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Abstract

In this paper, we present an MILP clustering formulation for tackling the oper-
ational management of crude oil supply (OMCOS) proposed by de Assis et al.
(2019). The OMCOS consists of defining the scheduling of vessels between off-
shore platforms and a crude oil terminal, combined with the scheduling of oper-
ations in a terminal to supply crude oil to distillation columns. The benefits of
using the clustering solution as a pre-step before solving the OMCOS are: (a)
reduces the number of routes for vessels; (b) simplifies offloading and unloading
operations; (c) imposes rules for crude mixtures in clusters of storage tanks that
minimize property variations; and (d) produces bounds on crude properties in-
side storage tanks that are used to linearize bilinear terms in blending constraints.
Through the combination of clusters and a MILP-NLP decomposition, near opti-
mal solutions were obtained for a set of representative instances of OMCOS at a
reduced computational cost.
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1. Introduction

The main goal of the Operational Management of Crude Oil Supply (OM-
COS) (de Assis et al., 2019) is to define the schedule of vessel trips and crude oil
operations in the terminal in order to deliver to the distillation columns (CDUs)
the required feed of crudes within the specification. In this problem (see Figure
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1), vessels travel between a crude oil terminal and floating platforms (FPSOs) lo-
cated in deep water oil fields. After offloading FPSOs, vessels unload crude oil
into the storage tanks (STs) located at the terminal. The tanks feed the charging
tanks (CTs) in order to achieve a certain crude blend specification, which is then
sent to the CDUs.

ST1

FPSO1

FPSO2

Vessel1

Vessel2

CDU1

CT1

CT2ST2

Figure 1: Illustration of the OMCOS. Adapted from de Assis et al. (2019)

Apart from the rules and constraints defined for OMCOS, there are no specific
rules on how to perform vessel trips between FPSOs and storage tanks, or how
the unloading of crude oil into storage tanks should be performed. This means
that vessels are free to travel back and forth all FPSOs and unload their cargo in
all storage tanks, leading to a broad range of possible blends in these tanks. As
shown in the work of de Assis et al. (2019), this lack of structure creates a highly
combinatorial problem, which can be hard to tackle depending on the size of the
instance. Additionally, by allowing random mixtures in the storage tanks, crudes
with distinct property values may be mixed (e.g., a mixture between crude c1 with
a sulfur content of 0.060 and crude c2 with 0.010), decreasing the flexibility of
operations at the terminal to produce the required blends in the charging tanks.

Ideally, each crude oil arriving at the terminal would have a dedicated storage
tank to be unloaded. If this is the case, crudes would only be mixed at the charging
tanks in order to produce blends within the specifications required by the CDUs.
Nevertheless, when the number of crudes is higher than the number of storage
tanks, the pigeonhole principle (Kelly et al., 2017b) suggests that eventually two
or more crudes will be mixed in a storage tank. Mixtures may also happen when
a vessel needs to unload its cargo in two or more tanks due to the lack of storage
capacity in a single one. Finally, a storage tank may be unavailable to receive
crudes (i.e., the tank is under maintenance or in operation feeding a charging tank),
which forces the vessel to unload in another tank, thereby leading to mixtures.

Since mixtures in the storage tanks seam unavoidable, a mathematical formu-
lation is proposed to define clusters (or groups) of crudes and storage tanks, such
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that the difference among the property values of the crudes assigned to a cluster
of storage tanks is as low as possible. From the solution of the clustering problem,
bounds on the crude property can be defined for the storage tanks. These bounds
are used to build the relaxation of non-convex blending constraints, resulting in
a relaxed MILP formulation, which is then used in a MILP-NLP decomposition
scheme. Further, by knowing the crudes that can be grouped or clustered, their
origin platforms and the storage tanks they are assigned to, the number of travel-
ing operations of vessels can be limited, which decreases the number of logistic
decisions (binary variables) and consequently the complexity of the MILP prob-
lem.

The remainder of this work is organized as follows. A review of the literature
is presented in Section 2. The problem definition is given in Section 3. The
mathematical formulation for clustering crudes is described in Section 4, while
the linearization of the blending constraints and the proposed solution strategy is
presented in Section 5. Problem instances and computational results are shown in
Section 6. Finally, the conclusion and directions for future work are described in
Section 7.

2. Literature Review

This section presents a review on the use of clustering models in combination
with mathematical optimization strategies for solving Inventory Routing (IRP),
Vehicle Routing (VRP), Crude Oil Scheduling (COS) and other problems prob-
lems. Regarding IRP and VRP, clusters are typically designed to reduce the com-
plexity of solution strategies for the routing problems. On the other hand, clusters
are employed in COS to impose rules on crude mixtures and define groups of tanks
to feed CDUs. Nevertheless, few works from the literature consider clusterization
for problems that involve COS.

In the VRP literature, Gillett and Miller (1974) were among the first to propose
the use of the cluster-first and route-second strategy. In their work, the solution
strategy consists of two sequential steps: (a) define groups of customers according
to their polar coordinates and assign vehicles according to capacities; and (b) solve
a TSP for each group.

Mathematical programming techniques are also used by Mulvey and Beck
(1984) to model the Capacited Clustering Problem (CCP), which has applications
in salesforce allocation and VRP. The problem consists in constructing clusters
that are as homogeneous as possible (i.e., minimize the sum of distances between
each element in a cluster) without violating the capacity of each cluster.
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Liu (1999) make use of clusters to tackle the stock location and order-picking
problems in a distribution center. In this problem, the goal is to cluster items in the
slots of racks and to sequence the picking lists by customers in order to minimize
the total travel distance of a picker in the distribution center.

An extension of the (CCP) is the Capacitated Centred Clustering Problem
(CCCP) (Negreiros and Palhano, 2006), which does not consider necessarily as
center value of a cluster one of the elements’ attributes in that cluster. Instead, the
center value is defined with respect to all elements of the cluster, which introduces
non-linearities into the formulation.

Dondo and Cerdá (2007) tackle a multi-depot VRP with a heterogeneous fleet
and time windows. The cluster-based solution strategy is a combination of three
sequential steps: (a) identify the set of feasible clusters of customers that are cost-
effective; (b) assign clusters to vehicles and sequence them on each tour; and (c)
define within a cluster the order of nodes and the schedule of vehicles arrival times
at customer locations for each tour.

Ganesh and Narendran (2007) address the VRP with delivery and pick-up
nodes. The authors proposed a solution strategy where nodes are first clustered
based on proximity, then routes are defined for each cluster of nodes, and finally
vehicles are allocated to the routes. Qi et al. (2012) tackle a large-scale VRP
with time windows. In this work, clusters of customers are defined based on both
their spatial location and temporal information. The authors manage to represent
time and space in the same coordinate system, and therefore measure the space-
temporal distance between two customers.

Nambirajan et al. (2016) extend the classic IRP formulation by considering
replenishment tasks at a central depot and different warehouses in a three echelon
supply chain. First, the replenishment schedules from suppliers to a single depot
is defined using dynamic programming (DP). Then, the routing of vehicles from
the central depot to multiple warehouses is planned using an extension of a three-
stage heuristic based on clustering, allocation, and routing (Ramkumar, 2011).

Kelly et al. (2017b) propose an MILP model for defining the assignment of
crudes, considering different properties, from external sources to storage tanks in a
crude oil terminal. The assignment is done such that the deviation of properties of
crudes assigned to a cluster is minimized. Despite considering a large number of
crudes and properties, the clustering model does not take into account availability
of crudes, flow rate limits, timing, number of storage tanks and storage capacity
limits for defining the clusters. Further, Kelly et al. (2017a) discuss how to use
their clustering formulation (Kelly et al., 2017b) as part of a pre-scheduling step to
reduce the original search space and tackle large scale instances of COS problems.
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Cerdá et al. (2018) also make use of a clustering strategy for tackling a COS
problem which considers charging tanks, pipelines and CDUs. They proposed
a decomposition strategy based on two decision levels. First, an MINLP model
is solved to: (a) grouping charging tanks into as many clusters as the number of
CDUs, and (b) assign each cluster of charging tanks to feed a unique CDU. Then,
an MINLP model for each cluster-CDU pair is solved to defined the scheduling of
crude oil operations. The results show for the tested instances a reduced degrada-
tion in solution quality and a strong reduction of the computational burden.

When it comes to food grains procurement and their transportation, the use
of clusters can play a major role in order to decrease the complexity of resulting
optimizations models. Mogale et al. (2019) propose an (MILP) formulation to
determine the number and location of procurement centers while minimizing the
total supply chain network costs. The first step of the solution strategy consists
of using genetic algorithms to group grain suppliers to clusters and then allocate
each cluster to a candidate location of procurement center. Then, the (MILP) is
solved.

More recently, an extension of the storage assignment and warehouse order-
picking problems is proposed by Lee et al. (2020). The solution strategy consists
of two steps: clustering and assignment. In the clustering stage, an optimiza-
tion model to group items balances both travel time and picking delays caused by
traffic congestion, and it is solved by evolutionary algorithms. The latter step (as-
signment) consists of distributing items in each cluster to empty storage locations.

Usually, clustering formulations are tailor-made for problems like IRP, VRP
or COS, and cannot be fully applied to an integrated approach as the operational
management of crude oil supply (OMCOS).

Therefore, this work proposes an MILP clustering formulation for OMCOS
that has the following benefits: (a) decreasing the number of routes available for
the vessels; (b) decreasing offloading and unloading operations; and (c) defining
rules for crude mixtures in clusters of storage tanks such that the property devi-
ation is minimized. Futher, in order to define the clusters, the proposed MILP
formulation takes into account the availability of crudes, flow rate limits, timing,
availability of resources (i.e., FPSOs, STs, CTs and CDUs), storage capacity lim-
its and demand satisfaction.

The use of clusters also plays a part in the optimization. After defining clus-
ters, bounds on crude properties inside storage and charging tanks can be inferred.
These bounds are used to linearize the bilinear terms in blending constraints,
which yields an MILP linearization of the OMCOS MINLP formulation. Through
the combination of clusters and an MILP-NLP decomposition strategy, OMCOS
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is solved for a set of instances, presenting near optimal solutions and reduced
computational complexity.

3. Problem Statement

Figure 2 (a) illustrates a problem instance with 7 platforms (FPSO1 toFPSO7),
7 crudes (C1 to C7), 5 storage tanks (ST1 to ST5), 3 charging tanks (CT1 to
CT3) and 2 CDUs (CDU1 and CDU2). For the sake of simplicity, the opera-
tions between resources are not shown (i.e., arrows in Fig. 1).

Figure 2 (b) illustrates the network to be considered for the clustering formu-
lation. Notice that platform-cluster 1 is linked to st-cluster 1, platform-cluster 2 is
linked to st-cluster 2, and so forth. Further, all st-clusters are connected to the CT
Group (i.e., aggregate of all charging tanks), which is linked to the CDU Group.

As an example, assume that one wants to cluster the set of platforms FPSO1
to FPSO7, and consequently the set of crudes C1 to C7, in two groups (i.e.,
platform-cluster 1 and platform-cluster 2). Similarly, the set of storage tanks ST1
to ST5 will be clustered in two groups (i.e., st-cluster 1 and st-cluster 2), and
therefore, it is possible to define which group of platforms are allowed to feed each
group of storage tanks. Each platform-cluster will have a combined production
rate, storage and flow rate capacity that correspond to the sum of the rates and
capacities of the platforms assigned to the cluster. The same holds for the clusters
of storage tanks. Each st-cluster will have a combined capacity and flow rate. As
indicated in Figure 2 (b), all charging tanks are grouped into a single CT Group
and, in the same manner, the CDUs are integrated in a single CDU Group. The
crude oil demand of the CDU Group is the sum of the individual demands of all
CDUs. Likewise, the storage and flow rate capacities of the CT Group depend on
characteristics of the charging tanks.

The solution of the clustering problem can be seen in Figure 2 (c). The objec-
tive of satisfying the demand of the CDU Group, while minimizing the deviation
among the crude property values in a cluster drives a solution where platforms
FPSO1, FPSO4, FPSO6 and FPSO7 are clustered and assigned to the group
of storage tanks ST1, ST2 and ST3. As for the remaining, the group of platforms
FPSO2, FPSO3 and FPSO5 is assigned to storage tanks ST4 and ST5.

Note that for the instance presented in Figure 2 (a), if the number of clus-
ters is defined as 1 (one), all storage tanks would be assigned to this cluster, and
all platforms would be allowed to feed all storage tanks, leading to the original
problem instance. At the other extreme, if the number of clusters is defined as 5
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(five), each cluster would have only one storage tank. Thus, the baseline opera-
tional management problem of crude oil supply can be reduced to its cluster-based
version, meaning that the latter is more general than the former.
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Figure 2: Clustering procedure considering 2 clusters.

Main operational rules can be defined as follows:

(a) a platform must be assigned to a unique platform-cluster. Likewise, a stor-
age tank must be assigned to a unique st-cluster;
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(b) a platform-cluster must contain at least one platform. The same holds for
the st-cluster. At least one storage tank must belong to a st-cluster;

(c) a st-cluster can perform at most one (i.e., receiving crudes from a platform-
cluster or sending crudes to the CT Group) operation during the same time
period;

(d) at most one st-cluster can feed the CT Group during the same time period;

(e) a distillation operation (i.e., sending crudes from the CT Group the CDU
Group) must be carried out in all time periods.

The optimization problem consists in determining, for the planning horizon,
the optimal cluster of platforms, storage tanks, and consequently crude oils, while
maximizing the flow of crudes to the CDU Group and minimizing the deviation
of crude property values in a st-cluster. To this end, we propose a discrete-time
MILP model, whose main decisions consist in selecting the assignments of storage
tanks and platforms to clusters, what operations take place at each time, the level
of crudes in each cluster and group of resources, and the volumes transferred
between clusters and groups of resources.

4. Mathematical Model for Cluster Design

Before presenting the constraints and objective function of the mixed-integer
clustering formulation, the required sets, parameters and variables are defined.

1. Sets.

• T . Set of periods. Index i.

• RF , RS, RC, RD. Set of platforms, storage tanks, charging tanks
and CDUs. Index r.

• R = RF ∪RS ∪RC ∪RD. Set of all resources. Index r.

• RFCS = {1, . . . , NCS}. Set of platform-clusters. Cardinality |RFCS| =
NCS, where NCS is the number of clusters. Index rr and rrr.

• ST CS = {1, . . . , NCS}. Set of st-clusters. Cardinality |ST CS| =
NCS, where NCS is the number of clusters. Index rr and rrr.

• NRC. Single-element set representing all charging tanks (namely, CT
Group). Index rr and rrr.
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• NRD. Single-element set representing all CDUs (namely, CDU Group).
Index rr and rrr.

• NR = RFCS ∪ ST CS ∪ NRC ∪ NRD. Set of all new resources.
Index rr and rrr.

• N ⊂ NR × NR. Links between aggregated resources to represent
the network illustrated in Figure 2 (b).

• C. Set of crudes. Index c.

• K. Set of properties. Index k.

2. Parameters.

• RATEr. Production rate of platform r ∈ RF in 103 bbl/day.

• PRk,c. Value of property k associated to crude c.

• CFPSOc,r ∈ {0, 1}. Indicates if crude c is produced in platform
r ∈ RF .

• [CAP r, CAP r]. Lower and upper bounds on the capacity of each
resource r ∈ R.

• [DEM r, DEM r]. Lower and upper bounds on the total volume of
crude oil demanded from each charging tank r ∈ RC by the CDUs.

• TILr. Initial level of crude oil in resource r ∈ R \ RD.

• [C̃AP rr, C̃AP rr]. Lower and upper bounds on the capacity of new
resource rr ∈ NR.

• [D̃EM rr, D̃EM rr]. Lower and upper bounds on the total demand of
the CDU Group rr ∈ NRD over the planning horizon. Notice that

D̃EM rr =
∑

r∈RC DEM r and D̃EM rr =
∑

r∈RC DEM r.

• [F̃Rr, F̃Rr]. Lower and upper bounds on the outlet flow rate of re-
source r ∈ R \ RD.

• [PRk, PRk]. Lower and upper bounds on property k among all crudes
c.

• [PRST k,r, PRST k,r]. Lower and upper bounds of property k in each
storage tank r ∈ RS . These bounds are defined after finalizing the
cluster optimization, as calculated by Eqs. (30) and (31) which will
be introuced later, and then used to linearize the blending constraints
defined in the OMCOS formulation (de Assis et al., 2019).
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3. 0-1 Variables.

• assignSTCSr ,rr ∈ {0, 1}. Is 1 if storage tank r ∈ RS is assigned to
st-cluster rr ∈ ST CS .

• assignRFCSr ,rr ∈ {0, 1}. Is 1 if platform r ∈ RF is assigned to
platform-cluster rr ∈ RFCS .

• assigni ,rr ,rrr ∈ {0, 1}. Is 1 if there is flow of crude oil between re-
sources rr, rrr ∈ NR in period i.

• crudeSTCSc,rr ∈ {0, 1}. Is 1 if crude c is assigned to st-cluster rr.

4. Continuous Variables.

• l̃ri,rr ≥ 0. Total level of crude oil in the cluster resource rr ∈ NR in
period i.

• ṽti,rr,rrr ≥ 0. Flow of crude between cluster resources (rr, rrr) ∈ N
in period i.

• ĩli,rr ≥ 0. Initial level of crude oil in cluster resource rr ∈ NR \ NRD.

• tgk ,rr ≥ 0. Value associated to property k in st-cluster rr ∈ ST CS
such that the difference between tgk,rr and the property of crudes as-
signed to rr is minimized.

• epri ,r ,k ≥ 0. Is the value of property k in storage or charging tank r in
period i.

Having introduced the notation, we are in a position to present the constraints
that define the formulation for clustering platforms and storage tanks.

4.1. Clustering Rules
Eq. (1) states that at least one platform r ∈ RF must be assigned to a

platform-cluster rr ∈ RFCS .∑
r∈RF

assignRFCSr ,rr ≥ 1, rr ∈ RFCS. (1)

Also, Eq. (2) defines that a platform r is assigned to one platform-cluster rr.∑
rr∈RFCS

assignRFCSr ,rr = 1, r ∈ RF . (2)
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Similar rules can be defined for the storage tank clusters. At least one storage
tank r ∈ RS must be assigned to a st-cluster rr ∈ ST CS .∑

r∈RS

assignSTCSr ,rr ≥ 1, rr ∈ ST CS. (3)

Further, a storage tank r must be assigned to one st-cluster rr.∑
rr∈ST CS

assignSTCSr ,rr = 1, r ∈ RS. (4)

Eqs. (5)-(6) track which crude c is assigned to each st-cluster rrr. If platform
r, which produces crude c, is assigned to platform-cluster rr and the connection
from the platform-cluster rr to st-cluster rrr is defined in the network N , then
crude c will be delivered to st-cluster rrr. Put another way, this constraint states
that crudeSTCSc,rrr = 1 when: platform r produces crude c, CFPSOc,r =
1; the platform is assigned to platform-cluster rr, assignRFCSr ,rr = 1; and
the platform-cluster rr feeds st-cluster rrr, a condition established by the link
(rr, rrr) ∈ N .

crudeSTCSc,rrr ≥ assignRFCSr ,rr ,

c ∈ C, r ∈ RF , rrr ∈ ST CS, (rr, rrr) ∈ N : CFPSOc,r = 1, (5)

crudeSTCSc,rrr ≤
∑
r∈RF:

CFPSOc,r=1

assignRFCSr ,rr ,

c ∈ C, rrr ∈ ST CS, (rr, rrr) ∈ N . (6)

4.2. Inventory Control
Eq. (7) defines the initial volume ilrr of crude, in each platform-cluster rr ∈

RFCS, as the sum of initial volume TILr in each platform r ∈ RF assigned to
rr (i.e., assignRFCSr,rr = 1). Similarly, Eq. (8) defines the initial volume in
each st-cluster rr ∈ ST CS . The proposed cluster framework considers a unique
group rr ∈ NRC of charging tanks (see Fig. 2 (b)). Therefore, Eq. (9) defines
the initial volume ilrr of the CT Group as the the sum of the initial volume TILr
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in each charging tank r ∈ RC.

ilrr =
∑
r∈RF

TILr assignRFCSr ,rr , rr ∈ RFCS, (7)

ilrr =
∑
r∈RS

TILr assignSTCSr ,rr , rr ∈ ST CS, (8)

ilrr =
∑
r∈RC

TILr, rr ∈ NRC. (9)

The inventory l̃ri,rr of crude of platform-cluster rr in period i, as described by
Eqs. (10) and (11), is defined as the inventory in the previous period i-1, l̃ri−1,rr
(or ilrr for i = 1) added to the production rate RATEr of all platforms r assigned
to platform-cluster rr (i.e., assignRFCSr ,rr = 1) and subtracted the flow ṽti,rr,rrr
of crude oil entering the st-cluster rrr.

l̃ri,rr = ilrr +
∑
r∈RF

RATEr assignRFCSr ,rr − ṽti,rr,rrr,

rr ∈ RFCS, (rr, rrr) ∈ N , i = 1, (10)

l̃ri,rr = l̃ri−1,rr +
∑
r∈RF

RATEr assignRFCSr ,rr − ṽti,rr,rrr

rr ∈ RFCS, (rr, rrr) ∈ N , i ∈ T \ {1}. (11)

Likewise, Eqs. (12) and (13) enforce the inventory control in each st-cluster
and in the CT Group for the initial period i = 1 and the remaining planning
horizon, respectively. For each st-cluster rr ∈ ST CS , the level of crude l̃ri,rr in
period i is defined as its previous level l̃ri−1,rr (or ilrr for i = 1) plus the inlet flow
from platform-cluster rrr ∈ RFCS : (rrr, rr) ∈ N , subtracted the outlet flow to
the CT Group rrr ∈ NRC : (rr, rrr) ∈ N .

l̃ri,rr = ilrr +
∑

(rrr,rr)∈N

ṽti,rrr,rr −
∑

(rr,rrr)∈N

ṽti,rr,rrr,

rr ∈ (ST CS ∪ NRC), i = 1, (12)

l̃ri,rr = l̃ri−1,rr +
∑

(rrr,rr)∈N

ṽti,rrr,rr −
∑

(rr,rrr)∈N

ṽti,rr,rrr,

rr ∈ (ST CS ∪ NRC), i ∈ T \ {1}. (13)
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In the case of rr being CT Group, the level l̃ri,rr of crude in period i is defined
as its previous level l̃ri−1,rr (or ilrr for i = 1) plus the inlet flow from st-cluster
rrr ∈ ST CS : (rrr, rr) ∈ N , minus the outlet flow to the CDU Group rrr ∈
NRD : (rr, rrr) ∈ N .

4.3. Resource Capacity
The capacity bounds on each platform-cluster, st-cluster and the CT Group are

enforced by Eqs. (14)-(16).

l̃ri,rr ≤
∑
r∈RF

CAP r assignRFCSr ,rr , i ∈ T , rr ∈ RFCS, (14)

l̃ri,rr ≤
∑
r∈RS

CAP r assignSTCSr ,rr , i ∈ T , rr ∈ ST CS, (15)

l̃ri,rr ≤
∑
r∈RC

CAP r, i ∈ T , rr ∈ NRC. (16)

4.4. Flow Rate Limits
Eq. (17) defines that when there is flow of crude oil out of platform-cluster

rr to st-cluster rrr in period i (i.e., assigni ,rr ,rrr = 1), it is limited by the sum

of maximum flow rate F̃Rr allowed out of each platform r that is assigned to
platform-cluster rr (i.e., assignRFCSr ,rr = 1).

ṽti,rr,rrr ≤

(∑
r∈RF

F̃Rr assignRFCSr ,rr

)
assigni ,rr ,rrr ,

i ∈ T , rr ∈ RFCS, (rr, rrr) ∈ N , (17)

Notice that this equation is non-linear as it involves the product of two 0-1 vari-
ables, but it can be linearized by the set of Eqs. (18).

ṽti,rr,rrr ≥ 0,

ṽti,rr,rrr ≤
∑

r∈RF
F̃Rr assignRFCSr ,rr ,

ṽti,rr,rrr ≤
( ∑

r∈RF
F̃Rr

)
assigni ,rr ,rrr .

i ∈ T , rr ∈ RFCS, (rr, rrr) ∈ N .

(18)

A similar constraint can be defined to limit the flow of crudes out of a st-cluster
rr as stated in Eq. (19). Like Eq. (17), the flow out of a st-cluster is limited by
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the sum of maximum flow rate F̃Rr allowed out of each storage tank r assigned
to the cluster rr (i.e., assignSTCSr ,rr = 1).

ṽti,rr,rrr ≤

(∑
r∈RS

F̃Rr assignSTCSr ,rr

)
assigni ,rr ,rrr ,

i ∈ T , rr ∈ ST CS, (rr, rrr) ∈ N , (19)

Likewise, this equation can be linearized by the set of Eqs. (20).
ṽti,rr,rrr ≥ 0,

ṽti,rr,rrr ≤
∑

r∈RS
F̃Rr assignSTCSr ,rr ,

ṽti,rr,rrr ≤
( ∑

r∈RS
F̃Rr

)
assigni ,rr ,rrr .

i ∈ T , rr ∈ ST CS, (rr, rrr) ∈ N .

(20)

Finally, the total flow of crude oil from the CT Group into the CDU Group is
limited by Eq. (21). Notice that this constraint is linear since there is only one CT
Group which contains all charging tanks.

ṽti,rrr,rr ≤

(∑
r∈RC

F̃Rr

)
assigni ,rr ,rrr , i ∈ T , rr ∈ NRC, (rr, rrr) ∈ N .

(21)

4.5. Demand Satisfaction
Eqs. (22) and (23) define respectively the lower and upper bounds on crude

oil demand for the group of CDUs. For instance, the lower demand D̃EM rrr

of the group of CDUs rrr ∈ NRD, in Eq. (22), is defined as the sum of the
minimum supply of crude oil DEM r that each charging tank r needs to provide
to the CDUs. A similar definition is also valid for the upper bound in Eq. (23).

Eq. (24) ensures that the total flow ṽti,rr,rrr from the CT Group rr ∈ NRC to
the CDU Group rrr ∈ NRD, over the planning horizon, must be within the lower

and upper bounds [D̃EM rrr, D̃EM rrr] on the overall crude demand requested by
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the CDUs.

D̃EM rrr =
∑
r∈RC

DEM r, rrr ∈ NRD, (22)

D̃EM rrr =
∑
r∈RC

DEM r, rrr ∈ NRD. (23)

D̃EM rrr ≤
∑
i∈T

∑
(rr,rrr)∈N

ṽti,rr,rrr ≤ D̃EM rrr, rrr ∈ NRD. (24)

4.6. Operation Rules
Rules on inlet and outlet operations (de Assis et al., 2019, 2017), can be ap-

plied for the cluster network in Figure 2 (b). Eq. (25) ensures that at most one
st-cluster rr can feed the CT Group rrr in period i.∑

rr∈ST CS:

(rr,rrr)∈N

assigni,rr,rrr ≤ 1, i ∈ T , rrr ∈ NRC. (25)

Eq. (26) states that, in period i, an inlet operation from platform-cluster rr into a
st-cluster rrr can not be performed at the same time as an outlet operation from
the same st-cluster rrr.

assigni ,rr ,rrr + assigni ,rrr ,rrrr ≤ 1,

i ∈ T , rrr ∈ ST CS, (rr, rrr) ∈ N , (rrr, rrrr) ∈ N . (26)

Further, as stated by de Assis et al. (2019), Eq. (27) defines the continuous dis-
tillation condition, which means that in all periods of time i ∈ T the CT Group
rr ∈ NRC must be assigned to supply crude to the CDU Group rrr ∈ NRD.

assigni,rr,rrr = 1, i ∈ T , rrr ∈ NRD, (rr, rrr) ∈ N . (27)
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4.7. Objective
The objective (28) of the clustering problem involves three terms:

C : max f =

∑
i∈T

∑
(rr,rrr)∈N :

rr∈NRC

ṽti,rr,rrr

 /D̃EM CDUGroup

− blendWeight
∑
k∈K

∑
c∈C

∑
rr∈ST CS

|PRk,c − tgk ,rr |
PRk − PRk

crudeSTCSc,rr

−
∑

(rr,rrr)∈N :

rr∈RFCS

∑
(rrrr,rrrrr)∈N :

rrrr∈RFCS

∣∣∣∣∣∣
∑

r∈RS
assignSTCSr ,rrr∑

r∈RF
assignRFCSr ,rr

−

∑
r∈RS

assignSTCSr ,rrrrr∑
r∈RF

assignRFCSr ,rrrr

∣∣∣∣∣∣
(28)

• In the first term, similar to the baseline operational management problem
defined in de Assis et al. (2019), the clustering problem aims to maximize
the flow of crude supplied to the CDU Group. Since this term has as denom-
inator the maximum demand of the CDU Group, it will assume a maximum
value of 1. This is done to bring this term to an order that is comparable
with the other terms in the objective.

• In the second term, the objective aims to define a single target value for each
property k, and for all crudes to be stored in a given st-cluster rr, namely
the value tgk,rr. Then, the objective seeks to minimize the deviation of the
property k of each crude c, PRk,c, that can be delivered to the ST cluster rr
from the target value tgk,rr. As the property k may vary depending on the
type of crude c, this objective seeks to group FPSOs with similar crudes to
feed the same st-cluster.

This term, which is the L1 distance metric, is typically found in K-medoids
MILP formulations for building clusters (Papageorgiou and Trespalacios,
2018; Nemhauser and Wolsey, 1988; Kaufman and Rousseeuw, 1987). The
choice of the L1 distance metric is also endorsed by Kelly et al. (2017b),
which propose a clustering MILP model for assigning crudes from external
sources to storage tanks in a crude oil terminal.

• Finally, the last term of the objective balances the proportion between the
number of storage tanks and platforms in a (platform-cluster, st-cluster) pair
with the proportion of these resources in the remaining pairs.
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The detailed linearization of Eq. (28), which is described in Appendix Ap-
pendix A.

Consequently, the objective can be reformulated as the linear function given
by Eq. (29), with parameter blendWeight being a weighting factor for the second
term of the objective.

C : max f =

∑
i∈T

∑
(rr,rrr)∈N :

rr∈NRC

ṽti,rr,rrr

 /D̃EM CDUGroup

− blendWeight
∑
k∈K

∑
c∈C

∑
rr∈ST CS

̂deviationk ,c,rr

−
∑

(rr,rrr)∈N :

rr∈RFCS

∑
(rrrr,rrrrr)∈N :

rrrr∈RFCS

proportionDiff rrrr ,rrrrr
rr ,rrr (29)

Having introduced the definitions above, the MILP formulation for the clus-
tering problem consists in minimizing the objective (29) subject to the constraints
(1)-(16), Eqs. (18), (20)-(27), (A.1)-(A.2), (A.4), (A.5)-(A.6), (A.9)-(A.10), (A.13)-
(A.14), and (A.16)-(A.17).

4.8. Remarks
There are two main consequences of clustering crudes.

• First, by restricting the crudes allowed in each st-cluster rr, lower and upper
bounds [PRST r,k, PRST r,k] can be derived for the value of property k for
the storage tank r assigned to st-cluster rr.

PRST k,r = min{PRk,c : crudeSTCSc,rr · assignRFCSr ,rr = 1,

c ∈ C, rr ∈ ST CS}, k ∈ K, r ∈ RS. (30)

PRST k,r = max{PRk,c : crudeSTCSc,rr · assignRFCSr ,rr = 1,

c ∈ C, rr ∈ ST CS}, k ∈ K, r ∈ RS. (31)

• And second, the assignment of a platform-cluster to feed a given st-cluster
restricts a vessel to unload in specific storage tanks, and travel only between
platforms and storage tanks within these clusters. The full development of
these bounds, and their use on the operational management of crude oil
supply will be the focus of Section 5. The computational gains arising for
this new solution methodology will be analyzed in Section 6.
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5. Linear Approximation of Bilinear Terms and Solution Strategy

The solution of the OMCOS MINLP formulation proposed by de Assis et al.
(2019) consists of a MILP-NLP decomposition scheme. The MILP is a relaxation
of the MINLP, in which the blending constraints are relaxed by McCormick en-
velopes (McCormick, 1976; Castro, 2015). Further, the logistics decisions (i.e.,
binary variables) obtained by solving the MILP are fixed in the MINLP, yielding
a NLP which is then solved to obtain a primal solution. Despite generating tight
relaxations, the use of McCormick envelopes (e.g., univariate or bivariate parti-
tioning) increase the number of binary variables that lead to a significant impact
on the solution time of the MILP.

This section presents an alternative way to handle blending constraints, which
takes advantage of the structure imposed by solving the clustering formulation.

5.1. Linear Approximation of Bilinear Terms
When a blend of crudes accumulates in a storage or charging tank r ∈ RS ∪RC,

the total level of crude lri,r in tank r in period i can also be seen as the sum of vol-
umes of each crude c (i.e., lri,r =

∑
c∈C lcri,r,c). Variable epri,r,k, which denotes

the value of property k ∈ K of the blend of crudes in a storage or charging tank r
in period i, can be defined by the following non-linear equation:

epri,r,k =
∑
c∈C

PRk,c
lcri,r,c
lri,r

, i ∈ T , r ∈ RS ∪RC, k ∈ K, (32)

where parameter PRk,c is the value of property k in crude oil c, and the non-linear
term lcri,r,c

lri,r
is the volume fraction of crude c in a tank r during time i.

As in the baseline model (de Assis et al., 2019), variables analogous to the
total and individual level of crudes in a tank r in period i (i.e., lcri,r,c and lri,r)
can be introduced to track the flow of crudes between resources. While vti,v is the
total volume of crude oil transferred in period i by operation v, vcti,v,c is the vol-
ume of crude c transferred in period i by operation v (i.e., vti,v =

∑
c∈C vcti,v,c).

The blending constraint states that the proportion of crude c inside a storage or
charging tank r, defined by lcri,r,c

lri,r
, must hold whenever there is a flow operation

v out of resource r (i.e., operation v ∈ Or), a condition imposed by the equation
below:

vcti,v,c
vti,v

=
lcri,r,c
lri,r

, (33)
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which can be rewritten as:

vcti,v,c = vti,v
lcri,r,c
lri,r

, i ∈ T , r ∈ RS ∪RC, v ∈ Or, c ∈ C. (34)

Equation (34) can be incorporated in Eq. (32) by multiplying both sides by
vti,v to obtain Eq. (35) and replacing lcri,r,c

lri,r
vti,v by vcti,v,c to obtain Eq. (36).

Notice that the right-hand side of Eq. (36) is linear, while the left-hand side is
non-linear.

epri,r,kvti,v =
∑
c∈C

PRk,c
lcri,r,c
lri,r

vti,v, (35)

epri,r,kvti,v =
∑
c∈C

PRk,cvcti,v,c, i ∈ T , r ∈ RS ∪RC, v ∈ Or, k ∈ K. (36)

This is valid for all periods of time i ∈ T , storage and charging tanks r ∈ RS ∪
RC, crude properties k ∈ K and transfer operations v ∈ Or leaving resource r.
The steps to reach equation (36) are similar to the ones followed by Méndez et al.
(2006), who propose a strategy to tackle blending and short-term scheduling in oil-
refinery applications. Equation (36) balances, for every period i, the total (vti,v)
and individual (vcti,v,c) volumes of crude flowing out from storage or charging
tanks, with the overall value of property k in tank r (epri,r,k) and the individual
property k of each crude c (PRk,c).

Every feeding operation v ∈ WD from charging tanks to CDUs is bounded
by lower and upper bounds [DEMCv,k, DEMCv,k] on the value of property
k. This means that variable epri,r,k, which is the value of property k in charg-
ing tank r in period i, must be between these bounds when there is a transfer
of crudes to a CDU. Eq. (37) takes advantage of the lower and upper bounds
[DEMCv,k, DEMCv,k] to define a linearization for Eq. (36).

DEMCv,kvti,v ≤
∑
c∈C

PRk,cvcti,v,c

≤ DEMCv,kvti,v, i ∈ T , r ∈ RC, v ∈ Or, k ∈ K. (37)

For storage tanks, vessels may unload different types of crudes during the
planning horizon, making it difficult to derive bounds on properties and conse-
quently linearizations such as Eq. (37). Nevertheless, the solution of the cluster-
ing problem restricts the crudes present in each st-cluster rr, and consequently in
the storage tanks assigned to cluster rr. As a consequence, Eqs. (30) and (31)
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define lower and upper bounds [PRST k,r, PRST k,r] on the crude property k for
storage tank r. Similarly as in Eq. (37), one can take advantage of these bounds
to linearize Eq. (36) for the case of storage tanks, as indicated by Eq. (38).

PRST k,rvti,v ≤
∑
c∈C

PRk,cvcti,v,c ≤ PRST k,rvti,v,

i ∈ T , r ∈ RS, v ∈ Or, k ∈ K. (38)

5.2. Solution Strategy
In general terms, the combination of the clustering recommendation with the

two-step MILP-NLP solution strategy consists of the following steps:

• First, the clustering formulation (29) of a problem instance is solved. Then,
the original problem instance is restricted according to the solution of the
clustering problem (29). This means: (a) constrain the domain of vessel’s
trips variable1 si,r,v,u to consider trips only among the platforms and stor-
age tanks that belong to the same (platform-cluster, st-cluster) pair, and (b)
constrain the domain of logistics decisions variable2 zi,v for vessels to only
consider offloading crudes from platforms and unloading them into storage
tanks that belong to the same (platform-cluster, st-cluster) pair.

• Next, an MILP linearization of the OMCOS problem defined by de Assis
et al. (2019) is constructed, which consists of all the original variables and
constraints, except the blending constraint (33) which is linearized by Eqs.
(37) and (38).

• Finally, the solution of the MILP is used as an initial point and its logistics
decisions zi,v and si,r,v,u (binary variables) are fixed in the MINLP, resulting
in a non-linear programming (NLP) problem, which is solved to obtain the
final solution.

6. Analysis

The goal of this section is to (a) analyze the results given by the clustering
formulation (29) proposed in Section 4; (b) understand how the clustering of re-

1Binary variable si,r,v,u takes on value 1 if, after performing an operation v in period i, vessel
r performs an operation u in period i+ 1.

2Logistic variable zi,v assumes value 1 if operation v is executed in period i.
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sources, and consequently crudes, affects the solution of the three instances con-
sidered for the Operational Management of Crude Oil Supply (de Assis et al.,
2019); and (c) propose and solve new instances.

First, the clustering formulation is run to obtain different clustering schemes
for the instances 2F-2V-2ST-2CT-1CDU-2C-1P-15D, 4F-4V-6ST-4CT-3CDU-8C-
1P-15D and 4F-4V-10ST-6CT-5CDU-8C-1P-15D. For example, instance 2F-2V-
2ST-2CT-1CDU-2C-1P-15D means: 2 FPSOS, 2 vessels, 2 storage tanks, 2 charg-
ing tanks, 1 distillation column, 2 crude oils, 1 crude property, and 15 days for
planning. Next, the clustering schemes are applied to the original instances, re-
sulting into clustered instances, which are solved according to the MILP-NLP
solution strategy proposed in Section 5. Finally, larger instances are proposed and
solved using the same MILP-NLP strategy.

The mathematical programming models and solution strategy were imple-
mented in AMPL and solved in a computer with two Intel Core Xeon E5-2630
v4 Processor (2.20 GHz), totaling 20 cores of 2 threads, 64 GB of RAM and a
Ubuntu environment. The MILP model is solved with CPLEX (IBM, 2013) and
the NLP formulation with CONOPT (Drud, 1985).

6.1. Clusterization of Instances
Figure 3 illustrates the clustering scheme obtained for instance 4F-4V-6ST-

4CT-3CDU-8C-1P-15D considering 2 clusters. In this case, the (platform-cluster
1, st-cluster 1) pair consists of platform FPSO1, which produces crude cA with
sulfur content of 0.01, and storage tank ST1. This means that the only platform
allowed to supply tank ST1 is FPSO1, which implies that ST1 will only store
crude cA. Further, vessels allocated to this cluster can only travel between the
terminal and platform FPSO1, and unload crude cA into ST1.

Similarly, platforms FPSO2, FPSO3 and FPSO4 are assigned to supply
storage tanks ST2 to ST6, which define the (platform-cluster 2, st-cluster 2) pair.
These platforms produce respectively crudes cB, cC, and cD, with sulfur content
of 0.03, 0.045, and 0.06 respectively. Vessels assigned to cover the routes in
this cluster pair will only travel between the terminal and platforms FPSO2 to
FPSO4, and unload crudes cB, cC and cD into tanks ST2 to ST6.

After assigning resources to the (platform-cluster 1, st-cluster 1) and (platform-
cluster 2, st-cluster 2) pairs, bounds are derived on the crude property for each st-
cluster and consequently for each of its storage tank. For instance, st-cluster 1 and
its tank ST1 will receive only crude cA, thus the lower and upper bounds on the
sulfur property in tank ST1 are [0.01, 0.01]. The same implication is also valid
for st-cluster 2, whose tanks ST2-ST6 will have [0.03, 0.06] as bounds for the
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sulfur content. As given by Eq. (38), parameters PRST k,r and PRST k,r make
use of these bounds to linearize the blending constraint (33), and thereby obtain
the MILP linearization of the OMCOS MINLP formulation proposed by de Assis
et al. (2019).

At the end of the chain, the st-cluster 1 and st-cluster 2 (of storage tanks)
feed the CT Group (group of charging tanks), which has the combined storage
and transfer capacity of the entire farm of charging tanks. Finally, the CT Group
satisfies the crude demand of the CDUs, which are combined in the CDU Group.

Notice that, according to the objective (29), the cluster scheme illustrated in
Figure 3 is such that: (a) the flow of crudes to the CDU Group is maximized; (b)
the crude property deviation in a st-cluster is minimized; and (c) the difference
of resource proportion (i.e., the ratio between the number of storage tanks and
platforms in a cluster) among all (platform-cluster, st-cluster) pairs is minimized.

FPSO1

FPSO2
cB

cA ST1

ST3

platform-cluster 1

CT Group
CDU Group

CT1

CT2

CDU1

platform-cluster 2

st-cluster 1

st-cluster 2

[0,01; 0,01]

[0,03; 0,06]
FPSO3

cC

FPSO4
cD

CDU2

CDU3

CT3

CT4

ST4 ST5

ST6

ST2

Figure 3: Clustering scheme for instance 4F-4V-6ST-4CT-3CDU-8C-1P-15D considering 2
clusters.

Tables 1, 2 and 3 summarize the clustering schemes for instances 2F-2V-2ST-
2CT-1CDU-2C-1P-15D, 4F-4V-6ST-4CT-3CDU-8C-1P-15D and 4F-4V-10ST-6CT-
5CDU-8C-1P-15D considering different numbers of clusters. They show the num-
ber of clusters, the assignment of platforms and storage tanks to each (platform-
cluster, st-cluster) pair and the resulting crudes in each st-cluster. The CPU time is
negligible since the solution of the clustering problem takes seconds, and therefore
is not a computational burden.

Another important result from solving the clustering problem defined in Sec-
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tion 4 is the value of the target variable tgk,rr and the resulting property devi-
ation in each st-cluster. Notice that for all instances, the target variable tgk,rr
assumes the value of the property k of one of the crudes supplied to the st-cluster
rr. If an st-cluster receives only one type of crude oil (e.g., instance 2F-2V-2ST-
2CT-1CDU-2C-1P-15D in Table 1), the variable tgk,rr will assume the value of
property k of this unique crude and the deviation in that st-cluster will be 0. On
the other hand, as shown in Table 2, the deviation considering 3 clusters is 0.3
in st-cluster 2, which is selected to receive crudes cB (PRS,cB = 0.03) and cC
(PRS,cB = 0.045). From the objective function, this deviation is computed as
|PRk,c−tgk,rr|
PRk−PRk

= |0.03−0.045|
(0.06−0.01) = 0.3.

Table 1: Cluster schemes for instance 2F-2V-2ST-2CT-1CDU-2C-1P-15D.

Number Crudes Target tgk,rr Deviat.
Clusters (platform-cluster, st-cluster) pair st-cluster st-cluster st-cluster

2 pair1 = ({fpso1}, {st1}) st-cluster 1 = {cA} 0.01 0
pair2 = ({fpso2}, {st2}) st-cluster 2 = {cB} 0.03 0

Table 2: Cluster schemes for instance 4F-4V-6ST-4CT-3CDU-8C-1P-15D.

Number Crudes Target tgk,rr Deviat.
Clusters (platform-cluster, st-cluster) pair st-cluster st-cluster st-cluster

2 pair1 = ({fpso1}, {st1}) st-cluster 1 = {cA} 0.01 0
pair2 = ({fpso2, fpso3, fpso4}, {st2, st3, st4, st5, st6}) st-cluster 2 = {cB, cC, cD} 0.045 0.6

3 pair1 = ({fpso1}, {st1, st2}) st-cluster 1 = {cA} 0.01 0
pair2 = ({fpso2, fpso3}, {st3, st4, st5}) st-cluster 2 = {cB, cC} 0.045 0.3

pair3 = ({fpso4}, {st6}) st-cluster3 = {cD} 0.06 0
4 pair1 = ({fpso1}, {st1, st2}) st-cluster 1 = {cA} 0.01 0

pair2 = ({fpso2}, {st3, st4}) st-cluster 2 = {cB} 0.03 0
pair3 = ({fpso3}, {st5}) st-cluster3 = {cC} 0.045 0
pair4 = ({fpso4}, {st6}) st-cluster4 = {cD} 0.06 0

Table 3: Cluster schemes for instance 4F-4V-10ST-6CT-5CDU-8C-1P-15D.

Number Crudes Target tgk,rr Deviat.
Clusters (platform-cluster, st-cluster) pair st-cluster st-cluster st-cluster

2 pair1 = ({fpso1}, {st1, st2}) st-cluster 1 = {cA} 0.01 0
pair2 = ({fpso2, fpso3, fpso4}, st-cluster 1 = {cB, cC, cD} 0.045 0.6

{st3, st4, st5, st6, st7, st8, st9, st10})
3 pair1 = ({fpso1}, {st1, st2}) st-cluster 1 = {cA} 0.01 0

pair2 = ({fpso2}, {st3, st4, st5}) st-cluster 2 = {cB} 0.03 0
pair3 = ({fpso3, fpso4}, {st6, st7, st8, st9, st10}) st-cluster3 = {cC, cD} 0.045 0.3

4 pair1 = ({fpso1}, {st1, st2}) st-cluster 1 = {cA} 0.01 0
pair2 = ({fpso2}, {st3, st4}) st-cluster 2 = {cB} 0.03 0

pair3 = ({fpso3}, {st5, st6, st7}) st-cluster3 = {cC} 0.045 0
pair4 = ({fpso4}, {st8, st9, st10}) st-cluster4 = {cD} 0.06 0

6.2. Solution of Clustered Instances
Here, an analysis is conducted based on the statistics and solution of the in-

stances 2F-2V-2ST-2CT-1CDU-2C-1P-15D, 4F-4V-10ST-6CT-5CDU-8C-1P-15D
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and 4F-4V-10ST-6CT-5CDU-8C-1P-15D that were re-defined according with the
clusters defined in Section 6.1. As advocated above, the use of a clustering scheme
for the original instance will produce a new instance with a more restricted set of
possible operations on the offshore side.

Figure 4 illustrates the comparison between the set of all possible operations
and clustered operations on the offshore side of instance 2F-2V-2ST-2CT-1CDU-
2C-1P-15D. In the original instance (Figure 4 (a)), the two vessels are allowed
to travel between the terminal and the two FPSOs, and unload crudes cA and cB
in both storage tanks (ST1 and ST2). By applying the clustering scheme with
two clusters (see Table 1) in the original instance proposed in (de Assis et al.,
2019), a restricted set of offshore operations is derived (Figure 4 (b)). In this case,
a vessel (e.g., Vessel1) can travel only between FPSO1 and the terminal, and
unload crude oil from FPSO1 only into storage tank ST1. The same holds for
the second vessel regarding FPSO2 and ST2.

For the example in Figure 4 (b), crudes from FPSO1 and FPSO2 will never
get mixed in the storage tanks ST1 and ST2. Nevertheless, since the connections
between storage and charging tanks remain the same, crudes can be normally
mixed in the charging tanks to reach the demanded crude specification. Notice
that one of the main consequences of using clusters will be the decrease on the
number of variables and constraints.

Table 4 indicates the number of clusters, the MILP MIPGAP used in the
MILP-NLP solution strategy, the number of variables and constraints, the best
known solution (from de Assis et al. (2019)), the solution of the clustered in-
stance, the GAP from the best known solution, and the CPU time.

Table 4: Statistics and solution for clustered instances.

MILP Stat. NLP Stat. Best Known MILP-NLP Solution
Num. MILP Total Total Binary Non-Linear Solution, CPU Sol. CPU

Instances Clus. MIPGAP Vars. Cons. Vars. Cons. [103, s] [103] 1GAP Time [s]

2F-2V-2ST 2 0% 1 380 1 875 531 180 22 800, 8s 22 711 0.4% 0.25s
2CT-1CDU
2C-1P-15D

4F-4V-6ST 2 0% 12 900 8 311 4 351 1 920 inf - -
4CT-3CDU 3 0% 8 895 6 815 2 098 1 920 38 563, 446s 38 500 0.16% 17s
8C-1P-15D 4 0% 7 380 6 087 1 346 1 920 37 589 2.5% 11s

4F-4V-10ST 2 0.5% 19 650 11 444 7 272 2 880 55 181 1.75% 300s
6CT-5CDU 3 0.5% 13 335 9 534 3 301 2 880 56 167, 8 843s 54 681 2.64% 181s
8C-1P-15D 4 0.5% 10 920 8 558 1 987 2 880 54 285 3.35% 17s

1 GAP = BestSol.−Sol.
BestSol.

100.
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In addition, Table 5 depicts the best known results for the instances considered
by de Assis et al. (2019). Also, the table shows the number of variables and con-
straints, the MILP MIPGAP used in the MILP-NLP solution strategy and the CPU
time. Notice that for instance 4F-4V-6ST-4CT-3CDU-8C-1P-15D, experiments
were conducted considering both MILP MILPGAPs of 0% and 1.5%, while for in-
stances 2F-2V-2ST-2CT-1CDU-2C-1P-15D and 4F-4V-10ST-6CT-5CDU-8C-1P-
15D it was considered a MILP MIPGAP of 0% and 3% respectively.

Table 5: Statistics and solution for the original instances considered in (de Assis et al., 2019).

Total Total Binary Non-Linear MILP Best CPU
Instances Vars. Cons. Vars. Cons. MIPGAP Solution Time [s]

2F-2V-2ST-2CT-1CDU-2C-1P-15D 2 160 2 483 1 170 180 0% 22 800 8
4F-4V-6ST-4CT-3CDU-8C-1P-15D 17 490 11 593 8 310 1 920 0% 38 460.5 2 018

1.5% 38 563.6 446
4F-4V-10ST-6CT-5CDU-8C-1P-15D 29 175 15 954 15 000 2 880 3% 56 167.9 8 843

The results from Table 4 suggest the following remarks:

1. Number of Clusters, Problem Size and CPU Time. As the number of
clusters increase, the instance gets more restricted, and there are fewer
routes covered by the vessels assigned to handle the flow of crudes in a
(platform-cluster, st-cluster) pair. Further, by clustering the instance, there
is a limitation of the offloading and unloading operations.

The constraints on vessel trips, offloading and unloading operations
have an impact on the number of variables and constraints when solving
the clustered instances. By comparing results in Tables 5 and 4 it is pos-
sible to see in numbers the decrease in problem size. For example, the
original instance 4F-4V-10ST-6CT-5CDU-8C-1P-15D goes from 29 175 to
10 920 variables in the version considering 4 clusters. From this total num-
ber of variables, the number of binaries drops from 15 000 to 1 987, which
is a decrease of more than 7.5 times. Likewise, the overall number of con-
straints decreases from 15 954 to 8 558. The number of non-linear con-
straints remain the same since the STs-CTs and CTs-CDUs connections do
not change.

The CPU time follows the same trend as the number of constraints
and variables. For a reduced number of clusters, the clustered instance gets
closer to the original one, and therefore the solution time is higher. As
the number of clusters increases, the number of variables and constraints
decreases, and so the solution time. The highest drop happens for instance
4F-4V-10ST-6CT-5CDU-8C-1P-15D, with solution time going from more
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than 8 000 seconds for the original instance to less than 20 seconds when
considering 4 clusters.

2. Number of Clusters and MILP-NLP Solution.
Table 4 shows the GAP between the clustered solution and the best known
solution found for the original instance.

The results show that the use of clusters affects the solution, besides
a computational gain with the reduction of variables, constraints and CPU
time. In addition, the GAP tends to increase with the number of the clusters,
reaching maximum values close to 3% in the worst-case scenarios (i.e., in-
stance 4F-4V-10ST-6CT-5CDU-8C-1P-15D with 4 clusters) and lower than
1% in the best one (i.e., 4F-4V-6ST-4CT-3CDU-8C-1P-15D with 3 clus-
ters).

The effect on the results can be explained by the fact that (a) the linear
approximation for the blending constraints, proposed in Section 5, is not
as strong as the use of McCormick envelopes to relax the same constraints
(McCormick, 1976); (b) the use of clusters restricts the problem and poten-
tially excludes feasible solutions.

6.3. Solution of New Instances
As mentioned in the previous section, one can take advantage of the computa-

tional gains of using clusterization for solving larger instances.
Table 6 reports the number of variables and constraints for new instances

4F-4V-10ST-6CT-5CDU-8C-4P-15D (see Figure 5) and 8F-8V-10ST-6CT-5CDU-
8C-4P-15D (see Figure 6). Instance 4F-4V-10ST-6CT-5CDU-8C-4P-15D consid-
ers 4 crude properties (i.e., S, T, U and V with values described in Figure 5) and
all possible connections between storage and charging tanks. On the other hand,
instance 8F-8V-10ST-6CT-5CDU-8C-4P-15D, (see Figure 6), takes into account
the same 4 crude properties and connections between tanks, but also extends the
number of platforms, vessels, the demand of the CDUs and the storage capacity
of the FPSOs.

Table 7 presents the statistics and solution of instances 4F-4V-10ST-6CT-
5CDU-8C-4P-15D for 2, 3, and 4 cluster schemes, and 8F-8V-10ST-6CT-5CDU-
8C-4P-15D for 4 and 6 clusters schemes.

Table 6: Statistics for new instances.

Instances Total Vars. Total Cons. Binary Vars. Non-Linear Cons.
4F-4V-10ST-6CT-5CDU-8C-4P-15D 33 075 23 544 15 390 8 400
8F-8V-10ST-6CT-5CDU-8C-4P-15D 68 040 39 814 31 590 8 400
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Tables 6 and 7 show a significant decrease in the number of variables and
constraints when comparing the original instances and their clustered versions.
This decrease has a direct effect on the CPU time. As mentioned in de Assis
et al. (2019), for instances like 4F-4V-6ST-4CT-3CDU-8C-1P-15D and 4F-4V-
10ST-6CT-5CDU-8C-1P-15D, off-the-shelf MINLP solvers were not able to find
a feasible solution within a maximum CPU time of 10 hours. The same happens
with the new instances 4F-4V-6ST-4CT-3CDU-8C-4P-15D and 8F-8V-10ST-6CT-
5CDU-8C-4P-15D.

Table 7: Statistics and solution for new instances with clusterization.

MILP Stat. NLP Stat. MILP-NLP Solution
Num. MILP Total Total Binary Non-Linear MILP Sol. NLP Sol. CPU

Instances Clus. MIPGAP Var. Cons. Vars. Cons. [103] [103] Time [s]

4F-4V-10ST-6CT 2 1% 25 050 20 793 7 107 8 400 56 564 53 758 884
5CDU-8C-4P-15D 3 1% 19 785 19 059 3 946 8 400 56 452 55 661 522

4 1% 17 370 18 083 2 640 8 400 56 407 53 085 180

8F-8V-10ST-6CT 4 3% 28 530 24 261 7 811 8 400 59 589 59 230 8 223
5CDU-8C-4P-15D 6 3% 22 440 21 739 4 527 8 400 58 250 56 590 3 271

Depending on the clustering scheme, instance 8F-8V-10ST-6CT-5CDU-8C-
4P-15D presents a decrease on the number of binary variables from 31 590 to
4 527, mainly resulting from the restriction on vessel trips, and offloading and
unloading operations when using clusterization. When comparing the statistics of
instance 8F-8V-10ST-6CT-5CDU-8C-4P-15D for clustering schemes with 4 and
6 clusters, the number of binary variables decreases to almost one half, which is
reflected in the CPU time that drops from 2.28 hours to 0.9 hour. Although not
providing the same solution quality (i.e., from 59 230 to 56 590), there are clear
computational gains on using clusters.

7. Conclusion

As highlighted in the introduction, the main goal of OMCOS is to coordinate
the activities of vessel trips and crude oil operations in the terminal in order to
supply crudes to the CDUs. Nevertheless, without clear rules or constraints, all
mixtures of crudes are allowed in storage tanks. This may lead to mixtures of
crudes with dissimilar properties, which might be non-desirable.

With the goal of coordinating how crudes can be mixed inside storage tanks,
this paper proposed an MILP formulation to define the optimal cluster of crudes
and resources, such that the difference among their properties is as low as pos-
sible. The use of clusters offers the following benefits: (a) reduces the number
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of routes for the vessels; (b) simplifies offloading and unloading operations; and
(c) imposes rules for crude mixtures in clusters of storage tanks that minimize
property variations.

The solution of the clustering formulation produces: (a) more restricted prob-
lem instances, and (b) lower and upper bounds on crude properties inside each
storage tank. These bounds are used to linearize the blending constraints and de-
rive an MILP linearization of the original MINLP, which is used in the MILP-NLP
solution strategy.

Although possibly eliminating feasible solutions, the use of clusters allows to
reach solutions with a compatible quality, but with far fewer variables and con-
straints, and at much less computational cost.
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Appendix A. Linearization of the Objective Function

In Eq. (28), the deviations from target values for each property k are expressed
in terms of absolutes values, and normalized by the range of maximum and min-
imum values of the corresponding crude property. By definition, the value PRk,c

will assume values within the interval [PRk, PRk]. Thus, the minimization of
the second term of Eq. (28) ensures that, at optimality, the target value tgk,rr
will also be within the same bounds. For instance, if tgk,rr < PRk then the val-
ues PRk,c − tgk,rr > PRk,c − PRk for all c and therefore the objective would
be reduced by setting tgk,rr = PRk. Similar reasoning leads us to deduce that
tgk,rr ≤ PRk, and thereby the term |PRk,c−tgk,rr|

PRk−PRk
∈ [0, 1].

In order to linearize Eq. (28), the auxiliary variable deviationk ,c,rr ∈ R+,
k ∈ K, c ∈ C, and rr ∈ ST CS, is introduced as an upper bound on the value of
term |PRk,c−tgk,rr|

PRk−PRk
. Eqs. (A.1) and (A.2) ensure the consistency of the upper bound

induced by deviationk,c,rr.

PRk,c − tgk,rr
PRk − PRk

≤ deviationk ,c,rr , k ∈ K, c ∈ C, rr ∈ ST CS, (A.1)

−(PRk,c − tgk,rr)
PRk − PRk

≤ deviationk ,c,rr , k ∈ K, c ∈ C, rr ∈ ST CS. (A.2)

This leads the second term to be replaced by Eq. (A.3), which remains non-
linear though. ∑

k∈K

∑
c∈C

∑
rr∈ST CS

deviationk ,c,rr crudeSTCSc,rr. (A.3)

Because the target value tgk,rr ∈ [PRk, PRk] and deviationk ,c,rr is an upper
bound for |PRk,c − tgk,rr|/(PRk − PRk), the minimization of the deviations
in Eq. (A.3) ensure that deviationk ,c,rr ∈ [0, 1].

Notice that the variables deviationk,c,rr are defined only, and only if, crude c
is delivered to the st-cluster rr, a condition flagged by crudeSTCSc,rr = 1. To
take advantage of this condition, another auxiliary variable ̂deviationk,c,rr ∈ R+

is introduced to assume the value deviationk ,c,rr when crude c is received by st-
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cluster rr. This is implemented for all k ∈ K, c ∈ C, and rr ∈ ST CS as follows:
̂deviationk,c,rr ≥ 0,
̂deviationk,c,rr ≤ deviationk,c,rr,
̂deviationk,c,rr ≤ crudeSTCSc,rr,
̂deviationk,c,rr ≥ deviationk,c,rr − (1− crudeSTCSc,rr).

(A.4)

The set of Eqs. (A.4) define that if crude c is not assigned to storage tank-cluster
rr (crudeSTCSc,rr = 0), variable ̂deviationk,c,rr is set to zero. Likewise, if crude
c is assigned to cluster rr, variable ̂deviationk,c,rr is set to deviationk ,c,rr . Finally,
variable ̂deviationk,c,rr replaces the bilinear term deviationk ,c,rr crudeSTCSc,rr

in Eq. (A.3)
The third term of the objective balances the relation between the number of

storage tanks and platforms in a (platform-cluster, st-cluster) pair. For instance,
consider 2 (platform-cluster, st-cluster) pairs, 4 platforms and 8 storage tanks. If
the first platform-cluster has 1 platform and the second 3 platforms, then the first
st-cluster would contain 2 storage tanks and the second 6 storage tanks to ensure
a balanced assignment. Notice that the third term needs to be linearized since it
has non-linear fractions and the modulus operator.

Consider a (platform-cluster, st-cluster) pair, with platform-cluster rr ∈ RFCS
and st-cluster rrr ∈ ST CS. This means that pair (rr, rrr) ∈ N . Also, vari-
able rfClusterrr is the number of platforms assigned to platform-cluster rr and
stClusterrrr is the number of storage tanks assigned to st-cluster rrr. Notice
that at least one platform must be assigned to a platform-cluster and at least one
storage tank must be assigned to a st-cluster, which means rfClusterrr ≥ 1 and
stClusterrrr ≥ 1. Moreover, these variables can only assume integer values,
which implies that both rfClusterrr , stClusterrrr ∈ N∗+. These variables are
defined by Eqs. (A.5) and (A.6).

rfClusterrr =
∑
r∈RF

assignRFCSr ,rr , rr ∈ RFCS. (A.5)

stClusterrrr =
∑
r∈RS

assignSTCSr ,rrr , rrr ∈ ST CS. (A.6)

Then, as defined by Eq. (A.7), variable proportionrr ,rrr assumes the value of
the ratio between the number of storage tanks and platforms in (platform-cluster,
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st-cluster) pair (rr, rrr) ∈ N . This variable is defined as proportionrr ,rrr ∈ R+.

proportionrr ,rrr =

∑
r∈RS

assignSTCSr ,rrr∑
r∈RF

assignRFCSr ,rr

=
stClusterrrr
rfClusterrr

,

(rr, rrr) ∈ N : rr ∈ RFCS. (A.7)

By introducing the supporting variable proportionrr ,rrr , the third term of the
objective can be cast as:∑

(rr,rrr)∈N :

rr∈RFCS

∑
(rrrr,rrrrr)∈N :

rrrr∈RFCS

|proportionrr ,rrr − proportionrrrr ,rrrrr | . (A.8)

To linearize Eq. (A.8), the auxiliary variable proportionDiff rrrr ,rrrrr
rr ,rrr ∈ R+,

rr, rrrr ∈ RFCS , rrr, rrrrr ∈ ST CS, and (rr, rrr), (rrrr, rrrrr) ∈ N ,
is used to upper bound the value of term |proportionrr ,rrr − proportionrrrr ,rrrrr |.
The consistency of the upper bound induced by proportionDiff rrrr ,rrrrr

rr ,rrr is ensured
by Eqs. (A.9) and (A.10).

proportionrr ,rrr − proportionrrrr ,rrrrr ≤ proportionDiff rrrr ,rrrrr
rr ,rrr ,

(rr, rrr) ∈ N , (rrrr, rrrrr) ∈ N : rr ∈ RFCS, rrrr ∈ RFCS. (A.9)

− proportionrr ,rrr + proportionrrrr ,rrrrr ≤ proportionDiff rrrr ,rrrrr
rr ,rrr ,

(rr, rrr) ∈ N , (rrrr, rrrrr) ∈ N : rr ∈ RFCS, rrrr ∈ RFCS. (A.10)

Finally, the third term of the objective is replaced by Eq. (A.11).∑
(rr,rrr)∈N :

rr∈RFCS

∑
(rrrr,rrrrr)∈N :

rrrr∈RFCS

proportionDiff rrrr ,rrrrr
rr ,rrr . (A.11)

Notice that Eq. (A.7) is non-linear and can be reformulated as in Eq. (A.12),
which has the bilinear term proportionrr ,rrr rfClusterrr .

proportionrr ,rrr rfClusterrr = stClusterrrr , (rr, rrr) ∈ N : rr ∈ RFCS.
(A.12)

In order to linearize the bilinear term proportionrr ,rrr rfClusterrr , consider the
following elements:
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• From previous definitions, proportionrr ,rrr ∈ R+. Also, the total number of
platforms assigned to platform-cluster rr (rfClusterrr ) and the total number
of storage tanks assigned to st-cluster rrr (stClusterrrr ) are natural numbers
(i.e., rfClusterrr , stClusterrrr ∈ N).

• Set J = {1, . . . , (|RF| − |RFCS| + 1)}. Cardinality |J | is equal to the
maximum number of platforms that can be assigned to a platform-cluster.
For instance, if there are six platforms (i.e., |RF| = 6) and two platform-
clusters (i.e., |RFCS| = 2), at least one platform must be assigned to each
platform-cluster, and a maximum of five platforms (i.e., |RF|− |RFCS|+
1 = 5) can be assigned to a platform-cluster.

• Binary variable zj,rr ∈ B, j ∈ J , rr ∈ RFCS is 1 if integer value j in
set J , which represents the number of platforms rfClusterrr assigned to
platform-cluster rr, is selected. As stated by Eq. (A.13), for each platform-
cluster rr, only one integer value j ∈ J can be selected. Then, as defined in
Eq. (A.14), the integer variable rfClusterrr can be stated as a sum of binary
variables multiplied by the integer value j.∑

j∈J

zj,rr = 1, rr ∈ RFCS. (A.13)

rfClusterrr =
∑
j∈J

j · zj,rr, rr ∈ RFCS. (A.14)

Variable rfClusterrr can be replaced in Eq. (A.12) leading to Eq. (A.15).
Notice that in Eq. (A.15), the bilinear term zj,rr · proportionrr ,rrr has a
binary and a real variable, which can be easily linearized.

(
∑
j∈J

j · zj,rr)proportionrr ,rrr = stClusterrrr ,

(rr, rrr) ∈ N : rr ∈ RFCS. (A.15)

• Auxiliary variable θj,rr,rrr ∈ R ≥ 0, j ∈ J , (rr, rrr) ∈ N : rr ∈ RFCS
can be defined such that the bilinear term zj,rr · proportionrr ,rrr = θj,rr,rrr.
Eq. (A.16) corresponds to the linearization of bilinear term θj,rr,rrr, valid
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for all j ∈ J and (rr, rrr) ∈ N : rr ∈ RFCS .
θj,rr,rrr ≥ 0,
θj,rr,rrr ≤ proportionrr ,rrr ,
θj,rr,rrr ≤ zj,rr|RS|,
θj,rr,rrr ≥ proportionrr ,rrr − |RS|(1− zj,rr).

(A.16)

Variable zj,rr = 0 drives θj,rr,rrr = 0. However, if zj,rr = 1, θj,rr,rrr gets
bounded by the cardinality of the set of storage tanks |RS| and assumes the
value of proportionrr,rrr.

After replacing θj,rr,rrr in Eq. (A.15), it is then reformulated as Eq. (A.17).∑
j∈J

j · θj,rr,rrr = stClusterrrr , (rr, rrr) ∈ N : rr ∈ RFCS. (A.17)
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Figure 4: (a) Graph for the flow of offshore operations in the original instance
2F-2V-2ST-2CT-1CDU-2C-1P-15D; (b) Graph for the flow of offshore operations in the clustered

instance 2F-2V-2ST-2CT-1CDU-2C-1P-15D.
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Figure 5: Network for instance 4F-4V-10ST-6CT-5CDU-8C-4P-15D.
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Figure 6: Network for instance 8F-8V-10ST-6CT-5CDU-8C-4P-15D.
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