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Abstract

Abstract We consider the problem of scheduling under demand uncertainty a multi-

product batch plant represented through the State Task Network. Given a scheduling

horizon consisting of several time-periods in which product demands are placed, the

objective is to select a schedule that maximizes the expected profit. We present a mul-

tistage stochastic Mixed Integer Linear Programming (MILP) model, wherein certain

decisions are made irrespective of the realization of the uncertain parameters, and some

decisions are taken upon realization of the uncertainty. To overcome the computational

expense associated with the solution of the large-scale stochastic multistage MILP for

large problems, we examine an approximation strategy based on the solution of a se-

ries of a two-stage models within a shrinking horizon approach. Computational results

indicate that the proposed approximation strategy provides an expected profit within

a few percent of the multistage stochastic MILP in a fraction of the computation time,

and provides significant improvement in the expected profit over similar deterministic

approaches.

1 Introduction

Batch processes are the preferred mode of production for a number of specialty chemicals and

pharmaceutical products due to the increased flexibility that they confer on the processing

∗Author to whom all correspondence should be addressed
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plants. With steady growth in these industries, the design and scheduling of multiproduct

batch plants have been an active area of research over the past decade (see Shah1 and

Pinto and Grossmann2 for reviews). Most of the work in this area has been limited to

deterministic approaches, wherein the problem parameters are assumed to be known with

certainty. However, in reality there can be uncertainty in a number of factors such as

processing times, costs, demands, etc. To cope with this, there has been increased interest

in the development of different types of probabilistic models that explicitly take in to account

the various uncertainties (Sahinidis3 provides a review of optimization under uncertainty).

Research in the area of batch plants with demand uncertainty has focussed more on the

design aspect than on operations scheduling. For example, Wellons and Reklaitis4 proposed

an MINLP model for the design of batch plants under uncertainty with staged capacity ex-

pansions. Based on the structure of multiproduct batch plants, Straub and Grossmann5 de-

veloped an efficient procedure to evaluate the expected stochastic flexibility (a measure of the

probability of meeting demands). This evaluation procedure was then incorporated within

an optimization framework for selecting the design (size and number of parallel equipment)

that maximizes the expected stochastic flexibility subject to a capital constraint. Two-stage

stochastic programming approaches have also been applied for design under uncertainty (Ier-

apetritou and Pistikopolous6; Harding and Floudas7; Petkov and Maranas8; Cao and Yuan9).

The scheduling of batch plants under demand uncertainty has emerged only recently as an

area of active research. Work in this area has addressed the problems of both evaluating and

optimizing schedules under uncertainty. Sand et al.10 proposed an algorithm to approximate

the performance of an ideal online scheduler for a multiproduct batch plant under demand

uncertainty. These authors used a two-level hierarchical framework which consisted of a

stochastic linear program for the purpose of long-term planning and a deterministic non-

linear model for short-term scheduling. Gupta et al.11 used a chance-constrained approach

in conjunction with a two-stage stochastic programming model to analyze the trade-offs

between demand satisfaction and production costs for a mid-term supply chain planning

problem. Vin and Ierapetritou12 addressed the problem of quantifying schedule robustness

under demand uncertainty. These authors used multiperiod programming to obtain sched-

ules that were feasible over an entire range of parameters, and also proposed robustness

metrics based on deviations from the deterministic schedule. They observed with flexibility

analysis that the schedules from the multiperiod programming approach were more robust

than the deterministic schedules. More recently, Engell et al.13 reported an application of

a scenario-decomposition algorithm, which along with some problem-dependent preprocess-

ing procedures, provided very good computational results for the solution of a two-stage

stochastic scheduling model for a polymer plant under demand uncertainty.

In the operations research literature, the stochastic lot scheduling problem (SLSP) is
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perhaps most similar to our problem. The SLSP deals with the scheduling of multiple

products, each with random demand, on a single facility with limited production capacity

and significant change-over costs. However, the critical difference between the SLSP and

our current problem is that the SLSP does not incorporate the explicit material balances of

chemical plants. Sox et al.14 provide a comprehensive review of the various approaches used

for solving the SLSP. These approaches can range from simple control rules derived from

deterministic analyses to control policies derived from nonlinear optimization, or simulation

or queueing analysis of the stochastic models.

Other approaches to handling uncertainty include the reactive modification of schedules

upon realization of uncertainty (Cott and Macchietto15; Kanakamedala et al.16; Jain and

Elmaraghy17; Vin and Ierapetritou18; Mendez and Cerda19). Of course, with the reactive

modification strategy, there is the possibility that too many changes are made to the schedule.

This has typically been handled through the use of penalty terms in the objective, which

penalize significant changes from the current schedule.

It is the aim of this work to present a multistage stochastic programming approach to the

scheduling of multiproduct batch plants represented as State Task Networks (STNs) (Kondili

et al.20) under demand uncertainty. In this aproach certain decisions are made irrespective

of the realization of the uncertain parameters, and some decisions are taken upon realization

of the uncertainty. The multistage stochastic program is a large-scale Mixed Integer Linear

Programming (MILP) model derived from the corresponding single time-period deterministic

scheduling model. To overcome some of the difficulties associated with the solution of the

large-scale MILP we examine an approximation strategy based on the solution of a series of

a two-stage models within a shrinking horizon approach. We also compare these approaches

with similar deterministic approaches with respect to solution quality and computational

performance.

The paper is organized as follows. Section 2 presents a formal definition of the prob-

lem of interest. Section 3 illustrates the value of using multistage stochastic programming

approaches over conventional methods. Section 4 discusses the multistage stochastic pro-

gramming formulation, while Section 5 discusses the approximation strategies possible for

the problem of interest. After presenting results from a number of examples in Section 6, we

draw the conclusions on this work.

2 Problem Statement

We consider the problem of optimizing the short-term scheduling of a multiproduct batch

plant represented as an STN, while taking into account uncertainties in product demands.

The description of the STN consists of, (i) the materials or states s ∈ S (raw materials,
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intermediates and products) (ii) the recipes for the production of different products s ∈
SP ⊂ S (i.e., the various tasks i ∈ I, the processing times and the amount of materials

required for the production of each product), (iii) the available processing units j ∈ J and

their suitabilities for the tasks (Ij indicating the tasks that can be performed by unit j and

Ji indicating the units that can be used to perform task i), (iv) storage capacities (CAPs) for

the various materials. The processing units can be operated in any of l ∈ L different modes,

each of which is characterized by a range of batch sizes [BLO
ijl , BUP

ijl ] and a task-dependent

processing time τijl. These L processing modes provide increased production flexibility to

the plant. In this work we assume that there are no change-over costs or times between the

processing modes, although it is possible to extend the models to the case with non-zero

change-over costs.

In this work the scheduling model is formulated as a discrete-time STN where each time-

period is divided into several time intervals, as shown in Figure 1. The scheduling horizon is

of length H units and consists of time-periods m ∈ M . In this work we define a time-period

as the shortest duration for which the demand uncertainty can be reliably described using

probability distributions. As shown in Figure 1, a time-period m corresponds to the time

interval Tm = [Hm−1, Hm), except for the final time-period for which T|M | = [H|M |−1, H|M |]

(i.e., the final time-period includes the time point at the end of the horizon). With this

notation H0 = 0 and H|M | = H . We define the time-periods this way to reflect the fact that

the uncertainty in the demand in the time-period m completely resolves itself by t = Hm,

which implies that the decisions to be made at t = Hm are recourse.

Figure 1: Scheduling Horizon

The demands for products are placed in the time-periods through the horizon and are

required to be satisfied at the end of the horizon at t = H . The uncertainty in the product

demands in each time-period is described by discrete probability distributions, i.e. any one of

km ∈ Km possible events can occur during a time-period, each with an associated probability

pm,km . Thus Ds,m,km indicates the demand for product s ∈ SP placed in time-period m if

event km occurs in time-period m. We assume that |Km| = K ∀m ∈ M .

The costs involved are those for, (i) holding inventory over the horizon (parameters

HCs denote the cost of holding one unit of state s for one time unit), (ii) excess inventory
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at the end of the horizon (parameters XCs denote the cost of holding one unit of state s at

the end of the horizon, i.e. a terminal cost), (iii) lost demand due to inadequate production

(parameters LCs denote the cost of losing one unit of demand for state s), while the revenues

are from selling the products (parameters REVs denote the revenues from selling one unit

of state s).

The problem then is to obtain a schedule that maximizes the expected profit, where

the scheduling decisions consist of the allocation of the equipment to the appropriate mode

of production of different products over the time horizon, as well as choosing the batch

size in the selected production mode. With the inventory costs, we would like to store as

little as possible through the horizon and produce the final products as late as possible

towards the end of the horizon, which is when the demands must be met. With the costs for

excess- and under-production, we would like to match demand as closely as possible. Unlike

previous work, we assume that some of the demand can actually be unsatisfied due to limited

production capacity. Thus, the problem also consists in choosing the optimal amounts to be

produced for each product in case there are conflicts between products for resources.

3 Motivating Example

Here we present a small example to illustrate the pitfalls of using deterministic approaches

to scheduling optimization in the face of demand uncertainty. We also show the value of

using a staged decision-making approach to solving this problem.

Consider a single-stage single-unit batch plant that can process two products, A and B.

The processing unit can be operated in |L| = 3 processing modes which differ in the batch

sizes. The processing time for a given mode is product dependent. For example, it takes 2

time units to produce 0-5 tons of product A, while it takes 3 time units to produce 0-5 tons of

B. The processing times and batch-size ranges for the different modes for the two products,

as well as the costs and revenues are given in Table 1. Product B is more profitable than

A and takes longer to process for a given batch size. The excess costs denote the penalty

for over-production, while the lost costs account for under-production. With these costs, we

would like to match demand as closely as possible. Furthermore, for the sake of simplicity

of presentation, we assume in this example that there are no holding (inventory) costs.

The horizon of interest in this problem is a period of 20 units (from t = 0 to t = 20), and

is made up of |M | = 2 equally long time-periods (the first time-period from [0, 10) and the

second from [10, 20]) for which the product demand distribution is available. For the sake

of simplicity, we assume that the demand distributions for both time-periods are the same
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Table 1: Data for Motivating Example

Product Batch Size Proc. Time REVs XCs LCs

Range (tons) (units) ($/tons) ($/tons) ($/tons)

0-5 2

A 5-10 4 100 10 20

10-25 6

0-5 3

B 5-10 5 250 20 50

10-25 7

(i.e., time independent distributions), although this assumption can be easily relaxed. The

demand distribution for each time-period is given in Table 2. There are |K| = 2 possible

events in each of the two time-periods, resulting in a total of 22 scenarios for the entire

horizon. The mean time-period demands for A and B are 17.5 and 3.75 tons respectively.

Table 2: Time-period Demand Distribution for Motivating Example

Event Probability Demands (tons)

1 0.25 A: 10, B: 0

2 0.75 A: 20, B: 5

Given this data, the objective is to find a schedule that maximizes profit, defined as the

difference of the revenues and the excess and lost costs. The scheduling decisions include

determining the optimal amounts to be produced for each product, the modes of production

(batch sizes) for that amount, as well as the timing of the production.

3.1 Deterministic Approach

The expected demands for products A and B for the entire horizon are 35 tons and 7.5 tons

respectively. The optimal schedule obtained from solving an MILP model for these demands

is as shown in Figure 2. Although the deterministic MILP model predicts a profit of $5375

for this schedule and production that meets the expected demand, the actual expected profit

is only $4559 when evaluated under uncertainty given in Table 2.

3.2 Two-stage Approach

The two-stage approach treats all scheduling decisions (such as which processing mode is

selected, the sequencing and sizing of various batches) as first-stage decisions that are com-
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Figure 2: Optimal Deterministic Schedule

mon to all scenarios. However, decisions such as the amount to be sold and the amount

of demand unsatisfied are regarded as second-stage decisions, which are taken at the end

of the horizon (t = 20), after realization of the total demand, and are scenario-dependent.

The amount to be sold in a particular scenario is calculated as the minimum of the amount

produced and demand realized in that scenario. The optimization model for determining a

schedule that maximizes expected profit over all scenarios can be formulated as an MILP as

will be seen later in the paper. The optimal two-stage solution is as shown in Figure 3 and

has an expected profit of $5275. Note that in this solution we produce 40 tons of A and 10

tons of B since it is more profitable to produce in excess of the mean demands despite the

penalties for over-production.

Figure 3: Optimal Schedule from Two-Stage Model

3.3 Three-stage Approach

Since the uncertainty in the demand resolves itself in 2 stages (at t = 10 when the first

time-period’s uncertainty is resolved, and at t = 20), it is natural to treat this problem as a

three-stage stochastic MILP with the following structure:

(i) the scheduling decisions (timing and sizing of batches) for the first time-period [0,

10) are treated as first-stage decisions;

(ii) the scheduling decisions for the second time-period [10, 20) are second-stage decisions

which are dependent on the events that occur in the first time-period, and

(iii) the continuous variables related to calculation of amounts sold, in excess, lost and

revenues and costs are considered as third-stage decisions made at t = 20.
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Figure 4: Optimal Schedules from Three-Stage Model

With the three-stage MILP model, the optimal schedule is embedded in a tree as shown

in Figure 4. At the root node of the tree we have the tasks to be implemented in stage one.

From Figure 4, we can see that these tasks are processing 15 tons of A at t = 0, 5 tons

of B at t = 4 and two batches of 5 tons of A at t = 7 and t = 9. Note that we do not

restrict the first-stage decisions to finish by the end of the first time-period (for e.g., a batch

of 5 tons of A begins processing at t = 9 and continues till t = 11, beyond the end of the

first time-period). At t = 10, when the uncertainty in demand in the first time-period has

been completely resolved, there are two possible courses of action. If Event 1 has occured in

time-period 1 (a demand of 10 tons of A and 0 tons of B), then we carry out the schedule

in the left half of the tree in Figure 4. If Event 2 has occured, then we follow the schedule

in the opposite part of the tree. We have not shown the third-stage decisions (amounts

sold/lost/excess etc.) at the end of the horizon. This solution, which produces 30 tons of A

and 5 of B if Event 1 occurs in the first time-period and 40 tons of A and 10 of B if Event

2 occurs, has an expected profit of $5325.

3.4 Comparison of Solutions

Table 3 presents a comparison of the performance of the different strategies in various

scenarios. Here, Scenario 1 refers to a combination of Event 1 in the first time-period and

Event 1 in the second time-period; Scenario 2, a combination of Event 1 in the first time-

period and Event 2 in the second time-period and so on. The three-stage strategy not only
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Table 3: Profits in Different Scenarios

Profit in Scenario ($)
Strategy

1 2 3 4
Expected Profit ($)

Deterministic 1700 4150 4150 5150 4559

Two-Stage 1600 4050 4050 6500 5275

Three-stage 1800 4250 4050 6500 5325

has the best overall expected profit, as expected from the theory, but also has significantly

higher profit in the worst (Scenario 1) and best (Scenario 4) cases. Although the two-

stage approach performs better than the deterministic approach, its performance suffers in

comparison with the three-stage approach because the scheduling decisions are common to

all scenarios. The three-stage aproach is also similar to reactive scheduling, wherein there is

some rescheduling of activities as a response to the realization of an event.

Thus, there are significant incentives to anticipating demand uncertainty at the level of

scheduling, by solving the corresponding multistage stochastic program.

4 Multistage Stochastic Programming Approach

In this section we discuss the various modeling approaches that are relevant to our problem.

We begin with an overview of the concept of scenario trees, and then illustrate how the

different models that we develop can be linked to these scenario trees.

4.1 Scenario Trees

Recall that there are |M | time-periods over the horizon. The product demands in each of

these time-periods are random variables that can take on |K| possible values, each with an

associated probability pm,km . With this information structure, the external world (i.e., the

demand) can be in any one of |K| possible states after one time-period, in any one of |K|2
possible states after two time-periods and so on. We can represent this information structure

as a scenario tree, where the nodes at level m represent the states of the external world up to

the time-period m (with the root node at level 0 corresponding to the state of the world at

time t = 0). At level |M | of the tree, we have |K||M | nodes representing different scenarios.

These scenarios correspond to a joint realization of the demands over the |M | time-periods.

Figure 5 displays a scenario tree for a case when there are |K| = 2 possible realizations

of the demands per time-period, and |M | = 3 time-periods, resulting in 23 = 8 scenarios.

For example, the random variable d1 which represents the demand in the first time-period

can take one of two values D11 or D12, each with an associated probability, d2 represents the

demand in the second time-period etc.
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Figure 5: Scenario Tree

4.2 MILP Model

The multistage stochastic program captures the information structure associated with the

scenario tree. Given that there are |M | time-periods in the scheduling horizon, wherein the

random variables are realized, we can formulate the scheduling problem as an (|M | + 1)-

stage stochastic MILP. The solution of this MILP provides a set of scheduling decisions to

implement at each node in the scenario tree (see Figure 6). Of course, at the terminal nodes

(leaves) of the tree, the (M + 1)th-stage decisions correspond only to the calculation of the

amounts sold, lost, in excess, as well as the costs and revenues.

The (|M | + 1)-stage stochastic MILP model is given by (MSP), and represents an ex-

tension of the model of Kondili et al.20 to the stochastic case. We refer the reader to the

appendix for the nomenclature, but for completeness we provide a brief description of the

notation used in model (MSP).

Indices km denote possible events in time-period m. The superscript m above a variable

indicates that the latter is a stage-m variable or a variable in time-period m (as we shall see

later while developing a two-stage model).

The index k∗
m represents the combination of events given by (k1, . . . , km−1), with k1 ∈

K1, . . . , km−1 ∈ Km−1. For instance, k∗
2 represents (k1), k∗

3 represents (k1, k2) and so on.

Hence, a variable such as xm
k∗

m
is a stage-m variable equivalent to xm

k1,...,km−1
, indicating that

for every combination of events in the previous m − 1 stages, we define a possible recourse

variable.

With this notation, k∗
1 is assumed to be the empty set, {}: thus variables x1 are stage-1

decision variables that are to be taken before a realization of any random variable.

We define K∗
m to be the set of m − 1 tuples representing all possible combinations
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Figure 6: Multistage Solution

of k1, . . . , km−1 ∈ K, i.e. K∗
m = {(k1, . . . , km−1)|k1 ∈ K1, . . . , km−1 ∈ Km−1}. For in-

stance, K∗
3 = {(k1, k2)|k1 ∈ K1, k2 ∈ K2}. With this notation, we can observe that

the set K∗
m corresponds to the nodes at level m − 1 of the scenario tree. Thus, the set

K∗
3 = {(1, 1), (1, 2), (2, 1), (2, 2)} corresponds to the four nodes at level 2 of the scenario

tree shown in Figure 6. Also, pk∗
|M|+1

indicates the probabilities of the |K||M | scenarios that

belong to set K∗
|M |+1.

In (MSP), the variables ym
i,j,t,k∗

m,l are stage-m binary variables that denote that task i

starts in processing unit j at time t in processing mode l. The continuous variables bm
i,j,t,k∗

m,l

and stms,t,k∗
m

are stage-m variables denoting the batch size of task i starting at time t in

unit j in processing mode l and the amount of state s in storage at time t respectively.

Continuous variables sold, xs, lost are stage- |M | + 1 variables that correspond to the

amount of products sold, amount produced in excess and the amount lost due to insufficient

production respectively. The profit in each scenario is calculated as the difference of the

revenues (sales) and the costs of excess inventory (txic), holding inventory through the

horizon (thc) and lost demands (tlc), which are all stage-|M + 1| variables.

The constraints in the model can be classified into two types: those related to the

scheduling aspects (constraints (2) to (8)), and those related to the calculations of the rev-

enues and costs (constraints (9) to (16)). The scheduling constraints are defined for every

stage m ∈ M , and for every time point in interval Tm, as well as every k∗
m, while the revenue

and cost calculations being stage-|M | + 1 computations are defined only at the end of the

horizon.
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1. Objective: The objective in (1) is to maximize the expected profit defined as the

probability weighted sum of the profit in each scenario.

max EP =
∑

k∗
|M|+1

∈K∗
|M|+1

pk∗
|M|+1

· (sales
|M |+1
k∗
|M|+1

− txic
|M |+1
k∗
|M|+1

− tlc
|M |+1
k∗
|M|+1

− thc
|M |+1
k∗
|M|+1

)(1)

2. Scheduling Constraints:

In (2), we state that for every time point t, in a given unit j capable of processing

tasks i, at most one task can begin processing in at most one mode.

∑

i∈Ij

∑

l∈L

ym
i,j,t,k∗

m,l ≤ 1 ∀(j ∈ J, m ∈ M, t ∈ Tm, k∗
m ∈ K∗

m) (2)

In (3), we state that if a task i has been assigned to unit j in mode l at time t, i.e.

yijtl = 1, then this unit cannot be assigned to tasks other than i during the interval

[t-τijl+1,t]. These are similar to the constraints in Shah et al.21.

∑

i∈Ij

∑

l∈L

t∑

t′=t−τijl+1

m∑

m′=1

ym′
i,j,t′,k∗

m,l ≤ 1 ∀(j ∈ J, m ∈ M, t ∈ Tm, k∗
m ∈ K∗

m) (3)

Equations (4) and (5) bound the amount of material that has begun processing at any

given time within the respective limits on the processing mode’s size range.

BL
i,j · ym

i,j,t,k∗
m,l ≤ bm

i,j,t,k∗
m,l ∀(i ∈ I, j ∈ Ji, m ∈ M, t ∈ Tm, k∗

m ∈ K∗
m) (4)

bm
i,j,t,k∗

m,l ≤ BU
i,j · ym

i,j,t,k∗
m,l ∀(i ∈ I, j ∈ Ji, m ∈ M, t ∈ Tm, k∗

m ∈ K∗
m) (5)

The material balances for the different states are captured through equations (6) and

(7), with (6) stating that the amount of state s in storage at t = 1 and the amount

that has begun processing at t = 1 cannot be more than the initial amount available,

STARTs. In equation (7), the amount of state s at time t is equal to that at time t−1

adjusted by the amounts produced or consumed. Equation (8) imposes continuity of

the amounts of states across the stages (time-periods).

st1s,1 +
∑

i∈Is

ρIN
is · ∑

j∈Ji

∑

l∈L

b1
i,j,1,l ≤ STARTs ∀s ∈ S (6)

stms,t,k∗
m

+
∑

i∈Is

ρIN
is · ∑

j∈Ji

∑

l∈L

bm
i,j,t,k∗

m,l = stms,t−1,k∗
m

+
∑

i∈Is

ρOUT
is · ∑

j∈Ji

∑

l∈L

m∑

m′=1

bm′
i,j,t−τijl,k

∗
m′ ,l

∀(s ∈ S, m ∈ M, t ∈ Tm, k∗
m ∈ K∗

m) (7)

stm−1
s,Hm−1,k∗

m−1
= stms,Hm−1,k∗

m
∀(s ∈ S, m ∈ M, k∗

m ∈ K∗
m) (8)
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3. Sales Calculations:

Constraints (9) and (10) specify that the amount of product s sold is the minimum of

the amount available at the end of the horizon and the total demand for the product

over the entire horizon (i.e., D
|M |+1
s,k∗

|M|+1
=

∑
m∈M Ds,m,km). Constraints (11) and (12) cal-

culate the amount of product that is in excess of demand, and less than the demand,

respectively, while (13)-(15) compute the revenue and various costs. In (16) we com-

pute the inventory cost using a rectangular approximation of the total area under the

inventory-time curve for each state. In (14), we compute the cost of excess production

of product as well as that of producing excess of intermediates. In (17), we specify

that no task can be started if it cannot be finished before the end of the scheduling

horizon.

sold
|M |+1
s,k∗

|M|+1
≤ st

|M |
s,H,k∗

|M|
∀(s ∈ SP, k∗

|M |+1 ∈ K∗
|M |+1) (9)

sold
|M |+1
s,k∗

|M|+1
≤ D

|M |+1
s,k∗

|M|+1
∀(s ∈ SP, k∗

|M |+1 ∈ K∗
|M |+1) (10)

xs
|M |+1
s,k∗

|M|+1
≥ st

|M |
s,H,k∗

|M|
− D

|M |+1
s,k∗

|M|+1
∀(s ∈ SP, k∗

|M |+1 ∈ K∗
|M |+1) (11)

lost
|M |+1
s,k∗

|M|+1
≥ D

|M |+1
s,k∗

|M|+1
− st

|M |
s,H,k∗

|M|
∀(s ∈ SP, k∗

|M |+1 ∈ K∗
|M |+1) (12)

sales
|M |+1
k∗
|M|+1

=
∑

s∈SP

REVs · sold|M |+1
s,k∗

|M|
∀(k∗

|M |+1 ∈ K∗
|M |+1) (13)

txic
|M |+1
k∗
|M|+1

=
∑

s∈SP

XCs · xs
|M |+1
s,k∗

|M|

+
∑

s∈S\SP

XCs · st|M |
s,H,k∗

|M|
∀(k∗

|M |+1 ∈ K∗
|M |+1) (14)

tlc
|M |+1
k∗
|M|+1

=
∑

s∈SP

LCs · lost|M |+1
s,k∗

|M|+1
∀(k∗

|M |+1 ∈ K∗
|M |+1) (15)

thc
|M |+1
k∗
|M|+1

=
∑

m∈M

∑

s∈S

∑

t∈Tm

HCs · stms,t,k∗
m

∀(k∗
|M |+1 ∈ K∗

|M |+1) (16)

ym
i,j,t′,k∗

m,l = 0 ∀(m ∈ M, i ∈ I, j ∈ Ji, k
∗
m ∈ K∗

m, l ∈ L,

t′|t′ + τijl > H) (17)

With the integrality specifications on ym and the bounds on the other variables, the

model (MSP) is thus formulated as:

(MSP) max EP

s.t. (2) − (17)

ym
i,j,t,k∗

m,l ∈ {0, 1} ∀(m ∈ M, i ∈ I, j ∈ Ji, t ∈ Tm, k∗
m ∈ K∗

m, l ∈ L)

bm
i,j,t,k∗

m,l ≥ 0 ∀(m ∈ M, i ∈ I, j ∈ Ji, t ∈ Tm, k∗
m ∈ K∗

m, l ∈ L)

0 ≤ stms,t,k∗
m
≤ CAPs ∀(m ∈ M, s ∈ S, t ∈ Tm, k∗

m ∈ K∗
m)
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sold
|M |+1
s,k∗

|M|+1
, xs

|M |+1
s,k∗

|M|+1
, lost

|M |+1
s,k∗

|M|+1
≥ 0 ∀(s ∈ SP, k∗

|M |+1 ∈ K∗
|M |+1)

sales
|M |+1
k∗
|M|+1

, thc
|M |+1
k∗
|M|+1

≥ 0 ∀(k∗
|M |+1 ∈ K∗

|M |+1)

txic
|M |+1
k∗
|M|+1

, tlc
|M |+1
k∗
|M|+1

≥ 0 ∀(k∗
|M |+1 ∈ K∗

|M |+1)

Note that in (MSP) the number of variables and constraints grow exponentially with

the number of events |K| that can occur in any time-period. This is evident from the K∗
m

subscripts on the variables, as well as the replication of constraints for each of the K∗
m

combination of events at every stage m ∈ M . The ym and bm variables are fixed to zero

for times t ∈ T\Tm, i.e. the stage-m batch start and size variables are defined for only

those time-points in interval Tm. However, this is not the case for the stm variables due

to the material continuity requirements (see (8)). The continuity constraint is also another

reason why the final time point in the horizon is included in T|M |. In time-periods other than

the terminal time-period the continuity constraint links the amounts stored across stages;

however, this is not the case for the terminal time-period. But since the amounts stored at

t = T|M | = H are required for the revenue/cost calculations, we need the material balances

and variables to defined for the final time-point also. Also, the variables ym and bm are

defined only for compatible task-unit combinations.

4.3 Generating different models from (MSP)

We now illustrate how we can model the various approaches (deterministic, two-stage, multi-

stage etc.) for the scheduling problem of interest. To simplify the presentation, we present

models for a scheduling horizon with |M | = 3 time-periods and |K| = 2 possible events in

each time-period. Let T1 = [0, H1), T2 = [H1, H2) and T3 = [H2, H3]. Let k1, k2 ∈ K = {1, 2}.

4.3.1 Formulation of constraints in (MSP): an illustration

To make the notation used in the formulation of (MSP) clearer, we show below the formu-

lation of one set of constraints (and the associated variables) in model (MSP).

Consider constraints (2) in (MSP), which specify that for every time point t, in a given

unit j capable of processing tasks i, at most one task can begin processing in at most one

mode.

The stage-1 constraints are formulated as in (18). Note that there are no k indices on

the variables and that there is no replication of the constraints for different events k ∈ K.

These are identical to the type of constraints we would formulate for deterministic models.

∑

i∈Ij

∑

l∈L

y1
i,j,t,l ≤ 1 ∀(j ∈ J, t ∈ T1) (18)
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The stage-2 constraints and variables are recourse to the event that occurred in the first

time-period T1, and are as shown in (19).

∑

i∈Ij

∑

l∈L

y2
i,j,t,k1,l

≤ 1 ∀(j ∈ J, t ∈ T2, k1 ∈ K) (19)

The stage-3 constraints and variables are recourse to the events that occurred in the

first and second time-periods and are as shown in (20).

∑

i∈Ij

∑

l∈L

y3
i,j,t,k1,k2,l ≤ 1 ∀(j ∈ J, t ∈ T3, (k1, k2) ∈ K2) (20)

Now consider constraints (3) in (MSP) which are more complicated than (2) in that

they involve y variables across different stages (note the summation over m′ ≤ m - see also

(7)). The reason why these constraints involve y and b variables across stages is that we do

not restrict a task that is started in the first time-period to finish by the end of the first

time-period. Hence if a first-stage task has been started at t = (H1 − 1) and has a duration

of 2 units, the associated processing unit is unavailable at t = H1 and t = H1 + 1. This in

turn implies that the second-stage y2 and b2 variables are to be fixed to zero. The first-,

second- and third-stage for (3) are as shown in (21)-(23):

∑

i∈Ij

∑

l∈L

t∑

t′=t−τijl+1

y1
i,j,t′,l ≤ 1 ∀(j ∈ J, t ∈ T1) (21)

∑

i∈Ij

∑

l∈L

t∑

t′=t−τijl+1

(y1
i,j,t′,l + y2

i,j,t′,k1,l) ≤ 1 ∀(j ∈ J, t ∈ T2, k1 ∈ K) (22)

∑

i∈Ij

∑

l∈L

t∑

t′=t−τijl+1

(y1
i,j,t′,l + y2

i,j,t′,k1,l + y3
i,j,t′,k1,k2,l) ≤ 1 ∀(j ∈ J, t ∈ T3, (k1, k2) ∈ K2) (23)

4.3.2 Deterministic Model

The deterministic approach to solving the scheduling problem consists of determining the

optimal schedule to meet the expected value of the product demand. Thus, as shown in the

Figure 7, the scenario tree is collapsed to a pair of nodes, a root node (T = 0) and a single

node that represents a state at T = H3 where the total demand realized is the mean value

of the random variable d1 + d2 + d3. The deterministic model (DM) can be obtained from

(MSP) by setting |K| = 1 and replacing the uncertain demands Ds by their mean values

(and dropping the m superscripts and k∗ subscripts on the variables).

The expected profit of the schedule may be obtained by fixing the y and b variables, and

determining the appropriate sales and other flows, for every possible demand realization.
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Figure 7: Deterministic Approach

4.3.3 Two-stage Model

Although the two-stage models explicitly consider the uncertainty in the demands, we restrict

all the scheduling decisions (i.e., the binary variables y and continuous variables b and st)

for the entire horizon (i.e., all time-periods) to be first-stage decisions (see Figure 8). The

two-stage model (TSM) corresponds to dropping in (MSP) the k∗ subscripts from y, b and

st , as well as from the scheduling constraints (2)-(8). The second-stage decisions are the

continuous variables sold, lost, xs, sales, txic, tlc, thc, which involve the calculation of the

amounts sold, lost, in excess etc. Thus, we have a set of second-stage decisions for every

scenario k∗
|M |+1 = (k1, k2, k3), although there is only one set of scheduling decisions. We

present a generic two-stage model (TSM(kk∗
m′)) in Appendix A that will be used as part of

our approximation strategy.

Note that the two-stage model has the same number of binaries as the deterministic

model since all scheduling decisions are first-stage variables. In essence, the two-stage model

is formulated to provide a robust schedule. Of course, if there is only one time-period, the

two-stage model is equivalent to (MSP).

5 Approximate Solution Approach

We refer the reader to Kall and Wallace22 and Birge and Louveaux23 as basic references

for the theory and applications of multistage stochastic programs. As observed in Römisch

and Schultz24 and Ahmed et al.25, much of the work in the area of multistage stochastic

programs has focussed on stochastic linear programs (i.e., without integer requirements or
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Figure 8: Two-stage Approach

nonlinearities). This is mainly due to the convexity of the value function of the stochastic

linear programs, which breaks down in the case of stochastic integer programs. Thus, in

our multistage stochastic programs, where a significant number of the recourse variables are

binary variables (for example, the allocation of processing modes in the later time-periods),

approaches based on convex programming which work for stochastic linear programs are

not applicable. To reduce the computational expense associated with solving the multistage

stochastic integer programs, we present an approximate solution strategy that relies on

solving a number of smaller models. In particular, the two-stage stochastic models we

will use in this work have a purely continuous second stage; however there are binary and

continuous first stage variables.

5.1 Solution of Two-stage Models within a Shrinking Horizon

framework

Some of the common approaches to the optimization and implementation of schedules over

several time periods are rolling-horizon or shrinking-horizon strategies. These are widespread

in process control, especially Model Predictive Control and are increasingly of interest

in scheduling problems (see for instance, Wilkinson26, Dimitriadis et al.27, Elkamel and

Mohindra28, Pinedo29, Perea-Lopez et al.30).

A typical shrinking-horizon algorithm works as follows. An approximate model (i.e.,

simplification of the original problem) is formulated for the entire horizon of |M | time-

periods. Although the solution of this model gives us decisions for the entire horizon, only
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the decisions for the first time-period are implemented. The state of the system is updated

at the end of the first time-period, and an approximate model is solved for the remaining

|M | − 1 time-periods (with decisions for the elapsed first time-period already fixed). The

algorithm proceeds in this manner till decisions have been fixed for the entire horizon.

In this work we use two-stage models as the approximation models in the shrinking-

horizon strategy. The two-stage models (TSM) have the structure as in Section 4.3.3, with

the scheduling decisions as first-stage variables (common for all scenarios) and the calcu-

lations for sales, costs, revenues as second-stage variables at the end of the horizon. If we

implement the shrinking-horizon strategy in real-time, we would obtain a feasible schedule

for the entire horizon at each step (see Figure 9 for an illustration of the shrinking-horizon

strategy for a three time-period example). Calculating the sales and other decisions at the

end of the horizon would give us the profit for the particular scenario that was realized over

the time horizon. If we were just interested in implementing a scheduling system in real-

time, carrying out the steps similar to Figure 9 once as we move forward in time is sufficient.

However, a more important objective would be knowledge of the performance of the strategy

over all possible scenarios.

Figure 9: Application of Shrinking Horizon Strategy to a Scenario

To evaluate the performance of the proposed strategy (SHT), an algorithm can be

constructed as shown below. This algorithm is mainly motivated by (i) the observation that
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the first two-stage model needs to be solved only once since the scheduling decisions for the

first time-period will be the same for all scenarios with the shrinking-horizon strategy, and

(ii) linking the decision-making process at the end of each time-period with the scenario tree.

Thus, if we store the solutions (mainly, the scheduling variables y and b) of the two-stage

models at level m of the tree, we can use these values for the solution of the models at level

m + 1. Furthermore, for convenience of implementation, rather than constructing different

two-stage models (with different number of scenarios) that are to be solved at the different

levels of the scenario tree, we make use of the structure of the two-stage model at the root

node by appropriately modifying the values of the parameters in the model. We refer the

reader to Appendix A for a description of the generic two-stage models that we solve at the

different nodes of the tree.

Algorithm SHT

1. Initialization.

Set t = 0, ctr = 1

Solve TSM(kk∗
1), the two-stage model for the entire horizon (corresponding to the root

node).

Store scheduling decisions y1, b1, st1 (i.e., for time-period ctr = 1) in PRED(kk∗
1).

2. Increment

Set ctr = ctr + 1

3. Termination Check

If ctr > |M | + 1, there are no more two-stage models to be solved. Go to Step 5.

4. Solving Two-stage models at level ctr − 1

Solve the two-stage models corresponding to level ctr − 1 of the scenario tree, i.e.

TSM(kk∗
ctr). These models have the scenario demands adjusted by the demand real-

ization till Hctr, scheduling decisions fixed till Hctr to values from PRED(kk∗
ctr−1).

Store scheduling decisions yctr, bctr, stctr (i.e., for next time-period ctr) in PRED(kk∗
ctr).

Go to Step 2.

5. Termination

Compute Expected Profit through probability-weighted sum of profits at nodes in level

M of scenario tree. Stop.

Figures 10-13 illustrate how we would proceed for a three time-period problem. In these

figures the arrows between the nodes at a given level m and the nodes at level 3 indicate the

two-stage approximation being performed at level m. The hatched rectangles in the Gantt
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charts adjacent to the nodes at which the computations are being performed indicate the

time-periods for which the scheduling decisions are already fixed and the demand realized,

while the horizontally shaded rectangles in Figures 11-13 indicate levels of the tree at which

the computations have already been performed. Thus in Figure 10 at the root node, no

demand has been realized yet and no scheduling decision has been made, while at the nodes

in Level 1 in Figure 11, decisions have already been fixed for the first time-period (to those

from the solution of the two-stage model at the root node) and the demand for the first

time-period already realized. In Figure 12, decisions have already been fixed for the first two

time-periods and demands in the first two time-periods already realized. Finally, in Figure

13, note that the scheduling decisions have been fixed for the entire horizon and all demand

realized, which implies that only LPs have to be solved to calculate the correct values of the

sales and other variables.

Figure 10: Initial Step

Figure 11: Solving 2 MILPs at Level 1

With this approximation strategy, we would have a look-up table of scheduling decisions

for every node of the scenario tree (in a sense resembling the multistage solution). The
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Figure 12: Solving 4 MILPs at Level 2

Figure 13: Solving 8 LPs at Level 3

computational advantages of the solution strategy are as follows. Assume that we require

B binaries for modeling the scheduling of a time-period. A deterministic model with M

time-periods then has B · M binaries. With K possible events per time-period, the number

of binaries in a stochastic multistage model would be B · (KM − 1)/(K − 1). The idea is

that instead of solving the stochastic multistage MILP model with B · (KM − 1)/(K − 1)

binaries, we solve a series of MILPs that are smaller in size. Thus, initially we would solve

a stochastic two-stage MILP with B · M binaries, corresponding to the root node of the

scenario tree. We would then solve K two-stage MILPs with B · (M − 1) binaries and so on.

At the lower levels of the tree, where we solve a number of MILPs, the number of binaries

is quite small, given that most of the decisions for the horizon are already fixed. Also, the

solutions of the model at a given node can be used as a starting solution for the model at

its child nodes, thereby further reducing the computational effort.
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5.2 Quality of approximation

Although no rigorous theoretical analysis is possible, the quality of the solution (i.e., the

expected profit) provided by the approximation strategy can be compared with the following:

(i) the expected profit from a similar shrinking-horizon approach but based on solving

deterministic models at each step (SHD), in which expected demands are considered;

(ii) the expected profit from the multistage stochastic program (i.e., the exact solution),

or the LP relaxation, if it cannot be solved to optimality;

(iii) the expected profit from the Wait-and-See solutions (WSS);

In comparison (i), we would generally expect our strategy to perform better since the

deterministic models do not have any information about the uncertainty. Furthermore, our

strategy will clearly provide an expected profit less than or equal to those in (ii) and (iii).

Recall that in (iii), we solve the scheduling problem for each scenario and then combine

the profits from the scenarios using a probability-weighted average. This provides an upper

bound on the expected profit, since it is clearly better to know the value of the random

variable before making the decision than having to make the decision before knowing it (Kall

and Wallace22). As we will see later, the upper bound provided in (iii) can be significantly

higher than even the LP relaxation of the multistage stochastic program; thus we use the

minimum of these two to provide the tightest upper bound.

5.3 Revisiting the Motivating Example

We revisit the motivating example discussed earlier and compare the solutions from the

approximation strategies with that of the multistage model.

Figure 14: Motivating Example - Solution from SHT approach

Figure 14 presents the optimal schedules using the proposed shrinking horizon two-stage

(SHT) approach which yields an expected profit of $5325, which is in fact identical to that
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of the three-stage solution. Note that for the first time-period between t = 0 and t = 10 we

implement the scheduling decisions that are optimal to the two-stage model for the entire

horizon (compare the schedule at the root node in Figure 14 to that shown in Figure 3.

Furthermore, since there are no holding costs in this example, the timing and sizing of the

batches is not as critical - for e.g., two batches of 5 tons each of A is equivalent to one batch

of 10 tons of A. Thus, when we compare Figure 14 with the optimal three-stage solution in

Figure 4, we see that we produce identical amounts for the different scenarios.

Figure 15: Motivating Example - Solution from SHD approach

In the simpler shrinking horizon deterministic (SHD) approach, we solve the determin-

istic model for the entire horizon, implement the decisions for the first time-period (i.e., fix

the binary variables for the first time-period) and solve two different deterministic models

corresponding to the nodes at Level 1 of the scenario tree (part of it shown in Figure 15.

For instance, at Node 1 in Level 1 we would update the demand to be the sum of already-

realized demand (i.e., 10 for A and 0 for B) and the mean value of the demand for the next

time-period, while at Node 2 in Level 1, the demand would be the sum of (20 of A, 5 of

B) and the mean value of the demand for the next time-period. At the nodes in Level 2,

where the demand has been entirely realized, we would calculate the selling decisions (note

that we have not shown these nodes at Level 2). Finally, we combine the resulting profits

weighted with the scenario probabilities to get the expected value of this approach ($4681),

which is considerably lower than with the proposed SHT strategy. The predicted schedules

thus obtained are shown in Figure 15.

The Wait and See approach yields an expected profit of $5375, which represents an

upper bound to the solution of the multistage model ($5325).

Figure 16 compares the profits of the different strategies in the four scenarios (see Section

3 for discussion of the scenarios), with the probabilities of the scenarios indicated above the
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Figure 16: Motivating Example - Comparison of Scenario Profits

bars in the plot. The SHT approach matches the three-stage solution in every scenario,

resulting in the same optimal expected profit. The shrinking horizon deterministic approach

performs worse than the three-stage solution in scenarios 1 and 2 and considerably worse in

Scenario 4 where the maximum demand is realized in each time-period, resulting in a very

low expected profit (12 % worse than the optimal expected profit). Note that the shrinking-

horizon deterministic approach performs even worse than the static two-stage solution which

has an expected profit of $5275. Note that it is possible that the shrinking horizon two-stage

approach can yield a worse profit than the shrinking-horizon deterministic approach in a

particular scenario (see, for instance, Scenario 3 in Figure 16), but the expected profit from

the SHT strategy will be greater than or equal to the expected profit from the SHD strategy.

6 Computational Results

In this section, we present several examples to illustrate the performance of the various

strategies in the scheduling of STNs. In the following examples, the two-stage stochastic

MILPs that were solved as part of the approximation strategy were not very expensive to

24



solve. Thus, we did not have to resort to special algorithms. For problems with several

thousands of scenarios, methods such as Lagrangean decomposition (Fisher32; Guignard and

Kim33) can be easily adapted for the solution of the two-stage models in this work. All

models were formulated and solved using GAMS with CPLEX-7.5 (ILOG CPLEX Inc.31) as

the MILP solver on a Pentium III/930MHz machine running Linux.

6.1 Example 1

Figure 17: Example 1 - STN Representation

Figure 17 is an STN-representation of a process that produces a single product (S4)

through three stages, viz. mixing, reaction and purification. Each task can be carried out

in three possible processing modes. Each of these processing modes has a specific range for

the batch size and a corresponding processing time over the range.

We present two examples which differ in the number of time-periods and the length of

the time horizon. The data for these example are adapted from Ierapetritou and Floudas34

and are presented in Tables 20-21 in Appendix B.

6.1.1 Example 1a

In this example the horizon of interest is of duration 18 time units (from t = 0 to t = 18),

with there being 3 equally long time-periods. The demand for product S4 in each time-

period has the same distribution which is shown in Table 4. Since there are 2 possible events

for each of the 3 time-periods, there are 23 scenarios for the entire horizon.

At the beginning of the horizon only raw material S1 is available. The intermediate

states S2 and S3 have limited storage capacity as shown in Table 21. There is no demand for

the intermediate states; however, the cost of producing excess of these intermediate states is

penalized through a non-zero excess-cost. There is a holding cost for the final product S4,

so we would like to produce S4 as late as possible in the horizon.
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Table 4: Example 1a - Time-period Demand Distribution

Event Probability Demand for Product S4

1 0.2 0

2 0.8 30

Table 5 displays the computational results from applying the various approaches. In this

example the solution times are negligible (under a CPU second) for the different approaches,

hence we emphasize the differences in the solutions obtained.

Although the optimal profit predicted by the deterministic model was $70,200, the

schedule when evaluated under demand uncertainty had a significantly smaller expected

profit of $52,690.

The two-stage model when solved to optimality provides a schedule with 13.2% larger

expected profit than the deterministic approach ($60,300). Note that although we seek only

one schedule in both these approaches the two-stage approach performs significantly better

since the two-stage model considers the performance of a given schedule in all scenarios and

can trade-off a larger loss in a less probable scenario with a larger profit in a more probable

scenario.

Unlike the four-stage model where we consider the possibility of implementing different

schedules after each time-period, the three-stage model is formulated such that some time-

periods are aggregated to form a stage. Two three-stage formulations are possible: (a)

a formulation where the first stage corresponds to the first time-period, the second stage

corresponds to the second and third time-periods, and the third stage consists of the sales

calculations at the end of the horizon; (b) a formulation where the first stage corresponds

to the first two time-periods, the second stage corresponds to the third time-period, and the

third stage consists of the sales calculations at the end of the horizon.

Figure 18 displays the optimal solution for the first three-stage model, while Figure 19

displays the optimal solution for the second three-stage model. The latter model provides

Table 5: Example 1a - Computational Results

Model Type Equations Variables Binaries CPU secs E[Profit], $

Deterministic 541 426 144 0.07 52,690

Two-stage 605 483 144 0.05 60,300

Three-stage (a) 977 1024 234 0.47 63,600

Three-stage (b) 1209 1240 252 0.37 65,840

Four-stage 1385 1776 306 0.67 66,120
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for more scheduling responsiveness to the demands, and hence has a larger expected profit

of $65,840 than the $63,600 of the former. Also note that in Figure 19 the nodes at t = 12

display the total demand realized so far in the first two time-periods. Thus, the central node

with total demand 30 represents two scenarios: (i) where the demand for S4 is 0 (Event1)

in the first time-period and 30 (Event2) in the second, and (ii) the reverse.

The solution from the four-stage model has the maximum expected profit of $66,120

since it allows for the possibility of reacting to every event over the horizon. Figure 20

displays the optimal 2nd and 3rd-stage decisions when the demand realized in the first time-

period is 0 (i.e. Event1), while Figure 21 displays the optimal 2nd- and 3rd-stage decisions

when Event2 occurs in the first time-period. From these figures it is clear that the four-stage

model pushes for a production of 30 tons of S4 for every time-period, although it delays the

production of S4 until the last time-period. Thus, we see that at the (0, 0) node in Figure 20,

having observed the demand in the first two time-periods to be 0, we produce only 30 tons

of S4, since that is the maximum demand possible. Similarly at the (0, 30) node, we produce

60 tons of S4, taking into account the 30 tons already placed in the second time-period and

a probable 30 tons in the third time-period. This can also be observed in the schedules

displayed in Figure 21.

It is also instructive to compare the four-stage solution with the upper bound from

the Wait and See solutions. The optimal schedules for the various scenarios are shown in

Figure 22. These show that it is possible to meet the demand exactly for each scenario, thus

incurring no penalties for excess production. Combining the profits in these scenarios with

the scenario probabilities as weights, we get the expected profit of the Wait and See strategy

as $69,696. The difference between the expected profit from the Wait and See solutions and

the expected profit from the four-stage solution (i.e., 69, 696−66, 120 = 3576) represents the

Expected Value of Perfect Information (EVPI) Kall and Wallace22, which is the maximum

amount we would be willing to pay for information to resolve the uncertainty in demands.

Figure 23 presents the distribution of the profit of the various strategies. Here we

have plotted the probability of making more than a given amount of profit. Although

the deterministic schedule has a smaller worst-case loss than and dominates the two-stage

schedule over the lower range of profit, the maximum profit it can make is substantially

smaller than in the other models. The two-stage model takes into account the maximum

possible demand and thus provides a schedule that can match this demand, which results in

the same maximum profit as in the other strategies.
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Figure 18: Example 1a - Optimal solution to Three-stage(a) model

Figure 19: Example 1a - Optimal solution to Three-stage(b) model
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Figure 20: Example 1a - Optimal four-stage Solution - Left half of tree

Figure 21: Example 1a - Optimal four-stage Solution - Right half of tree
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Figure 22: Example 1a - Wait and See Schedules
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Comparison with shrinking-horizon approaches

The shrinking-horizon approach with deterministic models provided an expected profit

of $58,589 while the shrinking-horizon with two-stage models provided an expected profit

of $64,920 (see Table 6). Note that the shrinking horizon two-stage strategy provides an

expected profit within 2% of the optimal solution of the four-stage model ($66,120), while

the shrinking-horizon deterministic approach provided an expected profit ($58,589) even

less than the static two-stage approach. The largest models solved in these approximation

strategies have the same size as the deterministic and two-stage models shown in Table 5.

Even though the deterministic and two-stage models at different levels of the tree were very

inexpensive to solve, we had to solve many of these models, and therefore the total CPU

time for these approaches exceeds the time taken to solve the four-stage model (see Table

6). The CPU time for obtaining the SHD and SHT solutions represents the time required

for solution of 1 MILP at the top of the tree, 2 MILPs at level 2, 4 MILPs at level 3 and 8

LPs at level 4. Note that at level 4 we have LPs rather than MILPs since we have fixed all

the binary variables.

Table 6: Example 1 - Comparison of Approximation Strategies

Approach E[Profit], $ CPU Time (secs)

SHD 58,589 0.71

SHT 64,920 0.69

Four-stage 66,120 0.67

A comparison of the scenario profits from the approximation strategies with the four-

stage solution and Wait and See solutions is provided in Figure 24. The numbers above

the bars in the plot indicate the probability of each scenario. As can be seen from the

plot, the performance of the shrinking horizon two-stage approach is comparable to the four-

stage solution in almost all scenarios, and overall much superior to the shrinking-horizon

deterministic approach which has a smaller expected profit than even the static two-stage

solution (compare Table 5 with Table 6).

6.1.2 Example 1b

In this example the horizon of interest is of duration 60 units, with five equally long time-

periods. The time-period demands for product S4 have the distribution shown in Table

7. There are 3 possible events for each of the 5 time-periods, resulting in a total of 243

scenarios for the entire horizon. Note that the probability distributions are different for the
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Figure 24: Example 1a: Comparison of Scenario Profits

five time-periods. We can see that the second time-period has the highest mean demand

while the first and last time-periods have comparatively high variances (deviation about the

mean) relative to the mean demand. The high variances could reflect the case where there

is a history of rush orders being placed towards the end of the horizon.

As before, only raw material S1 is available at the beginning of the horizon. The

intermediate states S2 and S3 have limited storage capacity, but larger capacities than

in Example 1a (i.e., 500, instead of 100). There is no demand for the intermediate states;

however, the cost of producing excess of these intermediate states is penalized through a non-

zero excess-cost. There is a holding cost for the intermediate states and the final product.

The price and cost data for the different states are presented in Table 22 in Appendix B.

Computational results from applying the static approaches to this example are summa-

rized in Table 8. Although the schedule from the solution of the deterministic model was

predicted to have a profit of around $767,350, the actual expected profit under uncertainty

was only $656,230. The two-stage model provided a solution with 2.4% larger expected

profit, with a small increase in computational time. Both these models were solved with an

optimality gap of under 0.5%.

The six-stage model’s solution reported in Table 8 represents the best solution obtained

after different attempts at solving the model (these attempts differed in the CPLEX options

such as branching and cut-generation strategies). The best options were found to be those
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Table 7: Example 1b: Time-period Demand Distributions

Time-period Probability Demand for S4

0.5 25

1 0.35 125

0.15 200

0.3 50

2 0.35 150

0.35 200

0.5 25

3 0.3 100

0.2 150

0.5 50

4 0.3 75

0.2 100

0.6 25

5 0.2 75

0.2 100

that placed an emphasis on finding feasible solutions, and even with these, the model could

not be solved to optimality. Nevertheless the reported solution is still within 0.75% of

the best possible (i.e., the best possible solution was $727,800 when the resource limit was

exceeded). Despite the dramatic increase in CPU time (50,000 seconds versus 20 seconds

for the other two models) required for solving the six-stage model to (near) optimality,

the six-stage solution provides a 7.4% improvement over the two-stage solution, and a 10%

improvement over the deterministic solution.

Table 8: Example 1b - Computational Results

Model Type Equations Variables Binaries CPU secs E[Profit], 1000$

Deterministic 1717 1350 522 3 656.23

Two-stage 2732 2248 522 20 672.04

Six-stage 45592 53719 11610 > 50,000 722.43

Comparison with shrinking-horizon approaches

In this example the models at the lower levels of the tree were solved to within 0.5%

optimality in both SHD and SHT approaches. We tried two different strategies in CPLEX-

7.5 for solving the sub-problems: with the emphasis on finding, (i) good feasible solutions,
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without proving optimality, (ii) good feasible solutions with proving optimality. From the

computations we observed that (i) worked better than (ii) for the SHT strategy while there

was not much of a difference for the SHD strategy with either (i) or (ii). Indeed, for the

SHT strategy, with (i) most of the sub-problems were solved to within the desired optimality

gap within a minute of CPU time, while with (ii) it took over 1000 CPU seconds for some

sub-problems. For the SHD strategy, although some of the solutions of the sub-problems at

the higher levels of the scenario tree were different, there was not much of a difference in the

overall expected profit with either (i) or (ii). Below, we present the results using (i) for both

SHT and SHD strategies.

The shrinking-horizon approach with deterministic models provided an expected profit

of $697,000, while the shrinking-horizon with two-stage models provided an expected profit

of $717,320, an improvement of about 2.8% over the SHD. Note that the shrinking horizon

two-stage strategy also provides an expected profit within 0.7% of the best solution obtained

from solving the six-stage model in a fraction of the CPU time.

Table 9: Example 1b - Comparison of Approximation Strategies

Profit (1000$)
Strategy

Minimum Maximum Expected Value CPU secs

SHD 324 966 697.49 180

SHT 299 1030 717.32 360

Six-stage 296 1108 722.43 > 50,000

WSS 341 1290 762.09 3090

6.2 Example 2

Figure 25 is an STN-representation of a multiproduct batch plant that can produce 4 prod-

ucts (P1, P2, P3 and P4) through 8 tasks from 3 feeds (F1, F2, F3) and various inter-

mediates (I4 to I9). Six processing units are available to carry out the tasks, and there

are 3 processing modes for each unit/task combination. The unit-task compatibilities and

the batch size/processing time data are adapted from Ierapetritou and Floudas34 and can

be found in Balasubramanian36. Each task can be carried out in three possible processing

modes in suitable processing units, with each processing mode accommodating a given range

of batch sizes and requiring a specific processing time. The intermediate states S2 and S3

have limited storage capacity.

We present two examples which differ in the demand distributions. In both examples

the horizon of interest is of duration 18 time units (from t = 0 to t = 18), consisting of 3
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Figure 25: STN Representation for Example 2

equally long time-periods.

6.2.1 Example 2a

Table 10: Example 2a: Time-period Demand Distributions

Event Probability Demands (P1, P2, P3, P4)

1 0.5 (360, 600, 144, 264)

2 0.5 (1440, 2400, 576, 1056)

In this example the time-period demands for the products have the same probability

distribution for all three time-periods (see Table 10). The demands have considerable vari-

ance.

Computational results from applying the static approaches to this example are sum-

marized in Table 11. Although the length of the time horizon is the same as in Example

1, there are considerably more variables and equations in this example due to the larger

number of tasks, units, states, etc. The CPU time reported for the deterministic model in

Table 11 includes the time for solving the deterministic model and evaluating the obtained

schedule under uncertainty; the evaluation of a given schedule is done under 1 CPU second.

The four-stage model was solved to within about 0.6% of optimality (i.e., the best possible

solution had an expected profit of $116,421).

Comparison with shrinking-horizon approaches
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Table 11: Example 2a - Computational Results

Model Type Equations Variables Binaries CPU secs E[Profit], $

Deterministic 1408 1176 408 42 98,380

Two-stage 1549 1289 408 25 105,238

Four-stage 3605 4605 912 > 50,000 115,769

Table 12: Example 2a - Comparison of Approximation Strategies

Profit ($)
Strategy

Minimum Maximum Expected Value CPU secs

SHD 15,368 165,701 111,104 250

SHT 12,308 157,875 114,208 200

Four-stage 10,027 166,371 115,769 > 50,000

WSS 61,916 204,116 141,117 2800

As seen in Table 12 the shrinking-horizon approach with deterministic models provided

an expected profit of $111,104 while the shrinking-horizon with two-stage models provided

an expected profit of $114,208, an improvement of about 2.8%. Note that the shrinking

horizon two-stage strategy also provides an expected profit about 1.3% lower than the best

solution obtained from solving the four-stage model for orders of magnitude larger CPU

time. The SHD strategy performed significantly better than static two-stage approach, thus

providing incentive to revise the schedule after the time-periods. In this example the models

at the lower levels of the tree were solved to within 0.1% optimality in both SHD and SHT

approaches. The large CPU time for obtaining all the Wait and See solutions is mainly

due to the large solution time for Scenario 8 which has maximum demand (the solution was

terminated after about 2600 CPU seconds with a gap of 0.3%). The CPU time for solving

the deterministic model at node 2 at level 1 of the scenario tree was 220 seconds, while it

was only 150 seconds for the corresponding two-stage model; the remaining solution times

were comparable for both approaches.

6.2.2 Example 2b

The time-period demands for the products has the distribution shown in Table 13. Note

that the probability distributions are different for the three time-periods. In this example,

since there are 4 possible events for each of the 3 time-periods, there are a total of 64 scenarios

for the entire horizon.

Computational results from applying the static approaches to this example are summa-
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Table 13: Example 2b: Time-period Demand Distributions

Time-period Probability Demands (P1, P2, P3, P4)

0.2 (0, 0, 0, 0)

1 0.3 (600, 1000, 250, 150)

0.3 (1200, 1500, 500, 300)

0.2 (1800, 2500, 700, 450)

0.1 (300, 500, 100, 50)

2 0.4 (600, 1000, 250, 100)

0.4 (1200, 1500, 500, 200)

0.1 (1500, 2000, 600, 300)

0.4 (150, 250, 50, 50)

3 0.4 (300, 500, 250, 100)

0.1 (600, 1000, 250, 150)

0.1 (900, 1500, 500, 200)

rized in Table 14. The CPU time reported for the deterministic model in Table 14 includes

the time for solving the deterministic model and evaluating the obtained schedule under

uncertainty; the evaluation of a given schedule is done under 1 CPU second.

Table 14: Example 2b - Computational Results

Model Type Equations Variables Binaries CPU secs E[Profit], $

Deterministic 1408 1176 408 10 59,573

Two-stage 2732 2248 408 35 62,945

Four-stage 11971 13179 2640 > 100,000 75,851

A few words about the solution of the four-stage model: the solution reported in Table 14

represents the best solution obtained after several attempts which differed in the branching

strategies as well as the cut generation in CPLEX 7.5. With the default options and an

emphasis on finding good feasible solutions (CPLEX option: mipemphasis1), the four-stage

model was solved repeatedly (time limit of 15000 CPU seconds for each run), with a lower

cut-off as the best solution obtained in the previous run. The resulting solution with an

expected profit of $75,851 is the one reported in Table 14. From the various runs the

smallest upper bound (best node remaining) obtained had a value of $77,652.

Comparison with shrinking-horizon approaches
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Table 15: Example 2b - Comparison of Approximation Strategies

Profit ($)
Strategy

Minimum Maximum Expected Value CPU secs

SHD 8,272 124,101 74,747 60

SHT 11,852 112,017 75,452 180

Four-stage 8,895 121,411 75,851 > 100,000

WSS 20,992 153,631 85,884 650

As seen in Table 15 the shrinking-horizon approach with deterministic models provided

an expected profit of $74,747 while the shrinking-horizon with two-stage models provided

an expected profit of $75,452, an improvement of about 1% (see Table 15). Note that the

shrinking horizon two-stage strategy also provides an expected profit only about 0.5% lower

than the best solution obtained from several attempts at solving the four-stage model. The

SHD strategy performed significantly better than static two-stage approach, thus providing

incentive to revise the schedule after the time-periods. In this example the models at the

lower levels of the tree were solved to within 0.5% to 1% optimality in both SHD and SHT

approaches.

6.3 Example 3

Figure 26: STN Representation for Example 3

Figure 26 is an STN-representation of a multiproduct batch plant that can produce 3

products (P1, P2 and P3) through 10 tasks from 2 feeds (F1 and F2) and various inter-

mediates. Six processing units are available to carry out the tasks, and there are 3 pro-
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cessing modes for each unit/task combination. The unit-task compatibilities and the batch

size/processing time data are adapted from Papageorgiou and Pantelides35 and can be found

in Balasubramanian36. The intermediate states S2 and S3 have limited storage capacity.

The horizon of interest is of duration 60 time units (from t = 0 to t = 60), with 5 equally

long time-periods. There are 3 possible events for each of the 5 time-periods, resulting in a

total of 35 = 243 scenarios (see Table 16 for the demand data).

Table 16: Example 3: Time-period Demand Distributions

Time-period Probability Demands (P1, P2, P3)

0.50 (150, 100, 100)

1 0.15 (250, 150, 250)

0.35 (600, 350, 300)

0.15 (200, 150, 150)

2 0.50 (300, 200, 300)

0.35 (500, 400, 400)

0.30 (200, 200, 200)

3 0.50 (250, 300, 250)

0.20 (300, 400, 350)

0.20 (100, 100, 100)

4 0.50 (150, 150, 150)

0.30 (200, 200, 200)

0.40 (50, 50, 0)

5 0.50 (100, 100, 100)

0.10 (300, 150, 150)

Table 17 summarizes the key model statistics and computational results for this example.

Given that there are 10 tasks and 3 processing modes for compatible unit/task combinations

and the length of the time horizon (60 units), even the deterministic model requires a signif-

icant number of binary variables (1739) and about 4500 continuous variables. The two-stage

model for the entire horizon requires more continuous variables and equations, but the same

number of binary variables. The deterministic and two-stage models were solved to within

0.5% optimality in reasonable time (a few CPU minutes). The six-stage model requires

over 38,600 binary variables and over 100,00 equations and variables; thus approximation

strategies are especially relevant for this problem. Although we were not able to solve the

six-stage model to optimality or obtain a feasible solution even after 50,000 CPU seconds of
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computation, the best LP bound we were able to obtain had an expected profit of $28,841

(we did not provide an initial solution to the solver for the six-stage model).

Table 17: Example 3 - Computational Results

Model Type Equations Variables Binaries CPU secs E[Profit], $

Deterministic 5263 4528 1739 50 25,844

Two-stage 9136 7675 1739 179 26,527

Six-stage 143,782 177,285 38,619 > 50,000 -

The sub-problems within the shrinking horizon approaches were all solved with a 2000

CPU sec time limit and a 0.5% optimality gap. In the SHD approach, all but one of the sub-

problems terminated well within the 2000 CPU sec time limit with optimality gaps less than

0.5% (the sub-problem which exceeded the time limit was solved to within 1% of optimality).

In contrast, in the SHT strategy all sub-problems were solved to within 0.5% gap, with the

largest time required for a sub-problem being around 800 CPU seconds. As seen in Table

18 the SHT strategy provides an expected profit about 1.6% better than the SHD strategy

($28,487 vs $28,041) and better still, comes to within 1.2% of the LP relaxation of the

six-stage model ($28,841), requiring a fraction of the computing time. The computation of

the WSS solutions required nearly 11,000 CPU seconds mainly due to Scenarios 228-243 for

which the models on an average took nearly 1200 CPU seconds to solve.

7 Conclusions

We have addressed the problem of short-term scheduling of multiproduct batch plants rep-

resented by STNs under demand uncertainty. The STN under our consideration is charac-

terized by the presence of different processing modes, which differ in the range of batch sizes

Table 18: Example 3 - Comparison of Approximation Strategies

Profit ($)
Strategy

Minimum Maximum Expected Value CPU secs

SHD 17,106 37,002 28,041 3130

SHT 16,772 37,733 28,497 3110

Six-stage - - - > 50,000

WSS 17,782 41,849 29,434 37,840
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that they can accommodate and their processing times, while the scheduling horizon is made

up of several time-periods during which the product demands are placed.

With the evolution of product demand over the horizon, a multistage stochastic pro-

gramming approach to scheduling, wherein some scheduling decisions are taken as recourse to

the realization of some demand, is found to be the optimal strategy for maximizing expected

profit. To overcome the large computational expense associated with the solution of the

multistage stochastic program, we have proposed an approximation strategy that consists

of solving a series of two-stage stochastic programs within a shrinking-horizon framework.

The approximation strategy is shown from numerical examples to provide an expected profit

that is within a few percent of the optimal multistage stochastic solution, and with order

magnitude reduction in computation time for the larger examples. In comparison with sim-

ilar deterministic approaches or the commonly-used two-stage programming approach, our

approach is shown to provide consistently superior performance in terms of solution quality

without significant increase in computational effort.
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Nomenclature

Indices

t Time points

m Time-periods

i Tasks

l Processing Modes

j Units

s States

km Events that could occur in time-period m

k∗
m Combination of events that could occur before time-period m

Sets

M Time-periods

T Time points within the horizon

Tm Time points within a time-period
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I Tasks

L Production Modes

J Units

S States

SP States that are final products

Is Tasks that produce or consume state s

Ij Tasks that can be processed in unit j

Ji Units capable of processing task i

Km Possible events in time-period m

K∗
m Combinations of possible events before time-period m

Parameters

Hm Final time point in time-period m

ρin
i,s Proportion of state s consumed by task i

ρout
i,s Proportion of state s produced by task i

Bi,j,l Batch size of task i in unit j for production mode l

τi,j,l Processing time of task i in unit j for production mode l

Vj Capacity of unit j

CAPs Storage capacity for state s

STARTs Initial availability of state s

REVs Revenue for state s

XCs, LCs, HCs Excess-, lost- and inventory cost for state s

Ds,m,km Demand for state s in event km in time-period m

pm,km Probability of event km in time-period m

D
|M |+1
s,k1,...,k|M| Demand for state s in scenario (k1, . . . , k|M |)

Variables

Stage m

ym
i,j,t,k∗

m,l Binary denoting start of task i in unit j in mode l at time t

stms,k∗
m,t Amount of state s at time t

bm
i,j,k∗

m,t,l Amount started in task i in unit j in mode l at time t

Stage |M | + 1

xss, solds, losts Amount of state s in excess, sold and lost respectively

sales Total revenue from sales

thc, tlc, txic Total inventory, lost- and excess-costs respectively

profit Profit
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Appendix A Generic Two-Stage Model

Here we present the generic two-stage model TSM(kk∗
m′) ∀(m′ ∈ M ∪ |M | + 1) used in

Chapter 4. This two-stage model represents the approximation of the multistage stochastic

program at any node of the scenario tree.

Recall from the earlier discussion in Section 4 that kk∗
m′ is an index used to represent

the nodes of the scenario tree. At the node kk∗
m′ , the events KK1, . . . , KKm′−1 have already

been realized, which implies that the corresponding demands Ds,1,KK1, . . . , Ds′m,KKm′−1
have

been placed. Thus, these demands are guaranteed and the two-stage model to be solved at

the node should take these into account for the remaining scenarios. However the demands

to be placed in the future time-periods, i.e. m ≥ m′ are still uncertain. This distinction

between demands already-placed and uncertain demands is reflected in constraints (24),

which is substituted into constraints (28)-(30). Note that in TSM(kk∗
m′), we have dropped

the subscripts k∗
m from equations (2)-(8) since all scheduling decisions are considered to

be first-stage. Furthermore, variables st, y, b are fixed to values PRED(kk∗
m′) up to the

beginning of the current time-period as in (31), since these decisions have already been

made.

D
|M |+1
s,k1...k|M| =

∑

m<m′
Dm

s,KKm
+

∑

m≥m′
Dm

s,km
∀(s ∈ SP, k1 ∈ K1,

. . . , k|M | ∈ K|M |) (24)

As an illustration of constraint (24), consider the three time-period four-stage model

depicted in Figure 6. In the two-stage model at the root node, the demand parameter

D4
s,k1,k2,k3

is defined as follows:

D4
s,k1,k2,k3

= Ds,1,k1 + Ds,2,k2 + Ds,3,k3 (25)

When solving the two-stage model at the left node in level 1 of the scenario tree in

Figure 6, where Ds,1 has already taken on the first value of its distribution, the demand

parameters are suitably modified as in (24) so as to reflect the realized value of Ds,1. Thus,

even though the subscripts (k1, k2, k3) indicate eight scenarios, there are in effect only four,

when we consider the probabilities and demands.

D4
s,k1,k2,k3

= Ds,1,1 + Ds,2,k2 + Ds,3,k3 (26)

The generic two-stage model is as shown below:

(TSM(kk∗
m′)) max EP
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s.t. (2) − (8) without k∗ subscripts

sold
|M |+1
s,k1,...,k|M| ≤ st

|M |
s,H ∀(s ∈ SP, k1 ∈ K1, . . . ,

k|M | ∈ K|M |) (27)

sold
|M |+1
s,k1,...,k|M| ≤ D

|M |+1
s,k1...k|M| ∀(s ∈ SP, k1 ∈ K1, . . . ,

k|M | ∈ K|M |) (28)

xs
|M |+1
s,k1,...,k|M| ≥ st

|M |
s,H − D

|M |+1
s,k1...k|M| ∀(s ∈ SP, k1 ∈ K1, . . . ,

k|M | ∈ K|M |) (29)

lost
|M |+1
s,k1,...,k|M| ≥ D

|M |+1
s,k1...k|M| − st

|M |
s,H ∀(s ∈ SP, k1 ∈ K1, . . . ,

k|M | ∈ K|M |) (30)

ym
i,j,t′,l = 0 ∀(m ∈ M, i ∈ I, j ∈ Ji, l ∈ L,

t′|t′ + τijl > H)

ym
i,j,t′,l, b

m
i,j,t′,l, st

m
s,t fixed to PRED(kk∗

m′−1) ∀m < m′ (31)

ym
i,j,t,l ∈ {0, 1} ∀(m ∈ M, i ∈ I, j ∈ Ji,

t ∈ Tm, l ∈ L)

bm
i,j,t,l ≥ 0 ∀(m ∈ M, i ∈ I, j ∈ Ji,

t ∈ Tm, l ∈ L)

0 ≤ stms,t ≤ CAPs ∀(m ∈ M, s ∈ S, t ∈ Tm)

sold
|M |+1
s,k1,...,k|M|, xs

|M |+1
s,k1,...,k|M|, lost

|M |+1
s,k1,...,k|M| ≥ 0 ∀(s ∈ SP,

k1 ∈ K1, . . . , k|M | ∈ K|M |)

sales
|M |+1
k1,...,k|M|, thc

|M |+1
k1,...,k|M| ≥ 0 ∀(k1 ∈ K1, . . . ,

k|M | ∈ K|M |)

txic
|M |+1
k1,...,k|M|, tlc

|M |+1
k1,...,k|M| ≥ 0 ∀(k1 ∈ K1, . . . ,

k|M | ∈ K|M |)

Appendix B Data for Example 1

Table 20 displays the task data and unit compatibilities which are common for Examples 1a

and 1b. The state data are different for Examples 1a and 1b, however: please use Table 21

for Example 1a and Table 21 for Example 1b.
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Table 20: Example 1 - Task Data

Task Suitable Batch Size Range Processing

Unit (units) Time (units)

10-40 3

Mix Unit1 40-80 4

80-120 5

10-25 2

React Unit2 25-50 3

50-75 4

10-20 1

Dry Unit3 20-40 2

40-60 3

Table 21: Example 1a - State Data

State CAPs REVs HCs XCs LCs

(tons) ($/tons) ($/tons/unit) ($/tons) ($/tons)

S1 Unlimited 0 0 0 0

S2 100 0 0 100 0

S3 100 0 0 200 0

S4 Unlimited 1000 50 400 500

Table 22: Example 1b - State Data

State CAPs REVs HCs XCs LCs

(tons) ($/tons) ($/tons/unit) ($/tons) ($/tons)

S1 Unlimited 0 0 0 0

S2 500 0 5 100 0

S3 500 0 10 200 0

S4 Unlimited 2000 15 400 100
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