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Abstract 

This paper examines alternative models for the economic optimization of multicomponent 

distillation columns. Different column representations are modeled involving rigorous 

MINLP (Mixed Integer Nonlinear Programming) and GDP (General Disjunctive 

Programming) formulations. The different representations involve various ways of 

representing the choices for the number of trays and feed tray location. Also, alternatives are 

considered for modeling the heat exchange when the number of trays of the column must be 

determinated. A preprocessing procedure developed in a previous paper (Barttfeld and 

Aguirre, 2002a) is extended in this work to provide good initial values and bounds for the 

variables involved in the economic models. This initialization scheme increases the 

robustness and usefulness of the optimization models. Numerical results are reported on 

problems involving the separation of zeotropic and azeotropic mixtures. Trends about the 

behavior of the different proposed alternative models are discussed.   

 

1. Introduction 

The economic optimization of a distillation column involves the selection of the 

configuration and the operating conditions to minimize the total investment and operation 

cost. Discrete decisions are related to the calculation of the number of trays and feed and 

products locations and continuous decisions are related to the operation conditions and 

energy use involved in the separation. 

There are two major formulations for the mathematical representation of problems 

involving discrete and continuous variables: Mixed-Integer Nonlinear Programming 

(MINLP) and General Disjunctive Programming (GDP) where the logic is represented 

through disjunctions and propositions (Grossmann, 2001). Both approaches have been 
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employed in the literature to model distillation columns. The MINLP formulation has been 

used with economic objective functions (Viswanathan and Grossmann,1990; Viswanathan 

and Grossmann,1993; Bauer and Stilchmair, 1998; Aguirre et al., 2001; Dunebier and 

Pantelides, 1999). Two different representations arise from this formulation according to the 

way the discrete decisions related to the tray optimization are modeled. In one a binary 

variable with a value of “1” is assigned to each tray of the column denoting its existence, 

and with a value of “0” its absence (Viswanathan and Grossmann,1990). In the other 

representations, binary variables are used for the discrete decisions related to the location of 

the reflux, reboil or both (Viswanathan and Grossmann,1993; Bauer and Stilchmair, 1998; 

Aguirre et al., 2001). MINLP problems can be solved for instance with the computer code 

DICOPT (Viswanathan and Grossmann, 1990), which is an implementation of the Outer 

Approximation/Equality Relaxation (OA/ER) algorithm (Kocis and Grossmann, 1987). The 

computational expense in solving these models depends largely on the problem structure. 

There is also the computational difficulty that each constraint must be solved even if the 

stage “disappears” from the column. It would be desirable to eliminate these constraints, not 

only to reduce the size of the NLP subproblems, but also to avoid singularities that are due 

to the linearization at zero flows. 

Motivated by the potential of using logic to improve the modeling and solution of 

network systems, a logic-based MINLP algorithm has been developed by Turkay and 

Grossmann (1996). This algorithm has been successfully applied for solving GDP models of 

conventional distillation columns (Yeomans and Grossmann, 2000a; 2000b), as well as 

reactive distillation columns (Jackson and Grossmann, 2001). Different approaches can be 

used with this formulation depending on which trays are defined as permanent in the 

configuration. It is this issue that we will be analyzing in depth in this work. 

Another major difficulty that arises in the MINLP and GDP approaches is dealing with 

the nonlinearities that are involved in distillation models, which complicates the 

convergence of solvers and often leads to infeasible solutions. Therefore, developing 

methods for the initialization and bounding of the variables involved in the problem is an 

essential part for the successful application of optimization formulations and algorithms for 

distillation columns.  

Fletcher and Morton (2000) examined the infinite reflux case for generating good initial 

values for the NLP solution of general distillation columns. Buggemann and Marquardt 

(2001) have proposed a short cut method based on the Rectification Body Method (RBM) 
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that provides qualitative insights for rigorous simulations. The method gives information on 

the minimum energy demand involved in a separation by a trial and error procedure. Given 

the products and feed compositions as well as the operating pressure, an estimate of the 

energy demand is determinated to calculate the pinch points to construct the rectification 

bodies related to both column sections. The energy involved in the separation under 

minimum reflux is achieved when the bodies intersect in exactly one point. An automatic 

initialization scheme based on the successive solution of NLP and MINLP optimization 

problems was presented in a previous paper (Barttfeld and Aguirre, 2002a). These authors 

developed rigorous and robust optimization models that approach reversible conditions in 

order to initialize and bound zeotropic distillation models. No external parameters have to 

be tuned in the model to achieve convergence.  

The main objective of this paper is to study the different representations and models that 

can be used for the optimization of a single distillation column. General models comprising 

different column configurations will be presented for the MINLP and GDP formulations 

involving the separation of zeotropic and azeotropic mixtures. In order to increase the 

robustness of convergence of the proposed models, a general preprocessing phase is adapted 

and extended to GDP formulations. In this preliminary phase, thermodynamics is combined 

with mathematical programming. In a second step, a particular initialization scheme is 

derived for each mathematical formulation.   

This paper is organized as follows. We first examine in section 3 the different 

representations to model the economic optimization  problem for a given separation task. In 

section 4, the general models for both the MINLP and GDP formulations comprising all the 

alternative column representations are presented. In section 5, the solution procedures for 

the proposed formulations are presented. Preprocessing techniques are included to reduce 

difficulties related to the economic optimization task. In this section, reversible distillation 

theory is combined with mathematical programming tools. In section 6, several case studies 

are analyzed. Finally, several extensions and conclusions of this work are discussed.    

 

2. Problem Definition 

The problem addressed in this paper can be stated as follows. Given is a 

multicomponent feed with known flow and composition, and given are the desired products 

specifications. The problem then consists in selecting the number of trays, feed location, 

condenser and reboiler duties and areas of a distillation column so as to minimize the total 
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annualized investment and operating cost. In order to tackle this problem we examine 

different representations for the column and their formulations in order to develop robust  

MINLP and GDP models. 

 

3. Representation and Formulation Alternatives 

In this section the different distillation columns representation are presented for the 

MINLP and GDP models. 

 

MINLP Representation: 

As was previously mentioned, two different MINLP column configurations can be 

employed to solve the economic optimization problem. However, the representation 

involving binary variables denoting the location for the reflux and reboil (Viswanathan and 

Grossmann, 1993) has been shown to be computationally more efficient than the original 

model proposed by Viswanathan and Grossmann (1990) where a binary variable is 

associated to each tray to denote its existence. For this reason, in this work heat exchange 

variable location will be considered to optimize the number of trays with the MINLP 

formulation. In Figure 1, three possible representations are shown for this alternative. If the 

condenser location is fixed, variable location for the feed stream and the reboiler have to be 

considered, as is shown in Figure 1 (a). It must be noted that above the tray where the 

reboiler is chosen, all trays are existing stages and mass transfer takes place. All trays 

located below the reboiler are nonexistent stages where a liquid flows down and no vapor 

flows up. In Figure 1 (b), an analogous situation is depicted showing the case of variable 

condenser location. The trays located below the condenser tray are existing trays, while 

above it are nonexisting stages where an upcoming vapor flow is bypassed. No liquid flow 

is going downwards trough them. In Figure 1 (c), the two previous situations are combined. 

Both, condenser and reboiler have variable location placement while the feed stream is 

fixed. Below the reboiler location the liquid flow is bypassed and above the condenser a 

vapor flows upwards. The configuration proposed by Viswanathan and Grossmann (1993) 

involving variable reflux location is depicted in Figure 2. While the representations in 

Figures 1 (c) and Figure 2 appear to be equivalent, there are some differences as will be 

described bellow. 

Several remarks can be made about the representations in Figure 1: 

 Due to the existence of the variable heat exchange location in all nonexistent trays 
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one of the internal flows of the column takes a value of zero. 

 If liquid distillate product is specified and the column representation involves 

variable condenser location, a fixed condenser must be placed at the column top to 

condense the upcoming vapor flow.  

 Vapor liquid equilibrium (VLE) conditions are enforced in all trays of the column, 

even in nonexisting trays where no mass transfer takes place. This means that VLE 

equations, which  are high nonlinear expressions, have to be satisfied in nonexisting 

trays.  

 In all configurations one reference point (fixed tray) is needed and there exists at 

least one variable location for the heat exchange. 

From Figure 1 and 2, it follows that there are two possible representations to model 

variable trays elimination with the MINLP formulation as is shown in Figure 3. In part (a) 

of this picture, a condenser and a reboiler are placed in all candidate trays for exchanging 

energy. This means that a variable reflux (reboil) stream is considered by moving the 

condenser (reboiler). Otherwise, in the representation of variable reflux location (Figure 3 

(b)), the condenser and reboiler are fixed equipments in both column extremes. The reflux 

(reboil) flow location is variable and not the condenser (reboiler) itself. These two 

alternatives are the same if one fixed equipment is considered at each column ends. 

However, when heat exchange variable locations are modeled as part of the tray 

optimization procedure some differences arise. In one case, the problem consists in finding 

the optimal location for the energy exchanged, while in the other the optimal location for a 

“secondary” feed stream (reflux) is considered. The variable heat exchange representation 

has an important advantage. The energy can be exchanged at intermediate trays 

temperatures, possibly leading to more energy efficient designs.  

 

GDP Representations: 

The possible column representations for the GDP formulations are depicted in Figure 4. 

In all cases, heat exchange takes place in existing trays (fixed) located at both column ends. 

This fact avoids that all internal flows become zero in nonexisting trays. In Figure 4 (a) an 

additional tray location is considered as permanent at the column feed point. Then, the 

resulting representation has three fixed trays. All stages between these permanent trays are 

conditional trays and boolean variables are related to their existence. Also, through logic 

constraints, the column “grows” around the feed tray. For existing trays, vapor and liquid 
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equilibrium equations are enforced. For nonexisting trays, vapor and liquids flows bypass 

each other without mass and heat transfer. Both of these conditions are enforced with 

disjunctions.  

Another possibility is shown in Figure 4 (b) where two trays (extreme stages) are 

permanent and all trays between them are considered conditionals (Jackson and Grossmann, 

2001). The feed tray location is variable and the column can grow from the top (bottom) 

stage downwards (upwards). 

The representations of Figure 4 have the following characteristics: 

 There are nonzero liquid and vapor flows in all column trays. The reason is that in 

nonexisting trays both the internal liquid and vapor flows are bypassed. 

 Due to the use of disjunctions at each tray, the VLE equations are only applied to 

existing trays. This means that these equations do not need to be satisfied in 

nonexisting stages. 

 In the GDP configurations, a minimum of two reference points in the column are 

needed. 

Finally, we should note that heat exchange can be considered in nonexisting trays by 

simply adding the possibility of exchanging heat in existing trays (see Jackson and 

Grossmann, 2001). 

 

4. Single Columns Models      

In this section, the general MINLP and GDP models are presented for all the 

representations discussed in section 3.      

A distillation column model can be formulated in two different ways: 

1. Employing total flows, e.g. nL , and mole fractions related to each flow, e.g. inx , .   

2. Employing individual flows, e.g. inLIQ , defined as innin xLLIQ ,, = . 

The first alternative has the advantage of providing a convenient framework for the 

evaluation of the thermodynamic properties and bounds can be expressed in a more natural 

form. The major disadvantage of this type of formulation is that bilinear (nonconvex) terms 

are involved in the mass and energy balances for each components. The individual 

component flow formulation gives rise to a larger number of linear equations, although it 

requires separate equations for defining the compositions. In this work, the MINLP problem 

will be formulated in terms of total flows but results involving individual component flows 
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will be also presented. In contrast, the proposed GDP formulation will involve individual 

flows to write the MILP master problem easily using convex envelopes (Quesada and 

Grossmann, 1995). 

Consider the following set definitions for the formulation of the models: C is the set of 

components i present in the feed. N represents the set of trays n in the column. Let the subset 

feed be the candidate feed trays n, reb the candidate trays for placing a reboiler, cond the 

candidate trays for placing a condenser, top  the column top tray and bot the column bottom 

tray. Then bottopprod ∪= . Let ηi represent the minimum recovery fraction of component 

i in the distillate or bottom product. Consider that the trays (n = 1, 2, …, Nmax) in the 

column are numbered from top to bottom, so that the condenser is in tray 1 and the reboiler 

in tray Nmax. Let nmin a lower bound on the number of trays of a column section. 

The objective of the problem is to minimize the total annualized cost (TAC) of 

equipment and utilities. The investment costs are given by the function f(NT,Dcol,Ar,Ac) 

that involves the number of trays of the column NT, its diameter Dcol, and the condenser 

and reboiler areas, Ar and Ac, respectively. QC and QH tot are the corresponding condenser 

and reboiler loads, and Cw and Cs are the steam and cooling utility costs. The objective 

function for the economic problem can be then stated as follows: 

 

HsCwn QCQCAcArDcolNTfTAC ++= ),,,(min                                            (1) 

 

4.1. MINLP Model 

The detailed MINLP model that incorporates all the alternative representations shown in 

Figure 1 is as follows. Consider the single stage superstructures in Figure 5, where both 

alternatives for modeling variable heat exchange location are shown. Figure 5 (a) considers 

the variable condenser (reboiler) location, while Figure 5 (b) is the superstructure for 

variable reflux (reboil) location. Note that in the superstructure of Figure 5 (b) the heat 

exchange only takes place in the top and bottom trays of the column. This last alternative 

was employed by Viswanathan and Grossmann (1993), and Yeomans and Grossmann 

(2000a, 2000b). Although results for both approaches will be presented, for the model 

presentation only the tray superstructure of Figure 5 (a) will be considered. 

The set of constraints for the model can be classified in two groups. The first group 

includes constraints with only continuous variables and a second group includes constraints 
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related to discrete decisions that involve binary variables. The constraints involving only 

continuous variables include the general column mass and energy balances ((2)-(12)), purity 

and recovery requirements for products (13), the VLE equations (14), the definition of the 

liquid and vapor enthalpies (15), the sum of mole fractions (16), the calculation of the 

number of stages (17), and column diameter (18) and heat exchange areas definitions (19)-

(20). The constraints are given as follows: 
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The constraints involving binary variables that model the variable location for the heat 

exchange equipments and variable feed location are as follows. A binary variable bcn (brn) 

is defined denoting the existence of a condenser (reboiler) in tray n of the set cond (reb) if 

this variable is 1. A binary variable bfn is also considered for denoting the existence of the 

feed stream entering tray n of the candidate set of trays feed. The equations describing the 

heat loads and feed and their relation to the binary variables are as follows: 
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1=∑
∈ rebn

nbr                                                                                                 

 

feednFbfF nn ∈∀≤ max                                                                                                               

1=∑
∈ feedn

nbf                                                                                                                        (23) 

 

Note that kc is a scalar, which is “1” if the alternative for the column representation 

involves variable condenser and liquid distillate product. Otherwise, kc is zero. 

The model for variable reboiler configuration is derived by defining the following set of 

trays and the scalar kc:  

{ }1: == nncond  

{ }maxmin2: Nnnnreb ≤≤=  

{ }nfonnnfeed ≤≤= min:  

0=ck  

The condenser is located on the top tray. If nmin is a lower bound of the number of trays 

in each section of the column and nfo is the lowest feed tray location, the candidate reboiler 

trays as well as the candidate feed trays are defined as is shown in Figure 6 (a). The number 

of trays is defined as a function of the binary variable related to the reboiler location: 

 

nbrNT
rebn

reb∑
∈

=                                                                     (24) 

 

From Figure 6 (b), the variable condenser alternative (involving liquid distillate product) 

is derived by defining the sets of trays as follows: 

{ })2(2: minmax nNnncond −≤≤=  

{ }max: Nnnreb ==  

{ })(: minnNnnfonfeed −≤≤=  

1=ck  

The reboiler is fixed in the bottom tray of the column while the condenser and the feed 

candidate trays are defined by the equation (25): 
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1max +−= ∑
∈

nbcNNT
condn

cond                                                                           (25) 

 

For the alternative where both heat exchangers are variable and the feed tray is kept 

fixed in tray nfo, the candidates trays are defined according to Figure 6 (c): 

{ })(2: minnnfonncond −≤≤=  

{ }maxmin )(: Nnnnfonreb ≤≤+=  

{ }nfonnfeed == :  

1=ck  

and the number of trays is given by: 

 

1+−= ∑∑
∈∈

nbrnbrNT
condn

cond
rebn

reb                                                                          (26) 

 

It must be noted the general formulation given by (1) to (26) covers all the alternatives 

representations of Figure 1. 

 

4.2. GDP Model 

As was previously mentioned two different types of trays are involved in this 

formulation. In Figure 7, the superstructures for permanent and conditional trays are shown.  

The top and bottom stages of the GDP column representation are modeled as permanent 

trays (Figure 6 (a)) where heat exchange takes place and vapor or liquid products are 

withdrawn. These trays are modeled as equilibrium stages, where the vapor and liquid flows 

leaving a permanent tray are in equilibrium. Conditional trays (Figure 6 (b)) are 

intermediate trays of the column whose existence is defined according to the truth value of 

the corresponding boolean variable. If a tray is selected it becomes in an equilibrium stage. 

Otherwise, the vapor and liquid streams are bypassed.  

The general GDP formulation is presented next for the alternatives shown in Figure 4. 

Let the set of trays be defined as { }max,1: Nnnnpt === and the set of intermediate trays 

as { })1(2: max −≤≤= Nnnit .  

The general constraints for the column diameter, condenser and reboiler areas and the 

number of trays in the column are given by the following: 
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The permanent trays are modeled according to Figure 6 (a): 
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Conditional trays are modeled according to Figure 7 (b). It is important to note that in a 

conditional tray a temperature for the liquid and for the vapor is defined instead of a tray 

temperature as it occurs in conventional distillation columns representations. In case the tray 

is selected, the emerging liquid and vapor temperature are the same and equal to the 

temperature of the tray. Otherwise, each bypassed stream keeps its own temperature. 

 

feednitn
hvaphliqhvaphliqhfeed

VAPLIQVAPLIQFEED

ininininin

ininininin
∈∈∀







=−−++

=−−++

+−

+−
,

0

0

,1,1,,,

,1,1,,,
                        (38)    

Ciitn

VAPTfhv

LIQTfhl

y

x

hvaphliqhvaphliq

VAPLIQVAPLIQ

in
V
nin

in
L

nin

C

i
in

C

i
in

inininin

inininin

∈∈∀




















=

=

=

=

=−−+

=−−+

∑

∑

=

=

+−

+−

,

),(

),(

1

1

0

0

,,

,,

1
,

1
,

,1,1,,

,1,1,,

                                              (39) 

                                                                                                           

The discrete choices are modeled with disjunctions. The boolean variables Wn denote the 

existence of a conditional tray. If a value of true is assigned to this variable the tray is 

selected and VLE equations are applied to this tray. Otherwise, the vapor and liquid streams 

are bypassed through it and no mass transfer process takes place. Also, existent trays are 

candidate trays for having a feed steam. The boolean variables Bfn are set to true if the feed 

Fn,i enters stage n. The disjunction for each conditional tray is as follows: 
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where the first term is activated when TrueWn = , and the second when FalseWn = . 

The design specifications and logic propositions are given by expression (41), which 

involves only boolean variables. 

 

itnTrueBfW nn ∈∀=Ω ),(                                                                                      (41) 

 

The equations in these expressions depend on the column representation that is used. For 

the fixed feed representation in Figure 4 (a) the following logic propositions are defined: 

 

)1(2,1 −≤≤∈∀⇒ + nfonitnWW nn                                                                (42) 

)1()1(, max −≤≤+∈∀⇒ NnnfoitnWW nn                                                (43) 

 

Equations (42) and (43) avoid the possibility of obtaining multiple solutions with the 

same objective function value and enforce that the selected trays be activated above and 

below the feed tray (Yeomans and Grossmann, 2000a). It should be noted that in this 

alternative, the set of feed trays feed is defined as { }nfonnfeed == : . 
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In the representation of Figure 4 (b.1), where variable feed location is allowed, the 

selected trays are activated above the reboiler tray: 

 

)1(2, max1 −≤≤∈∀⇒ + NnitnWW nn                                                             (44) 

 

In this representation, the set of feed trays nfeed  is defined 

as { })(: minmax nNnnfonfeed −≤≤= . 

Analogous expressions can be derived for the representation in Figure 4 (b.2). 

In the variable feed location alternative, only existing trays are candidate for having a 

feed stream entering: 

 

,itnWBf nn ∈∀⇒                                                                                   (45) 

 

5. Solution of Models 

In this section, the algorithms and procedures employed for solving the models 

presented in the previous section are described.  

As was previously mentioned, independently of the formulation or the column 

representation employed, the initialization procedure of distillation models is a relevant 

point that must be considered. For that reason, in this work we extend the preprocessing 

phase as a preliminary solution phase to the economic optimization. The general 

preprocessing procedure that is applied to both formulations is described in section 5.1. In 

section 5.2 the solution procedure for each formulation is outlined.   

 

5.1. General Preprocessing Phase 

In the preprocessing phase initial values and bounds are systematically generated by 

solving optimization problems. The main idea of this phase is to generate a feasible design 

as an initial guess to the economic optimization problem. Ideally, good initial values and 

bounds have to be provided for the most relevant decision variables, such as the energy 

demand, internal liquid and vapor flows.  

The same column topology used in the preprocessing phase has to be used in the 

economic topology. This means that the same upper bound on the number of trays has to be 

employed as well as the potential feed and product location.   
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We select as initial design one that involves minimum reflux conditions as well as 

minimum entropy production. This reversible separation provides a feasible design and 

hence a good initial guess to the economic optimization. Economic solutions involve a 

fewer number of trays than the ones of the initial solution guess. Therefore, the problem 

consists in optimizing the number of trays once the preprocessing phase has been solved. 

An adiabatic column involving minimum heat loads and a number of stages large 

enough can approximate a reversible column. In spite of the difference in the energy 

distribution between a reversible theoretical column and its finite approximation, the 

products composition and flows as well as the energy demands are often very close to the 

theoretical values. A detailed discussion of the reversible separation task, reversibility 

conditions as well as an approach using a finite adiabatic column can be found in Barttfeld 

and Aguirre (2002a).  

The general preprocessing phase procedure is shown in Figure 8. After solving a flash 

calculation for the feed, a model is solved for calculating the theoretical reversible products 

composition and flows and the minimum energy demand involved in the reversible 

separation task. An optimization problem for computing the theoretical model is presented 

for zeotropic mixtures in Barttfeld and Aguirre (2002a). A general method for 

multicomponent mixtures based on this previous model is employed in this work. The 

proposed method can deal with azeotropic mixtures with no need of knowledge of the 

volatility order of the components for a given azeotopic feed composition. This means that 

no preliminary simulations are needed to determine the feasible distillations regions. In the 

zeotropic case this model reduces to the previous formulation. The mathematical model 

which, corresponds to an NLP, can be found in Appendix A.  

Once the reversible model has been solved, overall mass and energy balances can be 

formulated involving the column top (bottom) and the column point where the heaviest 

(lightest) component disappears. The saddle pinch points that take place during the 

reversible separation approach are computed solving the same optimization problem 

presented in the work by Barttfeld and Aguirre (2002a). 

With the results of the reversible separation it is possible to calculate the minimum 

energy demand involved in the separation where the lightest (heaviest) component is 

completely recovered in the distillate (bottom) product. The rectifying (stripping) saddle 

pinch point that takes place in the adiabatic approach to a reversible column is preserved in 

the separation involving a low (high) boiler rich distillate (bottom) fraction (Stilchmair and 
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Fair, 1998). With the saddle pinch point information, the minimum energy demand involved 

in these separations then can be easily calculated. The NLP model for these calculations is 

presented in Appendix A. 

Up to this point, well-behaved optimization problems are solved to compute relevant 

information to rigorously approach the reversible and low (high) boiler rich distillate 

(bottom) separations under minimum reflux conditions. A tray-by-tray distillation column is 

considered next. An upper bound on the number of stages is selected according to the pinch 

point zones development criteria (Barttfeld and Aguirre, 2002b). This model involves the 

constraints presented in the previous section (according with the formulation employed) 

except for these ones related to costs and column dimensions. For a column with an upper 

bound of 50 trays and a ternary mixture, the model involves 2250 constraints and 2750 

variables. An additional constraint describing the reversible mass balance line is included: 

 

)(,
F
i

F
iitop

F
i yxxy −=− α                                                                                 (46) 

 

where F
ix and F

iy are the feed liquid and vapor composition, itopx , is the distillate 

composition and α represents the ratio between the liquid flow leaving the rectifying section 

and the distillate product flow. This equation is obtained from witting total and component 

mass balances for a reversible rectifying column section. An analogous expression can be 

written for a reversible stripping section.  

Then, the following objective function is minimized over the feasible region previously 

described (see Appendix A for the definition of s and cmax): 

 

)( max,max, ctopcbot xxsz −=                                                                                                   (47) 

 

Expression (47) enforces the product compositions to move towards the mass balance line 

extremes, while constraint (46) forces the separation mass balance line direction to coincide 

with the reversible direction. 

Starting from this solution, the separation involving a low boiler rich distillate or higher 

boiler rich bottom fraction under minimum reflux conditions can be rigorously 

approximated. In this solution, the cost-based and dimensional equations are included as 

constraints to obtain upper bounds of the cost related variables. Since we obtain information 
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about the theoretical minimum energy demands of the separations that are taking place, 

these rigorous solutions are not difficult to obtain.  

When azeotropic mixtures are involved, the same preprocessing procedure is employed. 

However, no calculations involving the low (high) boiler-rich distillate separation are 

computed or rigorously approximated. That is because, in some cases, saddle pinch points 

do not exist due to the presence of distillation boundaries.  

 

5.2. MINLP Model Solution 

The MINLP formulation is solved according to the following procedure (see Figure 9): 

1. Solve the general preprocessing phase. 

2. Using as a starting point the solution from step 1, initialize the MINLP as follows: 

2.1. Solve the model as a Relaxed MINLP (RMINLP). A lower bound on the total cost 

for the separation is obtained. 

2.2. Reduce the candidate trays for variable heat exchange equipments or feed tray 

location, according to the case, using information of the solution obtained in point 

2.1.   

3. Solve the model as an MINLP problem (e.g. using DICOPT). 

Using the procedure described above, the MINLP formulation can be solved with a 

reduced number of binary variables. The reason is that the RMINLP optimal solution in step 

2.1 yields a number of trays that is often very close to the integer optimal design. This 

relaxation also provides a good lower bound on the objective function value. Therefore, the 

solution of the relaxed problem can be employed to reduce the domain of the variable tray 

location such that they contain few additional trays compared to the ones at the relaxation 

solution. The procedure for reducing the domain will be illustrated on the numerical results 

section. 

Since we are dealing with a highly nonconvex problem, the master MILP problem of the 

Outer Approximation (OA) algorithm will not produce in general valid lower bounds of the 

problem (Viswanathan and Grossmann, 1990). Therefore, the stopping criterion adopted for 

the MINLP formulation is based on the lack of improvement in the objective of the NLP 

subproblems. Also, it is clear that due to the nonconvexities the global optimum of the NLP 

cannot be guaranteed. 
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5.3 GDP Model Solution 

The GDP model is solved with the decomposition algorithm proposed by Yeomans and 

Grossmann (2000a), which is a modified version of the logic-based Outer Approximation 

(OA) algorithm (Turkay and Grossmann, 1996). This algorithm solves the problem by 

iterating between reduced NLP subproblems and MILP master problems. Thus, the GDP 

model proposed in section 5.2 is rewritten as a NLP and MILP formulations. A general 

procedure for making this transformation can be found in Turkay and Grossmann (1996).   

The GDP formulation is solved according to the following procedure (see Figure 10): 

1. Solve the general preprocessing phase. 

2. Solve the GDP preprocessing phase as follows: 

2.1. Solve an NLP subproblem with all trays exiting. 

2.2. Solve an NLP subproblem with not all trays existing.   

3. Solve the synthesis problem applying the GDP algorithm. 

After solving the general preprocessing phase, two NLP subproblems are solved to 

provide linearizations to start the first MILP master problem. The NLP subproblem with all 

existent trays (applying VLE in all trays) provides linearizations for all the nonlinear 

equations in the original model. This problem requires solving the largest possible problem 

but it is not computationally expensive because of the previous preprocessing phase. The 

second NLP problem provides extra linearizations for the MILP master problem. In this 

problem, some existent trays are selected as active and the purity specifications for the 

products is the same as the one of the desired products. We have found that including these 

extra linearizations improves the solutions achieved during the GDP solution.  

The domain reduction procedure was also applied to the GDP formulation as an 

alternative solution scheme as the one proposed above. The model presented in section 4.2 

was reformulated as an MINLP model by replacing each boolean variables by binary 

variables and using big-M constraint (Lee and Grossmann, 2000). We observed that the 

relaxation of this model does not provide a good selection of trays to reduce the domain of 

the binary variables. This is due to the big-M formulation of the disjunctions, which renders 

the relaxation to yield physically infeasible solutions. For this reason, the GDP formulations 

were solved in the full space domain (see Figure 10). 

The GDP algorithm stops when the maximum number of iterations is achieved (typically 

ten). This stopping criterion is adopted since the subproblems of the GDP formulation do 

not involve a long solution time, as it will be shown in the numerical examples in next 
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section.  Also, as in the MINLP case, global optimality cannot be guaranteed. 

 

6. Numerical Examples 

The MINLP and GDP models derived in section 5 are tested with three ternary mixtures. 

The low boiler-rich distillate separation is specified for cases involving zeotropic mixtures, 

while the reversible product compositions are specified for azeotropic mixtures. A constant 

pressure of 1.01 bar is considered. In all cases, a feed flow of 10 mole/s and saturated liquid 

products are considered. The minimum number of trays nmin is 5. The thermodynamic 

properties are taken form Reid et al. (1987).  

Three examples are presented. Example 1 involves the separation of n-pentane, n-

hexane and n-heptane and uses ideal equilibrium. Example 2 deals with the separation of 

toluene, benzene and o-xylene and also uses ideal equilibrium. Finally, example 3 is 

concerned with the separation of methanol, ethanol and water using the ideal gas model for 

the vapor phase and the Wilson model for the liquid phase. In all cases, the VLE equations 

involve the transformation of variables suggested by Bauer and Stilchmair (1998) in order to 

improve the convergence of the NLP problems. This transformation yields more linear 

equations when modeling the VLE equations. 

All the examples were implemented and solved in GAMS (Brooke et al, 1998) in a PIII, 

667 MHz with 256 MB of RAM. The code DICOPT was employed for solving the MINLP 

problem. CPLEX was used for solving the mixed integer linear programming (MILP) 

problems and CONOPT for the NLP subproblems. 

 

6.1. Example 1: n-pentane/n-hexane/n-heptane 

A feed with composition of 0.2/0.2/0.6 is given. The required purity for the distillate 

product is 98% of n-pentane with a minimum recovery of 98%. The upper bound for the 

number of trays is 50.  

The preprocessing phase solution for the MINLP formulation is shown in Table 1. Note 

that the NLP tray-by-tray models involve the upper bound on the number of trays, fixed 

condenser, reboiler and feed tray location. In Table 2, the model description and the optimal 

economic solutions are reported for the MINLP representations involving variable 

condenser, variable reboiler and variable condenser and reboiler locations. The reason why 

the solutions are different in each of the cases is due to the nonconvexities that are involved 

in the MINLP models. 
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The solutions in Table 2 were obtained solving the MINLP models presented in section 4.1. 

These formulations involve total flows and compositions and the variable location 

equipments alternative for modeling the heat exchange. As discussed in section 5.2, in the 

MINLP formulations of Table 2, the relaxation of the problems were first solved, and the 

candidate trays for exchanging heat or having a feed were redefined before solving the 

problem as an MINLP (see solution scheme of Figure 9). This domain reduction procedure 

considerably decreases the number of binary variables involved in the formulation and 

enhances its robustness. To show the candidate trays redefinition procedure consider the 

example of variable reboiler location of Table 2 with the feed initially located on tray 25. 

The candidate stages for placing a reboiler were initially defined from tray 10 to 50 and the 

candidate trays for having a feed were defined from stage 5 to 25 (see section 4.1). This 

formulation involves 62 binary variables. The relaxation of this model was first solved. In 

the relaxed solution, the feed is located in tray 9, the reboilers are placed from tray 17 to 19 

and an the objective function had a value of 49,558 $/yr. In most cases, the MINLP 

relaxation has the feed entering in one tray while the reboilers are usually distributed. After 

the relaxation is solved, the lower reboiler location ntr and the feed tray ntf are defined as 

parameters of the MINLP model. Before solving the model as an MINLP problem, the 

candidate feed and reboiler trays are redefined as follows: 

{ }22: min +≤≤= ntrnnnreb and { }22: +≤≤−= ntfnntfnfeed . For this example ntf= 9 

and ntr=19, therefore, the candidate reboiler trays are { })2110: ≤≤= nnreb and the 

candidate feed trays are { }117: ≤≤= nnfeed . Note that after the domain reduction 

procedure, the MINLP problem involves only 17 of the 62 original binary variables. The 

integer solution has the feed located in tray 9 and the reboiler is placed on tray 18 with an 

objective function value of 49,580 $/yr (see Table 2). 

If the models are solved directly as MINLP problems (without solving its relaxation), the 

formulations are very difficult to solve. In some cases, an integer solution is found before 

the maximum number of iterations is reached. These solutions are similar to the ones 

employing the complete preprocessing procedure of Figure 9. However, robustness cannot 

be ensured.  

Comparing the results for the three possible MINLP alternative configurations in Table 

2, the representation involving variable condenser and reboiler location yields the highest 

cost. The other two representations yield similar results, however, the representation 
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involving variable feed and reboiler location yields lower costs (18 to 22 trays, 49,580$/year 

to 50,080$/year). According to our experience, in most cases, the variable reboiler 

representation yields lower cost solutions. However, in some cases, the representations 

involving one variable heat exchange equipment require the longest solution times. This is 

because in these representations there is a superposition between the candidate trays for 

exchanging heat and having a feed stream. If the condenser and reboiler are variable, the 

candidate trays where the energy can be added are different than the ones from where it can 

be removed (see Figure 6). 

The individual component flows formulation was also analyzed. We observed that the 

solutions obtained with this model are the same as the ones for total flows reported in Table 

2. However, the NLP solution times are in general longer. The solution time for the 

formulation involving individual flows and variable reboiler location is 72.75 sec for the 

NLP problems and 2.25 sec for the MILP problems versus 44.74 sec. for the NLP and 18.45 

sec. for the MILP with the total flow and composition model. The difference is because the 

NLP models involving individual flows are more difficult to initialize. However, the MILP 

models with individual flows are easier to solve because a larger number of linear equations 

and bilinear terms (defining the individual component flows) are involved. Therefore, the 

formulation involving individual flows is convenient when the solution times of the MILP 

models are longer than the time of the NLP problems.   

The alternative for modeling the heat exchange involving variable reflux and reboil 

streams location was also tested (see Figure 2). For the same feed composition the solution 

obtained is shown in Table 3. This configuration has a significantly larger number of trays 

(32) and higher cost (61,280$/year) than in the previous cases. Note that the configuration 

achieved involves a stripping section with 9 trays which is approximately the same number 

as in the MINLP solutions of Table 2. However, the rectifying section has a large number of 

stages (22 trays). Furthermore, we observed that employing this formulation, the 

convergence of the NLP subproblems is more difficult than in the previous cases where 

variable heat location was considered. 

To show the effect of the preprocessing phase in the MINLP formulation, we also 

considered a feed with composition 0.33/0.33/0.34. In Table 4, the solutions for the variable 

reboiler representation are presented for the model with and without the preprocessing 

phase. In this case, the model that does not include the previous initialization procedure 

reaches the maximum number of iterations, and only one integer solution was found by the 
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solver, which is the one reported in Table 4. This solution has a larger number of trays than 

the solution of the model with preprocessing (32 vs. 15). Furthermore, higher energy duties 

are also obtained. This is because the model has no information about the minimum energy 

demand of the separation. Arbitrary bounds for the heat duties have to be used. From these 

results, it is clear that the preprocessing phase helps to improve solutions of the MINLP 

formulation. 

The mixture with composition 0.2/0.2/0.6 was also used to test the GDP formulations in 

order to compare them with the previous MINLP representations. The results for the fixed 

feed tray location including the preprocessing are presented in Table 5. It should be noted 

that the size of the preprocessing NLP problems for the GDP formulation are the same as 

the ones in the MINLP (see Table 1). In this case, however, the number of 0-1 variables is 

not reduced (see solution scheme of Figure 10).  

       According to our experience, the GDP model with variable feed location exhibits worse 

numerical behavior than the model with fixed feed location. For this example, starting with 

a column with 50 initial trays with the feed initially located in tray 25, the solution obtained 

with the variable feed model involves a column with 41 trays, with the feed located in tray 

26 and with a total cost of 72,160$/yr. In contrast, the optimal solution of the fixed feed tray 

model requires 24 trays with the feed in tray 16 and a cost of 51,520$/year. From these 

results, it is clear that the fixed feed column representation provides significantly cheaper 

solutions. Note, also, that the MINLP solutions reported in Table 2 yields a lower cost 

(49,580$/yr), which is most probably due to the nonconvexities and the reduction scheme of 

binary variables in the MINLP model. 

It is interesting to analyze the behavior of the GDP formulation without including the 

preprocessing phase. For the same number of iterations, the fixed feed location GDP model 

is solved for the same mixture composition than before (see Table 5) and the best solution 

achieved involves a total cost of 58,800$/yr. This means that including the proposed 

preprocessing in these formulations, solutions with lower total costs are also found. It 

should be noted that it is difficult to set bounds and initial values without the preprocessing 

phase for the initial NLP problems of the GDP problem since individual component flows 

are involved in the formulation. In some cases that were studied, the procedure of finding a 

feasible solution takes a long time. Therefore, the preliminary calculations avoid this trial-

and-error procedure for selecting proper bound and initial values. 

According to our experience, the preprocessing phase provides a good initial guess for 
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the optimization problem in both formulations. However, it should be noted that the GDP 

formulation is not as strongly dependent of a good starting point as the MINLP formulation. 

Also, even though the GDP formulation achieves a better solution if the preprocessing phase 

is included, the solution time of the NLP and MILP subproblems remains the same if 

bounds and initial values are set arbitrarily. In contrast, we observed that the MINLP 

solution is very dependent of the initial guess provided, not only in the costs involved in the 

solution designs but also in the solution time (see Table 4).  

For this example we can observe that the MINLP variable reboiler representation and 

fixed feed GDP representation yield similar costs (49,580$/year vs. 51,520$/year). 

However, the detailed designs are not the same (18 vs. 24 trays) and the solution time of the 

GDP formulation is considerably smaller (15.7 sec vs. 64.3 sec). 

 

6.2. Example 2: butane/toluene/o-xylene 

A second example to illustrate the performance of the models presented in this work 

involves the separation of butane, toluene and o-xylene with ideal equilibrium. This mixture 

has a closer volatility difference between the components than in the previous example. This 

fact makes the problem more difficult to solve.  

A mixture with composition 0.33/0.33/0.34 was considered. The required purity for the 

distillate product is 98% of butane and a minimum recovery of 98%. The upper bound for 

the number of trays is 60. The results are presented in Table 6 for the MINLP formulation 

with variable reboiler location. As can be seen the predicted design involves a minimum 

cost of 79,962$/yr. For this case, the MINLP relaxation provides a bound on the objective 

function of 79,223$/yr. 

For the same feed composition the representation involving variable reflux and reboil 

location was tested (see Figure 2). The solution achieved has 34 final trays (24 in the 

rectifying section and 10 in the stripping section) and a cost of 90,640 $/yr. The same 

behavior in the distribution of trays was observed in the previous case studied. Therefore, 

from these results we can conclude that the representation involving variable location for the 

heat exchange equipment yields better results. 

In Table 7, the solution is reported for the GDP model with fixed feed location, which 

predicted 27 trays. As can be seen the corresponding cost of 85,752$/yr is higher than the 

solution obtained with the variable reboiler MINLP (79,962 $/yr). The solution time is 

however much smaller (14.8 sec. vs. 648 sec). 
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6.3. Example 3: methanol/ethanol/water 

This example illustrates the performance of the models with an azeotropic mixture. A 

mixture with composition 0.2/0.2/0.6 was considered. The reversible products compositions 

are specified and an upper bound for the number of trays of 60 is considered. The results 

obtained with the MINLP representation involving variable reboiler location are reported in 

Table 8. The solution obtained with the GDP formulation involving fixed feed tray location 

is presented in Table 9. For this example, the solution obtained with the GDP formulation 

again involves higher cost than with the MINLP formulation (133,680$/yr and 50 trays vs. 

116,320$/yr and 41 trays) although the CPU time is again lower (26.1 sec vs. 501 sec). 

It is important to point out that the product composition achieved with the models is 

located in a different distillation boundary than the feed composition. A product 

composition can cross a distillation boundary if its total reflux profile and pinch point curve 

finishes in different distillation regions (Castillo et al, 1998). In the example presented 

above, the distillate pinch point curve finishes in the same distillation region where the feed 

is located. However, the residue curve going through the distillate composition of the 

solution achieved finishes on the other side. Therefore, we can conclude that for this 

example, the model we presented allows the distillate product to cross the distillation 

boundaries and it locates the distillate composition inside the region of the simplex bounded 

by the distillation boundary of the system and the envelope of inflexion tangent points 

(Wahnschafft et al, 1992). 

It should be mentioned that we assumed that the infinite reflux composition profile can 

be represented by a residue curve near the distillation boundary. This means that we are 

approximating the distillation line going through the distillate composition by the residue 

curve. 

 

7. Conclusions 

This paper has presented different alternatives for representing and formulating the 

economic optimization problem of a single multicomponent distillation column. The 

different alternatives involve different ways of representing the choices for the number of 

trays in the column and the energy demand. Rigorous MINLP and GDP formulations were 

developed in each of the cases. In order to increase the robustness in the solution of these 

formulations, a general automatic preprocessing phase was considered.  

Three example problems were solved to evaluate the robustness and performance of the 
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models. According to our experience, the most efficient MINLP representation involves 

variable reboiler and feed tray location, and the most convenient formulation involves total 

flows and variable energy demand for the variable reboiler location representation. In the 

GDP formulation, the representation with fixed feed tray location yields designs involving 

lower costs.  

Numerical results were presented to show the performance of the proposed formulations. 

For the examples studied, the MINLP formulation with preprocessing and domain reduction 

yields designs involving lower total costs. In the azeotropic example, the distillate 

composition achieved in the economic solution crosses the distillation boundary. This is an 

important fact when distillation sequences are considered because it allows obtaining pure 

products. 

In all cases, the MINLP solution times are considerably longer than the ones of the GDP 

models. We observed that the robustness of the MINLP formulations depends very much on 

the solution scheme. If a good initial guess is generated with the preprocessing phase and 

the domain reduction for the binary variables is applied, an integer solution is obtained in 

few iterations. However, the total solution time is long because the convergence of the NLP 

subproblems is usually very difficult to achieve. Also, the MILP subproblems include 

constraints, which were generated by linearizing the original constraints of the problem at 

zero flows.  

According to our experience, the GDP formulation is more robust and faster than the 

MINLP model. We observed that the GDP formulation is not as strongly dependent of the 

initial guess as the MINLP formulation. If a good initial solution guess is provided, the 

convergence of the initial NLP problems is guaranteed without tuning external parameters 

and also, better solutions can be found. It should be noted that the relaxed solution of the 

GDP formulation does not provide a useful distribution of trays as it was the case of the 

relaxed MINLP solution. Consequently, cheaper solutions were found with the MINLP 

models. 
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Nomenclature 

Ac  condenser area (m2) 

Ar reboiler area (m2) 

bcn binary variable denoting the existence of a condenser in tray n 

bfn binary variable denoting the existence of a feed stream entering in tray n 

Bfn boolean variable related with the existence of a feed entering a tray n 

brn binary variable denoting the existence of a reboiler in tray n 

C number of components 

Cs cost of the steam 

Cw cost of cooling water 

Dcol column diameter 

fLn,i fugacity of component i in the liquid leaving tray n. 

fVn,i fugacity of component i in the vapor leaving tray n. 

Fo feed flow (mol/sec) 

Fn feed flow entering on stage n (mol/sec) 

FEEDn,i feed flow of component i entering on stage n (mol/sec) 

hfo feed enthalpy (KJ/mol) 

hfn enthalpy of the feed stream entering in tray n (KJ/mol) 

hfeedn,i feed molar enthalpy of component i entering in tray n (KJ) 

hln enthalpy of the liquid leaving tray n (KJ/mol) 

hliqn,i liquid molar enthalpy of component i leaving tray n (KJ) 

hvn enthalpy of the vapor leaving tray n (KJ/mol) 

hvapn,i vapor molar enthalpy of component i leaving tray n (KJ) 

Ln liquid flow leaving tray n (mole/sec) 

LIQn,i liquid flow of component i leaving tray n (mol/sec) 

n tray 

nfo initial feed tray location 

nmin lower bound on the number of trays 

Nmax upper bound on the number of trays 

NT number of trays in the column 

Pn total pressure in tray n (bars) 

PLn liquid product flow leaving tray n (mol/sec) 
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PLIQn,i liquid product flow of component i leaving tray n (mol/sec) 

PVn vapor product flow leaving tray n (mol/sec) 

PVAPn,i vapor product flow of component i leaving tray n (mol/sec) 

qd distillate product vapor fraction 

Qn energy demand on tray n (KJ/sec) 

QC condenser heat duty (KJ/sec) 

QH reboiler heat duty (KJ/sec) 

refLn liquid reflux stream (mole/sec) 

refVn vapor reflux stream (mole/sec) 

stgn counter for the existence of a tray n 

Tn temperature of tray n (oK) 

TL
n temperature of the liquid flow leaving tray n (oK) 

TV
n temperature of the vapor flow leaving tray n (oK) 

Vn vapor flow leaving tray n (mole/sec) 

VAPn,i vapor flow of component i leaving tray n (mol/sec) 

xn,i liquid composition of component i leaving tray n (mole fraction) 

Wn boolean variable related to tray n existence 

yn,i vapor composition of component i leaving tray n (mole fraction) 

zfo feed composition (mole fraction) 

zfn,i feed composition of component i entering tray n (mole fraction) 

εi recovery factor of component i 

τi Minimum mole composition of component i in the product 
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Appendix A: General Preprocessing Phase Models. 

 

Theoretical Reversible Products Calculation 

Consider the following definition of variables and parameters involved in the model: 

Drev distillate product flow (mole/sec) 

Brev bottom product flow (mole/sec) 

fLi fugacity of component i in the liquid  

fVi fugacity of component i in the vapor  

hB bottom product enthalpy (KJ/sec) 

hD distillate product enthalpy (KJ/sec) 

hL liquid flow enthalpy (KJ/sec) 

hV vapor flow enthalpy (KJ/sec) 

L liquid flow leaving the rectifying section (mole/sec) 

L* liquid flow entering to the stripping section (mole/sec) 

qF feed vapor fraction 

Qrev
C reversible condenser duty (KJ/sec) 

Qrev
H reversible reboiler duty (KJ/sec) 
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V vapor flow entering to the rectifying section (mole/sec) 

V* vapor flow leaving the stripping section (mole/sec) 

xi liquid composition of component i  (mole fraction) 

yi vapor composition of component i  (mole fraction) 

zrev
i,D reversible distillate product composition  

zrev
i,B reversible bottom product composition  

 

The model for calculating the reversible product composition flows and energy demand 

according to Figure 11 is as follows: 

 

)(min max,max,
rev

Dc
rev

Bc zzs −                                                                                             (A1) 
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Rectifying Section: 

V = D + L rev                                                                                                                    (A5) 
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Stripping Section: 
revBV = L +**                                                                                                               (A10)                         

rev
Bi

rev
ii zByV =x L ,

** +                                                                                              (A11)                         

B
rev

V
rev
HL hBhV =Qh L ++ **                                                                                  (A12)                         
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rev
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rev
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Feed Section: 
*)1( L =FoqL F−+                                                                                                       (A15)                         

 *V =FoqV F+                                                                                                            (A16)                         

 
V

i
L

i f =f                                                                                                                           (A17)                         

),,( i
L

i xPTf =f  , ),,( i
V

i yPTf =f                                                                               (A18) 

)(TfhL = ,  )(Th =h VV                                                                                             (A19) 

)(TfhD = , )(TfhB =                                                                                                      (A20) 

 

The constraints of this optimization problem are the overall mass and energy balances 

that are formulated in both sections of a reversible unit, like the one shown in Figure 11. 

Since a previous feed flash calculation is solved, the vapor and liquid streams enthalpies Vh  

and Lh , respectively, are known. This is because each point of a reversible column 

composition profile is a pinch point, where all streams are in equilibrium. Therefore, in a 

stage above (below) the feed tray, the vapor entering (leaving) and the liquid leaving 

(entering) have the same composition than the vapor and liquid fractions of the feed.  

The unknowns in this model are the reversible products flows revD and revB and 

compositions rev
Diz ,  and rev

Biz , , and the energy demand rev
CQ and rev

HQ  as well. 

The objective function is formulated in such a way that the model allows the calculation 

of the reversible products even for azeotropic mixtures. An earlier version of this problem 

employed an objective function where the lightest component composition was minimized 

in the bottom product and the heaviest component composition minimized in the distillate 

(Barttfeld and Aguirre, 2002). But when azeotropic mixtures are involved, the volatilities 

change with the composition of the mixture. Therefore, the lightest and heaviest components 

definition depend on the distillation region in which the feed composition is located. To 

avoid the use of topological information of the mixture involved, a general objective 
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function is employed. The absolute difference between the vapor and liquid feed 

compositions F
iy and F

ix , respectively, are computed for each component i and denoted by 

idif . The largest value of idif is maxdif . The component i for which its value of idif is 

equal to maxdif is the one that presents more variation between its composition in the vapor 

and liquid phases. Then, cmax will be the lightest component if 0≥− F
i

F
i xy and the 

heaviest one if 0≤− F
i

F
i xy . This sign is kept in the parameter s. It must be noted that only 

one reference component is needed in the objective function. If 0≥s  )0( ≥s cmax is the 

lightest (heaviest) component and its composition is minimized in the bottom (distillate) 

product and maximized in the distillate (bottom) product. 

 

Minimum Energy Demand Calculation for the Low boiler-rich Distillate (High boiler-

rich Bottom Fraction) Separation  

For zeotropic mixtures, after calculating the reversible products, the saddle pinch points 

that take place in the adiabatic approach to a reversible column can be calculated. A simple 

model for calculating the rectifying and stripping saddle pinch points can be found in our 

previous work (Barttfeld and Aguirre, 2002). 

Employing saddle pinch point information, the minimum energy demand for the low 

boiler-rich distillate (high boiler-rich bottom) separation can be easily computed. The 

formulations will be illustrated for the low boiler-rich distillate separation. Analogous 

expressions can be written for the high boiler-rich bottom separation. 

Consider a rectifying section, like the one depicted in Figure 12. The rectifying 

(stripping) saddle pinch point that takes place in the adiabatic approach to the reversible 

separation is preserved during the separation where a low (high) boiler pure distillate 

(bottom) product is achieved. Using this information, an energy balance can be derived for 

calculating the energy demand involved in the condenser (reboiler) in the low (high) boiler 

rich distillate (bottom) separation: 

 
s
VCD

s
L hVs =Qh D +h Ls +                                                                                  (A21) 

 

with azfoFo = D . For calculating the reboiler (condenser) energy duty, a total energy 

balance of the column can be formulated:                                                                                                         
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BDCH hBhD =Q Q +hfo Fo +−                                                                    (A22) 

with )1( azfoFo = B − . 
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(a) Variable reboiler location 
 
 
 
 
 
 
 
 
 
 
 
 
                                           (b) Variable condenser location 
 
 
 
 
 
 
 
 
 
 
 
                                   (c) Variable reboil and condenser location 
 
                             Figure 1: MINLP distillation column representations 
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                 Figure 2: Variable reflux and reboil location with fixed heat exchangers 
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       (a) Variable condenser location                              (b) Variable reflux/reboil location 
 
              Figure 3: Different representations for the MINLP tray optimization 
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                                                 (a) Fixed feed location 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                               (b.1) 
 
 
 
 
 
 
 
 
 
 
                                                               
                                                               
                                                               (b.2) 
 
                                                 
                                            (b) Variable feed location 
 
                               Figure 4: GDP distillation column representations 
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  (a) Variable heat exchange location                                    (b) Variable reflux location 
 
                                   Figure 5: MINLP single tray superstructures 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                (a) Variable reboiler                     (b) Variable condenser                (c) Variable condenser and   reboiler 
 
 

 
  Figure 6: Definitions of candidate trays for the MINLP representation 
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              (a) Permanent tray                                                    (b) Conditional tray 
 
                                    Figure 7: GDP single tray superstructure 
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Figure 10: GDP solution procedure 
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                                         Double pinch point zone 
 
             Figure11: Control volumes for the theoretical reversible product calculations 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
              Figure 12: Lower boiler-rich distillate minimum energy demand calculation 
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        Table1: Example 1 - MINLP preprocessing phase  
Preprocessing Phase Models Description 

NLP Model 
Continuous Variables 196 
Constraints  173 
Nonlinear nonzero elements 279 
Total CPU time (s) 0.1 
  
NLP tray-by-tray Models  
Continuous Variables 2743 
Constraints  2244 
Nonlinear nonzero elements 6958 
Total CPU time (s) 0.61 
  

 
 
 
 

Table 2: Example 1 - MINLP model representation solutions 
 Variable Reboil Variable Condenser Variable Reboiler 

and Condenser 
Model Description    

Continuous Variables 1504 1437 1490 
Binary Variables 17 19 10 
Constraints  1261 1179 1243 
Nonlinear nonzero elements 3867 4250 3627 
RMINLP CPU time (s) 0.45 0.38 0.3 
NLP CPU time (s) 44.74 8.93 51.8 
MILP CPU time (s) 18.45 13.97 19.33 
Major Iterations (DICOPT) 4 3 4 
Total CPU time (s) 63.64 23.28 71.44 
    

Optimal Solution    
Total number of trays 18 22 18 
Condenser tray  1 29 15 
Reboiler tray 18 50 32 
Feed tray 9 38 25 
Column diameter (m) 0.487 0.477 0.507 
Condenser duty (KJ/s)   149.32 138.96 160 
Reboiler duty (KJ/s) 171.9 161.43 182.5 
Objective value ($/yr) 49,580 50,080 51,680 
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         Table 3: Example 1 - MINLP model: variable reflux and reboil streams location   
Model Description 

Continuous Variables 1358 
Binary Variables 26 
Constraints  1134 
Nonlinear nonzero elements 3669 
RMINLP CPU time (s) 0.35 
NLP CPU time (s) 260.7 
MILP CPU time (s) 62 
Major Iterations (DICOPT) 14 
Total CPU time (s) 323.05 
  

Optimal Solution 
Total number of trays 32 
Condenser tray  3 
Reboiler tray 34 
Feed tray 25 
Column diameter (m) 0.48 
Condenser duty (KJ/s)  141.1 
Reboiler duty (KJ/s) 163.7 
Objective value ($/yr) 61,280 
  

 
 
 
 
         Table 4: Example 1 - MINLP model: effect of the preprocessing phase. 

 with preprocessing without preprocessing 
Total number of trays 15 32 
Condenser tray  1 1 
Reboiler tray 15 32 
Feed tray 10 27 
Column diameter (m) 0.505 0.59 
Condenser duty (KJ/s)  206.64 275.12 
Reboiler duty (KJ/s) 224.45 295.67 
NLP CPU time (s) 101.39 195.37 
MILP CPU time (s) 4.88 55.88 
Major Iterations (DICOPT) 9 20 
Total CPU time (s) 106.27 251.25 
Objective value ($/yr) 58,560 93,200 
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         Table 5: Example 1 - GDP model: fixed tray location  
Preprocessing Phase: NLP tray-by-tray Models 

Continuous Variables 4508 
Constraints  3967 
General preprocessing CPU time (s) 0.57 
NLP1 CPU time (s) 0.31 
NLP2 CPU time (s) 0.56 
Total CPU time (s) 1.44 

 
Model Description 

Continuous Variables 2297 
Binary Variables 48 
Constraints  2105 
Nonlinear nonzero elements 2230 
Number of iterations 10 
NLP CPU time (s) 4.92 
MILP CPU time (s) 9.33 
Total CPU time (s) 14.25 
  

Optimal Solution 
Total number of trays 24 
Feed tray 16 
Column diameter (m) 0.421 
Condenser duty (KJ/s)  134.22 
Reboiler duty (KJ/s) 156.81 
Objective value ($/yr) 51,520 
  

 
 
         Table 6: Example 2 - MINLP: variable reboiler location 

Preprocessing Phase: NLP tray-by-tray Models 
Continuous Variables 3273 
Constraints  2674 
Total CPU time (s) 0.68 

 
Model Description 

Continuous Variables 1507 
Binary Variables 33 
Constraints  1830 
Nonlinear nonzero elements 4637 
RMINLP CPU time (s) 0.52 
NLP CPU time (s) 249.35 
MILP CPU time (s) 398.4 
Major Iterations (DICOPT) 17 
Total CPU time (s) 648.27 
  

Optimal Solution 
Total number of trays 26 
Feed tray 13 
Column diameter (m) 0.6 
Condenser duty (KJ/s)  241.7 
Reboiler duty (KJ/s) 258.03 
Objective value ($/yr) 79,962 
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         Table 7: Example 2 - GDP model: fixed tray location  
Preprocessing Phase: NLP tray-by-tray Models 

Continuous Variables 4508 
Constraints  3967 
General preprocessing CPU time (s) 0.71 
NLP1 CPU time (s) 0.46 
NLP2 CPU time (s) 0.32 
Total CPU time (s) 1.49 

 
Model Description 

Continuous Variables 2343 
Binary Variables 58 
Constraints  2105 
Nonlinear nonzero elements 2230 
Number of iterations 10 
NLP CPU time (s) 5.42 
MILP CPU time (s) 9.37 
Total CPU time (s) 14.8 
  

Optimal Solution 
Total number of trays 27 
Feed tray 16 
Column diameter (m) 0.605 
Condenser duty (KJ/s)  248.66 
Reboiler duty (KJ/s) 265.02 
Objective value ($/yr) 85,752 
  

 
 
 
         Table 8: Example 3 - MINLP: variable reboiler location 

Preprocessing Phase: NLP tray-by-tray Models 
Continuous Variables 1600 
Constraints  1548 
Total CPU time (s) 0.5 

 
Model Description 

Continuous Variables 1894 
Binary Variables 67 
Constraints  1817 
Nonlinear nonzero elements 6953 
RMINLP CPU time (s) 0.61 
NLP CPU time (s) 305.13 
MILP CPU time (s) 196.02 
Major Iterations (DICOPT) 20 
Total CPU time (s) 501.15 
  

Optimal Solution 
Total number of trays 41 
Feed tray 32 
Column diameter (m) 0.51 
Condenser duty (KJ/s)   389.32 
Reboiler duty (KJ/s) 388.2 
Objective value ($/yr) 116,320 
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         Table 9: Example 3 - GDP model: fixed tray location  
Preprocessing Phase: NLP tray-by-tray Models 

Continuous Variables 1597 
Constraints  1544 
Total CPU time (s) 1.12 

 
Model Description 

Continuous Variables 2933 
Binary Variables 60 
Constraints  2862 
Nonlinear nonzero elements 5656 
Number of iterations 10 
NLP CPU time (s) 9.14 
MILP CPU time (s) 16.97 
Total CPU time (s) 26.11 
  

Optimal Solution 
Total number of trays 50 
Feed tray 30 
Column diameter (m) 0.529 
Condenser duty (KJ/s)  415.3 
Reboiler duty (KJ/s) 414.3 
Objective value ($/yr) 133,680 
  

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 


