrealized in certain time periods, either, since we have also 

assumed that there are no initial ‘equality’ periods. And third, we have assumed that there is no 

exogenous uncertainty, so there are no exogenous NACs. Thus, all of the endogenous NACs must be 

applied conditionally, and we cannot use any one to imply any of the others. This case can be seen clearly 

in Figure 5. It follows that, under these strict assumptions, the complete set of endogenous scenario pairs 

generated by Property 4, 𝑁4, contains the minimum number of pairs.  ∎ 

A.8 Proof of Property 5 

Consider exogenous scenario group �̂� in time period 𝑡 = 𝜏, where 𝜏 < 𝑇, which corresponds to a set of 

scenarios given by 𝜏
�̂�

 

𝑋
. These scenarios are adjacent, so we may express this set in the general form 

𝜏
�̂�

 

𝑋
= {𝑠:   𝑠 = 𝑛, 𝑛 + 1,… ,𝑁}. It follows that the exogenous non-anticipativity constraints between the 

scenarios in group 𝜏
�̂�

 

𝑋
 are: 

 

𝑦𝜏
𝑛 = 𝑦𝜏

𝑛+1,   𝑦𝜏
𝑛+1 = 𝑦𝜏

𝑛+2, … ,   𝑦𝜏
𝑁−1 = 𝑦𝜏

𝑁 (79) 
 

where, for simplicity, we consider only variables 𝑦𝜏
𝑠. Note that these scenarios are in the same subtree. 

Let 𝜏
�̃�

 

𝑋
 be the corresponding group of scenarios in a different subtree; i.e., all scenarios in the same 

position in 𝜏
�̂�

 

𝑋
 and 𝜏

�̃�

 

𝑋
 are identical in the realizations of all exogenous parameters but differ in the 
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possible realization of at least one endogenous parameter. Without loss of generality, we assume that the 

respective scenarios differ in the possible realization of exactly one endogenous parameter. We may 

express this set in the general form 𝜏
�̃�

 

𝑋
= {𝑠:   𝑠 = 𝑛∗, 𝑛∗ + 1,… ,𝑁∗}, where 𝑃𝑜𝑠(𝑛) = 𝑃𝑜𝑠(𝑛∗),

𝑃𝑜𝑠(𝑛 + 1) = 𝑃𝑜𝑠(𝑛∗ + 1),… ,   𝑃𝑜𝑠(𝑁) = 𝑃𝑜𝑠(𝑁∗). Exogenous NACs between the scenarios in group 

𝜏
�̃�

 

𝑋
 can be written in the same form as for 𝜏

�̂�

 

𝑋
: 

 

𝑦𝜏
𝑛∗

= 𝑦𝜏
𝑛∗+1,   𝑦𝜏

𝑛∗+1 = 𝑦𝜏
𝑛∗+2, … ,   𝑦𝜏

𝑁∗−1 = 𝑦𝜏
𝑁∗

 (80) 
 

Endogenous non-anticipativity constraints apply only between scenarios 𝑠 and 𝑠′ in different subtrees, 

and by Property 3, it is sufficient to consider only 𝑠 and 𝑠′ that are identical in all exogenous realizations 

(i.e., 𝑃𝑜𝑠(𝑠) = 𝑃𝑜𝑠(𝑠′), where 𝑠 < 𝑠′). Thus, the endogenous NACs between scenarios 𝑠 ∈ 𝜏
�̂�

 

𝑋
 and 

𝑠′ ∈ 𝜏
�̃�

 

𝑋
 are then: 

 

𝑦𝜏
𝑛 = 𝑦𝜏

𝑛∗
,   𝑦𝜏

𝑛+1 = 𝑦𝜏
𝑛∗+1, … ,   𝑦𝜏

𝑁 = 𝑦𝜏
𝑁∗

 (81) 
 

provided that the scenarios are indistinguishable (i.e., 𝑍𝜏
𝑠,𝑠′

= 𝑇𝑟𝑢𝑒). Recall that 𝑠 and 𝑠′ differ in the 

possible realization of the same endogenous parameter, and only this one parameter, so the corresponding 

NACs between these scenarios are all active at the same time or are all ignored at the same time. 

Furthermore, if 𝑍𝜏
𝑠,𝑠′

= 𝐹𝑎𝑙𝑠𝑒, these non-anticipativity constraints do not apply, so it is only necessary to 

consider the case where these constraints are active. 

 

Since 𝑦𝜏
𝑛 = 𝑦𝜏

𝑛+1 by Equation (79), and 𝑦𝜏
𝑛∗

= 𝑦𝜏
𝑛∗+1 by Equation (80), it follows that the first 

endogenous constraint in Equation (81), 𝑦𝜏
𝑛 = 𝑦𝜏

𝑛∗
, can be restated as 𝑦𝜏

𝑛+1 = 𝑦𝜏
𝑛∗+1. Notice that this is 

the second endogenous constraint in Equation (81). This procedure can be continued to produce all of the 

remaining endogenous constraints in Equation (81). This shows that the exogenous NACs for two groups, 

along with one endogenous NAC linking one scenario from each group, imply all of the other endogenous 

NACs linking the two groups. Thus, only one endogenous NAC between the groups is sufficient.  ∎ 

A.9 Proof of Proposition 4 
Starting from Proposition 3, notice that we have relaxed only one assumption; namely, that the problem is 

purely endogenous. To prove that we have the minimum number of endogenous scenario pairs, it is 

merely necessary for us to show that after the introduction of exogenous uncertainty, and the application 

of Property 5, the pairs in each endogenous scenario group cannot be implied by any other pairs. 

 

First, recall that when both endogenous and exogenous uncertain parameters are present in the model, 

some of the endogenous scenario pairs can be implied by exogenous pairs. All such redundant pairs are 

eliminated by Property 5. 

 

We may then rely on the remaining arguments in the proof of Proposition 3 to conclude that all 

endogenous NACs must be applied conditionally, and we cannot use any one to imply any of the others. 

It follows that, under the stated assumptions, the complete set of endogenous scenario pairs generated by 

Property 4 and Property 5, 𝑁5, contains the minimum number of pairs.  ∎ 
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A.10 Unique Scenarios Algorithm 

For convenience in the algorithm, we partition the set of sources  into ordered sets 𝐸
𝑡

 and 𝐶
𝑡

 based on 

the given time period (not to be confused with set ̅𝑡
𝑠
, which was introduced for illustrative purposes in 

section 2.2). Specifically, in the initial ‘equality’ time periods 𝑡 ∈ 𝐸
𝑖′

, the endogenous uncertainty cannot 

yet be resolved for sources 𝑖′ ∈ 𝐸
𝑡

, where 𝐸
𝑡 ≔ {𝑖′:  𝑖′ ∈ ,   𝑡 ∈ 𝐸

𝑖′} ∀ 𝑡 ∈ . These sets of sources are 

associated with fixed endogenous NACs (since all uncertain parameters associated with these sources are 

guaranteed to be unresolved at time 𝑡, and thus all scenarios that differ only in the possible realizations of 

any of these parameters must be indistinguishable at that time). Note that we will always have 𝐸
𝑇 ≔ ∅, as 

the initial ‘equality’ periods should never span the entire time horizon. We do not restrict the definition of 

𝐸
𝑡

 to 𝑡 ∈ \{𝑇}, however, as this would require us to treat 𝑡 < 𝑇 and 𝑡 = 𝑇 as two separate cases in the 

algorithm. 

 

In the remaining ‘conditional’ time periods 𝑡 ∈ 𝐶
𝑖′

, the endogenous uncertainty may be resolved for 

sources 𝑖′ ∈ 𝐶
𝑡

, where 𝐶
𝑡 ≔ {𝑖′:  𝑖′ ∈ ,   𝑡 ∈ 𝐶

𝑖′} ∀ 𝑡 ∈ . These sets of sources are associated with 

conditional endogenous NACs (since the uncertain parameters associated with these sources are no longer 

guaranteed to be unresolved at time 𝑡, and thus we can only say that the scenarios that differ in the 

possible realizations of any of these parameters may be indistinguishable at that time). 

 

We now present the unique scenarios algorithm, in which we define sets 𝑡
𝑖′,ℎ

 corresponding to each 

endogenous parameter 𝜃𝑖′,ℎ, for all 𝑖′ ∈  and ℎ ∈ 𝑖′, in each time period 𝑡 ∈ . 

 
Unique Scenarios Algorithm 

Step 1:  For each time period 𝑡 ∈ : 

Step 1a: First, consider the sources that are associated with fixed endogenous NACs in this time 

period. In other words, for each source 𝑖′ ∈ 𝐸
𝑡

 (where the sources are considered in ascending 

numerical order): 

i) If 𝑖′ is the first source in this set (i.e., 𝑖′ = min�̂�′(𝑖̂
′ ∈ 𝐸

𝑡 )), initialize the set of unique 

scenarios to that obtained from Property 5 (e.g., Equation (62)) in order to take advantage of 

the reductions associated with exogenous scenario grouping: 
 

𝑡
𝑖′,1 ≔ ̃𝑡      𝑖

′ = min
�̂�′

(𝑖̂′ ∈ 𝐸
𝑡 ) (82) 

 
ii) If there is more than one endogenous parameter associated with source 𝑖′, define the 

corresponding set of unique scenarios that can be considered for each of these parameters, as 

indicated in Equation (83): 
 

𝑡
𝑖′,ℎ+1 ≔ 𝑡

𝑖′,ℎ ∩ [ ⋃ {min
�̂�

(�̂� ∈ 𝑖′,ℎ
𝑙

 

𝑁
)}

𝑙∈𝑖′,ℎ

]         ℎ = 1,… , 𝐻𝑖′ − 1 (83) 

 

iii) If 𝑖′ < max�̂�′(𝑖̂
′ ∈ 𝐸

𝑡 ), there is at least one additional source to consider. Accordingly, define 

the set of unique scenarios for the first endogenous parameter of the next source, 𝑖′′, as 

indicated in Equation (84): 
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𝑡
𝑖′′,1 ≔ 𝑡

𝑖′,𝐻𝑖′ ∩ [ ⋃ {min
�̂�

(�̂� ∈ 𝑖′,𝐻𝑖′

𝑙

 

𝑁
)}

𝑙∈𝑖′,𝐻
𝑖′

]      𝑖′′ = min
�̂�′′

(𝑖̂′′ ∈ 𝐸
𝑡 ,   𝑖̂′′ > 𝑖′) (84) 

 

iv) If 𝑖′ = max�̂�′(𝑖̂
′ ∈ 𝐸

𝑡 ), this is the last source. Store the current set of unique scenarios in a 

separate, temporary set, UniqueSet, but in the same manner as Equation (84): 
 

UniqueSet ≔ 𝑡

𝑖′,𝐻𝑖′ ∩ [ ⋃ {min
�̂�

(�̂� ∈ 𝑖′,𝐻𝑖′

𝑙

 

𝑁
)}

𝑙∈𝑖′,𝐻
𝑖′

] (85) 

 
Step 1b: Next, consider the sources that are associated with conditional endogenous NACs in this 

time period. In other words, for each source 𝑖′ ∈ 𝐶
𝑡

 (where the sources are considered in 

ascending numerical order): 

i) If 𝑖′ is the first source in this set (i.e., 𝑖′ = min�̂�′(𝑖̂
′ ∈ 𝐶

𝑡 )), initialize the set of unique 

scenarios based on the following two conditions: 

(1) If 𝐸
𝑡 ≠ ∅, then 𝑡 is an initial ‘equality’ time period for at least one of the sources. 

Accordingly, initialize the set of unique scenarios to the last-known value, stored in 

Equation (85), in order to take advantage of the reductions associated with the fixed 

endogenous NACs: 
 

𝑡
𝑖′,1 ≔ UniqueSet      𝑖′ = min

�̂�′
(𝑖̂′ ∈ 𝐶

𝑡 ) (86) 

 

(2) If, however, 𝐸
𝑡 = ∅, then there are no fixed endogenous NACs in time period 𝑡. Similar 

to sub-step (i) of Step 1a, initialize the set of unique scenarios to that obtained from 

Property 5: 
 

𝑡
𝑖′,1 ≔ ̃𝑡      𝑖

′ = min
�̂�′

(𝑖̂′ ∈ 𝐶
𝑡 ) (87) 

 

In the case where 𝑡 = 𝑇, recall that ̃𝑇 ≔ . 
 

ii) Execute sub-step (ii) of Step 1a. 
 

iii) If 𝑖′ < max�̂�′(𝑖̂
′ ∈ 𝐶

𝑡 ), define the set of unique scenarios for the first endogenous parameter 

of the next source, 𝑖′′, as indicated in Equation (88): 
 

𝑡
𝑖′′,1 ≔ 𝑡

𝑖′,1      𝑖′′ = min
�̂�′′

(𝑖̂′′ ∈ 𝐶
𝑡 ,   𝑖̂′′ > 𝑖′) (88) 

 

Notice that Step 1a will automatically be skipped for 𝑡 = 𝑇, since 𝐸
𝑇 = ∅. 

 

Because this algorithm is fairly complex, we next discuss some of the respective expressions in further 

detail. 
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Equation (83) addresses the case in which we have multiple endogenous parameters associated with some 

of the sources of uncertainty. Therefore, this expression updates the set of unique scenarios in time period 

𝑡 when advancing from one endogenous parameter ℎ to the next, ℎ + 1, for a given source 𝑖′. The 

assumption here is that all endogenous parameters associated with the same source must be realized at the 

same time. This is because an investment in the source itself determines the time at which the associated 

technical information can be realized. For example, once we drill an oilfield and begin producing from it, 

we assume that we can determine both the size and initial deliverability of the reserves. 

 

Accordingly, for any scenarios 𝑠 and 𝑠′ that differ only in the possible realization of an endogenous 

parameter associated with source 𝑖′, the corresponding non-anticipativity constraints will all apply at the 

same time or will all be ignored at the same time. This was previously shown in the discussion 

surrounding Figure 14. Because it is then sufficient to consider only the case where these constraints are 

active, when we proceed from the first endogenous parameter of source 𝑖′ to the second (i.e., ℎ = 1 to 

ℎ = 2), we begin to pair off scenarios between the groups of 𝜃𝑖′,1 (we prove this point in Appendix 

section A.11), and the scenarios in each of those respective groups must be indistinguishable. It is 

therefore unnecessary to have more than one link between any such groups. The reasoning here is 

justified in Appendix section A.11. 

 

Thus, in time period 𝑡, when advancing from endogenous parameter 𝜃𝑖′,ℎ to the next parameter of the 

same source, 𝜃𝑖′,ℎ+1, we require at most only a single ‘representative’ scenario from each endogenous 

scenario group corresponding to 𝜃𝑖′,ℎ; i.e., ⋃ {min�̂� (�̂� ∈ 𝑖′,ℎ
𝑙

 

𝑁
)}𝑙∈𝑖′,ℎ

. Notice the similarity of this case 

to our treatment of the exogenous scenario groups in Property 5 (see Equation (62)). We say “at most” 

since some of these representative scenarios may be non-unique based on Property 5 and/or the 

consideration of other endogenous parameters before this point in the unique scenarios algorithm. We 

successively remove non-unique scenarios in time period 𝑡 by taking the intersection of the current set of 

unique scenarios, 𝑡
𝑖′,ℎ

, and the set of representative scenarios, ⋃ {min�̂� (�̂� ∈ 𝑖′,ℎ
𝑙

 

𝑁
)}𝑙∈𝑖′,ℎ

. The result, 

as shown in Equation (83), is an updated set of unique scenarios that can be considered for the next 

parameter in the algorithm (i.e., 𝜃𝑖′,ℎ+1). It is important to note that this case is evaluated in the same way 

in all time periods and appears in sub-step (ii) of Step 1a and Step 1b of the algorithm. 

 

Equation (84) addresses the case in which there are endogenous parameters that cannot be realized in 

some of the initial time periods. Rather than defining an updated set of unique scenarios in time period 𝑡 

for each endogenous parameter of the same source 𝑖′, as in Equation (83), this expression considers the 

case of advancing from the last endogenous parameter, 𝐻𝑖′ , of source 𝑖′, to the first endogenous 

parameter of the next source, 𝑖′′. The reasoning here is that if the uncertainty in source 𝑖′ cannot yet be 

revealed as of time period 𝑡 (i.e., 𝑖′ ∈ 𝐸
𝑡

), then we will have equality constraints corresponding to all 

scenario pairs (𝑠, 𝑠′) for which 𝑠 and 𝑠′ differ in the possible realization of a parameter associated with 𝑖′. 

This implies that there will then be redundant constraints associated with the parameters of the next 

source, 𝑖′′, as illustrated in Figure 13. We can thus perform further reduction via the same strategy used in 

Equation (83) for the case of multiple parameters associated with the same source. Notice, in particular, 

that the form of Equation (84) is nearly identical to Equation (83). 
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One subtle difference here is that the sources in set 𝐸
𝑡

 may be nonconsecutively indexed, which means 

that we cannot use index 𝑖′ + 1 to access the next element in the set (as we do with ℎ + 1 to access the 

next parameter in Equation (83)). Instead, we use a strategy similar to that previously introduced in 

Equation (60) and state 𝑖′′ = min�̂�′′(𝑖̂
′′ ∈ 𝐸

𝑡 ,   𝑖̂′′ > 𝑖′). This expression simply allows us to advance 

from one source, 𝑖′, to the next-lowest-indexed source, 𝑖′′, in an ordered manner. 

 

Equation (85) is a special case of Equation (84) that is evaluated only for the last source in set 𝐸
𝑡

. The 

corresponding set of unique scenarios is stored in a temporary set, UniqueSet, which may be used for 

initialization in sub-step (i) of Step 1b. 

 

In Step 1b, notice that time period 𝑡 is not an initial ‘equality’ period for source 𝑖′. Here we consider 

sources 𝑖′ ∈ 𝐶
𝑡

, and we can no longer guarantee that we will have equality constraints corresponding to 

the scenario pairs (𝑠, 𝑠′) for which 𝑠 and 𝑠′ differ in the possible realization of a parameter associated 

with 𝑖′. It follows that since all of these constraints are conditional, the only reduction that we can 

perform is for multiple parameters associated with the same source 𝑖′ (via sub-step (ii)); we cannot make 

any further assumptions to eliminate constraints corresponding to the next source, 𝑖′′. We thus use 

Equation (88) in which the definition of the set of unique scenarios is unchanged from one source to the 

next. We state 𝑡
𝑖′′,1 ≔ 𝑡

𝑖′,1
 in this equation, rather than 𝑡

𝑖′′,1 ≔ 𝑡

𝑖′,𝐻
𝑖′ , because the reduction from 

sub-step (ii) cannot be carried over to the next source as it does in Step 1a. Also, note that the sources in 

set 𝐶
𝑡

 may be nonconsecutively indexed, so like the treatment of set 𝐸
𝑡

 in Equation (84), we use 

𝑖′′ = min�̂�′′(𝑖̂
′′ ∈ 𝐶

𝑡 ,   𝑖̂′′ > 𝑖′) to access the next-lowest-indexed source. 

 

As a brief example of how this algorithm is applied, consider Figure 13 and assume that only these 4 

scenarios are under consideration. We start at 𝑡 = 1. Since there is a single endogenous parameter 

associated with each of the two sources, we will drop the ℎ index to simplify the notation. 

 

It is clear that we are starting with unique scenarios ̃1 = {1, 5, 9, 13} from Property 5. It is also clear 

that we have endogenous scenario groups 1
1

 

𝑁
= {1, 9} and 1

2

 

𝑁
= {5, 13} corresponding to 𝜃1, and 

2
1

 

𝑁
= {1, 5} and 2

2

 

𝑁
= {9, 13} corresponding to 𝜃2. Notice that 𝑡 = 1 is an initial ‘equality’ period only 

for 𝜃2 (i.e., 𝐸
 1 = ∅ and 𝐸

 2 = {1}), so 𝐸
1 = {2} and 𝐶

1 = {1}. 

 

We start with Step 1a for the sources associated with fixed endogenous NACs in the first time period and 

must consider 𝑖′ ∈ {2}. We first initialize the corresponding set of unique scenarios (i.e., 1
2
) in sub-step 

(i), as indicated in Equation (82): 1
2 ≔ ̃1 = {1, 5, 9, 13}. 

 

Notice that because there is only one endogenous parameter associated with source 2, we skip sub-step 

(ii). Since 𝑖′ = max�̂�′(𝑖̂
′ ∈ {2}) = 2, we also skip sub-step (iii) and proceed to (iv). This yields the 

following, by Equation (85): 

 

UniqueSet ≔ 1
2 ∩ [⋃ {min

�̂�
(�̂� ∈ 2

𝑙

 

𝑁
)}

𝑙∈2

] = {1, 5, 9, 13} ∩ [{min
�̂�

(�̂� ∈ {1, 5})} ∪ {min
�̂�

(�̂� ∈ {9, 13})}] 
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which simplifies to UniqueSet ≔ {1, 5, 9, 13} ∩ {1, 9} = {1, 9}. 

 

We then continue to Step 1b for the sources associated with conditional endogenous NACs in the first 

time period. Here, we must consider 𝑖′ ∈ {1}. We first initialize the set of unique scenarios to the last-

known value, given by the temporary set UniqueSet, in sub-step (i), condition (1). Specifically, by 

Equation (86), 1
1 ≔ {1, 9}. 

 

Because there is only one endogenous parameter associated with source 1, we skip sub-step (ii). We also 

skip sub-step (iii) since 𝑖′ = max�̂�′(𝑖̂
′ ∈ {1}) = 1. In practice, we would then continue to 𝑡 = 2. To 

summarize, 1
1 ≔ {1, 9} and 1

2 ≔ {1, 5, 9, 13}. 

 

Equation (33) requires us to form pairs among consecutive scenarios in sets 1
1

 

𝑁
∩1

1
, 1

2

 

𝑁
∩1

1
, 

2
1

 

𝑁
∩1

2
, and 2

2

 

𝑁
∩1

2
 for 𝑡 = 1. These sets are given by {1, 9} ∩ {1, 9}, {5, 13} ∩ {1, 9}, {1, 5} ∩

{1, 5, 9, 13}, and {9, 13} ∩ {1, 5, 9, 13}, respectively, which reduce to {1, 9}, ∅, {1, 5}, and {9, 13}, 

respectively. Pairing off consecutive scenarios in these sets yields pairs (1, 9), (1, 5), and (9, 13), as 

shown in Figure 13. Notice that none of the remaining pairs can be implied by any of the others. 

 

It is worth noting that repeating this procedure for a case such as Figure 14 will lead to slightly different 

scenario pairs than pictured. This is due to the order in which we consider the endogenous parameters. 

Specifically, by considering pairs among scenarios that differ in the possible realization of 𝜃�̂�,2 first, and 

then those for 𝜃�̂�,1, we obtain scenario pairs (�̂�, �̂�′), (�̂�, �̂�′′), and (�̂�′′, �̂�′′′) in Figure 14. By the unique 

scenarios algorithm, however, we consider the parameters in numerical order (i.e., 𝜃�̂�,1, followed by 𝜃�̂�,2) 

and instead obtain (�̂�, �̂�′), (�̂�, �̂�′′), and (�̂�′, �̂�′′′). Although the first set may appear to be more “natural” 

based on the appearance of Figure 14, both sets are equally valid since only 3 pairs are required to link the 

4 scenarios. 

A.11 Proof of Property 6 

Consider the endogenous scenario groups 𝑙 = 1, 2, … , |�̂�,ℎ̂| corresponding to endogenous parameter 𝜃�̂�,ℎ̂. 

The scenarios in each of these respective group differ only in the possible realization of 𝜃�̂�,ℎ̂. Given that 

there are 𝑀�̂�,ℎ̂ (or |Θ�̂�,ℎ̂|) possible realizations for 𝜃�̂�,ℎ̂, and in each respective group, each scenario must 

have a different possible realization for this endogenous parameter, it follows that there can only be 𝑀�̂�,ℎ̂ 

scenarios in each of these groups (i.e., one for each possible realization of 𝜃�̂�,ℎ̂). 

 

Furthermore, the lowest-indexed scenario in each of these groups must have the lowest realization for 

𝜃�̂�,ℎ̂. This is simply a consequence of the ordering on the set of realizations Θ�̂�,ℎ̂ (i.e., 𝜃�̂�,ℎ̂
1 < 𝜃�̂�,ℎ̂

2 < ⋯ <

𝜃
�̂�,ℎ̂

𝑀�̂�,ℎ̂) and the lexicographical ordering on the Cartesian products used in the scenario-generation process 

(see section 3). Specifically, as can be seen in Equation (5) and even more clearly in Figure 6c, we must 

exhaust all possible combinations of realizations for the uncertain parameters that occur after 𝜃�̂�,ℎ̂ in the 

Cartesian product before the realization of 𝜃�̂�,ℎ̂ can be incremented to the next possible value. This means 

that a scenario �̂� defined with a low realization for 𝜃�̂�,ℎ̂ will come before a scenario �̂�′ with a high 

realization for 𝜃�̂�,ℎ̂ and all of the same possible realizations for the other uncertain parameters. 
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Accordingly, in an endogenous scenario group, it follows that the lowest-indexed scenario must have the 

lowest realization for 𝜃�̂�,ℎ̂, the next-lowest-indexed scenario must have the next-lowest realization for 𝜃�̂�,ℎ̂, 

and so forth, until we reach the highest-indexed scenario in the group, which must have the highest 

realization for 𝜃�̂�,ℎ̂. For example, if 𝜃�̂�,ℎ̂ were defined with 3 possible realizations (low (𝐿), medium (𝑀), 

or high (𝐻)), there would be 3 scenarios in each of the corresponding (ordered) endogenous scenario 

groups, with realizations of the following form: (… , 𝜃�̂�,ℎ̂
𝐿 , … ), (… , 𝜃�̂�,ℎ̂

𝑀 , … ), (… , 𝜃�̂�,ℎ̂
𝐻 , … ). Note that this is 

the case depicted in Figure 10 for Property 4. 

 

Consider two scenarios �̂� and �̂�′ from one arbitrary group 𝑙 corresponding to 𝜃�̂�,ℎ̂ (i.e., �̂�,ℎ̂
𝑙

 

𝑁
). Recall that 

this means that �̂� and �̂�′ must have the same possible realizations for all uncertain parameters except 𝜃�̂�,ℎ̂. 

Because all scenarios must be placed in an endogenous scenario group corresponding to each endogenous 

parameter (by the endogenous scenario-group algorithm), both of these scenarios will also be placed into 

groups for a different endogenous parameter, 𝜃�̃�,ℎ̃. The two scenarios cannot be placed in the same 

endogenous scenario group in this case, however, since they have different possible realizations for 𝜃�̂�,ℎ̂ 

and thus would differ in the possible realizations of both 𝜃�̂�,ℎ̂ and 𝜃�̃�,ℎ̃ (i.e., 2 parameters). This would 

violate Property 3. It follows, then, that two scenarios in the same endogenous scenario group cannot 

appear together in any other endogenous scenario group, for any endogenous parameter. This is a fairly 

obvious conclusion since �̂� and �̂�′ differ in the possible realization of only one endogenous parameter, and 

in any arbitrary time period, we would expect scenario pair (�̂�, �̂�′) to appear only once. 

 

The endogenous scenario groups corresponding to 𝜃�̂�,ℎ̂ will have the following form: �̂�,ℎ̂
𝑙

 

𝑁
≔

{𝑠:   𝑠 = 𝛼1,  𝛼2, … , 𝛼𝑀�̂�,ℎ̂
} , �̂�,ℎ̂

𝑙′

 

𝑁
≔ {𝑠:   𝑠 = 𝛽1,  𝛽2, … , 𝛽𝑀�̂�,ℎ̂

} , �̂�,ℎ̂
𝑙′′

 

𝑁
≔ {𝑠:   𝑠 = 𝜂1,  𝜂2, … , 𝜂𝑀�̂�,ℎ̂

}, etc. 

By Property 4, we pair off consecutive scenarios in each of these groups. Note that these scenarios may be 

nonconsecutively indexed, and this necessitates the use of a different naming convention than used 

previously in the proof of Property 5. The associated endogenous NACs for an arbitrary time period 𝑡 = 𝜏 

are then: 

 

𝑦𝜏
𝛼1 = 𝑦𝜏

𝛼2 , … , 𝑦𝜏

𝛼𝑀
�̂�,ℎ̂

 − 1

= 𝑦𝜏

𝛼𝑀
�̂�,ℎ̂  (89) 

𝑦𝜏
𝛽1 = 𝑦𝜏

𝛽2 , … , 𝑦𝜏

𝛽𝑀
�̂�,ℎ̂

 − 1

= 𝑦𝜏

𝛽𝑀
�̂�,ℎ̂

 (90) 

𝑦𝜏
𝜂1 = 𝑦𝜏

𝜂2 , … , 𝑦𝜏

𝜂𝑀
�̂�,ℎ̂

 − 1

= 𝑦𝜏

𝜂𝑀
�̂�,ℎ̂

 (91) 

 

provided that 𝜃�̂�,ℎ̂ has not yet been realized (i.e., the scenarios are indistinguishable). If 𝜃�̂�,ℎ̂ has been 

realized, then the scenarios are distinguishable and the NACs do not apply, so it is only necessary for us 

to consider the former case where these constraints are active. 

 

At this point, recall that for any endogenous parameter, every scenario in  can be accounted for as a 

member of one of the endogenous scenario groups corresponding to that parameter. Further recall that 

none of the scenarios in those respective groups can appear together in any other group. This means that 

all other endogenous scenario groups can be produced, respectively, by selecting one scenario from 
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different groups defined for 𝜃�̂�,ℎ̂. Accordingly, we will continue to use the same naming convention in the 

definitions of other endogenous scenario groups in this proof (i.e., we will use 𝛼𝑚, 𝛽𝑚, 𝜂𝑚, etc. for 

scenarios, where 𝑚 = 1, 2,… , 𝑀�̂�,ℎ̂). 

 

Now, consider two scenarios �̂� and �̂�′′ from two separate groups 𝑙 and 𝑙′ corresponding to 𝜃�̂�,ℎ̂ (i.e., �̂�,ℎ̂
𝑙

 

𝑁
 

and �̂�,ℎ̂
𝑙′

 

𝑁
). In this case, the scenarios may differ in the possible realization of 𝜃�̂�,ℎ̂ (depending on their 

respective positions in the two groups), and must differ in the possible realization of at least one 

endogenous parameter other than 𝜃�̂�,ℎ̂ (since they belong to two separate groups corresponding to 𝜃�̂�,ℎ̂). 

Notice that the only way for scenarios �̂� and �̂�′′ to have the same possible realization for 𝜃�̂�,ℎ̂ is if they 

have the same position in both groups (not to be confused with parameter 𝑃𝑜𝑠(𝑠)). For example, if they 

both have the lowest realization for 𝜃�̂�,ℎ̂, they must be the lowest-indexed scenarios in their respective 

groups; if they both have the highest realization for 𝜃�̂�,ℎ̂, they must be the highest-indexed scenarios in 

their respective groups. If, then, �̂� and �̂�′′ have the same possible realization for 𝜃�̂�,ℎ̂ (i.e., the same 

position in both of their groups) and differ only in the possible realization of endogenous parameter 𝜃�̃�,ℎ̃, 

they will be placed in the same group corresponding to 𝜃�̃�,ℎ̃ by the endogenous scenario-group algorithm. 

(Note that if �̂� and �̂�′′ instead differ in other possible parameter realizations, they will be placed in 

different groups, and the discussion that follows would apply for the specific endogenous parameter for 

which this condition does apply.) 

 

The endogenous scenario groups corresponding to 𝜃�̃�,ℎ̃ will then have the following form: �̃�,ℎ̃
𝑙

 

𝑁
≔

{𝑠:   𝑠 = 𝛼1,  𝛽1,  𝜂1, … }, �̃�,ℎ̃
𝑙′

 

𝑁
≔ {𝑠:   𝑠 = 𝛼2,  𝛽2,  𝜂2, … }, … , �̃�,ℎ̃

𝑙′′

 

𝑁
≔ {𝑠:   𝑠 = 𝛼𝑀�̂�,ℎ̂

,  𝛽𝑀�̂�,ℎ̂
,  𝜂𝑀�̂�,ℎ̂

, … }, 

etc. Notice that in �̃�,ℎ̃
𝑙

 

𝑁
, the lowest-indexed scenario from group �̂�,ℎ̂

𝑙

 

𝑁
 has been grouped with the lowest-

indexed scenarios from groups �̂�,ℎ̂
𝑙′

 

𝑁
 and �̂�,ℎ̂

𝑙′′

 

𝑁
, the second-lowest-indexed scenarios have been grouped 

in �̃�,ℎ̃
𝑙′

 

𝑁
, and so forth. In general, the remaining groups corresponding to 𝜃�̃�,ℎ̃ would be generated from all 

other groups corresponding to 𝜃�̂�,ℎ̂, in the same manner, and would consist of scenarios other than 𝛼𝑚, 

𝛽𝑚, and 𝜂𝑚. Note that the same general approach also applies for the endogenous scenario groups of all 

other endogenous parameters, with the respective scenarios selected from different groups corresponding 

to 𝜃�̂�,ℎ̂. As before, the associated NACs for time period 𝑡 = 𝜏 are: 

 

𝑦𝜏
𝛼1 = 𝑦𝜏

𝛽1 ,   𝑦𝜏
𝛽1 = 𝑦𝜏

𝜂1 , … (92) 

𝑦𝜏
𝛼2 = 𝑦𝜏

𝛽2 ,   𝑦𝜏
𝛽2 = 𝑦𝜏

𝜂2 , … (93) 

𝑦𝜏

𝛼𝑀
�̂�,ℎ̂ = 𝑦𝜏

𝛽𝑀
�̂�,ℎ̂ ,   𝑦𝜏

𝛽𝑀
�̂�,ℎ̂ = 𝑦𝜏

𝜂𝑀
�̂�,ℎ̂ , … (94) 

 

provided that 𝜃�̃�,ℎ̃ has not yet been realized. 
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Notice that because 𝑦𝜏
𝛼1 = 𝑦𝜏

𝛼2 by Equation (89), and 𝑦𝜏
𝛽1 = 𝑦𝜏

𝛽2 by Equation (90), we can rewrite the 

first endogenous constraint in Equation (92), 𝑦𝜏
𝛼1 = 𝑦𝜏

𝛽1, as 𝑦𝜏
𝛼2 = 𝑦𝜏

𝛽2. Notice that this is the first 

endogenous constraint in Equation (93). 

 

Since 𝑦𝜏
𝜂1 = 𝑦𝜏

𝜂2 by Equation (91), we can use this constraint with Equation (90) to rewrite the second 

endogenous constraint in Equation (92), 𝑦𝜏
𝛽1 = 𝑦𝜏

𝜂1, as 𝑦𝜏
𝛽2 = 𝑦𝜏

𝜂2. Notice that this is the second 

endogenous constraint in Equation (93). 

 

Given any remaining scenarios that differ from 𝛼2, 𝛽2, and 𝜂2 in the possible realization of only 𝜃�̃�,ℎ̃, this 

process can be continued to produce all of the remaining NACs corresponding to group �̃�,ℎ̃
𝑙′

 

𝑁
 in Equation 

(93). In fact, if we consider only scenarios 𝛼𝑚, 𝛽𝑚, and 𝜂𝑚 (where 𝑚 = 1, 2,… ,𝑀�̂�,ℎ̂), it is not difficult to 

see that by using the first, second, third, etc. NACs from Equations (89), (90), and (91), along with 

Equation (92), we can imply all of the NACs corresponding to the groups for 𝜃�̃�,ℎ̃ that involve these 

scenarios. This includes the NACs for �̃�,ℎ̃
𝑙′′

 

𝑁
, as shown in Equation (94). 

 

To summarize the results in a general sense, first recall that we begin with the endogenous scenario 

groups corresponding to an arbitrary parameter 𝜃�̂�,ℎ̂. We will refer to these groups as our “base” groups. 

We assume that the corresponding NACs apply as equality constraints (i.e., fixed endogenous NACs). 

 

Further recall that the groups for all other endogenous parameters can be produced by selecting scenarios 

from different base groups, where in each case, the scenarios have the same position in their respective 

base groups (e.g., the lowest indexed, the second-lowest indexed, etc.). However, for an arbitrary 

parameter 𝜃�̃�,ℎ̃, we have just shown that the groups produced from the second-lowest-indexed scenarios, 

the third-lowest-indexed scenarios, etc. result in redundant NACs. This is the case regardless of whether 

these constraints are conditional or fixed. 

 

The reasoning here, in general, is that all NACs associated with an arbitrary endogenous parameter 𝜃�̃�,ℎ̃ 

can be implied by the base-group NACs and the NACs derived from pairing off the lowest-indexed 

scenarios from those base groups. (Note that our choice to use the lowest-indexed scenarios (rather than, 

for example, the highest) is arbitrary, and we have made this selection for convenience.) 

 

It then follows that, for generating endogenous scenario pairs, it is sufficient to consider only scenarios 𝑠 

and 𝑠′ that are in the first position of their respective base groups (i.e., the lowest-indexed scenarios from 

these groups), excluding all scenarios eliminated by Property 5. We refer to these scenarios as “unique.” 

We may then proceed to another endogenous parameter for which the associated NACs apply as equality 

constraints, and consider new base groups, where we allow only the new lowest-indexed scenarios that 

were members of the previous set of unique scenarios. Because the introduction of new equality 

constraints may allow us to imply other existing endogenous constraints, we may be able to remove 

additional scenarios from the pairing process each time we update our set of unique scenarios. In time 

periods where we do not have fixed endogenous NACs, a similar strategy can still be used for the case of 

multiple parameters associated with the same source, although the set of unique scenarios can only be 

updated in the context of that particular source. 
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The strategy outlined here is the basis for the unique scenarios algorithm.  ∎ 

A.12 Proof of Proposition 5 
Starting from Proposition 4, notice that we have relaxed the two remaining assumptions; specifically, that 

there are no initial ‘equality’ periods and that there is only one endogenous parameter associated with 

each source of uncertainty. To prove that we have the minimum number of endogenous scenario pairs in 

this general case, it is only necessary for us to show that after relaxing the two assumptions, and then 

introducing Property 6, the pairs in each endogenous scenario group cannot be implied by any other pairs. 

 

As previously discussed, there will be redundant scenario pairs in the model when we consider initial 

‘equality’ periods and multiple endogenous parameters associated with some of the sources of 

uncertainty. These redundant pairs are eliminated by Property 6. 

 

It follows that although there are both fixed endogenous NACs and conditional endogenous NACs, none 

of the remaining pairs can be used to imply any of the others. Thus, the complete set of endogenous 

scenario pairs, 𝑁, generated by Property 4, Property 5, and Property 6 contains the minimum number 

of pairs.  ∎ 

 


