
 1

Logic-Based Outer Approximation for Globally Optimal
Synthesis of Process Networks

Maria Lorena Bergamini#, Pio Aguirre# and Ignacio Grossmann+*

INGAR – Instituto de Desarrollo y Diseño, Avellaneda 3657, (S3002GJC), Santa Fe, Argentina
+ Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA

Abstract
Process network problems can be formulated as Generalized Disjunctive Programs where a logic-
based representation is used to deal with the discrete and continuous decisions. A new
deterministic algorithm for the global optimization of process networks is presented in this work.
The proposed algorithm, which does not rely on spatial branch-and-bound, is based on the Logic-
Based Outer Approximation that exploits the special structure of flowsheet synthesis models. The
method is capable of considering nonconvexities, while guaranteeing globality in the solution of
an optimal synthesis of process network problem. This is accomplished by solving iteratively
reduced NLP subproblems to global optimality and MILP master problems, which are valid outer
approximations of the original problem. Piecewise linear under and overestimators for bilinear
and concave terms have been constructed with the property of having zero gap in a finite set of
points. The global optimization of the reduced NLP may be performed either with a suitable
global solver or using the inner optimization strategy that is proposed in this work. Theoretical
properties are discussed as well as several alternatives for implementing the proposed algorithm.
Several examples were successfully solved with this algorithm. Results show that only few
iterations are required to solve them to global optimality.

1. Introduction.

 The synthesis of process networks can be formulated as Generalized Disjunctive
Programming (GDP) problems. GDP is an alternative to Mixed Integer Non-linear
Programming (MINLP) for modeling problems where both continuous and discrete
decisions are involved. GDP allows the combination of algebraic and logic equations to
represent a synthesis problem in a more natural way.

 GDP problems can be solved as MINLP problems by replacing each disjunction
with its big-M or its convex hull reformulation (Lee and Grossmann, 2000). Major
methods for MINLP problems include Branch-and-Cut, which is a generalization of the
linear case (Stubbs and Mehrotra, 1999) Generalized Benders Decomposition (GBD)
(Geoffrion, 1972), Outer Approximation (OA) (Duran and Grossmann, 1986, Fletcher
and Leyffer, 1994) and Extended Cutting Plane (ECP) method (Westerlund and

* To whom all the correspondence should be addressed

 2

Petterson, 1995). GBD and OA are iterative methods that solve a sequence of alternate
NLP subproblems with all the discrete variables fixed, and MILP master problems that
perform the optimization in the discrete space. The ECP method relies on successive
linearizations to build MILP approximation problems.

There are also specific algorithms that exploit the disjunctive structure of the
model. In the solution method by Hooker and Osorio (1997) for linear problems, a search
tree is created by branching on the logic expressions. A continuous relaxation of the
problem is solved at each node of the tree

Lee and Grossmann (2000) presented an optimization algorithm for solving
general nonlinear GDP problems. This algorithm consists of a branch-and-bound search
that branches on terms of the disjunctions and considers the convex hull relaxation of the
remaining disjunctions. Türkay and Grossmann (1996) proposed a Logic-Based Outer
Approximation algorithm that solves nonlinear GDP problems for process networks
involving two terms in the disjunction. Since the NLP subproblem only involves the
active terms of the disjunctions, this algorithm overcomes difficulties that arise in the
synthesis of process network problems, such as singularities that are due to zero flows.
This algorithm has been implemented in LOGMIP, a computer code developed by
Vecchietti and Grossmann (1999).

 All the methods mentioned above assume convexity to guarantee convergence to
a global solution. Therefore, when applied to nonconvex problems, these algorithms may
cut off the global optimum.

Viswanathan and Grossmann (1990) proposed a heuristic modification to the OA
algorithm for MINLP in order to reduce the likelihood of cutting-off part of the feasible
region. They introduced slacks in the linearization of nonconvex constraints, an included
them in an augmented penalty function. The search is stopped when there is no
improvement in the NLP subproblems.

Rigorous global optimization methods for addressing nonconvexities in NLP
problems have been developed when special structures are assumed in the continuous
terms (Quesada and Grossmann, 1995; Ryoo and Sahinidis, 1995; Horst and Tuy, 1996;
Viswanathan and Floudas, 1996; Zamora and Grossmann, 1999; Floudas, 2000).
Tawarmalani and Sahinidis (2002) have developed the Branch-And-Reduce-
Optimization-Navigator (BARON), a software for general purpose global optimization
that implements a spatial branch-and-bound method combined with reduction techniques
for the variables bounds. For nonconvex MINLP problems Smith and Pantelides (1999),
Adjman et al (2000), Tawarmalani and Sahinidis (2000) and Kesavan and Barton (2000)
have proposed global optimization algorithms based on spatial branch-and-bound search.
Lee and Grossmann (2001) proposed a two-level branching scheme for solving
nonconvex GDP problems to global optimality and specialized the algorithm to GDP
problem with bilinear equality constraints (2002).

 Spatial branch-and-bound methods can be computationally expensive, since the
tree may not be finite (except for ε-convergence). For the case of process networks there
is the added complication that the NLP subproblems are usually difficult and expensive
to solve. Thus, there is a strong motivation for developing a decomposition algorithm for
this class of problems that does not rely on spatial branch-and-bound.

 3

 An outer-approximation strategy for addressing the global optimization of
nonconvex MINLP problems was recently proposed by Kesavan et al (2994). The
algorithm solves alternatively relaxed master MILP problems and primal and primal
bounding NLP problems. The bounding problems are constructed replacing the
nonconvex function by known underestimating functions. Solution of primal problems
involves the application of NLP global optimization algorithm.

In this work we propose a new algorithm for solving nonconvex GDP problems
that arise in process synthesis. It exploits the particular structure of this kind of model, as
in the case of the Logic-Based OA algorithm by Türkay and Grossmann (1996). The
proposed modifications make the algorithm capable of handling nonconvexities, while
guaranteeing the global optimum of the synthesis of process networks. This is
accomplished by constructing a master problem that is based on valid piecewise
bounding representations of the original problem and by solving the NLP subproblems to
global optimality. An NLP global optimization strategy is also proposed in this work.

Theoretical properties are discussed as well as several alternatives for
implementing the proposed algorithm. Several numerical examples are presented to
illustrate the performance of this method.

2. Background

The GDP model for synthesis of process networks is given as follows:

},{,0,0
)(

0
00)(

0)(..

)(min

FalseTrueYcx
TrueY

Dj
c

xB
Y

c
xh
Y

xgts

xfcZ

j

j

j
j

jj

j

j

j
j

∈≥≥
=Ω

∈
















=
=

¬
∨

















=
≤

≤

+=∑

γ

(O-GDP)

 The nonlinear GDP model (O-GDP) contains continuous variables x and c, and
Boolean variables Y. The disjunctions D apply for the processing units. If a process unit
exists (Yj=True), the constraints hj describing that unit are enforced, and a fixed charge γj
is applied. Otherwise (Yj=False) a subset of continuous variables and the fixed charges
are set to zero. The matrix Bj is such that the ith row is the unit vector, bj

i =ei, if the ith
variables must be set to zero for Yj=False, and zero row for variables that must not be set
to zero for Yj=False. For convenience in the presentation, we consider that the units are
modeled with inequalities. This is not a severe restriction, since it is always possible to
relax an equality constraint into two inequality constraints. Alternatively, they may be
relaxed as inequalities if prior analysis is performed to determine the sign of its Lagrange
multipliers (eg see Bazaara et al, 1993).

 4

 The OA algorithm requires the solution of NLP subproblems, which are obtained
by fixing the Boolean variables, and MILP master problems. The master problem is
formulated by using hyperplanes that replace the nonlinear functions. If the original
problem is convex, these hyperplanes underestimate the objective function and
overestimate the original feasible region, and therefore the master problem provides a
lower bound of the optimal solution of (O-GDP) (eg see Duran and Grossmann, 1986).

The NLP subproblem for fixed values { }
Dj

k
jY

∈
 that satisfy Ω(Yk) = True, is as

follows:

(R-NLP)

 This NLP may be nonconvex and therefore it may not have a unique local
optimum.

As it was mentioned before, the master MILP problem in the Logic-Based OA by
Türkay and Grossmann (1996) is obtained by linearizing the nonlinear terms, and
applying the convex hull of the disjunctions. However, if the NLP is nonconvex, this
process does not provide a valid bounding relaxation of the original problem and
therefore the OA algorithm can be trapped in a suboptimal solution. This is illustrated in
the next section

3. Motivating Example
Let us consider the following simple GDP problem, to illustrate how the Logic-

Based OA algorithm can fail to find the global solution.

0,

0
0

0)(
0)(.

)(min

≥∈

=






=
=

=




=
≤

≤

+=∑

cRx

FalseYfor
c

xB

TrueYfor
c

xh
xgts

xfcZ

n

k
j

j

j

k
j

jj

j

j
j

γ

 5

 1,2,3j ,6,...1 ,0,
25

},{

0
0

9
0)exp(1

0
0

55
1

13

0
0

30
2

95

.
8.1min

6

21

3231

3

56

3

3

56

3

2

42

2

2

2

24

2

1

31

1

1

1

13

1

435

3216

==≥
≤

∈
∨

⇒⇒

















=
==

¬
∨

















=
≤−+

















=
==

¬
∨



















=
=

−=

















=
==

¬
∨



















=
=

−=

+=
+++−=

ixc
x

FalseTrueY
YY

YYYY
c

xx
Y

c
xx

Y

c
xx
Y

c
x

xx
Y

c
xx
Y

c
x

xx
Y

xxxts
cccxz

ij

j

 If one were to solve this problem with the Logic-Based OA, one NLP subproblem
has to be solved in order to obtain a feasible point for the linearization of the constraints
in the third disjunction. Let us consider the first NLP corresponding to
Y={True,True,True}. The optimal solution of this first subproblem is x3=1, x4=2, x5=3,
x6=19.09, Z =59.65. The linear constraint that replaces the nonlinear inequality in the
third disjunction is,

008.2017.41 56 ≤−+ xx

With this inequality the master problem is now infeasible, since the discrete
decisions that could be taken (Y={True, False, True} and Y={False, True, True}) are both
infeasible in the x-space (Figure 1) and the algorithm stops. However, the global
optimum occurs when units 1 and 3 are selected, with x5=1, x6=1.72 and Z =35.91.

3. Lower Bounding Master Problem

The proposed algorithm iterates between the subproblems (R-NLP) where all the
boolean variables of the GDP are fixed, and master problem (MILP-1) that predicts new
values for the boolean variables. The key point of the algorithm is the construction of
master problem (MILP-1) that rigorously overestimates the original feasible region. To
accomplish this a convex GDP is derived, replacing the nonconvex terms in the functions
g, f and h by valid convex underestimators. The underestimators are constructed over a

 6

partition of the original domain. This convex GDP is then linearized and converted into
an MILP problem by formulating the convex hull of the disjunctions. In order to improve
the outer approximation, the partition is refined and supporting hyperplanes are added to
the master problem. The estimation over a partition of the entire domain will require
additional continuous and discrete variables.

Problems (R-NLP) must be solved to global optimality. A local lower bounding
problem (MILP-2) is constructed to find rigorous lower bound to the global optimum of
problem (R-NLP).

3.1 Transformation strategies.
It will be assumed that the nonconvex terms are univariate concave and bilinear

functions. This is not a very restrictive assumption since Smith and Pantelides (1999)
have shown that a suitable reformulation in terms of convex, univariate concave, bilinear
and linear fractional functions can be applied to any model of process synthesis that
involves algebraic functions. The convex envelopes of these types of nonconvex
functions are widely known (McCormick, 1976; Tawalarmani and Sahinidis, 2002;
Zamora and Grosmann, 1999) and they provide the tightest relaxation for the
corresponding function. Moreover, every problem with concave univariate, bilinear and
linear fractional functions can be reformulated so that it involves only concave and

bilinear functions. This just requires the introduction of a new variable
j

i
ij x

x
z = . The

new variable zij replaces every occurrence of the fractional term, and the bilinear
constraint iijj xzx = is added to the model.

However, another alternative for certain terms that do not belong to the classes
listed before is a variable transformation strategy. The idea in variable transformation is
to express the constraints in a different space, such that they become convex. An example
are exponential transformations applied to Geometric Programs to convexify these
problems. For Generalized Geometric Programs, Pörn et al (2002) propose a single
variable transformation and approximation of the inverse transformation function by
piecewise linear function. Different transformation functions have been proposed by
these authors for signomial functions (Björn et al, 2003). These transformations will not
be explored in this paper.

In the next subsection, special piecewise estimators are derived for concave
univariate and bilinear functions.

3.2 Under and Overestimators for nonconvex terms constructed on partitions of
the original domain.

Approximation of nonlinear separable functions by piecewise-linear estimators
has been addressed for linearizing a nonlinear problem (Dantzig, 1963; Nemhauser and
Wolsey, 1999). Piecewise linear estimators are valid underestimators for concave terms
and valid overestimators for convex terms, but they lack bounding properties for

 7

nonconcave and nonconvex terms. In this section valid piecewise underestimators are
formulated in disjunctive form.

Let RRf m →: be a nonconvex function and let D be the domain of interest. Let
RRf mu

D →: be an underestimator of f with the following property:

)(.}),()(sup{ DCDxxfxf u
D δ≤∈−

where C is a nonnegative constant, independent of D and δ is a measure of sets in Rm.
Note that the convex envelope of bilinear and concave univariate terms exhibits this
property (Floudas, 2000). This is the underlying fact that supports convergence of spatial
branch-and-bound algorithms.

Consider a partition { } IkkD ∈ of D (='kk DD I ∅ for k≠k’ and DDk
Ik

=
∈
U) and

let u
Dk

f be the underestimator of f constructed over Dk. Define the piecewise

underestimator ∑
∈

=
Ik

k
u
D

u xxfxf
k

)()()(χ where χk denotes the characteristic function of

Dk in D: χk(x) = 1 if x ∈ Dk, 0 otherwise Then,

)}({max

}}),()({sup{max

}),()(sup{

k
Ik

k
u
DIk

u

DC

Dxxfxf

Dxxfxf

k

δ
∈

∈
≤∈−

=∈−

Thus, it is possible to tighten this underestimator as much as it may be required by
considering an appropriate partition.

Given a partition { } IkkD ∈ of D, the estimator uf is mathematically formulated
through the following disjunction:

















∈
=∨

∈
k

u
D

u
k

Ik
Dx

xfxf
w

k
)()(

where wk is a Boolean variable for activating/deactivating the kth term of the disjunction.

It is interesting to note that when f is bilinear or concave univariate and the
underestimator u

Dk
f is a convex envelope on Dk, the projection of the convex hull

formulation of this disjunction onto the (x,f)-space (let us denote it by Px,f) recovers the
convex envelope cef in D. To show this, let us note first that Px,f is a convex set and
belongs to the hypograph of f and therefore }),(:min{)(, fxP Pyxyxf ∈= is a convex
function satisfying fP(x) ≤ f(x). Then, fP(x) ≤ f ce(x).

 8

Conversely, Px,f contains the sets })),(,{(k
u

Dk Dxxfx
k

∈=φ , for all k∈ I (φk is the
projection of the facet defined by wk=1). Actually, Px,f is the convex hull of the union

k
Ik
φ

∈
U . Then, since u

Dk
f is the convex envelope of f on Dk , φk is contained in the epigraph

of cef , and also Px,f is in it. Then, fP(x) ≥ fce(x).

 In the remaining part of this section, the specific piecewise underestimators are
obtained.

3.2.a -Univariate Concave Terms.
The convex envelope of a univariate concave function over an interval I=[xlo, xup]

is the linear function matching the original one at the extreme points of the interval. The
underestimator constructed on a partition { } KkkI ,...,1= of I (Ik = [xk, xk+1]) is piecewise

linear and matches the function in K+1 points 1,...1}{ += Kk
kx . The mathematical

formulation in terms of mixed-integer linear constraints is (see Appendix A for
derivation):

}1,0{

1

0

)()()(

)(

1

1

1

1

1

∈

=

≤≤

−+=

−+=

∑

∑

∑

=

=

+

=

+

k

K

k
k

kk

K

k

k
kk

k
k

u

K

k

k
kk

k
k

w

w

w

xfwxff

xwxx

λ

λλ

λλ

3.2.b –Bilinear Terms
The convex envelope of bilinear terms on a rectangular domain D is given in

McCormick (1976). It estimates a bilinear function with zero gap in the boundary of D,
and the maximum approximation gap depends linearly on the area of D.

Let us consider the bilinear term f(x,y) = xy, defined in the domain D = [xlo, xup]×
[ylo, yup], and consider the K+1 points xlo=x1, x2, …, xK+1=xup. In Appendix B the
derivation of the piecewise convex underestimator of f over the partition { } KkkD ,...1= ,

Dk=[xk, xk+1]× [ylo, yup] is presented. The following formulation is obtained,

 9

}1,0{

1

,...,1

},max{

...

...

1

1
1

11

21

21

∈

=

=≤≤

≤≤

−+−+=

+++=

+++=

∑

∑

=

+
=

++

k

K

k

k

kupkklo

kkkkk

K

k

kupkkkupkklokkkloku

K

K

w

w

Kkwywy

wxwx

wyxxywyxxyf

y

x

γ
υ

γυγυ

γγγ
υυυ

Note that uf = xy when x = xk for some k = 1,…,K+1 or when y = ylo or y = yup.

This formulation provides an underestimation for the bilinear term xy.
Overestimation is required for bilinear terms appearing with negative coefficient, that is, -
xy. In such a case, the previous formulation is applied to the bilinear term zy, where z = –
x.

Also note that the partition is performed in one unique dimension. Partition in
both variables is possible, but the formulation requires many more binary and continuous
variables.

3.3 Bounding Problem
Assume that the functions f, g and h in (O-GDP), after a possible variable

transformation, are expressed as follows,

∑

∑

∑

∈

∈

∈

+=

+=

+=

jHi

nc
jijj

Gi

nc
i

Fi

nc
i

xhxhxh

xgxgxg

xfxfxf

)()()(

)()()(

)()()(

0

0

0

where f 0, h0, g0 are convex terms and fi nc, hi
nc, gji

nc are the nonconvex terms (concave
univariate or bilinear terms) of the corresponding function. Given a gridpoint set K, the
hybrid convex bounding GDP problem is as follows,

Min ZL = ∑
j

jc + α

 s.t. ∑
∈

+≥
Fi

f
i

o zxf)(α

0)(≤+ ∑
∈ Gi

g
i

o zxg

Fiztwxf f
i

u
Ki ∈≤),,(,

 10

Giztwxg g
i

u
Ki ∈≤),,(,























=

=















¬

∨





















=
∈≤

≤+ ∑
∈

0

0
),,(

0)(

,

j

j

j

jj

j
h
ji

u
Kji

Hi

h
ji

o
j

j

c
t
w
x

B

Y

c
Hiztwxh

zxh
Y

γ

 j∈ D

Ω(Y) = True

α∈ R ,x≥0, c≥ 0, Y ∈ {True, False}m
 zf

i , zg
i ,zh

ji∈ R, w∈ {0,1}k×s , t∈ Rp×q

(C-GDP)

New variables f
iz , g

iz and h
ijz are added, representing the nonconvex terms in f, g

and hj respectively. u
Kif , , u

Kig , , and u
Kjih , are piecewise underestimators of the nonconvex

terms. They are expressed in terms of the original variables x, the new 0-1 variables w
and the continuous variables t that are needed for defining the approximation in the grid.
The subindex K means that these estimators are constructed using the gridpoint set K.
The problem (C-GDP) is a relaxation of (O-GDP), and therefore the optimal solution of
(C-GDP) is a lower bound to the solution of (O-GDP).

The following theorem is important to validate the algorithm:

Theorem: If the optimal solution of (C-GDP) belongs to the set of grid points, this
corresponds to the global solution of (O-GDP).

Proof: Let us denote (x*, w*, t*, Y*) the optimal point in (C-GDP) and assume x* is
a grid point. Thus, the piecewise underestimators have zero gap in x*, that is:

)(),,(****
, xftwxf i
u
Ki = for i∈ F,)(),,(****

, xgtwxg i
u

Ki = i∈ G, and

)(),,(****
, xhtwxh ji

u
Kji = for i∈ Hj and Yj

=True. Moreover, Bj(x, w*, t*)T=0 for
Yj

=False. Therefore, (x,Y*) is feasible in (O-GDP). Since x* is an optimal point, the
first and third global constraints in (C-GDP) are active, and

∑
∈

+=
Fi

u
Ki

o twxfxf),,()(***
,

*α . Thus,

,

**

)()()(

),,()(

∑ ∑∑

∑∑∑

∈

∈

=+=++

=++=+=

Fi j
ji

o

j
j

Fi

u
Ki

o

j
j

j
j

L

Zxfcxfxfc

twxfxfccZ α

This proves that the optimal objective value of (C-GDP) is equal to the objective
value in a feasible point in (O-GDP). Since the (C-GDP) problem is a relaxation of the
(O-GDP), Z* is the best value for the objective in (O-GDP). 

 11

It should be noted, however, that if the global optimum of (O-GDP) is a grid point
of (C-GDP), this point might not be the optimum of (C-GDP), due to the underestimation
gap.

The disjunctive problem (C-GDP) is then linearized using supporting hyperplanes
derived at solution points, similarly as in the OA algorithm, and converted into an MILP
problem, by formulating the convex hull representation of the disjunctions and replacing
the boolean variables with binary variables y. The resulting MILP has binary variables of
two different types: the variables w, introduced in the piecewise underestimators, and the
variables y denoting the existence of units. Let us denote this problem (MILP-1).

Assume that L subproblems (R-NLP) have been solved, with solution points
},...,1,{ Llxl = . The convex part of the objective function and the global constraints are

linearized in such L points. The convex part of the constraints in disjunction j is
linearized in the subset of points },{ jl Llx ∈ , where Lj is the set of iterations with
Yj=True. Specifically, the problem (MILP-1) is constructed as follows,

Min ZL = ∑

j
jc + α

 s.t. ∑
∈

+−∇+≥
Fi

f
i

llolo zxxxfxf))(()(α

 0))(()(≤+−∇+ ∑
∈ Gi

g
i

llolo zxxxgxg Ll ,...,1=

Fiztwxf f
i

u
Ki ∈≤),,(,

Giztwxg g
i

u
Ki ∈≤),,(,























=

=















¬

∨





















=
∈≤

∈≤−∇+ ∑
∈

0

0
),,(

 0))(()(

,

j

j

j

jj

j
h
ji

u
Kji

j

Hi

h
ji

llo
j

lo
j

j

c
t
w
x

B

Y

c
Hiztwxh

Llzxxxhxh
Y

γ

 j∈ D

Ω(Y) = True

α∈ R ,x≥0, c≥ 0, Y ∈ {True, False}m
 zf

i , zg
i ,zh

ji∈ R, w∈ {0,1}k×s , t∈ Rp×q

(MILP-1)

4. Reduced NLP

Reduced NLP (R-NLP) problems are solved iteratively with the master problem.
Similarly to the Logic-Based OA, these NLPs are reduced, in the sense that fixing the
Boolean variables means that a set of continuous variables (those related to nonexistent
units) is set to zero and removed from the NLP, as well as the constraints modeling those

 12

units. The NLPs have to be solved to global optimality. Having fixed unit configurations
in the network allows us to contract the bounds, and therefore reduce the search region.

In order to solve (R-NLP) to global optimality, the algorithm relies on the local
lower bounding problem (C-MINLP). This problem is obtained from (C-GDP) by fixing
the boolean variables Yj or, in other way, by introducing the piecewise underestimators in
(R-NLP). The local bounding problem is as follows,

Min Z = ∑

j
jc + α

s.t. ∑
∈

+≥
Fi

u
Ki

o twxfxf),,()(,α

0),,()(, ≤+∑
∈ Gi

u
Ki

o twxgxg

TrueY
c

twxhxh
j

jj

Hi

u
Kji

o
j

j =







=

≤+ ∑
∈

γ

0),,()(,

FalseY

c
t
w
x

B
j

j

j

=













=

=
















0

0

α∈ R ,x∈ Rn, c≥ 0,

w∈ {0,1}k×s , t∈ Rp×q

(C-MINLP)

Let us denote by (MILP-2) the MILP problem that is the linearization of the
problem (C-MINLP). Note that (MILP-2) is also obtained by fixing the binary variables y
in (MILP-1).

In Figure 2 the relation between the different previously defined problems is
shown. Upper bounding problems are obtained by moving to the right in the figure.
Lower bounding problems appear by moving down.

Note that in some cases some simplifications are possible. For example, in
bilinear programs, (C-GDP) is the same as (MILP-1) and (C-MINLP) is the same as
(MILP-2), since there are no nonlinear convex terms in the original problem or any
possible variable transformation. Certainly, if the original problem is convex, problems
(O-GDP) and (C-GDP), and problems (R-NLP) and (C-MINLP) are identical. It may also
be the case that, although the original problem is nonconvex, a convex NLP arises by
fixing the boolean variables. In such a case, (R-NLP) and (C-MINLP) are the same
problem, perhaps in different variable spaces (e.g. Geometric Programs).

 13

5. Algorithm

 The algorithm has two main phases as can be seen in Fig. 3:

Outer Optimization: This phase calculates a global lower bound (GLB) of the
optimum of problem (O-GDP). The problem (MILP-1) is solved using an initial grid and
initial linearization points, to predict a new structure in the network and a new global
lower bound. An increasing sequence of global lower bounds is obtained in the
successive iterations of this phase. This is true because (MILP-1) is modified by adding
integer cuts in Yj that avoid repeating structures and supporting hyperplanes of the convex
functions.

The initial grid can be redefined when solving (MILP-1) or it can accumulate the
grid points generated during the inner optimization. The cumulative option has the
disadvantage of exponentially increasing the size of the model (MILP-1), making it very
difficult to solve. Both alternatives are implemented in the numerical examples.

Inner Optimization: A fixed structure is globally optimized. This is performed by
iteratively solving the problems (R-NLP) and (MILP-2) that bound the global solution of
the reduced NLP.

Solutions of (R-NLP) provide feasible solutions of (O-GDP), and allow to update
the local and global upper bound (LUB and GUB respectively). Tighter local lower
bounds (LLB) arise refining the grid and solving the local bounding problem (MILP-2),
which is actually a relaxation of (R-NLP).

There may be cases where fixing the boolean variables Y, the resulting NLP
problem is convex, or it is known that it has a unique optimal solution. An example of
this kind of problem is the GDP model for the synthesis and design of a batch plant
formulated by Lee and Grossmann (2001). In such cases, the inner optimization can be
accomplished by simply solving the problem (R-NLP) with a local solver.

Alternatively, one might resort to a global NLP optimizer (e.g. BARON,
Sahinidis, 1996) that will take advantage of the tighter variable bounds that arise in a
fixed configuration.

Bound Contraction: Since the elimination of non-optimal subregions is crucial in
accelerating the search, an optional bound contraction procedure is considered in order to
reduce the search space in the global optimization of the NLP subproblems. This
contraction is performed before the algorithm enters in the inner optimization phase. The
scheme for contraction adopted in this work is the same as the one proposed by Zamora
and Grossmann (1999). Basically, the problem solved at each contraction step is the
following,

min/max xi

s.t Z ≤ GUB

constraints in C-MINLP

(CB)

 This problem is a convex problem whose feasible region overestimates the
subregion of (R-NLP) where the objective function can be improved. The aim of this

 14

problem is to eliminate part of the original feasible region where the global optimum does
not exist.

 Note that in general, (CB) is a MINLP problem, since binary variables w related
to the initial grid are involved. However, if the initial grid consists of only variable
bounds and therefore the original domain is not really subdivided, (CB) can be solved as
an NLP.

 The bound contraction is performed on those variables that are involved in the
relaxation so that the underestimators can be tightened.

Grid Update: The grid is updated for each nonconvex term. The idea in refining
the grid is to include in it those points obtained as optimal points in the relaxed problem.

The decision of adding a new point to the grid is based on the error between the

nonconvex term nc
iζ and the substituting variable ζ

iz in the solution),(
∗∗ ζ

izx of
(MILP-1) or (MILP-2) where ζ = f, g or h. The following criterion is adopted:

If nc
i

nc
ii xz ζεζζ >− ∗∗

)(, then add x* to the grid corresponding to nc
iζ , where ε is a

specified tolerance.

 An alternative strategy for updating the grid is to include in it the middle point of

the active subinterval in the solution of the master problem. If the solution),(
∗∗ ζ

izx of

the master problem is such that 1* +≤≤ kk xxx (interval k is active) then, the grid

corresponding to nc
iζ is modified by adding the point

2

1++ kk xx .

Convergence: The proposed underestimators are constructed over a partition of
the domain, and they involve an approximation error that depends on the size of each
subdomain. Then, as the dimension of the subdomains is reduced by further partitions,
the gap of approximation is also reduced.

6. Illustrative Example.

 Let us consider again the illustrative example discussed in section 2.

The proposed algorithm starts solving the MILP obtained by replacing the
concave constraint in the third disjunction with the piecewise linear relaxation
constructed over the interval defined by the bounds of x5 and replacing the disjunctions
with their convex hull reformulation. This first master problem MILP-1 predicts the
lower bound GLB = 25.19, with Y={True, False, True} with x5

*=1, x6
*

 =7.67 (see Figure
4). The NLP subproblem corresponding to these boolean values predicts an upper bound
GUB= 35.91. Since there is a gap between the lower and upper bounds, the problem
MILP-2 is solved, including x5

*
 in the grid. This problem has an optimal solution Z

=35.91 with x5
*

 = 1 and x6
*

 = 1.72, which in fact is the global optimum of this
configuration.

 15

In the second outer iteration, the new global lower bound obtained is GLB=36.38,
with Y={False, True, True}. This bound is greater than the best known solution, therefore
the algorithm stops with the global solution Z =35.91.

7. Numerical Examples:

The proposed algorithm was implemented in GAMS (Brooke et al, 1997) and 5
examples were solved on a 1.8 GHz Pentium 4 PC with 256 Mbytes memory.
GAMS/CONOPT2 and GAMS/BARON 5.0 (Sahinidis, 1996) were used with their
default options to solve the reduced NLP problems, and GAMS/CPLEX 8.1 for the MILP
problems.

Example 1:
A process network problem, which is a variation of the problem in Duran and

Grossmann (1986) was solved using the proposed algorithm. The problem involves 8
processes, with 25 flow streams (Fig. 5). The objective function to be minimized
considers fixed costs cj for selected units and operating costs for stream xi, with
coefficients pi . The GDP formulation of the model is as follows:

2
2121

2
1919

2
1010

2
33

2
22

8

1

)2.1(5.010)3(

)4(3.015)7.0()3(122min

−−+−

−−−+−+−−++ ∑∑
∈=

xpxp

xpxpxpxpc
Li

ii
j

j

s.t.

0
0

0
0

0
0

0
0

241423

222023

876

151211

2516917

211913

11653

421

=−−
=−−

=−−
=−−

=−−−
=−−

=−−−
=−−

xxx
xxx

xxx
xxx

xxxx
xxx

xxxx
xxx

02
05

04.0
08.0

1412

1412

1710

1710

≥−
≤−

≥−
≤−

xx
xx

xx
xx

















=
==

¬
∨

















=
≤−−

0
0

25
01

1

23

1

1

2

1
3

c
xx
Y

c
xe

Y
x

 16

















=
==

¬
∨





















=
≤−−

0
0

40
01

2

45

2

2

4
2.1

2
5

c
xx
Y

c
xe

Y
x

















=
===

¬
∨

















=
=+−

0
0

30
05.1

3

1089

3

3

1089

3

c
xxx

Y

c
xxx

Y

















=
===

¬
∨

















=
=−

0
0

50
025.1

4

141213

4

4

131412

4

c
xxx

Y

c
xxx

Y

















=
==

¬
∨

















=
≤−

0
0

30
02

5

1615

5

5

1615

5

c
xx
Y

c
xx

Y

















=
==

¬
∨





















=
≤−−

0
0

35
01

6

1920

6

6

19
5.1

6
20

c
xx
Y

c
xe

Y
x

















=
==

¬
∨

















=
≤−−

0
0

20
01

7

2122

7

7

21

7
22

c
xx
Y

c
xe

Y
x

















=
===

¬
∨

















=
≤−−−

0
0

25
01

8

171018

8

8

1710

8
18

c
xxx

Y

c
xxe

Y
x

54

76

YY
YY

¬∨¬
¬∨¬

xi , cj ≥ 0, Yj ∈ {True, False}, i=1, 2, …,25, j=1, 2,…, 8

When the Logic-Based OA algorithm by Türkay and Grossmann (1996) is applied
in this problem, using the termination criterion of no improvement in the objective of the
NLP solutions, it stops in the third major iteration with a suboptimal solution Z =10.627.
Also, none of the master solutions is lower than the global optimum. If the termination
criterion is not applied and we let the algorithm continue iterating, the global solution is
found in major iteration 18. However, there is no guarantee of globality.

 The problem was also formulated as an MINLP using the Big-M formulation of
the disjunctions (with M=100) and solved using the GAMS/DICOPT solver, which

 17

implements the AP/OA/ER algorithm (Viswanathan and Grossmann, 1990). The solution
depends strongly on the initial point. Several initial points were used, but none of the runs
finds the global solution. Some results are shown in Table 1. Using the stopping criterion
3, DICOPT stops when the solutions of the NLP subproblems have no improvement, and
the stopping criterion 0 forces DICOPT to continue performing a specified number of
iterations (10 iteration in the results of Table 1)

The algorithm proposed in this work obtains the optimal structure (units 1,4,7) in two
outer iterations. The configuration obtained in the first master (MILP-1) consists of units
1, 3, 4, 7 and 8, and the lower bound is GLB = -93.53. This structure is optimized in 4
inner iterations. The corresponding (MILP-2) subproblems are set up adding in the grid
the variable values obtained in the optimal solution of the master problem, and adding the
linearizations of the convex term in the solution of the NLP subproblem. An integer cut is
added in order to make this configuration infeasible in subsequent master problems. The
gridpoint set is updated by simply adding the new point to the grid of the previous
iteration.

The optimal structure with objective f=7.011 and involving units 1, 4 and 7 is
selected in the next outer iteration, and it requires one inner iteration to prove globality in
the solution of the subproblem. One additional outer iteration is required to check
convergence to the global optimum.

The algorithm requires less than 1 CPU sec in solving the MILP subproblem and
0.5 CPU sec in solving the NLP subproblems. Details of the solution steps and problem
sizes can be seen in Table 2. The problem was also solved with BARON (Sahinidis,
1996), which required 0.3 CPU-sec and 25 nodes in the branch-and-bound tree, yielding
the same solution of f=7.011.

Example 2:

The next example was taken from Kocis and Grossmann (1989). It involves the
selection of the optimal separation scheme to be used to separate a multicomponent
process stream into a set of product streams with given purity specifications. The
superstructure consists of feed and product mixers, two possible separation units and a
splitter that splits the feed into streams towards the separators or towards the final mixers
(Figure 6). The alternative schemes include the use of flash separation, distillation, or the
elimination of the complete separation process if it is proven to be unprofitable. The
nonconvex (bilinear) GDP model for this problem is as follows,

Min cdcfffffffppz bababa ++++++++−−= 55442121 448103035

 18

1815

0.30.4

1

50.045.050.055.0

2211

2211

7654

377

366

71192

61081

213

377

366

71192

61081

213

≤+≤+

≥≥

=+++

=

=

++=

++=

+=

=

=

++=

++=

+=

baba

abba

bb

bb

bbbb

bbbb

b

aa

aa

aaaa

aaaa

a

pppp

pppp

ff

ff

fffp

fffp

fff

ff

ff

fffp

fffp

fff

ξξξξ

ξ

ξ

ξ

ξ



























=
=

==
==
==

¬

∨



























=
==
==

≤+≤
==

0
0

0
0
0

2
80.0,15.0
20.0,85.0

255.2
,

4

99

88

44

4949

4848

44

344344

cf

ff
ff
ff
Y

cf
ffff
ffff

ff
ffff

Y

ba

ba

ba

f

bbaa

bbaa

ba

bbaa

f

ξ

ξξ

5 5 3 5 5 3 5 5

5 5 10 10

10 5 10 5 11 11

11 5 11 5 5

, 0

2.5 25 0

0.975 , 0.050 0

0.025 , 0.950 0
50 0

d d

a a b b a b

a b a b

a a b b a b

a a b b

Y Y

f f f f f f

f f f f

f f f f f f

f f f f
cd cd

ξ ξ

ξ

¬   
   

= = = =   
   ≤ + ≤ = =   ∨
   = = = =   
   = = =
   

= =      

},{,;1,,,0;25,;,0 765421 falsetrueYYffcdcf df ∈≤≤≤≤ ξξξξ

The 8 bilinear terms are replaced by the proposed piecewise underestimators,
partitioning the domain through the split fractions ζ.

The first master problem, using the bound of ζ as initial gridpoints, predicts a
lower bound GLB = -539.66, with Yf=True, Yd=False. No bound contraction is
performed. The corresponding NLP has a solution Z=-470.13. Since there is a gap
between the lower and upper bounds, the MILP-2 is solved, including the solution of the
previous master in the gridpoint set. It takes 4 inner iterations to converge the local lower
and upper bounds.

The second outer iteration solves the master with the piecewise underestimator
constructed on the accumulated gridpoints. It provides a new global lower bound of
GLB=–510.39 with Yf=True, Yd=True. The corresponding NLP subproblem has a
solution of Z=-510.08. The global lower and upper bounds are within 0.5% tolerance and
no inner iterations are required. The algorithm stops with the global optimal Z=-510.08,

 19

involving both column and flash separator (see Figure 7). The total time is less than 1.5
CPU sec. Table 3 shows the progress of the algorithm through the outer and inner
iterations, as well as the model sizes for this example.

The solution of the first master problem provides a very weak lower bound for the
correspondent NLP solution. It was noted that in the solution of that MILP problem, the
streams involved in the initial splitter do not maintain the relative order of component
flowrates. Kocis and Grossmann (1989) propose valid relaxations of the bilinear mass
balances in the multistream splitter that overcomes this weakness.

When these relaxations are added to the master problems in the algorithm, the
optimal configuration is obtained in the first master problem, providing a lower bound
GLB = -515.55, with Yf=True, Yd=True. The global optimization of the NLP subproblem
(within 0.5% tolerance) takes one inner iteration if bound contraction is performed in the
variables involved in bilinear terms (ζ4, ζ5, ζ6, ζ7, f3

a, f3
b). Bound contraction requires

solving 12 LP problems (problem (CB) is linear because the partition consists of a unique
subinterval). Without bound contraction, the inner optimization takes 3 iterations.

 The second outer iteration solves the master problem using the accumulated grid
points. It provides a new global lower bound GLB=-487.512, which is greater than the
best feasible solution found. Then, the global optimum is the solution obtained in the first
outer iteration, with objective Z = -510.08.

Example 3.

The following GDP problem was formulated by Lee et al. (2002) to model a X-
monomer process. The objective of the model is to find the best reaction path from the
given raw materials to the final product, which minimizes the total annual cost. The
superstructure proposed by the authors of the mentioned work involves a number of
interconnected reaction units whose selection is modeled with disjunctions. Due to
confidentiality reasons we cannot disclose the details of this model.

The superstructure consists of 2 raw materials, 8 intermediate chemicals, 1
product and 2 by-products. There are 14 reaction units and 3 separation units. Linear
mass balances define the input and output streams in each unit. The objective function
takes into account the annualized cost of raw material, utility, waste treatment,
packaging, (with cost coefficient RM, UT, WT and PK respectively) labor, and capital.
The model is as follows:

(){ }∑ Φ+++++=

i
iiiiiiii pLCpPKWTUTRMZ)(min

bAxts =..

 20

TrueY

Ii

LC
p

x

x

Y

XUBpxx

LC
xp

xxYield

Y

i

i

OUT
i

IN
i

i

i
OUT
i

IN
i

ii

OUT
ii

OUT
i

IN
ii

i

=Ω

∈∀

























=
=

=

=

¬

∨

























≤≤

=
=

=×

)(

,

0
0

0

0

,,0

α

IifalsetrueY
IiLC

NnIiXUBpxxx

i

i

i
OUT
i

IN
in

∈∀∈
∈∀≤

∈∀∈∀≤≤

},,{
,0

,,,,,0

I denotes the set of units and N the set of chemicals. The variables xn represents
the molar flowrate of component n, and xi

IN and xi
OUT are the inlet and oulet flowrates in

unit i. The production of each unit is represented with pi. It is assumed that the
conversion of unit i, Yieldi, is given.

The capital cost Φi(pi) is a concave function of the production rate. The master
problems are set up replacing each of these terms with a variable bounded by the
piecewise linear underestimator.

GAMS/DICOPT solves the Big-M reformulation of this problem providing a
local solution Z =246.342 M$/yr, for a production of 450 Mlb/yr of X-monomer and no
by-product production. This solution involves 7 reaction units and 2 separation units.
DICOPT stops with worsening of the NLP solutions at the second major iteration. If we
allow the solver to go on the search until a maximum of 20 major iteration, the best found
solution is Z =242.760 and none of the master objective is below this value.

The global optimal reaction path involves 5 reaction units and 2 separation units
(see Figure 8). The production of X-monomer is 450 Mlb/yr with a by-product
production of 26.1 Mlb/yr. The total annual cost is 214.711 M$/yr.

The sequence of steps for obtaining the global solution using the proposed
algorithm is shown in Table 4, as well as the progress of the lower and upper bounds. No
bound contraction was performed. Four outer iterations were required to obtain a global
lower bound greater than the best feasible solution. Each NLP subproblem was solved to
global optimality in one inner iteration and the gridpoint sets were updated with the
solution of the MILP problems. The grid was not reset in the outer iterations but it
accumulated all the added points. Table 5 shows the CPU time required in each step and
the size of each solved subproblem. Note that the total CPU time used is 5.441 sec.

This example was also solved using GAMS/BARON in two ways. In the first one
BARON was used to solve the NLP subproblems to global optimality instead of
performing the inner loop in Fig. 3. The optimal objective values obtained with this
alternative are the same as shown in Table 4 for the problems (MILP-1) and NLP
subproblems and the CPU time are shown in Table 6. As can be seen the CPU-time is
slightly lower (5.212 sec vs. 5.441 sec). The second way that BARON was used was to

 21

directly solve the full problem O-GBD (its Big-M reformulation). In this case BARON
could not solve the problem O-GDP in less than 960 sec. At that point, the search was
interrupted, and the lower bound that BARON provided (109.018) was about 50% below
the global optimal solution (214.711).

Example 4:

This example corresponds to a synthesis problem of a distributed wastewater
multicomponent network, which is taken from example 10 of Galan and Grossmann
(1998). Given a set of process liquid streams with known composition, a set of
technologies for the removal of pollutants, and a set of mixers and splitters, the objective
is to find the interconnections of the technologies and their flowrates to meet the
specified discharge composition of pollutant at minimum total cost. Discrete choices
involve deciding what equipment to use for each treatment unit. Lee and Grossmann
(2001) formulated the problem as a GDP model.

The superstructure is shown in Figure 9, involving three inlet streams, which are
split into streams going into the treatment units. There are three different equipment
available for removal of each of the pollutants. Each equipment has different removal
ratio of the pollutants and cost function. The outlet stream of each treatment unit is again
split and then a fraction of the stream is recycled, while the rest of the stream is sent to
the final mixer for discharge. The data for this example are given in Lee and Grossmann
(2001).

The nonlinearities in this model are due to the bilinearities that arise in the
component mass balances in the final splitters and the concave cost functions.

This problem was solved to global optimality with our algorithm in just under 2
min. Bound reduction was performed in the complicating variables representing the total
flows in the treatment units. These variables are involved in the bilinear mass balances in
the final splitters. The initial grid for the outer iterations was set up with three points: the
lower and upper bounds and the middle point. Within each inner iteration, the gridpoint
sets were updated using the middle point of the active subinterval. Adding the master
solution point to the grid causes slower convergence to the global solution of the reduced
NLP.

The global optimum solution is shown in Figure 10. Six outer iterations were
necessary to prove globality of the solution as seen in Table 7. In the third outer iteration,
(MILP-1) selected the optimal equipment, and obtained a lower bound within a tolerance
of 0.5% requiring 5 iterations in the inner optimization. Table 8 shows the computing
times and the problem sizes. The total time required by the algorithm was 11.31 sec for
solving the (MILP-1) problems, 0.54 sec for solving (R-NLP) subproblems, 8 sec for
reducing bounds in total flows and 117.56 sec in solving the (MILP-2) subproblems.

 The most time consuming step in this example is the inner optimization of the
optimal structure. Due to the bound contraction procedure, the reduced NLP could be
solved to global optimality with the solver BARON 6.0. It rapidly detected the
infeasibility of the first two NLP subproblems. In the third equipment selection, BARON

 22

found the global optimum of the NLP in 20 CPU sec. The MILP-1 problems in the
following outer iterations detected infeasible structures. The total time required with this
implementation of the method was approximately 38 CPU sec, which is considerably
lower than the 118 secs with the algorithm of Fig. 3.

Example 5:

 The next example is a wastewater treatment network problem, where the
separation is performed using nondispersive solvent extraction (NDSX) (see Galan and
Grossmann, 1998). For NDSX technologies, the outlet concentration depends on the inlet
concentration of the pollutant and on the flow rate. However, the flowrate of the inlet
stream is assumed not to change during the treatment, since the concentration of the
pollutants is low. A short-cut model of the NDSX is used. The equation for the NDSX
treatment is as follows

))(.exp(jjjtjjj CoceHe
FLOWT

NMKmHeaCocsHe −−=−

where csj is the outlet concentration of pollutant j, cej is the inlet concentration of j, at is
the surface area of the hollow fiber module (135 m2), NM is the number of modules, Km
is the membrane transport coefficient (a value of 2.2 10-8 m/s was used), Hej is the
distribution constant of the pollutant between the organic phase and the aqueous phase,
and Coj is the concentration of the contaminant in the organic phase. In the simplified
case, where extraction and back-extraction are carried out at the same rate, we can
assume that Coj remains constant.

 The superstructure for this problem is identical to example 4. The data for the
equipment, inlet streams and costs are shown in Tables 9, 10 and 11.

 The global optimum ($30,481.13) was found in the first outer iteration, but the
convergence within 1% tolerance of the global optimum was obtained in 10 outer
iterations. The first selected structure required 4 inner iterations each to check globality.
The gridpoint sets were updated in each inner optimization using the middle point of the
active subinterval. Details of the solution in each iteration can be seen in Table 12, as
well as the global and local lower and upper bounds. Figure 11 shows the progress of the
bounds. Note that the global lower bound defines a piecewise increasing path, and the
global upper bounds describes a piecewise decreasing path, always above the global
lower bound line. This does not occur with the local bounds. Local bounds involve
discontinuities when the inner loop finishes and outer iteration changes. Also note that
inner loop stops if the local lower bound reaches the global local bound.

(MILP-1) problems have 51 binary and 790 continuous variables, whilst the
(MILP-2) problems have on average 60 binary variables and 973 continuous variables in
the first inner iteration, and their size grow as the inner iterations proceed. The fourth
(MILP-2) in outer iteration 1 has 114 binary variables and 1522 continuous variables.
The time required to solve the 10 outer master problems is 0.33 min aproximately; the
bound reduction steps take a total of 0.83 min. The algorithm spends 2.5 sec in solving
the NLPs problems and 18 min in solving the bounding problems (MILP-1). The optimal
values for the flows are shown in Figure 12 (flow values are given in ton/h)

 23

Numerical difficulties were experienced with BARON, which prevented
convergence to feasible solutions, and hence a comparison of computational times was
not possible for this problem.

8. Conclusions and future works.

 A new deterministic algorithm for the global optimization of synthesis of
processes network problems has been presented. It is based on a new methodology for
constructing underestimators of nonconvex functions based on partitions of the entire
domain. In this work, the derivation of this class of estimators for univariate concave
terms and bilinear terms has been developed.

The proposed algorithm relies on an outer approximation methodology. The
global solution of the problem is achieved by solving problems that are relaxations of the
original one. As iterations proceed, the bounding problem approximates the original
problem with more accuracy.

The effectiveness of the proposed algorithm has been illustrated in several
examples as well as comparisons with other existent algorithm to solve this class of
problems. The computational experience, although still limited, suggests that this
algorithm has several advantages with respect to spatial branch-and-bound algorithms,
particularly in regard to ease of implementation and potential strengthening of lower
bounds.

For larger problems, however, the relaxed MILP problems predict bounds with
significant gap and convergence is achieved at high computational cost. A modification
of the algorithm is being studied, involving the solution of the convexified C-MINLP
problem. Also, most of the computing time is spent in the inner optimization. This is due
to the iterative procedure and the increasing size of the MILP-2 problems. An alternative
methodology for obtaining the global solution of the reduced NLPs is also being
investigated. It involves the simultaneous grid update and solution of the local bounding
problem.

Acknowledgment. The authors would like to acknowledge financial support from
CONICET, ANCyT and UNL from Argentina, the Center for Advanced Process
Decision-making at Carnegie Mellon, and the National Science Foundation under grant
INT-0104315.

References

Adjman C.S., Androulakis I.P. and Floudas C.A., “Global Optimization of Mixed-Integer
Nonlinear Problems. AIChE Journal, 46(9), 1769-1797, 2000

M.S. Bazaraa, H.D. Sherali and C.M. Shetty. Nonlinear Programming, Theory and
Algorithms, second edition. Wiley, New York, 1993.

Björn K.M., Lindberg P.O., Westerlund T., “Some convexifications in global optimization of
problems containing signomial terms”, Comp and Chem Engng, 27, 669, 2003

 24

Brooke A., D. Kendrick, A. Meeraus and R. Raman, GAMS Language Guide, Release 2.25,
Version 92. GAMS Development Corporation, 1997.

Duran M.A. and Grossmann I.E., “An Outer-Approximation Algorithm for a Class of Mixed-
Integer Nonlinear Programms”, Math Programming 36, 307, 1986

Fletcher R. and Leyffer S., “Solving mixed Integer nonlinear programs by outer
approximation”, Math Programming, 66, 550, 1994

Floudas C.A., “Deterministic Global Optimization: Theory, Methods and Applications,
Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000

Galan B. and Grossmann I.E., “Optimal Design of Distributed Wastewater Treatment
Networks”. Industrial and Engineering Chemistry Research, 37(10), 4036, 1998.

Geoffrion A.M., “Generalized Benders Decomposition”, Journal of Optimization Theory and
Applications, 10(4) 237, 1972

Grossmann, I., “Review of Nonlinear Mixed-Integer and Disjunctive Programming
Techniques”, Optimization and Engineering, 3, 227, 2002.

Hooker N. and Osorio M.A., “Mixed logical/linear programming”, Discrete Applied
Mathematics 96/97, 395 1999

Horst R. and Tuy P.M., “Global Optimization: deterministic approaches”, 3rd edn, Springer-
Verlag: Berlin, 1996

Kesavan P. and Barton P.I., “Generalized Branch and Cut framework for mixed-integer
Nonlinear Optimization Programs” Comp and Chem Engng, 24, 1361, 2000

Kocis G.R. and Grossmann I.E., “Relaxation Strategy for the structural optimization of
Process Flow Sheets”, Industrial and Engineering Chemistry Research, 26,1869, 1987

Lee, S., R.D. Colberg, J. J. Siirola and I.E. Grossmann, “Global Optimization of Disjunctive
Program for the Superstructure of an Industrial Monomer Process," Annual Meeting AIChE,
Indianapolis, 2002.

Lee S. and Grossmann I.E., “A global optimization algorithm for nonconvex Generalized
Disjuntive Programming and Applications to Process Systems”, Comp and Chem Engng, 25
1675, 2001.

Lee S. and Grossmann I.E., “Global optimization for nonlinear Generalized Disjunctive
Programming with Bilinear Equality constraints: Applications to Process Networks”, Comp and
Chem Engng,27(11) 1557 2003

McCormick G.P., “Computability of global solutions to factorable nonconvex programs-Part
I. Convex underestimating problems”, Mathematical Programming. 10, 146, 1976.

Nemhauser and Wosley. “Integer and Combinatorial Optimization”. John Wiley and Son.
New York, 1999.

Padberg M. “Approximating separable nonlinear functions via mixed zero-one programs”.
Operations Research Letters, 1, 2000.

Pörn, Björn and Westerlund, “Global Solution of Optimization Problems with Signomial
Parts, submitted to Optimization and Engineering, 2002

Quesada I. and Grossmann I.E., “A Global Optimization algorithm for linear fractional and
bilinear programs”, Journal of Global Optimization, 6, 39, 1995

 25

Ryoo and Sahinidis N., “Global Optimization of nonconvex NLPs and MINLPs with
applications in Process Design”, Comp and Chem Engng, 19(5), 551, 1995

Sahinidis N., “BARON: a general purpose global optimization software package” Journal of
Global Optimization, 8(2), 201, 1996

Smith E.M.B. and Pantelides C.C., “A symbolic reformulation/spatial branch and bound
algorithm for the global optimization of nonconvex MINLPs”, Comp Chem Engng, 23,457, 1999

Stubbs R.A. and Mehrotra S, “A Branch and Cut Method for 0-1 Mixed Convex
Programming”, Mathematical Programming, 86(3),515, 1999

Tawarmalani M. and Sahinidis N., “Global Optimization of Mixed-Integer Nonlinear
Programs: A theoretical and Computational Study”, submitted to Mathematical Programming
2000

Tawarmalani M. and Sahinidis N., “Convexification and Global Optimization in continuous
and Mixed-Integer Nonlinear Programming”, Kluwer 2002

Türkay M. and Grossmann I.E., “Logic-Based MINLP Algorithm for the Optimal Synthesis
of Process Networks”, Comp and Chem Engng, 20, 959, 1996

Vecchietti A. and Grossmann I.E., “LOGMIP: a Disjunctive 0-1 nonlinear Optimizer for
Process System Models”. Comp and Chem Engng, 23,555, 1999

Viswanathan and Grossmann, “A Combined Penalty Function and Outer Approximation
Method for MINLP Optimization”, Comp and Chem Engng, 14, 769, 1990

Visweswaran and Floudas, “New Reformulations and branching strategies for the GOP
algorithm” in Global Optimization in Engineering Design, ed I.E. Grossmann, Kluwer, 1996

Westerlund and Petterson, “A cutting plane Method for Solving Convex MINLP Problems”,
Comp and Chem Engng, 19, S131-S136, 1995

Zamora J.M. and Grossmann I.E., “A branch and contract algorithm for problems with
concave univariate, bilinear and linear fractional terms”, Journal of Global Optimization, 14, 217,
1999

 26

Appendix A: Derivation of piecewise linear underestimators of concave univariate
functions.

The convex envelope of a concave function on an interval I=[xlo, xup] is
)()1()()(uplou xfxfxf λλ −+=

where λ is such that uplo xxx)1(λλ −+= .

 Given the partition { } K
kkI 1= , with Ik=[xk, xk+1], k=1,…,K, x1=xlo, xK+1=xup, the

piecewise underestimator can be formulated as a disjunction with k terms:



















≤≤
−+=

−+=
+

+

=
∨

10
)()1()(

)1(
1

1

,...1

λ
λλ

λλ
kku

kk
k

Kk xfxff
xxx

W

The mixed-integer formulation based on the convex hull relaxation (Raman and
Grossmann, 1994) is as follows,

}1,0{

1

0
)()(...)()()(

)()()(

)(...)()(

1

12
211

1
1

1

1

12
211

1
1

1

1

∈

=

≤≤
−+++−+

=−+=

−+++−+=−+=

∑

∑

∑

=

+
=

+

+

=

+

k

K

k
k

kk

K
KK

K

k

k
kk

k
k

u

K
KK

K

k

k
kk

k
k

w

w

w
xfwxfwxf

xfwxff

xwxwxxwxx

λ
λλλλ

λλ

λλλλλλ

 Let us define γk = wk-1 - λk-1 + λk , k=2,…, K , γ1 = λ1 and γK+1 = wK - λK. With
these weights, the convex combination can be expressed as the equivalent formulation:

 27

1

0
,...,20

0

)(

1

1

1

11

1

1

1

1

=

≤≤
=+≤≤

≤≤

=

=

∑

∑

∑

=

+

−

+

=

+

=

K

k
k

KK

kkk

k

k

k
k

K

k

k
k

w

w
Kkww

w

xff

xx

γ
γ
γ

γ

γ

 This second formulation is the same as the formulation given in Nemhauser and
Wolsey (1999).
 An interesting discussion about the quality of two formulations of piecewise-linear
estimators can be found in Padberg (2000).

Appendix B. Piecewise underestimators for bilinear terms
Consider the bilinear term f(x,y) = xy, defined in the domain D = [xlo,xup]×

[ylo,yup], and consider the partition { }K
kkD 1= , with Dk=[xk, xk+1]]× [ylo,yup], k=1,…,K,

x1=xlo, xk+1=xup. A piecewise linear underestimator uf will be derived, such that

),(),(yxfyxf kku = .























≤≤
=

−+=
−+=

∨

+

++

=

1

11

...1
},max{

kk

kku

upkkupk

lokklok
k

Kk

xxx
baf

yxyxxyb
yxyxxya

W

The mixed-integer formulation based on the convex hull relaxation is as follows,

 28

}1,0{

1

},max{

,...,1

...

...

...

1

1

11

21

21

21

∈

=

≤≤

≤≤

=

=−+=

−+=

+++=

+++=

+++=

∑
=

+

++

k

K

k

k

kupkklo

kkkkk

kku

kupkkkupkk

klokkklokk

uuuu

K

K

w

w

wywy

wxwx

baf

Kkwyxxyb

wyxxya

ffff

y

x

k

K

γ
υ

γυ
γυ

γγγ
υυυ

 29

List of Figures.
Figure 1: Feasible region for disjunction 3 at first master.
Figure 2: Relations between the original and bounding problems
Figure 3: Scheme of the algorithm.
Figure 4: Feasible region and solution for MILP-1 and MILP-2 in the first iteration in the
illustrative example
Figure 5: Superstructure for Example 1
Figure 6: Superstructure in the Example 2
Figure 7: Optimal solution of Example 2
Figure 8: Optimal solution of Example 3
Figure 9: Superstructure for Example 4
Figure 10: Optimal solution for Example 4
Figure 11: Bound Progress in Example 4
Figure 12: Global optimal solution for Example 5

0.5 1 1.5 2 2.5 3 3.5
x5

-5

5

10

15

20

25

30
x6

Figure 1: Feasible region for disjunction 3 at first master.

Y1=T, Y2=F
Y1=F, Y2=T

Y1=T, Y2=T

 30

Figure 2: Relations between the original and bounding problems

O-GDP R-NLP

C-GDP

MILP-1

C-MINLP

MILP-2

Transformation
convexification

Y* fixed

Transformation
convexification

Y* fixed

Linearization

Lower bound of O-GDP

Lower bound of C-GDP

Linearization

Lower bound of C-
MINLP

Upper bound of MILP-1

Lower bound of R-NLP
Upper bound of C-GDP

Upper bound of O-GDP

Y* fixed

Inner
Optimization

Outer Optimization

Upper bounding

Lower bounding

 31

0.5 1 1.5 2 2.5 3 3.5
x5

-5

5

10

15

20

25

30

x6

Figure 1: Feasible region for disjunction 3 at first master.

Figure 3: Scheme of the algorithm.

Y1=T, Y2=F
Y1=F, Y2=T

Y1=T, Y2=T

Initialization:
� select relaxation tolerance ε and optimality tolerance η.
� Set global and local lower and upper bounds GLB, LLB, GUB, LUB.
� Set iter=1, it=0, and K0 = {xlo, xup}

Outer optimization

� Set original bounds
� Set Initial grid Kiter = K0 or cumulative grid Kiter=Kit

SOLVE MILP-1. Solution: Z* in (x*, w*, t*, y*)
� Update global lower bound: GLB = Z*
� Set local lower bound: LLB = Z* and it = 1

Check global convergence: is GUB – GLB ≤ η?

Fix binary variables y = y*
BOUND CONTRACTION (opt): Solve CB for reducible variables
 Redefine bound

Inner Optimization.
 SOLVE R-NLP locally. Solution: Zit in xit.

� Update global upper bound: GUB = min{GUB, Zit}
� Update local upper bound: LUB = min{LUB, Zit}

Check convergence: is LUB – LLB ≤ η?

Update grid Kit

SOLVE MILP-2. Solution: Z* in (x*, w*, t*)
� Update local lower bound: LLB = Z*

 Check convergence: is LUB – LLB ≤ η
 or LLB > GUB ?

 Check global convergence: is GUB – GLB ≤ η?

 STOP. GUB is the global solution of O-GDP

No
Yes

Add integer cut
iter = iter+1

No
Yes

it = it+1 Yes

Yes

 32

0.5 1 1.5 2 2.5 3
x5

5

10

15

20

25
x6

Solution of MILP−1

0.5 1 1.5 2 2.5 3
x5

5

10

15

20

25

x6

Solution of MILP−2

Figure 4: Feasible region and solution for MILP-1 and MILP-2 in the first iteration in the

illustrative example

Figure 5: Superstructure for Example 1 with stream prices p.

Unit 1

Unit 2

Unit 3

Unit 4

Unit 5
Unit 8

Unit 7

Unit 6

x1

 x2

x4 x5

x3

x11

x6

x8

x15
x16

x10

x13

x14

x24
x21

x19

x12

x17
x18

x25

x7

x22

x20

x9

p2=1 p3=-10

p4=1 p5=-15

p9=-40
p10=15

p14=15

p17=80

p18=-65

p19=25 p20=-60

p21=35 p22=-80

p25=-35

 33

Figure 6: Superstructure in the Example 2

Figure 7: Optimal solution of Example 2

f1

f2 f4

f9

f7

f6

f3

f5

p2

f10

f11

f8

p1

Flash

Column

8.0

3.58

25.0

8.0

25.0

1.67

13.09

1.91

11.91

18.0

15.0

 34

Figure 8: Optimal solution of Example 3

A

B

R 1

D

R 3

H

C

F

G

R 14

 J

R 10

 M

By-product

389

371

60.9

15.5

406

242

402

114
761

76.4

450

250

744

421

26.1

93.9

54.4

152

817

565

SEP15

SEP16

R 5

X-Monomer

 35

Eq A
Eq B
Eq C

Eq D
Eq E
Eq F

Eq G
Eq H
Eq I

Unit 1

Unit 2

Unit 3

F1
in

F2
in

F3
in

Figure 9: Superstructure for Example 4

Figure 10: Optimal solution for Example 4

Unit 1

Unit 2

Unit 3

20.0 Eq A

Eq F

Eq I
12.74

5.0

15.0

7.26

5.0

24.86

37.6

2.40

40.0

 36

0.7

0.8

0.9

1

1.1

1.2

1.3

Outer Iterations

R
el

at
iv

e
bo

un
ds

LUB
LLB
GUB
GLB

1 2 43 765 8 9 10

Figure 11: Bound Progress in Example 5

Figure 12: Global optimal solution for Example 5

Unit 2

32.7 Eq D

13.1

56.5

41.41

44.51

8.24

38.87

17.63

Eq A

Eq G

5.82

90.76

5.71

102.3

Unit 1

Unit 3

 37

List of tables
Table 1: Results using GAMS/DICOPT with different initial points in Example 1
Table 2: Solution steps and problem sizes for Example 1
Table 3: Steps and problem sizes for Example 2
Table 4: Solution steps for Example 3
Table 5: CPU time and model size for Example 3
Table 6: CPU time using BARON for solving the NLP subproblems in Example 3.
Table 7. Solution steps for Example 4
Table 8. Model sizes and solution time for Example 4
Table 9: Distribution of the pollutant Hej and concentration of pollutant in organic phase Coj
Table 10: Inlet Streams data for Example 5
Table 11: Cost and removal ratio data for the equipments in Example 5
Table 12. Solution steps for example 5
Table 13: Global lower and upper bounds and CPU time using BARON in Example

Table 1: Results using GAMS/DICOPT with different initial points in Example 1
CPU time (sec) Initialization

for variables x
Optimal
Solution

Stopping
Criterion MIP NLP

Major
iterations

Units

x=xup 82.627 3 0.19 0.30 3 7 and 8
x=xlo 117.627 3 0.21 0.20 3 1, 3 and 8
x=xopt 55.627 3 0.24 0.17 3 1, 7 and 8
x=xopt 10.627 0 0.90 0.71 10 1

Table 2 : Solution steps and problem sizes for Example 1

Cont vars Outer
iteration

Inner
iteration

Solution
MILP-1

Solution
NLP

Solution
MILP-2

Binary
Variables NLP MILP

1

-
83.317

-
71.910

14
8

1

2
3
4

-93.530

83.317
83.317
83.317

79.636
81.647
82.937

10
12
14

21

68
74
80
86
92

2
1

6.261 -
7.011

-
7.011

25
18

14

100
104

3 10.627 - - 26 - 104

 38

Table 3: Solution steps and problem sizes for Example 2
Cont vars Outer

iteration
Inner

iteration
Solution
MILP-1

Solution
NLP

Solution
MILP-2

Binary
Variables NLP MILP

1
1
2
3
4

-539.66
-470.13
-470.13
-470.13
-470.13

-481.88
-476.91
-473.75
-471.44

6
8
12
16
20

25

71
89
107
125
167

2
1

-510.39
-510.08

-

22
-

31

167

Table 4: Solution steps for Example 3

Outer
iteration

Solution
MILP-1

Solution
NLP

Solution
MILP-2

GUB LUB GLB LLB

216.920 216.920 216.920 186.276 186.276 1 186.276

 216.918 216.920 216.918

214.711 214.711 214.711 199.702 199.702 2 199.702

 214.710 214.711 214.710

236.567 214.711 236.567 210.602 210.602 3 210.602

 236.567 236.567 236.567

4 215.619 214.711 215.619

Table 5: CPU time and model sizes in the solution of Example 3
Solution MILP-1 Solution NLP Solution MILP-2 Outer

iteration CPU time
(sec)

Disc vars/
Cont vars

CPU time
(sec)

Cont vars CPU time
(sec)

Disc vars/
Cont vars

1 0.203 249/34 0.039 67 0.109 283/34

2 0.625 283/51 0.066 59 0.140 317/51

3 1.921 317/68 0.027 71 0.140 341/68

4 2.171 351/85

Total time 4.920 0.132 0.389

Table 6: CPU time using BARON for solving the NLP subproblems in Example 3.

Outer
iteration

MILP-1 NLP

1 0.203 0.060

2 0.640 0.110

3 1.968 0.060

4 2.171

Total 4.982 0.230

 39

Table 7. Solution steps for Example 4

Outer
iteration

Inner
iteration

Solution
MILP-1

Solution
NLP

Solution
MILP-2

GUB LUB GLB LLB

1
1

1080714.18
Infeasible

Infeasible

-

-

1080714.18 1080714.18

2
1

1082892.69
Infeasible

Infeasible

-

-

1082892.69 1082892.69

3
1
2
3
4
5

1235559.63
1992836.21
1692583.88
1992836.21
1692583.88
1697253.17

1449071.22
1482263.35
1508500.95
1635451.81
1683607.48

1992836.21
1692583.88

1992836.21
1692583.88

1235559.63 1235559.63
1449071.22
1482263.35
1508500.95
1635451.81
1683607.48

4 1235559.63* 1235559.63

5 1235559.63* 1235559.63

6 inf

*: The selection of the equipment from the MILP-1 is proven to be worse than the best solution in the
reduction steps.

Table 8. Model sizes and solution time for Example 4

Solution MILP-1 Solution NLP Solution MILP-2 Outer
iteration

Inner
iteration CPU time

(sec)
Disc vars/
Cont vars

CPU time
(sec)

Cont vars CPU time
(sec)

Disc vars/
Cont vars

1
1

2.062 33/544
0.039

180

1.265

30/616

2
1

1.953 33/544
0.098

180

1.453

30/616

3
1
2
3
4
5

3.359 33/544
0.059
0.121
0.090
0.095
0.041

180
180
180
180
180

1.593

11.921
15.468
30.670
55.187

31/624
41/740
48/820
51/856
57/916

4 1.437 33/544

5 1.218 33/544

6 1.281 33/544

Total time 11.310 0.543 117.557

 40

Table 9: Distribution of the pollutant Hej and concentration of pollutant in organic phase Coj

Unit A B C
Hej 1900 1700 0 Treatment X Coj 200 200 0
Hej 0 1700 1900 Treatment XX Coj 0 200 200
Hej 1700 0 1500 Treatment XXX Coj 200 0 200

Table 10: Inlet Streams data for Example 5
Inlet Stream Flowrate (ton/h) Pollutant ppm

A 390
B 100 1 13.1
C 250
A 168
B 110 2 32.7
C 400
A 250
B 100 3 56.5
C 350

Table 11: Cost and removal ratio data for the equipments in Example 5
Cost Function* (αF0.6 + γF) Treatment

Unit k
Equipment

H
NM

Investment α Operating γ
EA 15 250.00 0.0180
EB 20 301.40 0.0247

1

EC 25 348.45 0.0316
ED 15 250.00 0.0180
EE 20 301.40 0.0247

2

EF 25 348.45 0.0316
EG 15 250.00 0.0180
EH 20 301.40 0.0247

3

EI 25 348.45 0.0316

 41

Table 12. Solution steps for Example 5
Outer

iteration
Inner

iteration
Solution
MILP-1

Solution
NLP

Solution
MILP-2

GUB LUB GLB LLB

1
1
2
3
4

25963.96
30598.67
30481.13
30481.13
30481.13

28773.15
29051.94
29809.68
30170.21

-
30598.67
30481.13

-
30598.67
30481.13
30481.13
30481.13

25963.96 25963.96
28773.15
29051.94
29809.68
30170.21

2
1
2

26070.73
35182.82
31972.22

30167.93
31373.77

30481.13
35182.82
31972.22

26070.73 26070.73
30167.93
31373.77

3
1

27100.94
35531.09

30351.09

30481.13
35531.09

27100.94 27100.94
30351.09

4
1
2

27533.17

31488.26
31796.13

29830.80
30700.72

30481.13
31488.26
31488.26

27533.17 27533.17
29830.80
30700.72

5
1

28876.28
34882.90

31494.12

30481.13
34882.90

28876.28 28876.28
31494.12

6
1

29038.51
37100.28

32135.22

30481.13
37100.28

29038.51 29038.51
32135.22

7
1

29098.96
36675.09

31969.28

30481.13
36675.09

 29098.96
31969.28

8
1

29832.45
40905.71

31442.17

30481.13
40905.71

 29832.45
31442.17

9 29924.85
36071.18

31369.43

30481.13
36071.18

29924.85 29924.85
31369.43

10 30191.21 30481.13 30191.21

Table 13: Global lower and upper bounds and CPU time using BARON in Example 5

Iteration Sol. MILP-1 Sol reduced
NLP

CPU time in
solving NLP

Baron’s
iterations

1 25963.96 30481.13 3.16 0

2 26070.73 31972.22 3.27 0

3 27100.94 32429.18 90.10 2934

4 27533.17 31704.21 60.14 1907

5 28876.28 Inf - -

6 29038.51 - - -

