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Abstract

We first introduce a novel modeling framework, called linear coupled component
automata (LCCA), to facilitate the modeling of discrete-continuous dynamical systems
with piecewise constant derivatives. Second, we provide a procedure for transforming
models in this framework to mixed-integer linear programming (MILP) constraints.
Traditionally, such systems have been modeled directly with MILP constraints. We
show with an example that our framework significantly simplifies model declaration
and allows the complex MILP constraints to be produced systematically.

Key words: hybrid automata; modeling frameworks; optimization; discrete-continuous
systems

1 Introduction

Many processes in the chemical industry involve mixed discrete-continuous dynamics, called
hybrid dynamics. It is not yet clear what kind of mathematical statements best represent
these systems, but frameworks based on hybrid automata are becoming the most widely
used. Although these allow modeling hybrid systems, there are few algorithms for optimizing
models declared in this form. On the other hand, there are well-developed algorithms for
solving mixed-integer linear programs (MILPs), but, as we show with an example, posing
an MILP model for a hybrid system can be prohibitively difficult.

We present a novel framework, which we call linear coupled component automata (LCCA),
for modeling hybrid systems with piecewise-linear dynamics in the continuous realm and
fairly general discrete dynamics. Several other frameworks already allow modeling such sys-
tems in theory, but our goal is to facilitate modeling in practice. LCCA allows expressing
constraints in intuitive ways and minimizes the changes required when reconfigurations of
the physical process are considered. Next, we describe a procedure for systematically trans-
forming LCCA models to mixed-integer linear programming (MILP) constraints. Presently,
MILP models are usually formulated directly, but we show with an example that it is sig-
nificantly easier to pose the equivalent LCCA model.

One of the earliest efforts to model hybrid systems was by Barton and Pantelides (1994).
They augmented the theory of differential algebraic equations (DAEs) with an index set,
which served as the possible discrete modes of a system. Each index was associated with
a different DAE. Their focus was on developing numerical procedures for handling the
switching between DAEs. For instance, they consider how to accurately detect the time at
which a switching condition is satisfied, called event detection. The language for expressing
discrete conditions is still not very flexible; all discrete states must be represented within a
single index set, and statements on the indices themselves are not supported. The mixed
logical dynamical system defined in Bemporad and Morari (1999) also supports hybrid
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systems by allowing difference equations that include 0-1 binary variables to represent logical
conditions. Westerweele et al. (1999) support hierarchical modelling, an important feature
we have not yet considered.

The frameworks coming into most common use are based on a combination of discrete
automata and differential equations. Automata are an elegant method for describing discrete
dynamics, and differential equations are of course the standard for continuous dynamics.
Their combination creates a system more expressive than either alone. Variations, usually
in the generality of continuous dynamics allowed, lead to specific frameworks.

Alur and Dill (1994) introduced timed automata, which allow variables measuring elapsed
time. Within each discrete mode, the differential equations are of the form dx/dt = 1, and
values can be reset to 0 at event points. Cassez and Larsen (2000) consider an extension
allowing the derivative of a variable to be 0 or 1, and call this a stopwatch automaton.
Alur et al. (1995) define the linear hybrid system, which allows the rate of change to be
any constant. These seemingly minor variations can significantly affect some kinds of anal-
ysis. For example, the reachability problem for linear hybrid systems is undecidable but
can be solved for timed automata. Finally, these fall under the class of systems allowing
general continuous dynamics, generically called hybrid automata. The linear hybrid system
in Alur et al. (1995) is actually defined as a restriction of this more general system. See also
Henzinger (1996) and Nicollin et al. (1991).

Optimization of hybrid systems has received little attention relative to control (Cury
et al.; 1998; Tomlin et al.; 1998) and verfication (Chutinan and Krogh; 2003) problems.
The approaches that have been taken can be divided into those that employ mathematical
programming (MP) and those that define algorithms directly on the hybrid systems model.

Asarin and Maler (1999) show how to design an optimal controller for timed automata,
and Abdeddaim and Maler (2001) model job-shop scheduling problems with acyclic timed
automata. These have been traditionally modeled in the MILP framework, but these works
define optimization methods independent of MILP algorithms. As we do, they also make
the case that hybrid automata models allow modeling these problems more naturally than
MILP. In Abdeddaim and Maler (2002), they extend their work to preemptive job-shop
scheduling, which require modeling with the richer stopwatch automata.

Algorithms developed directly on timed or stopwatch automata can be efficient because
the structures of these special classes of systems can be exploited. On the other hand,
extensions to the modeling class require new algorithms to be developed. A broader class of
systems can be modeled in the MILP framework, and there is an extensive body of literature
and commercial software for optimizing problems posed this way. Bixby (2002) reviews the
impressive advances in this area, and Kallrath (2000) discusses the role of mathematical
programming in the chemical process industry.

In this work, we take the second approach to optimizing hybrid systems, namely to trans-
form the hybrid systems models into MILP models. Stursberg et al. (2002) have also taken
this approach. They show how an optimal control problem on their hybrid automata (HA)
formulation can be posed as a mathematical program. Our transformation procedure differs
firstly because it operates on the alternative HA style framework we provide. Secondly, we
focus on the mechanics of performing the transformation. This makes it more applicable to
models as written in practice, not just canonical forms.

Lee et al. (2004) have also employed MP to optimize hybrid systems. Their focus is
largely on numerical matters. For example, results, such as sensitivity analysis, on purely
continuous systems are complicated by the addition of switching. They show how to compute
sensitivities for hybrid systems, allowing efficient application of gradient based algorithms.
In contrast, we are focused on the transformation as a symbolic procedure, as opposed to
the numerical properties of the resulting formulation.

A somewhat similar distinction exists with the work of Heemels et al. (2001). They show
that several hybrid systems modeling frameworks are equivalent. However, this does not
provide a systematic procedure for translating models in one of those frameworks to another.
Also, they consider only the discrete time case. We provide an exact reformulation for
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continuous time models (at the expense of restricting continuous dynamics to be piecewise
linear). Torrisi et al. (2000) describe a software implementation for transforming hybrid
systems models into mixed-integer constraints, which is also for discrete time models.

2 Framework for Modeling Hybrid Systems

The modeling framework we will introduce is called linear coupled component automata
(LCCA), but first we introduce the notion of a hybrid timeline and describe several constraint
forms. These will be needed in the definition of LCCA.

2.1 Hybrid Timeline

For continuous systems, the timeline is simply an interval of the real numbers, but a different
model of time is needed for hybrid systems. Discrete dynamics occur instantaneously and
the timeline must allow specification of two values at certain time points, called event points.

Let N = {1, . . . , n} for some constant n. Lygeros et al. (1999) define a hybrid timeline1,
depicted in Figure 1, as an ordered sequence of intervals T = {[tsi , t

e
i ]}i∈N

such that

• tsi ≤ tei for i ∈ N, and

• tei = tsi+1 for i ∈ N\ {n}.

The interpretation is that all discrete variables are constant during each interval; only
continuous variables evolve within intervals. Discrete variables change their values at the
boundaries between intervals, the event points. Let ∆ti = tei − tsi denote the length of
interval i.
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Figure 1: Hybrid timeline.

Despite this alternative timeline for hybrid systems, the definition of dynamic variables
in the existing literature (e.g. Aubin et al.; 2002) has followed that of purely continuous sys-
tems, i.e. a dynamic variable is defined on the domain R. This complicates the mathematics
because a variable can take two values at the event points, requiring them to be treated as
more general mappings than functions. However, a functional form can be maintained if
the above timeline definition is slightly rearranged. We define the hybrid timeline

T = {(i, t) : t ∈ [tsi , t
e
i ] ∈ T } .

With this definition, a single time point is a pair (i, t). We strictly maintain this interpre-
tation; any reference to t by itself is considered incomplete.

There is a total order relation � on T, as expected of a timeline. The time point (i, t)
precedes or is equal to (i′, t′), denoted (i, t) � (i′, t′), if and only if i ≤ i′ and t ≤ t′. If
(i, t) 6� (i′, t′) , then it must be that (i′, t′) � (i, t). If both (i, t) � (i′, t′) and (i′, t′) � (i, t),
then (i, t) = (i′, t′).

The set N\ {n} = {1, 2, . . . , n − 1} can be interpreted as the set of event points. Our
convention is that the ith event point occurs at the end of interval i. Event point i coincides

1We have restricted their definition to the n < ∞ case.
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with two time points: (i, tei ) and
(
i + 1, tsi+1

)
. Only the integer component of time changes

when an event occurs. The real component at both times is t = tei = tsi+1.
Events are said to occur instantaneously, but this is only with respect to the real compo-

nent of time. The integer component of time does progress. The concept of instantaneous
has been captured by a finite time change in our definition. Precisely, an event occurs over
zero units of real time and one unit of integer time. As a consequence, events do not occur
at the initial (1, ts1) and final (n, ten) time points.

In summary, a hybrid timeline can be discrete or continuous and can either restrict event
times to fixed points or not. Discretization will however not affect us because we consider
only differential equations simple enough to be symbolically integrated.

2.2 Constraints

Constraints on real and discrete variables will be needed in the overall modeling framework.
Here, we discuss the meaning of continuous and discrete dynamic variables and define some
notation. The following font conventions will be used:

• plain font will represent a single variable, e.g. i, t, X , Q

• bold font will represent a set of variables, e.g. X, Q

• blackboard bold font will represent a space of values, e.g. N, R, T, Q

• calligraphic font will represent more complex mathematical constructs, e.g. L.

A real valued dynamic variable is a function from the timeline to the reals, X : T → R.
Our modeling framework allows use of equations and inequalities: =, ≤, and ≥. Strict
inequalities are not allowed because they are also not allowed in MILPs, to which we wish
to convert our models.

Continuous variables change infinitesimally in an infinitesimal amount of time, but their
values can also jump instantaneously at an event point. Consider an event occurring from
time (i, t) to (i + 1, t). The instantaneous change can be defined by an algebraic equation,
e.g. X (i + 1, t) = X (i, t) + 1 would increment the value of X by 1 at event i.

In purely continuous systems, it is customary to refer to “a set of constraints”. What is
meant by this is a conjunction of constraints. For example,

X (i + 1, t) = X (i, t) + 1 ∧

Y (i, t) = X (i, t)

is usually considered two constraints and the conjunction symbol ∧ is not shown. We
will often call this a single constraint (which happens to be a conjunction of two other
constraints).

Discrete variables come in various forms. MILP allows integer variables (Kallrath; 2000),
and GDP includes Boolean logic (Raman and Grossmann; 1994). We consider variables
taking values from a finite set, e.g. Q = {A, B, C}, which are often called set valued or finite
domain variables. A, B, and C are finite domain constants, just as 1, 2, and 3 are integer
constants.

Given a finite set Q, we can now define a dynamic finite domain variable Q : T → Q.
However, by definition, discrete variables do not evolve within an interval. The value of
Q (i, t) depends only on the interval number i, making the t superfluous. It suffices to define
dynamic discrete variables as functions on the set of intervals, Q : N → Q. Equations can be
used to restrict the values taken by Q over time, e.g. Q (2) = B sets Q in the second interval
to the value B. Also, the values between intervals can be related, e.g. Q (i) = Q (i + 1)
forces Q’s value to remain unchanged from interval i to i + 1.

Of course, multiple discrete variables might be needed. Superscripts are used to refer
to different finite sets, e.g. Qα = {A, B, C} and Qβ = {D, E}. The corresponding dynamic

4



variables are named with the same superscript. So Qα is understood to be a function from
N → Qα. The equation Qα (i) = D would be erroneous.

Constraints on reals can only be connected by conjunction, but equations on finite do-
main variables can be connected with the logical operators of negation ¬, disjunction ∨,
and conjunction ∧. For example, Qα taking the value B requires the use of some resource,
and that same resource is required if Qβ is equal to D. The constraint

¬
(
(Qα (i) = B) ∧

(
Qβ (i) = D

))

assures that these values are not taken at the same time. Another example is

(Qα (i) = B) ∨ (Qα (i) = C)

which requires Qα to take either the value B or C in interval i.
The modeling framework defined in the next section allows constraints in the above

forms but requires various restrictions on which variables can be used and the time points
at which the variables can be evaluated. Some notation will allow stating these restrictions
compactly. Let L denote the set of all constraints in the forms discussed above, and let X

be a set of dynamic real variables and Q a set of dynamic finite domain variables. Also, let
X (i, t) and Q (i) mean each of the variables in the sets are evaluated at time point (i, t).
Finally, L (X (i, t)) is the set of constraints involving only variables in X evaluated at time
(i, t), and similarly for L (Q (i)).

2.3 Linear Coupled Component Automata

With preliminary concepts in place, we can now define the LCCA framework. Conceptually,
the system consists of a set of component automata, so called because they are components
of an overall system. Each automaton has a set of discrete modes associated with it, and
a dynamic finite domain variable specifies the mode the automaton is in over time. There
are overall real valued system variables, and each automaton specifies its contribution to
how these variables evolve. Automata cannot directly specify the rate of change of a system
variable, but the values of system variables can prohibit or require discrete transitions in
the automata. These are natural restrictions that support modular modeling, as we will
show with our example.

A dynamical system consists of a timeline, variables, and a specification of how these
variables evolve. Precisely, we define a linear coupled component automata model as the
5-tuple

(n, Gt,X, Aut, GV ) (LCCA)

where n is an integer specifying the number timeline intervals, Gt is a constraint on the
timeline variables, X is a set of dynamic real variables, Aut is a set of component automata,
and GV is a constraint coupling the component automata.

The integer n specifies the number of intervals in the timeline. Given n we take the
timeline to be T = {[tsi , t

e
i ]}i∈N, where N = {1, . . . , n}. We can also refer to the timeline in

the form T, which is defined in terms of T in section 2.1. Let t = ∪i∈N {tsi , t
e
i} be the set of

timeline variables.
Gt is an element of L (t), allowing constraints on the timeline variables. For example,

interval lengths could be fixed to a constant by requiring tei−tsi = k for all i. For optimization
purposes, an upper bound on the time horizon will be required. This can be given by the
constraint ten ≤ T max.

X is the desired set of continuous system variables. These variables can be used in the
subsequent constructs Aut and GV .

Each automaton a ∈ Aut is itself a 5-tuple of the form

(Q, x̄, x̂, F, Arc) (component automaton)

where:
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• Q gives the discrete modes of the automaton, and we let Q : N → Q give the discrete
mode in each interval.

• x̄ is a set of given rates, the values of which can vary by mode. Each x̄ ∈ x̄ is a function
from Q → R. These will be used in differential equations governing the continuous
evolution of X.

• x̂ is a set of jump variables, whose values are dependent on the event number. Each
x̂ ∈ x̂ is a function from N\ {n} → R. These will be used in algebraic equations
governing the discrete evolution of X.

• F : Q → L (X (i, t)) is an invariant, a constraint that must be satisfied during contin-
uous evolution. The constraint can depend on the mode of the automaton. Formally,
the condition is enforced as F (Q (i)) for all (i, t) ∈ T. At time (i, t), the automaton’s
mode is Q (i). Thus, F (Q (i)) gives the desired constraint for the active mode.

• Arc ⊆ Q × Q is a set of transitions. Associated with each transition (q, q′) ∈ Arc is a
guard γ(q,q′) ∈ L (X (i, t)) and a reset ρ(q,q′) ∈ L (X (i, t) ∪ x̂ (i)). The transition can
be made at event point i only if the guard holds at time (i, t), and, if the transition
is made, the reset is also enforced. There can exist at most one transition from any q
to q′.

It is required that a dummy transition (q, q) exists from every q ∈ Q to itself. On
this transition, the guard γ(q,q) is set to a trivially satisfied constraint such as 1 = 1,
and the reset ρ(q,q) is ∧x̂∈x̂ (x̂ (i) = 0). Dummy transitions are required because the
mathematical model forces all automata to transition at an event point, but this is
a superficial physical requirement. The dummy transition enables an automaton to
transition in a manner that has no effect.

In the above, an automaton has been generically denoted by the tuple (Q, x̄, x̂, F, Arc).
Superscripts are used to refer to multiple automata, e.g. automaton a consists of the ele-
ments (Qa, x̄a, x̂a, F a, Arca). The discrete variable associated with this automaton is Qa.
Let Q = ∪a∈AutQ

a be the set of discrete variables in an LCCA model, just as X is the set
of continuous variables.

Variables x̄α and x̂α are local to automaton α. Another automaton β cannot make
any reference to these variables, only to its own x̄β and x̂β . Separating the variable name
space requires modeling to be done in a modular fashion. In contrast to existing hybrid
automata modeling frameworks, differential equations are not associated with the discrete
modes of our component automata. They specify only rates x̄. Similarly, resets do not
specify discontinuous evolution; they dictate only the values of x̂. Component automata are
so named because they do not represent a dynamical system on their own; they are useful
only as components of the overall LCCA system.

The last element of the modeling framework is GV . This is where the dynamical equa-
tions are specified. All local and system variables can be used. GV can include several types
of constraints:

• differential equations of the form

dX (i, t)

dt
=

∑

a∈Aut

x̄a (Qa (i)) + k ∀ (i, t) ∈ T (1)

where k is some constant. Thus, the overall rate of change of X is potentially depen-
dent on the active modes of all automata,

• discontinuity equations of the form

X
(
i + 1, tsi+1

)
= X (i, tei ) +

∑

a∈Aut

x̂a (i) + k ∀i ∈ N\ {n} (2)
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where k is some constant. Discontinuity equations are the discrete analog of differential
equations. A flow rate x̄ specifies an infinitesimal change in an infinitesimal amount
of time. Similarly, a jump variable x̂ specifies a finite change over an instantaneous
step in time,

• finite domain constraints in L (Q (i)) or real constraints in L (X (i, t)). These are
constraints that must always hold, independent of the active modes of automata, and

• initial conditions from L (Q (i)) or L (X (i, t)), where (i, t) and i are specific time
values. For example, X (1, ts1) = 0.0.

Mathematical notation has been used thus far, but automata are customarily depicted
graphically, e.g. see equation (3b). A box is drawn for each discrete mode, and the name
of the mode is written within the box. This is followed by the values of variables x̄ and
invariant F for that mode. Next, for each transition (q, q′) ∈ Arc, an arrow is drawn from
box q to q′. The guard γ(q,q′) is written near the tail of the arrow and reset ρ(q,q′) near the
head. Dummy transitions are not shown because their definition is fixed. LCCA models are
thus provided with a mixture of graphical and textual declarations.

2.4 Example

We now present a small example to clarify the technical definitions. A larger example in
Section 4 will be used to demonstrate the benefits of our framework. Consider that we have
the following conceptual description of a system:

A thermostat can either be on or off. When it is on, temperature increases at a
rate of 0.5 ◦F/min, and when it is off temperature decreases at rate 0.3 ◦F/min.
The thermostat should not be on if the temperature exceeds 75.0 ◦F, and when
turned on, the temperature should be allowed to rise to at least 67 ◦F. Finally,
it should not be off if the temperature is below 65 ◦F.

Now, our goal is to produce a formal representation of this system, and we accomplish
this with the LCCA model

n = 10 (3a)

on

θ̄ = 0.5
Θ(i, t) ≤ 75.0

off

θ̄ = −0.3
Θ(i, t) ≥ 65.0

Θ(i, t) ≥ 67.0

(3b)

dΘ (i, t)

dt
= θ̄ (Q (i)) ∀ (i, t) ∈ T (3c)

We have chosen to allow 10 intervals in the timeline. The component automata represents
all the constraints on the thermostat’s operation. The temperature Θ is governed by the
differential equation. In this simple example, it is affected by only a single hybrid process,
but in general there might be other terms on the right-hand-side. There are also no resets in
this example. Figure 2 shows a feasible trajectory for the temperature and discrete modes
of the thermostat.
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Figure 2: Feasible trajectory for thermostat example.

3 Optimizing Hybrid Systems

Dynamic systems represented in the LCCA framework can have multiple feasible trajecto-
ries. Optimization would allow the system to be operated along its most profitable path. In
this section, we first state what an optimization problem on an LCCA model is, and then
define a procedure for transforming this problem to a mixed-integer linear program (MILP).

The transformation will serve two purposes. It is a systematic procedure for generating
an MILP, which connects our modeling framework to existing algorithms. But also, it
demonstrates how the framework we propose facilitates modeling. As we proceed through
the transformation from LCCA to MILP, it will be clear that corresponding declarations
become more cumbersome.

3.1 Optimization Problems

In an LCCA, there is freedom to choose the length of time spent in each discrete mode,
various discrete transitions are possible, and values of jump variables are flexible. These
choices lead to various trajectories, and we let Ξ denote the set of all feasible trajectories
for a given model. See Agarwal (2006, Section 2.3) for a formal definition.

An objective Ω is a metric on the space Ξ. An optimization problem seeks the trajectory
ξ ∈ Ξ such that Ω is minimized (or maximized) and is denoted

min
ξ∈Ξ

Ω.

The objective function can involve any of the real valued variables in the LCCA model,
which are the timeline variables t and the dynamic continuous variables X. For example, if
X represents cost, one may wish to minimize its final value. The objective is

Ω = X (n, ten) . (4)

Or often one is concerned with a time average performance criterion,

Ω =
1

(ten − ts1)

∫ te

n

ts

1

X(i, t)dt

=
1

2 (ten − ts1)

∑

i∈N

(X (tsi ) + X (tei ))∆ti (5)

where the integral calculates trapezoidal areas because continuous variables evolve piecewise
linearly. Finally, in makespan minimization problems, the value of time is itself the objective,

Ω = ten. (6)

Such a problem would normally define the notion of a completed job, e.g. producing a
certain amount of material. The problem then is to complete the job as fast as possible.
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Our general definition of a hybrid timeline allows systems to evolve indefinitely. For
optimization purposes, it is necessary to bound the timeline with respect to both the integer
and real components of time. The final time ten, called the time horizon, must be bounded
with a constraint of the form ten ≤ T max in Gt. The definition of LCCA already requires
specification of the number of intervals n, but this is less restrictive than it appears. If
all transitions into a certain interval are dummy transitions, there has been effectively no
change in the physical behavior of the system. The effective number of intervals has only
an upper bound on it.

The optimization problem we wish to solve is minξ∈Ξ Ω. An MILP is of the form
minx∈P Ω′, where x is a vector of real and integer variables and P is a region defined
by a system of mixed-integer linear inequalities. Our goal is to convert the former into the
latter. The objective function Ω must be converted into a form Ω′ allowed in MILP, and an
LCCA model must be converted into linear inequalities.

3.2 Constraint Conversions

Constraints in the LCCA framework contain several features not allowed in MILP con-
straints: they are quantified over infinite sets, they employ variable arguments, and finite
domain variables are used. In this section, methods for eliminating these features without
altering the meaning of the constraints are presented. These will be used in the next section,
which discusses a transformation for the full modeling framework.

First, we state a theorem needed a few times in the subsequent discussion.

Theorem 1. Let g (i) and f (i) be two constraints involving an index i ranging over a set

S. Assume g (i) holds for exactly one i, i.e. ∨i∈Sg (i) is true. Then, the conjunction of

implications
∧

i∈S

[g (i) ⇒ f (i)] (conj-impl)

is equivalent to the disjunction of conjunctions
∨

i∈S

[g (i) ∧ f (i)] . (disj-conj)

The proof is provided in the appendix.

3.2.1 Eliminating Infinite Quantifiers

Several constraints are required to hold for all time points (i, t) ∈ T, which is not allowed in
MILP. Since all constraints in LCCA are linear or piecewise linear, it is possible to consider
a finite quantification such that, if a constraint holds over it, it must hold over the infinite
set.

First, consider the differential equations, which must be of the form (1). The derivative
is not continuous over changes in i, but integration over each interval can be considered.
We have

∫ t

ts

i

dX (i, t) =

∫ t

ts

i

[
∑

a∈Aut

x̄a (Qa (i)) + k

]

dt ∀ (i, t) ∈ T, (7)

which gives

X (i, t) = X (i, tsi ) +

[
∑

a∈Aut

x̄a (Qa (i)) + k

]

(t − tsi ) ∀ (i, t) ∈ T. (8)

The quantification ∀ (i, t) ∈ T can be rewritten as ∀i ∈ N, ∀t ∈ [tsi , t
e
i ]. For a fixed i, the

above equation is linear in t. Thus, it suffices to consider only t = tei , giving

X (i, tei ) = X (i, tsi ) +

[
∑

a∈Aut

x̄a (Qa (i)) + k

]

∆ti ∀i ∈ N, (9)
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where ∆ti = tei − tsi . In other words, the value of X is determined only at time points tsi and
tei . Given these, X (i, t) for any t ∈ [tsi , t

e
i ] can be determined because X evolves linearly.

Infinite quantifications also occur in invariants F and certain constraints of GV . In both
cases, the constraints are required to be from L (X (i, t)). By definition of L, these are linear
and the situation is similar to equation 8. Each constraint involving X (i, t) can be written
for X (i, tsi ) and X (i, tei ) and then enforced over the finite set of intervals. For example, if
X represents mass, we might have the constraint

X (i, t) ≥ 0 ∀ (i, t) ∈ T, (10)

which requires mass to be non-negative at all times. This can be replaced with

X (i, tsi ) ≥ 0 ∀i ∈ N (11a)

X (i, tei ) ≥ 0 ∀i ∈ N, (11b)

which requires mass to be non-negative only at the beginning and end of every interval.
Since it varies linearly within an interval, it is guaranteed to be non-negative at all points
in between.

3.2.2 Eliminating Variable Arguments

Both dynamic variables and parameters are, in various places, evaluated with variable ar-
guments. For example, X (i, tsi ) is evaluated at the two arguments i and tsi . Argument i
can be interpreted as an index; it is not an unknown. However, the second argument tsi
is a variable of unknown value because event points are not fixed. Continuous dynamic
variables arise in this way in several locations: differential equations after integration (9),
discontinuity equations (2), and the initial conditions that are allowed in GV .

Automata specify a set of flow rates x̄. Each flow rate x̄ ∈ x̄ is a parameter, i.e. x̄ (q) is
a known constant given as part of the automaton’s declaration. However, in equation (9),
flow rates are used in the form x̄ (Q (i)), where the argument Q (i) is an unknown. Again,
there is a term with a variable argument.

Mixed-integer programs do not allow variable arguments of any form. We present meth-
ods for eliminating them in both forms encountered: X (i, tsi ) or X (i, tei ), and x̄ (Q (i)).

X (i, tsi ) can be replaced with Xs (i) wherever it occurs. This is possible with the recog-
nition that X (i, tsi ) depends ultimately on just i because its second argument tsi is itself fully
determined by i. Identically, all occurrences of X (i, tei ) are replaced with Xe (i). Instead
of a single variable X evaluated at two time points (for every i), we have two variables Xs

and Xe (for every i).
Replacing x̄ (Q (i)) is motivated by the same insight. The value of x̄ (Q (i)) is ultimately

dependent on just i. Let us imagine another variable w̄ (i) such that w̄ (i) = x̄ (Q (i)) for
all i. The goal now is to satisfy this equation without resorting to any use of variable
arguments. One way to accomplish this is to require

∧

q∈Q

[Q (i) = q ⇒ w̄ (i) = x̄ (q)] ∀i ∈ N. (12)

This constraint considers every mode. If the automaton is in mode q, then w̄ (i) is set equal
to the parameter x̄ (q).

This is a conjunction of implications as in Theorem 1 if we recognize q as i, Q as S,
Q (i) = q as gi, and w̄ (i) = x̄ (q) as fi. The theorem can be applied if Q (i) = q holds for
exactly one q (for each i). This of course is true because a variable can only take a single
value. So the above can be reformulated into the disjunctive constraint

∨

q∈Q

[
Q (i) = q

w̄ (i) = x̄ (q)

]

∀i ∈ N. (13)
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In general, a new variable w̄a will be needed for each x̄a ∈ x̄a of every automaton.
Let us implement these replacements into equation (9), which involves both forms of

variable arguments. It becomes the two constraints

Xe (i) = Xs (i) +
∑

a∈Aut

(w̄a (i) + k)∆ti ∀i ∈ N (14)

∨

q∈Qa

[
Qa (i) = q

w̄a (i) = x̄a (q)

]

∀a ∈ Aut, ∀i ∈ N. (15)

Unfortunately, the first equation contains a bilinearity w̄a (i)∆ti.
A slight modification to the procedure allows producing a linear equation. Instead of

letting w̄ (i) = x̄ (Q (i)), require w̄ (i) = x̄ (Q (i))∆ti. Now, we can write

Xe (i) = Xs (i) +
∑

a∈Aut

(w̄a (i) + k∆ti) ∀i ∈ N (16)

∨

q∈Qa

[
Qa (i) = q

w̄a (i) = x̄a (q)∆ti

]

∀a ∈ Aut, ∀i ∈ N. (17)

Instead of having to multiply ∆ti with w̄a (i), it is multiplied by x̄a (q) within the disjunction.
This is a parameter, and so the equation is still linear.

3.2.3 Converting Finite Domains to Booleans

By definition of L, finite domain constraints are of the form Q (i) = q or Q (i) = Q (i + 1),
and these can be connected by the logical operators ¬, ∨, and ∧. Both equations can be
converted into Boolean propositions. For each dynamic finite domain variable Q of type
N → Q, introduce a Boolean variable Y of type Q × N →{true, false}. This allows
associating a Boolean with each possible value of the finite domain variable.

The equation Q (i) = q is simply replaced by the Boolean Y (q, i). This substitution
alone is not sufficient however. It would be possible for Y (q, i) and Y (q′, i) to both be true
for distinct q and q′. Translating this solution back into the original model would imply that
Q (i) takes two values. Clearly, that cannot be allowed. For every Boolean Y introduced, it
is also necessary to include the constraint

∨

q∈Q

Y (q, i) ∀i ∈ N (18)

which guarantees that Y (q, i) will be true for exactly one q (for each i).
The equation Q (i) = Q (i + 1) effectively says that there exists some q such that the

automaton is in mode q for both intervals i and i + 1. Stated as a formula, we have

∃q ∈ Q s.t. [Q (i) = q ∧ Q (i + 1) = q] , (19)

and now the finite domain equations are in the simpler form. The existential quantifier,
when quantified over a finite set, is merely an alternative notation for indexed disjunction.
Simply changing this notation and replacing the equations with Booleans gives

∨

q∈Q

[Y (q, i) ∧ Y (q, i + 1)] . (20)

3.3 Symmetry Breaking

In the course of generating an MILP, we also add some constraints for efficiency purposes;
these do not affect the model. The source of the inefficiency is dummy transitions. They
are a mathematical artifact allowing an automaton to transition but in a way that has no
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physical consequence. Unfortunately, these introduce a redundancy in the set of feasible
trajectories because, at some event point, all automata might make a dummy transition,
meaning the system has not actually evolved. Also, this could occur at a continuum of time
values. An infinite number of mathematically distinct trajectories represent an identical
physical solution. Avraam et al. (1998, p. S225) recognized this problem in a related
system and proposed a solution which we accommodate to our framework.

A dummy event point is one at which all automata make dummy transitions. We require
all dummy event points to occur at the end of a trajectory, i.e. if i is a dummy event point,
then j is a dummy event point for all j > i. Also, the interval length after each dummy
event point should be zero, i.e. if i is a dummy event point, then ∆ti+1 = 0.0. Occurrence of
a dummy event point means the effective number of intervals is less than n. The trajectory
with dummy event points squeezed at the end of the timeline has many others equivalent
to it. Adding the stated constraints makes all but this one infeasible.

From the previous section, we let the Boolean Y a (q, i) substitute for the constraint
Qa (i) = q. For convenience, we let Y Y a (i) mean automaton a makes a dummy transition
at the ith event point and Y Y Y (i) mean the ith event point is dummy. These are defined
in terms of Y ’s with the constraints

Y Y a (i) ⇔
∨

q∈Qa

[Y a (q, i) ∧ Y a (q, i + 1)] (21)

Y Y Y (i) ⇔
∧

a∈Aut

Y Y a (i) . (22)

Now, the two symmetry breaking constraints are

Y Y Y (i) ⇒ Y Y Y (i + 1) ∀i ∈ N\ {n − 1, n} (23a)

Y Y Y (i) ⇒ (∆ti+1 = 0.0) ∀i ∈ N\ {n} . (23b)

The antecedent of both determines if i is a dummy event point by checking if all automata’s
discrete modes have remained unchanged. If so, the first requires the next event point to
also be dummy and the second sets the next interval length to zero. If the antecedent is
satisfied for i, the consequent of the first constraint is such that its antecedent will be true
for i + 1. This causes the constraint to be iteratively enforced for all j > i. The antecedent
might not be satisfied for any i—there might not be any dummy event points—in which
case these constraints have no effect.

3.4 Model Transformation

Converting the optimization problem minξ∈Ξ Ω into the MILP minx∈P Ω′ requires converting
the objective and the model. Some objectives, e.g. minimize makespan, are already in an
MILP form. Others, e.g. time averaged cost, involve terms with variable arguments. These
are easily transformed by substituting variables Xs and Xe as discussed in Section 3.2.2. It
remains to convert an LCCA model into MILP constraints.

A few steps are required to transform each of the elements (n, Gt,X, Aut, GV ) of an
LCCA model.

• The timeline is represented with MILP constraints.

• Component automaton are reformulated into two disjunctive constraints: one over the
discrete modes and the other over the transitions.

• These constraints along with GV are converted using the methods of the previous
section to eliminate infinite quantifiers, remove variable arguments, and transform
finite domain logic into Boolean propositions. This will provide a model in GDP form.

• Finally, the GDP model is converted into an MILP using known techniques.
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The first element of an LCCA model n is used simply to define the index set N =
{1, . . . , n} in the MILP model. According to the definition of LCCA, n is used to construct
a hybrid timeline. The timeline is dictated by variables t, and these are included in the
MILP model unaltered. The constraints implicit in the definition of a hybrid timeline

tsi ≤ tei ∀i ∈ N (24a)

tei = tsi+1 ∀i ∈ N\ {n} (24b)

are included explicitly in the MILP model. Constraint Gt is already in an MILP form and
is included unaltered.

Each variable X ∈ X is of type T → R. Functions whose domains are infinite spaces
are not allowed in MILP. Following the methods of Section 3.2.2, each X will be replaced
with two variables Xs and Xe of type N → R. Such functions can be interpreted simply as
indexed variables and are allowed in MP models. Let Xs and Xe denote these new sets of
variables.

The component automata Aut are the most involved constructs of an LCCA model.
They can be restated as disjunctive constraints on real and finite domain variables. Recall
each automaton in Aut is of the form (Q, x̄, x̂, F, Arc). (In this section, we speak generically
of any automaton, and so the superscript a is omitted.) The finite domain space is left
unaltered but will now be interpreted as an index set. The parameters x̄ and variables x̂

also remain unchanged; they are of a type allowed in MILP. It is F and Arc that must be
transformed.

The invariant constraint F for each automaton is enforced as

F (Q (i)) ∀ (i, t) ∈ T, (25)

which says there is some constraint associated with each mode, and we apply the constraint
for the mode the system is currently in. Instead, consider each possible value of Q (i)
separately. Then, the above can be equivalently stated as

Q (i) = q ⇒ F (q) ∀q ∈ Q, ∀ (i, t) ∈ T. (26)

If the automaton is in mode q, then the invariant for that mode must be applied. The
variable argument has been removed at the expense of introducing a quantifier. A universal
quantifier over a finite set can be viewed as a notational variation for indexed conjunction.
The above can be rewritten as

∧

q∈Q

[Q (i) = q ⇒ F (q)] ∀ (i, t) ∈ T. (27)

This is a conjunction of implications as in Theorem 1 if we recognize q as i, Q as S, Q (i) = q
as gi, and F (q) as fi. The theorem allows reformulating the constraint into a disjunction

over modes
∨

q∈Q

[
Q (i) = q

F (q)

]

∀ (i, t) ∈ T. (28)

The constraint still involves an infinite quantifier and the disjunct involves a finite domain
variable. Application of the constraint conversions discussed in Section 3.2 will produce a
disjunction in GDP form.

At event i, a transition can occur from mode q to q′ if (q, q′) ∈ Arc. In addition, it is
required that both the guard γ(q,q′) and reset ρ(q,q′) are enforced. Written as a formula, we
can say

∧

(q,q′)∈Arc

[
(Q (i) = q ∧ Q (i + 1) = q′) ⇒ γ(q,q′) ∧ ρ(q,q′)

]
∀i ∈ N\ {n} . (29)

Every transition is considered. If the transition taken from interval i to i + 1 is from mode
q to q′, then the guard and reset along that transition are enforced.
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Again, we have a conjunction of implications as in Theorem 1 if we recognize (q, q′) as i,
Arc as S, Q (i) = q∧Q (i + 1) = q′ as gi, and γ(q,q′)∧ρ(q,q′) as fi. The theorem is applicable
if Q (i) = q ∧ Q (i + 1) = q′ is valid only for a unique pair (q, q′). It must hold for at least
one pair because a transition must be made at an event. It does not hold for more than one
because component automaton, by definition, allow only a single transition between any two
modes (with possibly both modes the same). Thus, we can transform the above constraint
into a disjunction over transitions

∨

(q,q′)∈Arc

[
Q (i) = q ∧ Q (i + 1) = q′

γ(q,q′) ∧ ρ(q,q′)

]

∀i ∈ N\ {n} . (30)

The number of disjuncts can be reduced by recognizing that γ(q,q) and ρ(q,q) are identical
for all dummy transitions (q, q). First, let the finite domain constraint be replaced with the
Boolean proposition Y (q, i) ∧ Y (q′, i + 1), and recall equation (21) defined Y Y (i)—the
superscript a omitted for now—to mean an automaton makes a dummy transition at event
i. Now, the disjuncts can be partitioned to give








∨

(q,q′)∈Arc

q 6=q′

[
Y (q, i) ∧ Y (q′, i + 1)

γ(q,q′) ∧ ρ(q,q′)

]








∨

[
Y Y (i)

γ(q,q) ∧ ρ(q,q)

]

∀i ∈ N\ {n} . (31)

There is now one disjunct instead of |Q| for the dummy transitions.
The disjunction over modes (28) and the disjunction over transitions (31) can be written

for all component automaton a ∈ Aut, replacing F a and Arca for each.
These disjunctions along with GV still involve infinite quantifiers, variable arguments,

and finite domain constraints. Let F ′, γ′, ρ′, and G′
V refer to the respective constraints

after applying the conversions of Section 3.2. This introduces a new set of variables w̄,
when eliminating variable arguments in terms of the form x̄ (Q (i)). Let Y be the set
of Boolean variables introduced to replace the finite domain variables. In summary, the
resulting GDP model is

min
t,Xs,Xe,x̂,w̄,Y

Ω′

s.t. tsi ≤ tei ∀i ∈ N

tei = tsi+1 ∀i ∈ N\ {n}

Gt

∨

q∈Qa

[
Y a (q, i)
F ′ (q)

]

∀i ∈ N, ∀a ∈ Aut








∨

(q,q′)∈Arc

q 6=q′

[
Y (q, i) ∧ Y (q′, i + 1)

γ′
(q,q′) ∧ ρ′(q,q′)

]








∨

[
Y Y (i)

γ′
(q,q) ∧ ρ′(q,q)

]
∀i ∈ N\ {n} ,
∀a ∈ Aut

G′
V

Y Y Y (i) ⇒ Y Y Y (i + 1) ∀i ∈ N\ {n − 1, n}

Y Y Y (i) ⇒ (∆ti+1 = 0.0) ∀i ∈ N\ {n} . (GDP(LCCA))

Each of the elements (n, Gt,X, Aut, GV ) of an LCCA model are represented in this GDP
model; so we call it GDP(LCCA). Element n is used to define the index set N = {1, . . . , n},
the first two constraints define a timeline, Gt is included unaltered, the two main disjunctions
represent the component automata, and G′

V is the result of converting the final component
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GV . The symmetry breaking constraints are added for efficiency reasons. Items Qα, Aut,
and Arc are still present but they are now used only as index sets.

Model GDP(LCCA) is nearly in the form defined by Raman and Grossmann (1994),
and so their transformation can be mostly applied to produce an MILP. Two main steps
are required: the Boolean propositions within the disjunctions, G′

V , and the symmetry
breaking constraints are converted into integer constraints, and the disjunctive constraints
are transformed using the convex hull method.

An implicit requirement of Raman and Grossmann’s (1994) method is that exactly one
Boolean variable amongst all in the disjuncts of a disjunction must be true. For example,
their method can be applied to convert the disjunction over modes only if ⊻q∈QaY a (q, i)
holds for all i and a. This is satisfied because the disjunction over modes was obtained by
application of Theorem 1 for which this is a precondition. Similarly, ⊻(q,q′)∈ArcaZa (q, q′, i) is
guaranteed; so their method can be applied to the disjunction over transitions also. Finally,
G′

V will contain disjunctions of the form (17), and their requirement is satisfied here also.
Model GDP(LCCA) differs from Raman and Grossmann’s form in two minor ways.

They allow only a single Boolean variable in disjunctive constraints, but the disjunction
over transitions includes the Boolean expression Y a (q, i) ∧ Y a (q′, i + 1). This is easily
rectified by adding the Boolean constraint

Za (q, q′, i) ⇔ (Y a (q, i) ∧ Y a (q′, i + 1)) ∀i ∈ N\ {n} , ∀a ∈ Aut, ∀q, q′ ∈ Qa (32)

and then replacing the Boolean expression in the disjunct with Za (q, q′, i). (We can also
use Za to simplify equation (21) to Y Y a (i) ⇔ ∨q∈QaZa (q, q, i).)

The second difference arises in the symmetry breaking constraint Y Y Y (i) ⇒ (∆ti+1 = 0.0).
This is equivalent to the disjunction [¬Y Y Y (i)] ∨ [∆ti+1 = 0], which is not in the form re-
quired for Raman and Grossmann’s method. However, this constraint is easily seen to be
equivalent to the mixed-integer inequalities

0.0 ≤ ∆ti+1 ≤ T max (1 − yyy (i)) . (33)

This final step converts model GDP(LCCA) into an MILP.

4 Application: Switched Flow Process

We now demonstrate use of the LCCA framework by modeling a small switched flow process.
This model will then be converted to an MILP using our procedure, and some optimization
results provided. The following is a conceptual description of the system we wish to model.

Figure 3 depicts a tank being filled by two hybrid processes, α and β, and being
emptied continuously at a rate of F out = 1.8. Initially, the material level in
the tank is M0 = 20.0. The tank’s maximum capacity Mmax = 150.0 and the
material level should never fall below Mmin = 10.0.

Process α represents a pump that can be either on or off. When it is on, it
provides material to the tank at rate 2.0. There is also an operating cost of 10.0
per unit time for running the pump. Operational constraints on the pump forbid
it from being continuously run longer than 30.0 time units; it must be switched
off before this time limit is reached. There are no operating costs while it is off,
but it must not be switched on again in less than 2.0 time units. When it is
switched on again, if at all, a startup cost of 50.0 is incurred.

Process β is similar, but it represents a pump that is always on, either at a high
or low setting. In the high setting, material flows to the tank at rate 4.0 and the
operating cost is 15.0 per time unit. In the low setting, the material flow rate
drops to 0.5, and the operating cost is 2.0. Once set to low, the pump cannot be
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switched to the high setting again for at least 3.0 time units, and, when it does,
a startup cost of 40.0 is incurred.

We wish to study how the material level changes over time and to understand
the cost of running the system for T max = 500.0 time units.

on
off

α

hi
low

β

F out

Mmin

Mmax

m̄α m̄β

Figure 3: Schematic of switched flow process.

4.1 LCCA Model

We now show that an LCCA model for this system can be formulated with relative ease.
First, the following variables are defined:

• M (i, t) is material level in tank, and m̄a (q) is rate at which process a puts material
into tank when in mode q.

• C (i, t) is total incurred cost, c̄a (q) is operating cost incurred for process a in mode q,
and ĉa (i) is instantaneous cost incurred for process a switching modes at event i.

• R and S stand for the amount of time processes α and β, respectively, have been in
their current discrete mode, r̂a (i) and ŝa (i) are the instantaneous changes to these
values at event i.

Then, the LCCA model is
n = 10 (34)

ten = T max (35a)

ts1 = 0.0 (35b)

Automaton α

on

m̄α = 2.0
c̄α = 10.0
R(i, t) ≤ 30.0

off

m̄α = 0.0
c̄α = 0.0
R(i, t) ≤ 1000.0

ĉα(i) = 0.0
r̂α(i) = −R(i, t)

R(i, t) ≥ 2.0ĉα(i) = 50.0
r̂α(i) = −R(i, t)

(36a)
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Automaton β

hi

m̄β = 4.0
c̄β = 15.0
S(i, t) ≤ 40.0

lo

m̄β = 0.5
c̄β = 2.0
S(i, t) ≤ 1000.0

ĉβ(i) = 0.0
ŝβ(i) = −S(i, t)

S(i, t) ≥ 3.0ĉβ(i) = 40.0
ŝβ(i) = −S(i, t)

(36b)

dR (i, t)

dt
= 1.0 ∀ (i, t) ∈ T (37a)

R (i + 1, t) = R (i, t) + r̂α (i) ∀i ∈ N\ {n} (37b)

R (1, ts1) = 0.0 (37c)

dS (i, t)

dt
= 1.0 ∀ (i, t) ∈ T (37d)

S (i + 1, t) = S (i, t) + ŝβ (i) ∀i ∈ N\ {n} (37e)

S (1, ts1) = 0.0 (37f)

dM (i, t)

dt
= m̄α (Qα (i)) + m̄β

(
Qβ (i)

)
− F out ∀ (i, t) ∈ T (37g)

M (i + 1, t) = M (i, t) ∀i ∈ N\ {n} (37h)

M (1, ts1) = M0 (37i)

Mmin ≤ M (i, t) ≤ Mmax ∀ (i, t) ∈ T (37j)

dC (i, t)

dt
= c̄α (Qα (i)) + c̄β

(
Qβ (i)

)
∀ (i, t) ∈ T (37k)

C (i + 1, t) = C (i, t) + ĉα (i) + ĉβ (i) ∀i ∈ N\ {n} (37l)

C (1, ts1) = 0.0 (37m)

All components (n, Gt,X, Aut, GV ) of an LCCA model have been defined above. The
first equation sets n to 10. Equations (35) represent constraints on the timeline in the form
of Gt. The set of variables X = {R, S, M, C}. A component automata is provided for each
hybrid process, Aut = {α, β}, and both are declared graphically. The remaining equations
constitute constraint GV . Figure 4 shows a feasible trajectory for this system.

Equation (37g) states that the material level’s rate of change depends on m̄α and m̄β ,
and these values themselves depend on the modes of the automata. Consider the trajectory
shown in Figure 4 during interval 3. Within this interval, Qα (i) = on and Qβ (i) = lo. In
these modes, the differential equation for M is

dM (i, t)

dt
= 2.0 + 0.5 − 1.8

= 0.7

At t = 60.0, automaton α transitions to its off mode, the equation becomes

dM (i, t)

dt
= 0.0 + 0.5 − 1.8

= −1.3
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Figure 4: Initial segment of a feasible trajectory for switched flow process.

The right-hand-side switches between different constants.
The differential equation for cost C is similar, but costs can also be incurred instanta-

neously by equation (37l). These represent the startup costs. Consider the transition from
interval 2 to 3 in Figure 4. Automaton α transitions from off to on. The reset on this
transition includes the equation ĉα (i) = 50.0. Automata β remains in its lo mode. This
is modeled with the dummy transition, which includes the reset ĉβ (i) = 0.0 by definition.
Equation (37l) becomes

C (i + 1, t) = C (i, t) + 50.0 + 0.0

= C (i, t) + 50.0

which means the cost gets incremented by 50.0. The data is correctly plotted with two filled
in circles at t = 50.0. Since this is an event point, there are two time points, (2, 50.0) and
(3, 50.0), at this position.

R and S are called clock variables because they keep track of time, as indicated by setting
their rates to 1.0. Equation (37b) increments the value of clock R by r̂α (i) at every event.
On both transitions of α, the reset is r̂α (i) = −R (i, t), but this is simply the negation of
the clock value at the beginning of the event. In other words, the clock gets reset to 0.0.
Dummy transitions are not shown, but their definition is fixed such that r̂α (i) = 0.0 on
those transitions. Clocks are not reset when an automaton transitions from some mode back
to itself.

The guard on the transition from off to on is R (i, t) ≥ 2.0. Upon entry into the off

mode, clock R is set to 0.0 and evolves at rate 1.0 while in this mode. Thus, this guard
states that the automaton must remain in the off mode for at least 2.0 time units. Finally,
there are several invariants regarding the maximum time that each automaton can remain
in its discrete modes, and these are satisfied in the trajectory shown.

4.2 GDP Model

Now, using the transformation methods discussed in Section 3, we present a GDP model
that is equivalent to the LCCA model of the previous section. Several new variables are
required; the naming convention follows that in the description of the general procedure.
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The GDP model is

tsi ≤ tei ∀i ∈ N (38a)

tei = tsi+1 ∀i ∈ N\ {n} (38b)

∆ti = tei − tsi ∀i ∈ N (38c)

ten = T max (39a)

ts1 = 0.0 (39b)





Y α (on, i)
Rs (i) ≤ 30.0
Re (i) ≤ 30.0



 ∨





Y α (off, i)
Rs (i) ≤ 1000.0
Re (i) ≤ 1000.0



 ∀i ∈ N (40a)





Zα (on, off, i)
ĉα (i) = 0.0

r̂α (i) = −Re (i)



 ∨







Zα (off, on, i)
Re (i) ≥ 2.0
ĉα (i) = 50.0

r̂α (i) = −Re (i)






∨





Y Y α (i)
ĉα (i) = 0.0
r̂α (i) = 0.0



 ∀i ∈ N\ {n} (40b)





Y β (hi, i)
Ss (i) ≤ 40.0
Se (i) ≤ 40.0



 ∨





Y β (lo, i)
Ss (i) ≤ 1000.0
Se (i) ≤ 1000.0



 ∀i ∈ N (40c)





Zβ (hi, lo, i)
ĉβ (i) = 0.0

ŝβ (i) = −Se (i)



 ∨







Zβ (lo, hi, i)
Se (i) ≥ 3.0
ĉβ (i) = 40.0

ŝβ (i) = −Se (i)






∨





Y Y β (i)
ĉβ (i) = 0.0
ŝβ (i) = 0.0



 ∀i ∈ N\ {n} (40d)

Re (i) = Rs (i) + ∆ti ∀i ∈ N (41a)

Rs (i + 1) = Re (i) + r̂α (i) ∀i ∈ N\ {n} (41b)

Rs (1) = 0.0 (41c)

Se (i) = Ss (i) + ∆ti ∀i ∈ N (41d)

Ss (i + 1) = Se (i) + ŝβ (i) ∀i ∈ N\ {n} (41e)

Ss (1) = 0.0 (41f)

M e (i) = M s (i) + w̄m,α (i) + w̄m,β (i) − F out∆ti ∀i ∈ N (41g)

M s (i + 1) = M e (i) ∀i ∈ N\ {n} (41h)

M s (1) = M0 (41i)

Mmin ≤ M s (i) ≤ Mmax ∀i ∈ N (41j)

Mmin ≤ M e (i) ≤ Mmax ∀i ∈ N (41k)

Ce (i) = Cs (i) + w̄c,α (i) + w̄c,β (i) ∀i ∈ N (41l)

Cs (i + 1) = Ce (i) + ĉα (i) + ĉβ (i) ∀i ∈ N\ {n} (41m)

Cs (1) = 0.0 (41n)
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∨

q∈Qa





Y a (q, i)
w̄m,a (i) = m̄a (q) ∆ti
w̄c,a (i) = c̄a (q)∆ti



 ∀i ∈ N, ∀a ∈ Aut (41o)

∨

q∈Qa

Y a (q, i) ∀i ∈ N, ∀a ∈ Aut (42)

Y Y Y (i) ⇒ Y Y Y (i + 1) ∀i ∈ N\ {n − 1, n} (43a)

Y Y Y (i) ⇒ (∆ti+1 = 0.0) ∀i ∈ N\ {n} (43b)

Y Y a (i) ⇔
∨

q∈Qa

Za (q, q, i) ∀i ∈ N\ {n} , ∀a ∈ Aut (44a)

Y Y Y (i) ⇔
∧

a∈Aut

Y Y a (i) ∀i ∈ N\ {n} (44b)

Za (q, q′, i) ⇔ (Y a (q, i) ∧ Y a (q′, i + 1)) ∀i ∈ N\ {n} , ∀a ∈ Aut, ∀q, q′ ∈ Qa (44c)

The first set of constraints involve the timeline variables. Then, there are two disjunctions
for each of the two automata. Following these, there is a set of equations for each of the
continuous variables R, S, M , and C. Finally, there is a disjunction needed for the auxiliary
variable w̄, and the symmetry breaking constraints.

This GDP model is rather more complex than the corresponding LCCA model. It would
have been difficult to think of this model directly. It requires several variables, e.g. w̄m,α,
unrelated to the physical conception of the system. Various constraints, such as evolution
of mass, have to be defined in terms of these auxiliary variables, making the constraints
themselves less intuitive.

4.3 MILP Model

Finally, we convert the GDP model to an MILP model. This requires introduction of many
new variables. For conversion of disjunctive constraints, our notational convention employs
superscripts of the form 1, 2, or 11, 21. For example, if there is a disjunction with two
disjuncts, two disaggregated variables will be needed for each variable. For the variable X ,
we introduce X1 and X2 as its disaggregated variables. If the same variable X is also used
in another disjunction, a separate set of disaggregated variables will be needed for it. In
that case, double superscripts are used, e.g. X21 is the disaggregated variable for the 2nd

disjunct of the 1st disjunction. By convention, Boolean variables are capitalized and their
corresponding binary {0, 1} variables are in lower case.

The full MILP model for the example is

tsi ≤ tei ∀i ∈ N (45a)

tei = tsi+1 ∀i ∈ N\ {n} (45b)

∆ti = tei − tsi ∀i ∈ N (45c)

ten = T max (46a)

ts1 = 0.0 (46b)
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[
0.0 ≤ Rs,1 (i) ≤ 30.0yα (on, i)
0.0 ≤ Re,11 (i) ≤ 30.0yα (on, i)

]

∀i ∈ N (47a)

[
0.0 ≤ Rs,2 (i) ≤ 1000.0yα (off, i)
0.0 ≤ Re,21 (i) ≤ 1000.0yα (off, i)

]

∀i ∈ N (47b)

Rs (i) = Rs,1 (i) + Rs,2 (i) ∀i ∈ N (47c)

Re (i) = Re,11 (i) + Re,21 (i) ∀i ∈ N (47d)





ĉα,1 (i) = 0.0
r̂α,1 (i) = −Re,12 (i)

0.0 ≤ Re,12 (i) ≤ 30.0zα (on, off, i)



 ∀i ∈ N\ {n} (47e)





2.0zα (off, on, i) ≤ Re,22 (i) ≤ 1000.0zα (off, on, i)
ĉα,2 (i) = 50.0zα (off, on, i)

r̂α,2 (i) = −Re,22 (i)



 ∀i ∈ N\ {n} (47f)





ĉα,3 (i) = 0.0
r̂α,3 (i) = 0.0

0.0 ≤ Re,32 (i) ≤ 1000.0yyα (i)



 ∀i ∈ N\ {n} (47g)

ĉα (i) = ĉα,1 (i) + ĉα,2 (i) + ĉα,3 (i) ∀i ∈ N\ {n} (47h)

r̂α (i) = r̂α,1 (i) + r̂α,2 (i) + r̂α,3 (i) ∀i ∈ N\ {n} (47i)

Re (i) = Re,12 (i) + Re,22 (i) + Re,32 (i) ∀i ∈ N\ {n} (47j)

[
0.0 ≤ Ss,1 (i) ≤ 40.0yβ (hi, i)
0.0 ≤ Se,11 (i) ≤ 40.0yβ (hi, i)

]

∀i ∈ N (47k)

[
0.0 ≤ Ss,2 (i) ≤ 1000.0yβ (lo, i)
0.0 ≤ Se,21 (i) ≤ 1000.0yβ (lo, i)

]

∀i ∈ N (47l)

Ss (i) = Ss,1 (i) + Ss,2 (i) ∀i ∈ N (47m)

Se (i) = Se,11 (i) + Se,21 (i) ∀i ∈ N (47n)





ĉβ,1 (i) = 0.0
ŝβ,1 (i) = −Se,12 (i)

0.0 ≤ Se,12 (i) ≤ 40.0zβ (hi, lo, i)



 ∀i ∈ N\ {n} (47o)





3.0zβ (lo, hi, i) ≤ Se,22 (i) ≤ 1000.0zβ (lo, hi, i)
ĉβ,2 (i) = 40.0zβ (lo, hi, i)

ŝβ,2 (i) = −Se,22 (i)



 ∀i ∈ N\ {n} (47p)





ĉβ,3 (i) = 0.0
ŝβ,3 (i) = 0.0

0.0 ≤ Se,32 (i) ≤ 1000.0yyβ (i)



 ∀i ∈ N\ {n} (47q)

ĉβ (i) = ĉβ,1 (i) + ĉβ,2 (i) + ĉβ,3 (i) ∀i ∈ N\ {n} (47r)

ŝβ (i) = ŝβ,1 (i) + ŝβ,2 (i) + ŝβ,3 (i) ∀i ∈ N\ {n} (47s)

Se (i) = Se,12 (i) + Se,22 (i) + Se,32 (i) ∀i ∈ N\ {n} (47t)

Re (i) = Rs (i) + ∆ti ∀i ∈ N (48a)

Rs (i + 1) = Re (i) + r̂α (i) ∀i ∈ N\ {n} (48b)

Rs (1) = 0.0 (48c)
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Se (i) = Ss (i) + ∆ti ∀i ∈ N (48d)

Ss (i + 1) = Se (i) + ŝβ (i) ∀i ∈ N\ {n} (48e)

Ss (1) = 0.0 (48f)

M e (i) = M s (i) + w̄m,α (i) + w̄m,β (i) − F out∆ti ∀i ∈ N (48g)

M s (i + 1) = M e (i) ∀i ∈ N\ {n} (48h)

M s (1) = M0 (48i)

Mmin ≤ M s (i) ≤ Mmax ∀i ∈ N (48j)

Mmin ≤ M e (i) ≤ Mmax ∀i ∈ N (48k)

Ce (i) = Cs (i) + w̄c,α (i) + w̄c,β (i) ∀i ∈ N (48l)

Cs (i + 1) = Ce (i) + ĉα (i) + ĉβ (i) ∀i ∈ N\ {n} (48m)

Cs (1) = 0.0 (48n)





wm,a,q (i) = m̄a (q)∆t1,q,a
i

wc,a,q (i) = c̄a (q)∆t1,q,a
i

0.0 ≤ ∆t1,q,a
i ≤ T maxya (q, i)



 ∀i ∈ N, ∀a ∈ Aut, ∀q ∈ Qa (48o)

w̄m,a (i) =
∑

q∈Qa

wm,a,q (i) ∀i ∈ N, ∀a ∈ Aut (48p)

w̄c,a (i) =
∑

q∈Qa

wc,a,q (i) ∀i ∈ N, ∀a ∈ Aut (48q)

∆ti =
∑

q∈Qa

∆t1,q,a
i ∀i ∈ N, ∀a ∈ Aut (48r)

∑

q∈Qa

ya (q, i) = 1 ∀i ∈ N, ∀a ∈ Aut (49)

1 − yyy(i) + yyy (i + 1) ≥ 1 ∀i ∈ N\ {n − 1, n} (50a)

0.0 ≤ ∆ti+1 ≤ T max (1 − yyy (i)) ∀i ∈ N\ {n} (50b)

1 − yya (i) +
∑

q∈Qa

za (q, q, i) ≥ 1

1 − za (q, q, i) + yya (i) ≥ 1 ∀q ∈ Qa

}

∀i ∈ N\ {n} , ∀a ∈ Aut (51a)

yya (i) + (1 − yyy (i)) ≥ 1 ∀a ∈ Aut
(

∑

a∈Aut

(1 − yya (i))

)

+ yyy (i) ≥ 1






∀i ∈ N\ {n} (51b)

1 − za (q, q′, i) + ya (q, i) ≥ 1
1 − za (q, q′, i) + ya (q′, i + 1) ≥ 1

1 − ya (q, i) + 1 − ya (q′, i + 1) + za (q, q′, i) ≥ 1






∀i ∈ N\ {n} , ∀a ∈ Aut, ∀q, q′ ∈ Qa

(51c)

We have now expressed the optimization problem of interest as an MILP and thus
can apply any of several well-developed algorithms to solve it. The above MILP is finally
expressed in the GAMS language, distribution 22.0, and solved with the CPLEX algorithm,
version 9.1. This requires further modifications to the model, but these are minor syntactic
variations and should not be considered model transformations.
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Figure 5 depicts the optimal trajectory when the objective is to minimize cost, Ω =
C (ten). This is easily put into the MILP form Ce (n). With this objective, there is essentially
no benefit to running the system. However, we are requiring it to run to the time point
(i, t) = (10, 500.0). Ideally, processes α and β could remain in their off and lo modes,
where the operating costs are lower. Process α does so, but β has to switch into its hi

mode because otherwise the material level would fall below 10.0, which is not allowed. The
optimal solution obtained is C (ten) = 3537.1.

5 Conclusions

Defining the novel LCCA framework and defining a procedure for converting models in
this framework into MILP constraints have been the two main contributions of this paper.
Our main example in the previous section demonstrates the value of the novel modeling
framework introduced in this work. It is clear that the LCCA model is more intuitive than
the GDP model and much simpler than the MILP model. At a glance, this is evident
because the MILP model is much longer, but the true difficulty is even greater than this
suggests. The constraints of the MILP are much more complex, and even experts would
find it difficult to think of them directly.

Our LCCA modeling framework provides several features easing the declaration of discrete-
continuous dynamical systems. Most importantly, component automata allow logical con-
ditions involving continuous variables to force or prohibit discrete changes. They support
time-based constraints intrinsically. For example, statements of the form ”until some con-
dition is satisfied, some event cannot occur” are naturally expressed with guards. For large
systems, modular modeling is also crucial. LCCA supports this by requiring each automa-
ton to maintain its own set of variables. Thus, a change to one automaton is unlikely to
have any effect on other automata.

Overall, our work provides the view that novel modeling frameworks can be designed to
facilitate model formulation. Combined with appropriate transformation procedures, it is
possible to connect these models to existing algorithms. Thus, various frameworks can each
be used for their unique benefits.
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Proof of Theorem 1

Let us first define some terminology. Given an implication a ⇒ b, a is called the antecedent

and b the consequent. In a conjunctive constraint a ∧ b, each of a and b are called con-

juncts. For indexed conjunction ∧i∈Sg (i), each g (i) is called a conjunct. Similarly the
terms comprising a disjunctive constraint are called disjuncts.

The equivalence is proven by demonstrating implication in both directions.
First, we prove the forward implication: conj-impl ⇒ disj-conj, i.e. assume conj-impl is

true and show disj-conj must be true. An assumption of the theorem is that g (i) holds for
exactly one i. Without loss of generality, assume this value is i′. Rewrite conj-impl as

[g (i′) ⇒ f (i′)]
︸ ︷︷ ︸

lconj

∧
∧

i∈S\{i′}

[g (i) ⇒ f (i)]

︸ ︷︷ ︸

rconj

.

For conj-impl to be true, as is being assumed, both lconj and rconj must be true. First, we
state the conditions under which these both hold:
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• lconj is true if f (i′) is satisfied. This is because, by assumption, the antecedent g (i′)
of lconj is true, and for the whole implication to be true, the consequent must be true.

• rconj is always true. This follows because we are assuming g (i′), and thus g (i) is
false for all i 6= i′. This means the antecedent g (i) of every conjunct of rconj is false,
making every conjunct true irrespective of the consequent f (i) because falsehood can
imply anything.

The net result is that f (i′) must be true. With this observation, it remains to show that
disj-conj must be true. Divide up disj-conj similarly as

[g (i′) ∧ f (i′)]
︸ ︷︷ ︸

ldisj

∨
∨

i∈S\{i′}

[g (i) ∧ f (i)]

︸ ︷︷ ︸

rdisj

For disj-conj to be true, either ldisj must be true or rdisj must be true. We show that
ldisj is true. By assumption g (i′) is true, and we just argued that f (i′) must be true. So
[g (i′) ∧ f (i′)] is true.

Now, we prove the implication in the opposite direction: disj-conj ⇒ conj-impl, i.e. show
that conj-impl must be true under the assumption that disj-conj is true. disj-conj can be
true if any one of its disjuncts is true. Let i′ be the index of one of the true disjuncts, i.e.
[g (i′) ∧ f (i′)] is true. (In fact, this is the only disjunct that can be true because all others
require g (i) to hold for some i 6= i′, which violates the assumption of the theorem.) So
we know that f (i′) must hold. Now, divide up conj-impl as above into lconj and rconj. It
remains to show that both lconj and rconj are true. It was assumed that g (i′) holds and
we just argued that f (i′) must hold; thus lconj follows immediately. rconj is vacuously true
because g (i) is false for all i 6= i′, making each conjunct of rconj true irrespective of f (i).
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Figure 5: Optimal trajectory for minimizing cost.
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