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Abstract  
Process network problems can be formulated as Generalized Disjunctive Programs where a logic-
based representation is used to deal with the discrete and continuous decisions. A new 
deterministic algorithm for the global optimization of process networks is presented in this work. 
The proposed algorithm, which does not rely on spatial branch-and-bound, is based on the Logic-
Based Outer Approximation that exploits the special structure of flowsheet synthesis models. The 
method is capable of considering nonconvexities, while guaranteeing globality in the solution of 
an optimal synthesis of process network problem. This is accomplished by solving iteratively 
reduced NLP subproblems to global optimality and MILP master problems, which are valid outer 
approximations of the original problem.  Piecewise linear under and overestimators for bilinear 
and concave terms have been constructed with the property of having zero gap in a finite set of 
points. The global optimization of the reduced NLP may be performed either with a suitable 
global solver or using the inner optimization strategy that is proposed in this work.  Theoretical 
properties are discussed as well as several alternatives for implementing the proposed algorithm. 
Several examples were successfully solved with this algorithm. Results show that only few 
iterations are required to solve them to global optimality. 

 

 

1. Introduction. 

 The synthesis of process networks can be formulated as Generalized Disjunctive 
Programming (GDP) problems. GDP is an alternative to Mixed Integer Non-linear 
Programming (MINLP) for modeling problems where both continuous and discrete 
decisions are involved. GDP allows the combination of algebraic and logic equations to 
represent a synthesis problem in a more natural way. 

 GDP problems can be solved as MINLP problems by replacing each disjunction 
with its big-M or its convex hull reformulation (Lee and Grossmann, 2000). Major 
methods for MINLP problems include Branch-and-Cut, which is a generalization of the 
linear case (Stubbs and Mehrotra, 1999) Generalized Benders Decomposition (GBD) 
(Geoffrion, 1972), Outer Approximation (OA) (Duran and Grossmann, 1986, Fletcher 
and Leyffer, 1994) and Extended Cutting Plane (ECP) method (Westerlund and 
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Petterson, 1995). GBD and OA are iterative methods that solve a sequence of alternate 
NLP subproblems with all the discrete variables fixed, and MILP master problems that 
perform the optimization in the discrete space. The ECP method relies on successive 
linearizations to build MILP approximation problems. 

There are also specific algorithms that exploit the disjunctive structure of the 
model. In the solution method by Hooker and Osorio (1997) for linear problems, a search 
tree is created by branching on the logic expressions. A continuous relaxation of the 
problem is solved at each node of the tree 

Lee and Grossmann (2000) presented an optimization algorithm for solving 
general nonlinear GDP problems.  This algorithm consists of a branch-and-bound search 
that branches on terms of the disjunctions and considers the convex hull relaxation of the 
remaining disjunctions. Türkay and Grossmann (1996) proposed a Logic-Based Outer 
Approximation algorithm that solves nonlinear GDP problems for process networks 
involving two terms in the disjunction. Since the NLP subproblem only involves the 
active terms of the disjunctions, this algorithm overcomes difficulties that arise in the 
synthesis of process network problems, such as singularities that are due to zero flows. 
This algorithm has been implemented in LOGMIP, a computer code developed by 
Vecchietti and Grossmann (1999). 

 All the methods mentioned above assume convexity to guarantee convergence to 
a global solution. Therefore, when applied to nonconvex problems, these algorithms may 
cut off the global optimum. 

Viswanathan and Grossmann (1990) proposed a heuristic modification to the OA 
algorithm for MINLP in order to reduce the likelihood of cutting-off part of the feasible 
region. They introduced slacks in the linearization of nonconvex constraints, an included 
them in an augmented penalty function. The search is stopped when there is no 
improvement in the NLP subproblems. 

Rigorous global optimization methods for addressing nonconvexities in NLP 
problems have been developed when special structures are assumed in the continuous 
terms (Quesada and Grossmann, 1995; Ryoo and Sahinidis, 1995; Horst and Tuy, 1996; 
Viswanathan and Floudas, 1996; Zamora and Grossmann, 1999; Floudas, 2000). 
Tawarmalani and Sahinidis (2002) have developed the Branch-And-Reduce-
Optimization-Navigator (BARON), a software for general purpose global optimization 
that implements a spatial branch-and-bound method combined with reduction techniques 
for the variables bounds. For nonconvex MINLP problems Smith and Pantelides (1999), 
Adjman et al (2000), Tawarmalani and Sahinidis (2000) and Kesavan and Barton (2000) 
have proposed global optimization algorithms based on spatial branch-and-bound search. 
Lee and Grossmann (2001) proposed a two-level branching scheme for solving 
nonconvex GDP problems to global optimality and specialized the algorithm to GDP 
problem with bilinear equality constraints (2002).   

 Spatial branch-and-bound methods can be computationally expensive, since the 
tree may not be finite (except for ε-convergence). For the case of process networks there 
is the added complication that the NLP subproblems are usually difficult and expensive 
to solve. Thus, there is a strong motivation for developing a decomposition algorithm for 
this class of problems that does not rely on spatial branch-and-bound.  
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 An outer-approximation strategy for addressing the global optimization of 
nonconvex MINLP problems was recently proposed by Kesavan et al (2994). The 
algorithm solves alternatively relaxed master MILP problems and primal and primal 
bounding NLP problems. The bounding problems are constructed replacing the 
nonconvex function by known underestimating functions. Solution of primal problems 
involves the application of NLP global optimization algorithm. 

In this work we propose a new algorithm for solving nonconvex GDP problems 
that arise in process synthesis. It exploits the particular structure of this kind of model, as 
in the case of the Logic-Based OA algorithm by Türkay and Grossmann (1996). The 
proposed modifications make the algorithm capable of handling nonconvexities, while 
guaranteeing the global optimum of the synthesis of process networks.  This is 
accomplished by constructing a master problem that is based on valid piecewise 
bounding representations of the original problem and by solving the NLP subproblems to 
global optimality. An NLP global optimization strategy is also proposed in this work.  

Theoretical properties are discussed as well as several alternatives for 
implementing the proposed algorithm. Several numerical examples are presented to 
illustrate the performance of this method. 

 

 

2. Background 

The GDP model for synthesis of process networks is given as follows: 
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(O-GDP)

 The nonlinear GDP model (O-GDP) contains continuous variables x and c, and 
Boolean variables Y.  The disjunctions D apply for the processing units.  If a process unit 
exists (Yj=True), the constraints hj describing that unit are enforced, and a fixed charge γj 
is applied.  Otherwise (Yj=False) a subset of continuous variables and the fixed charges 
are set to zero. The matrix Bj is such that the ith row is the unit vector, bj

i =ei, if the ith 
variables must be set to zero for Yj=False, and zero row for variables that must not be set 
to zero for Yj=False. For convenience in the presentation, we consider that the units are 
modeled with inequalities. This is not a severe restriction, since it is always possible to 
relax an equality constraint into two inequality constraints. Alternatively, they may be 
relaxed as inequalities if prior analysis is performed to determine the sign of its Lagrange 
multipliers (eg see Bazaara et al, 1993). 
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 The OA algorithm requires the solution of NLP subproblems, which are obtained 
by fixing the Boolean variables, and MILP master problems. The master problem is 
formulated by using hyperplanes that replace the nonlinear functions. If the original 
problem is convex, these hyperplanes underestimate the objective function and 
overestimate the original feasible region, and therefore the master problem provides a 
lower bound of the optimal solution of (O-GDP) (eg see Duran and Grossmann, 1986). 

The NLP subproblem for fixed values { }
Dj

k
jY

∈
 that satisfy Ω(Yk) = True, is as 

follows: 

 

 

 

(R-NLP)

 This NLP may be nonconvex and therefore it may not have a unique local 
optimum. 

As it was mentioned before, the master MILP problem in the Logic-Based OA by 
Türkay and Grossmann (1996) is obtained by linearizing the nonlinear terms, and 
applying the convex hull of the disjunctions. However, if the NLP is nonconvex, this 
process does not provide a valid bounding relaxation of the original problem and 
therefore the OA algorithm can be trapped in a suboptimal solution.  This is illustrated in 
the next section 

 

 

3. Motivating Example 
Let us consider the following simple GDP problem, to illustrate how the Logic-

Based OA algorithm can fail to find the global solution. 
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 If one were to solve this problem with the Logic-Based OA, one NLP subproblem 
has to be solved in order to obtain a feasible point for the linearization of the constraints 
in the third disjunction. Let us consider the first NLP corresponding to 
Y={True,True,True}. The optimal solution of this first subproblem is x3=1, x4=2, x5=3, 
x6=19.09, Z =59.65. The linear constraint that replaces the nonlinear inequality in the 
third disjunction is, 

008.2017.41 56 ≤−+ xx  

With this inequality the master problem is now infeasible, since the discrete 
decisions that could be taken (Y={True, False, True} and Y={False, True, True}) are both 
infeasible in the x-space (Figure 1) and the algorithm stops. However, the global 
optimum occurs when units 1 and 3 are selected, with x5=1, x6=1.72 and Z =35.91.  

 

 

3. Lower Bounding Master Problem 

The proposed algorithm iterates between the subproblems (R-NLP) where all the 
boolean variables of the GDP are fixed, and master problem (MILP-1) that predicts new 
values for the boolean variables. The key point of the algorithm is the construction of 
master problem (MILP-1) that rigorously overestimates the original feasible region. To 
accomplish this a convex GDP is derived, replacing the nonconvex terms in the functions 
g, f and h by valid convex underestimators. The underestimators are constructed over a 
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partition of the original domain. This convex GDP is then linearized and converted into 
an MILP problem by formulating the convex hull of the disjunctions. In order to improve 
the outer approximation, the partition is refined and supporting hyperplanes are added to 
the master problem. The estimation over a partition of the entire domain will require 
additional continuous and discrete variables. 

Problems (R-NLP) must be solved to global optimality. A local lower bounding 
problem (MILP-2) is constructed to find rigorous lower bound to the global optimum of 
problem (R-NLP).  

 

3.1 Transformation strategies. 
It will be assumed that the nonconvex terms are univariate concave and bilinear 

functions. This is not a very restrictive assumption since Smith and Pantelides (1999) 
have shown that a suitable reformulation in terms of convex, univariate concave, bilinear 
and linear fractional functions can be applied to any model of process synthesis that 
involves algebraic functions. The convex envelopes of these types of nonconvex 
functions are widely known (McCormick, 1976; Tawalarmani and Sahinidis, 2002; 
Zamora and Grosmann, 1999) and they provide the tightest relaxation for the 
corresponding function. Moreover, every problem with concave univariate, bilinear and 
linear fractional functions can be reformulated so that it involves only concave and 

bilinear functions. This just requires the introduction of a new variable 
j

i
ij x

x
z = . The 

new variable zij replaces every occurrence of the fractional term, and the bilinear 
constraint iijj xzx = is added to the model.  

However, another alternative for certain terms that do not belong to the classes 
listed before is a variable transformation strategy. The idea in variable transformation is 
to express the constraints in a different space, such that they become convex. An example 
are exponential transformations applied to Geometric Programs to convexify these 
problems. For Generalized Geometric Programs, Pörn et al (2002) propose a single 
variable transformation and approximation of the inverse transformation function by 
piecewise linear function. Different transformation functions have been proposed by 
these authors for signomial functions (Björn et al, 2003). These transformations will not 
be explored in this paper.  

In the next subsection, special piecewise estimators are derived for concave 
univariate and bilinear functions.  

  

3.2 Under and Overestimators for nonconvex terms constructed on partitions of 
the original domain. 

Approximation of nonlinear separable functions by piecewise-linear estimators 
has been addressed for linearizing a nonlinear problem (Dantzig, 1963; Nemhauser and 
Wolsey, 1999). Piecewise linear estimators are valid underestimators for concave terms 
and valid overestimators for convex terms, but they lack bounding properties for 
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nonconcave and nonconvex terms. In this section valid piecewise underestimators are 
formulated in disjunctive form. 

Let RRf m →:  be a nonconvex function and let D be the domain of interest. Let 
RRf mu

D →:  be an underestimator of f with the following property: 

)(.}),()(sup{ DCDxxfxf u
D δ≤∈−  

where C is a nonnegative constant, independent of D and δ is a measure of sets in Rm. 
Note that the convex envelope of bilinear and concave univariate terms exhibits this 
property (Floudas, 2000). This is the underlying fact that supports convergence of spatial 
branch-and-bound algorithms. 

Consider a partition { } IkkD ∈  of D ( ='kk DD I ∅  for k≠k’ and DDk
Ik

=
∈
U ) and 

let u
Dk

f  be the underestimator of f constructed over Dk. Define the piecewise 

underestimator ∑
∈
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k
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u xxfxf
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)()()( χ  where χk denotes the characteristic function of 

Dk in D: χk(x) = 1 if x ∈  Dk, 0 otherwise  Then, 
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Thus, it is possible to tighten this underestimator as much as it may be required by 
considering an appropriate partition. 

Given a partition { } IkkD ∈ of D, the estimator uf  is mathematically formulated 
through the following disjunction:  
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where wk is a Boolean variable for activating/deactivating the kth term of the disjunction. 

It is interesting to note that when f is bilinear or concave univariate and the 
underestimator u

Dk
f  is a convex envelope on Dk, the projection of the convex hull 

formulation of this disjunction onto the (x,f)-space (let us denote it by Px,f ) recovers the 
convex envelope cef  in D. To show this, let us note first that Px,f  is a convex set and 
belongs to the hypograph of f and therefore }),(:min{)( , fxP Pyxyxf ∈= is a convex 
function satisfying fP(x) ≤ f(x). Then, fP(x) ≤ f ce(x).   
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Conversely, Px,f contains the sets })),(,{( k
u

Dk Dxxfx
k

∈=φ , for all k∈ I (φk is the 
projection of the facet defined by wk=1). Actually, Px,f is the convex hull of the union 

k
Ik
φ

∈
U . Then, since u

Dk
f  is the convex envelope of f on Dk , φk is contained in the epigraph 

of cef , and also Px,f  is in it. Then, fP(x) ≥  fce(x).   

 In the remaining part of this section, the specific piecewise underestimators are 
obtained. 

3.2.a -Univariate Concave Terms. 
The convex envelope of a univariate concave function over an interval I=[xlo, xup] 

is the linear function matching the original one at the extreme points of the interval. The 
underestimator constructed on a partition { } KkkI ,...,1=  of I (Ik = [xk, xk+1]) is piecewise 

linear and matches the function in K+1 points 1,...1}{ += Kk
kx . The mathematical 

formulation in terms of mixed-integer linear constraints is (see Appendix A for 
derivation): 
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3.2.b –Bilinear Terms 
The convex envelope of bilinear terms on a rectangular domain D is given in 

McCormick (1976). It estimates a bilinear function with zero gap in the boundary of D, 
and the maximum approximation gap depends linearly on the area of D. 

Let us consider the bilinear term f(x,y) = xy, defined in the domain D = [xlo, xup]× 
[ylo, yup], and consider the K+1 points xlo=x1, x2, …, xK+1=xup.  In Appendix B the 
derivation of the piecewise convex underestimator of f over the partition { } KkkD ,...1= , 

Dk=[xk, xk+1]× [ylo, yup] is presented. The following formulation is obtained, 
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Note that uf = xy when x = xk for some k = 1,…,K+1 or when y = ylo or y = yup.  

This formulation provides an underestimation for the bilinear term xy. 
Overestimation is required for bilinear terms appearing with negative coefficient, that is, -
xy. In such a case, the previous formulation is applied to the bilinear term zy, where z = –
x.  

Also note that the partition is performed in one unique dimension. Partition in 
both variables is possible, but the formulation requires many more binary and continuous 
variables. 

 

3.3 Bounding Problem 
Assume that the functions f, g and h in (O-GDP), after a possible variable 

transformation, are expressed as follows, 
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where f 0, h0, g0 are convex terms and fi nc, hi
nc, gji

nc are the nonconvex terms (concave 
univariate or bilinear terms) of the corresponding function. Given a gridpoint set K, the 
hybrid convex bounding GDP problem is as follows, 
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(C-GDP)

New variables f
iz , g

iz and h
ijz are added, representing the nonconvex terms in f, g 

and hj respectively. u
Kif , , u

Kig , , and u
Kjih ,  are piecewise underestimators of the nonconvex 

terms. They are expressed in terms of the original variables x, the new 0-1 variables w 
and the continuous variables t that are needed for defining the approximation in the grid. 
The subindex K means that these estimators are constructed using the gridpoint set K. 
The problem (C-GDP) is a relaxation of (O-GDP), and therefore the optimal solution of 
(C-GDP) is a lower bound to the solution of (O-GDP).  

The following theorem is important to validate the algorithm: 

Theorem: If the optimal solution of (C-GDP) belongs to the set of grid points, this 
corresponds to the global solution of (O-GDP).  

Proof: Let us denote (x*, w*, t*, Y*) the optimal point in (C-GDP) and assume x* is 
a grid point. Thus, the piecewise underestimators have zero gap in x*, that is: 
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*=True. Moreover, Bj(x*, w*, t*)T=0 for 
Yj

*=False. Therefore, (x*,Y*) is feasible in (O-GDP). Since x* is an optimal point, the 
first and third global constraints in (C-GDP) are active, and 
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This proves that the optimal objective value of (C-GDP) is equal to the objective 
value in a feasible point in (O-GDP). Since the (C-GDP) problem is a relaxation of the 
(O-GDP), Z* is the best value for the objective in (O-GDP).  
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It should be noted, however, that if the global optimum of (O-GDP) is a grid point 
of (C-GDP), this point might not be the optimum of (C-GDP), due to the underestimation 
gap.  

The disjunctive problem (C-GDP) is then linearized using supporting hyperplanes 
derived at solution points, similarly as in the OA algorithm, and converted into an MILP 
problem, by formulating the convex hull representation of the disjunctions and replacing 
the boolean variables with binary variables y. The resulting MILP has binary variables of 
two different types: the variables w, introduced in the piecewise underestimators, and the 
variables y denoting the existence of units. Let us denote this problem (MILP-1). 

Assume that L subproblems (R-NLP) have been solved, with solution points 
},...,1,{ Llxl = . The convex part of the objective function and the global constraints are 

linearized in such L points. The convex part of the constraints in disjunction j is 
linearized in the subset of points },{ jl Llx ∈ , where Lj is the set of iterations with 
Yj=True. Specifically, the problem (MILP-1) is constructed as follows, 
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(MILP-1)

 
 

4. Reduced NLP 

Reduced NLP (R-NLP) problems are solved iteratively with the master problem. 
Similarly to the Logic-Based OA, these NLPs are reduced, in the sense that fixing the 
Boolean variables means that a set of continuous variables (those related to nonexistent 
units) is set to zero and removed from the NLP, as well as the constraints modeling those 
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units. The NLPs have to be solved to global optimality. Having fixed unit configurations 
in the network allows us to contract the bounds, and therefore reduce the search region. 

In order to solve (R-NLP) to global optimality, the algorithm relies on the local 
lower bounding problem (C-MINLP). This problem is obtained from (C-GDP) by fixing 
the boolean variables Yj or, in other way, by introducing the piecewise underestimators in 
(R-NLP). The local bounding problem is as follows, 
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(C-MINLP)

Let us denote by (MILP-2) the MILP problem that is the linearization of the 
problem (C-MINLP). Note that (MILP-2) is also obtained by fixing the binary variables y 
in (MILP-1). 

In Figure 2 the relation between the different previously defined problems is 
shown. Upper bounding problems are obtained by moving to the right in the figure. 
Lower bounding problems appear by moving down.  

Note that in some cases some simplifications are possible. For example, in 
bilinear programs, (C-GDP) is the same as (MILP-1) and (C-MINLP) is the same as 
(MILP-2), since there are no nonlinear convex terms in the original problem or any 
possible variable transformation. Certainly, if the original problem is convex, problems 
(O-GDP) and (C-GDP), and problems (R-NLP) and (C-MINLP) are identical. It may also 
be the case that, although the original problem is nonconvex, a convex NLP arises by 
fixing the boolean variables. In such a case, (R-NLP) and (C-MINLP) are the same 
problem, perhaps in different variable spaces (e.g. Geometric Programs). 
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5. Algorithm 

 The algorithm has two main phases as can be seen in Fig. 3:  

Outer Optimization: This phase calculates a global lower bound (GLB) of the 
optimum of problem (O-GDP). The problem (MILP-1) is solved using an initial grid and 
initial linearization points, to predict a new structure in the network and a new global 
lower bound. An increasing sequence of global lower bounds is obtained in the 
successive iterations of this phase. This is true because (MILP-1) is modified by adding 
integer cuts in Yj that avoid repeating structures and supporting hyperplanes of the convex 
functions. 

The initial grid can be redefined when solving (MILP-1) or it can accumulate the 
grid points generated during the inner optimization. The cumulative option has the 
disadvantage of exponentially increasing the size of the model (MILP-1), making it very 
difficult to solve. Both alternatives are implemented in the numerical examples. 

Inner Optimization: A fixed structure is globally optimized. This is performed by 
iteratively solving the problems (R-NLP) and (MILP-2) that bound the global solution of 
the reduced NLP. 

Solutions of (R-NLP) provide feasible solutions of (O-GDP), and allow to update 
the local and global upper bound (LUB and GUB respectively). Tighter local lower 
bounds (LLB) arise refining the grid and solving the local bounding problem (MILP-2), 
which is actually a relaxation of (R-NLP). 

There may be cases where fixing the boolean variables Y, the resulting NLP 
problem is convex, or it is known that it has a unique optimal solution. An example of 
this kind of problem is the GDP model for the synthesis and design of a batch plant 
formulated by Lee and Grossmann (2001). In such cases, the inner optimization can be 
accomplished by simply solving the problem (R-NLP) with a local solver.  

Alternatively, one might resort to a global NLP optimizer (e.g. BARON, 
Sahinidis, 1996) that will take advantage of the tighter variable bounds that arise in a 
fixed configuration. 

Bound Contraction: Since the elimination of non-optimal subregions is crucial in 
accelerating the search, an optional bound contraction procedure is considered in order to 
reduce the search space in the global optimization of the NLP subproblems. This 
contraction is performed before the algorithm enters in the inner optimization phase.  The 
scheme for contraction adopted in this work is the same as the one proposed by Zamora 
and Grossmann (1999). Basically, the problem solved at each contraction step is the 
following, 

min/max xi 

s.t   Z ≤ GUB 

constraints in C-MINLP 

 
(CB)

 This problem is a convex problem whose feasible region overestimates the 
subregion of (R-NLP) where the objective function can be improved. The aim of this 
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problem is to eliminate part of the original feasible region where the global optimum does 
not exist. 

 Note that in general, (CB) is a MINLP problem, since binary variables w related 
to the initial grid are involved. However, if the initial grid consists of only variable 
bounds and therefore the original domain is not really subdivided, (CB) can be solved as 
an NLP. 

 The bound contraction is performed on those variables that are involved in the 
relaxation so that the underestimators can be tightened. 

Grid Update: The grid is updated for each nonconvex term. The idea in refining 
the grid is to include in it those points obtained as optimal points in the relaxed problem. 

The decision of adding a new point to the grid is based on the error between the 

nonconvex term nc
iζ  and the substituting variable ζ

iz in the solution ),(
∗∗ ζ

izx  of 
(MILP-1) or (MILP-2) where ζ = f, g or h. The following criterion is adopted: 

If nc
i

nc
ii xz ζεζζ >− ∗∗

)( , then add x* to the grid corresponding to nc
iζ , where ε is a 

specified tolerance.  

 An alternative strategy for updating the grid is to include in it the middle point of 

the active subinterval in the solution of the master problem. If the solution ),(
∗∗ ζ

izx  of 

the master problem is such that 1* +≤≤ kk xxx  (interval k is active) then, the grid 

corresponding to nc
iζ is modified by adding the point 

2

1++ kk xx . 

Convergence: The proposed underestimators are constructed over a partition of 
the domain, and they involve an approximation error that depends on the size of each 
subdomain. Then, as the dimension of the subdomains is reduced by further partitions, 
the gap of approximation is also reduced.  

 

6. Illustrative Example. 

 Let us consider again the illustrative example discussed in section 2.  

The proposed algorithm starts solving the MILP obtained by replacing the 
concave constraint in the third disjunction with the piecewise linear relaxation 
constructed over the interval defined by the bounds of x5 and replacing the disjunctions 
with their convex hull reformulation. This first master problem MILP-1 predicts the 
lower bound GLB = 25.19, with Y={True, False, True} with x5

*=1, x6
*

 =7.67 (see Figure 
4). The NLP subproblem corresponding to these boolean values predicts an upper bound 
GUB= 35.91. Since there is a gap between the lower and upper bounds, the problem 
MILP-2 is solved, including x5

*
 in the grid. This problem has an optimal solution Z 

=35.91 with x5
*

 = 1 and x6
*

 = 1.72, which in fact is the global optimum of this 
configuration.  
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In the second outer iteration, the new global lower bound obtained is GLB=36.38, 
with Y={False, True, True}. This bound is greater than the best known solution, therefore 
the algorithm stops with the global solution Z =35.91. 

 

 

7. Numerical Examples: 

The proposed algorithm was implemented in GAMS (Brooke et al, 1997) and 5 
examples were solved on a 1.8 GHz Pentium 4 PC with 256 Mbytes memory. 
GAMS/CONOPT2 and GAMS/BARON 5.0 (Sahinidis, 1996) were used with their 
default options to solve the reduced NLP problems, and GAMS/CPLEX 8.1 for the MILP 
problems. 

 

Example 1:  
A process network problem, which is a variation of the problem in Duran and 

Grossmann (1986) was solved using the proposed algorithm.  The problem involves 8 
processes, with 25 flow streams (Fig. 5). The objective function to be minimized 
considers fixed costs cj for selected units and operating costs for stream xi, with 
coefficients pi . The GDP formulation of the model is as follows: 
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When the Logic-Based OA algorithm by Türkay and Grossmann (1996) is applied 
in this problem, using the termination criterion of no improvement in the objective of the 
NLP solutions, it stops in the third major iteration with a suboptimal solution Z =10.627. 
Also, none of the master solutions is lower than the global optimum. If the termination 
criterion is not applied and we let the algorithm continue iterating, the global solution is 
found in major iteration 18. However, there is no guarantee of globality.   

 The problem was also formulated as an MINLP using the Big-M formulation of 
the disjunctions (with M=100) and solved using the GAMS/DICOPT solver, which 
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implements the AP/OA/ER algorithm (Viswanathan and Grossmann, 1990). The solution 
depends strongly on the initial point. Several initial points were used, but none of the runs 
finds the global solution. Some results are shown in Table 1. Using the stopping criterion 
3, DICOPT stops when the solutions of the NLP subproblems have no improvement, and 
the stopping criterion 0 forces DICOPT to continue performing a specified number of 
iterations (10 iteration in the results of Table 1) 

The algorithm proposed in this work obtains the optimal structure (units 1,4,7) in two 
outer iterations. The configuration obtained in the first master (MILP-1) consists of units 
1, 3, 4, 7 and 8, and the lower bound is GLB = -93.53. This structure is optimized in 4 
inner iterations. The corresponding (MILP-2) subproblems are set up adding in the grid 
the variable values obtained in the optimal solution of the master problem, and adding the 
linearizations of the convex term in the solution of the NLP subproblem. An integer cut is 
added in order to make this configuration infeasible in subsequent master problems. The 
gridpoint set is updated by simply adding the new point to the grid of the previous 
iteration. 

The optimal structure with objective f=7.011 and involving units 1, 4 and 7 is 
selected in the next outer iteration, and it requires one inner iteration to prove globality in 
the solution of the subproblem. One additional outer iteration is required to check 
convergence to the global optimum.  

The algorithm requires less than 1 CPU sec in solving the MILP subproblem and 
0.5 CPU sec in solving the NLP subproblems. Details of the solution steps and problem 
sizes can be seen in Table 2. The problem was also solved with BARON (Sahinidis, 
1996), which required 0.3 CPU-sec and 25 nodes in the branch-and-bound tree, yielding 
the same solution of f=7.011.  

 

Example 2: 

The next example was taken from Kocis and Grossmann (1989). It involves the 
selection of the optimal separation scheme to be used to separate a multicomponent 
process stream into a set of product streams with given purity specifications. The 
superstructure consists of feed and product mixers, two possible separation units and a 
splitter that splits the feed into streams towards the separators or towards the final mixers 
(Figure 6). The alternative schemes include the use of flash separation, distillation, or the 
elimination of the complete separation process if it is proven to be unprofitable. The 
nonconvex (bilinear) GDP model for this problem is as follows, 
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The 8 bilinear terms are replaced by the proposed piecewise underestimators, 
partitioning the domain through the split fractions ζ.  

The first master problem, using the bound of ζ as initial gridpoints, predicts a 
lower bound GLB = -539.66, with Yf=True, Yd=False. No bound contraction is 
performed. The corresponding NLP has a solution Z=-470.13. Since there is a gap 
between the lower and upper bounds, the MILP-2 is solved, including the solution of the 
previous master in the gridpoint set. It takes 4 inner iterations to converge the local lower 
and upper bounds. 

The second outer iteration solves the master with the piecewise underestimator 
constructed on the accumulated gridpoints. It provides a new global lower bound of 
GLB=–510.39 with Yf=True, Yd=True. The corresponding NLP subproblem has a 
solution of Z=-510.08. The global lower and upper bounds are within 0.5% tolerance and 
no inner iterations are required. The algorithm stops with the global optimal Z=-510.08, 
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involving both column and flash separator (see Figure 7). The total time is less than 1.5 
CPU sec. Table 3 shows the progress of the algorithm through the outer and inner 
iterations, as well as the model sizes for this example. 

The solution of the first master problem provides a very weak lower bound for the 
correspondent NLP solution. It was noted that in the solution of that MILP problem, the 
streams involved in the initial splitter do not maintain the relative order of component 
flowrates. Kocis and Grossmann (1989) propose valid relaxations of the bilinear mass 
balances in the multistream splitter that overcomes this weakness. 

When these relaxations are added to the master problems in the algorithm, the 
optimal configuration is obtained in the first master problem, providing a lower bound 
GLB = -515.55, with Yf=True, Yd=True. The global optimization of the NLP subproblem 
(within 0.5% tolerance) takes one inner iteration if bound contraction is performed in the 
variables involved in bilinear terms (ζ4, ζ5, ζ6, ζ7, f3

a, f3
b). Bound contraction requires 

solving 12 LP problems (problem (CB) is linear because the partition consists of a unique 
subinterval). Without bound contraction, the inner optimization takes 3 iterations. 

 The second outer iteration solves the master problem using the accumulated grid 
points. It provides a new global lower bound GLB=-487.512, which is greater than the 
best feasible solution found. Then, the global optimum is the solution obtained in the first 
outer iteration, with objective Z = -510.08.  

 

Example 3. 

The following GDP problem was formulated by Lee et al. (2002) to model a X-
monomer process. The objective of the model is to find the best reaction path from the 
given raw materials to the final product, which minimizes the total annual cost. The 
superstructure proposed by the authors of the mentioned work involves a number of 
interconnected reaction units whose selection is modeled with disjunctions. Due to 
confidentiality reasons we cannot disclose the details of this model. 

The superstructure consists of 2 raw materials, 8 intermediate chemicals, 1 
product and 2 by-products. There are 14 reaction units and 3 separation units. Linear 
mass balances define the input and output streams in each unit. The objective function 
takes into account the annualized cost of raw material, utility, waste treatment, 
packaging, (with cost coefficient RM, UT, WT and PK respectively) labor, and capital. 
The model is as follows: 

 
( ){ }∑ Φ+++++=

i
iiiiiiii pLCpPKWTUTRMZ )(min  

bAxts =..  

 



 20

TrueY

Ii

LC
p

x

x

Y

XUBpxx

LC
xp

xxYield

Y

i

i

OUT
i

IN
i

i

i
OUT
i

IN
i

ii

OUT
ii

OUT
i

IN
ii

i

=Ω

∈∀

























=
=

=

=

¬

∨

























≤≤

=
=

=×

)(

,

0
0

0

0

,,0

α
 

IifalsetrueY
IiLC

NnIiXUBpxxx

i

i

i
OUT
i

IN
in

∈∀∈
∈∀≤

∈∀∈∀≤≤

},,{
,0

,,,,,0
 

 

I denotes the set of units and N the set of chemicals. The variables xn represents 
the molar flowrate of component n, and xi

IN and xi
OUT are the inlet and oulet flowrates in 

unit i. The production of each unit is represented with pi. It is assumed that the 
conversion of unit i, Yieldi, is given. 

The capital cost Φi(pi) is a concave function of the production rate. The master 
problems are set up replacing each of these terms with a variable bounded by the 
piecewise linear underestimator.  

GAMS/DICOPT solves the Big-M reformulation of this problem providing a 
local solution Z =246.342 M$/yr, for a production of 450 Mlb/yr of X-monomer and no 
by-product production. This solution involves 7 reaction units and 2 separation units. 
DICOPT stops with worsening of the NLP solutions at the second major iteration. If we 
allow the solver to go on the search until a maximum of 20 major iteration, the best found 
solution is Z =242.760 and none of the master objective is below this value. 

The global optimal reaction path involves 5 reaction units and 2 separation units 
(see Figure 8). The production of X-monomer is 450 Mlb/yr with a by-product 
production of 26.1 Mlb/yr. The total annual cost is 214.711 M$/yr.  

The sequence of steps for obtaining the global solution using the proposed 
algorithm is shown in Table 4, as well as the progress of the lower and upper bounds. No 
bound contraction was performed. Four outer iterations were required to obtain a global 
lower bound greater than the best feasible solution. Each NLP subproblem was solved to 
global optimality in one inner iteration and the gridpoint sets were updated with the 
solution of the MILP problems. The grid was not reset in the outer iterations but it 
accumulated all the added points. Table 5 shows the CPU time required in each step and 
the size of each solved subproblem. Note that the total CPU time used is 5.441 sec. 

This example was also solved using GAMS/BARON in two ways. In the first one 
BARON was used to solve the NLP subproblems to global optimality instead of 
performing the inner loop in Fig. 3. The optimal objective values obtained with this 
alternative are the same as shown in Table 4 for the problems (MILP-1) and NLP 
subproblems and the CPU time are shown in Table 6. As can be seen the CPU-time is 
slightly lower (5.212 sec vs. 5.441 sec). The second way that BARON was used was to 
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directly solve the full problem O-GBD (its Big-M reformulation). In this case BARON 
could not solve the problem O-GDP in less than 960 sec. At that point, the search was 
interrupted, and the lower bound that BARON provided (109.018) was about 50% below 
the global optimal solution (214.711). 

 

 

Example 4: 

This example corresponds to a synthesis problem of a distributed wastewater 
multicomponent network, which is taken from example 10 of Galan and Grossmann 
(1998). Given a set of process liquid streams with known composition, a set of 
technologies for the removal of pollutants, and a set of mixers and splitters, the objective 
is to find the interconnections of the technologies and their flowrates to meet the 
specified discharge composition of pollutant at minimum total cost. Discrete choices 
involve deciding what equipment to use for each treatment unit. Lee and Grossmann 
(2001) formulated the problem as a GDP model.  

The superstructure is shown in Figure 9, involving three inlet streams, which are 
split into streams going into the treatment units. There are three different equipment 
available for removal of each of the pollutants. Each equipment has different removal 
ratio of the pollutants and cost function. The outlet stream of each treatment unit is again 
split and then a fraction of the stream is recycled, while the rest of the stream is sent to 
the final mixer for discharge. The data for this example are given in Lee and Grossmann 
(2001). 

The nonlinearities in this model are due to the bilinearities that arise in the 
component mass balances in the final splitters and the concave cost functions. 

This problem was solved to global optimality with our algorithm in just under 2 
min. Bound reduction was performed in the complicating variables representing the total 
flows in the treatment units. These variables are involved in the bilinear mass balances in 
the final splitters. The initial grid for the outer iterations was set up with three points: the 
lower and upper bounds and the middle point. Within each inner iteration, the gridpoint 
sets were updated using the middle point of the active subinterval. Adding the master 
solution point to the grid causes slower convergence to the global solution of the reduced 
NLP. 

The global optimum solution is shown in Figure 10. Six outer iterations were 
necessary to prove globality of the solution as seen in Table 7. In the third outer iteration, 
(MILP-1) selected the optimal equipment, and obtained a lower bound within a tolerance 
of 0.5% requiring 5 iterations in the inner optimization. Table 8 shows the computing 
times and the problem sizes. The total time required by the algorithm was 11.31 sec for 
solving the (MILP-1) problems, 0.54 sec for solving (R-NLP) subproblems, 8 sec for 
reducing bounds in total flows and 117.56 sec in solving the (MILP-2) subproblems.  

 The most time consuming step in this example is the inner optimization of the 
optimal structure. Due to the bound contraction procedure, the reduced NLP could be 
solved to global optimality with the solver BARON 6.0. It rapidly detected the 
infeasibility of the first two NLP subproblems. In the third equipment selection, BARON 
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found the global optimum of the NLP in 20 CPU sec. The MILP-1 problems in the 
following outer iterations detected infeasible structures. The total time required with this 
implementation of the method was approximately 38 CPU sec, which is considerably 
lower than the 118 secs with the algorithm of Fig. 3. 

 

Example 5: 

 The next example is a wastewater treatment network problem, where the 
separation is performed using nondispersive solvent extraction (NDSX) (see Galan and 
Grossmann, 1998). For NDSX technologies, the outlet concentration depends on the inlet 
concentration of the pollutant and on the flow rate.  However, the flowrate of the inlet 
stream is assumed not to change during the treatment, since the concentration of the 
pollutants is low.  A short-cut model of the NDSX is used. The equation for the NDSX 
treatment is as follows 

))(.exp( jjjtjjj CoceHe
FLOWT

NMKmHeaCocsHe −−=−  

where csj is the outlet concentration of pollutant j, cej is the inlet concentration of j, at is 
the surface area of the hollow fiber module (135 m2), NM is the number of modules, Km 
is the membrane transport coefficient (a value of 2.2 10-8 m/s was used), Hej is the 
distribution constant of the pollutant between the organic phase and the aqueous phase, 
and Coj is the concentration of the contaminant in the organic phase. In the simplified 
case, where extraction and back-extraction are carried out at the same rate, we can 
assume that Coj remains constant. 

 The superstructure for this problem is identical to example 4. The data for the 
equipment, inlet streams and costs are shown in Tables 9, 10 and 11. 

 The global optimum ($30,481.13) was found in the first outer iteration, but the 
convergence within 1% tolerance of the global optimum was obtained in 10 outer 
iterations. The first selected structure required 4 inner iterations each to check globality. 
The gridpoint sets were updated in each inner optimization using the middle point of the 
active subinterval. Details of the solution in each iteration can be seen in Table 12, as 
well as the global and local lower and upper bounds. Figure 11 shows the progress of the 
bounds. Note that the global lower bound defines a piecewise increasing path, and the 
global upper bounds describes a piecewise decreasing path, always above the global 
lower bound line. This does not occur with the local bounds. Local bounds involve 
discontinuities when the inner loop finishes and outer iteration changes. Also note that 
inner loop stops if the local lower bound reaches the global local bound. 

(MILP-1) problems have 51 binary and 790 continuous variables, whilst the 
(MILP-2) problems have on average 60 binary variables and 973 continuous variables in 
the first inner iteration, and their size grow as the inner iterations proceed. The fourth 
(MILP-2) in outer iteration 1 has 114 binary variables and 1522 continuous variables. 
The time required to solve the 10 outer master problems is 0.33 min aproximately; the 
bound reduction steps take a total of 0.83 min. The algorithm spends 2.5 sec in solving 
the NLPs problems and 18 min in solving the bounding problems (MILP-1). The optimal 
values for the flows are shown in Figure 12 (flow values are given in ton/h) 
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Numerical difficulties were experienced with BARON, which prevented 
convergence to feasible solutions, and hence a comparison of computational times was 
not possible for this problem. 

 

8. Conclusions and future works. 

 A new deterministic algorithm for the global optimization of synthesis of 
processes network problems has been presented. It is based on a new methodology for 
constructing underestimators of nonconvex functions based on partitions of the entire 
domain. In this work, the derivation of this class of estimators for univariate concave 
terms and bilinear terms has been developed. 

The proposed algorithm relies on an outer approximation methodology. The 
global solution of the problem is achieved by solving problems that are relaxations of the 
original one. As iterations proceed, the bounding problem approximates the original 
problem with more accuracy. 

The effectiveness of the proposed algorithm has been illustrated in several 
examples as well as comparisons with other existent algorithm to solve this class of 
problems. The computational experience, although still limited, suggests that this 
algorithm has several advantages with respect to spatial branch-and-bound algorithms, 
particularly in regard to ease of implementation and potential strengthening of lower 
bounds. 

For larger problems, however, the relaxed MILP problems predict bounds with 
significant gap and convergence is achieved at high computational cost. A modification 
of the algorithm is being studied, involving the solution of the convexified C-MINLP 
problem. Also, most of the computing time is spent in the inner optimization. This is due 
to the iterative procedure and the increasing size of the MILP-2 problems. An alternative 
methodology for obtaining the global solution of the reduced NLPs is also being 
investigated. It involves the simultaneous grid update and solution of the local bounding 
problem. 
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Appendix A: Derivation of piecewise linear underestimators of concave univariate 
functions. 

The convex envelope of a concave function on an interval I=[xlo, xup] is 
)()1()()( uplou xfxfxf λλ −+=  

where λ is such that uplo xxx )1( λλ −+= . 

 Given the partition { } K
kkI 1= , with Ik=[xk, xk+1], k=1,…,K, x1=xlo, xK+1=xup, the 

piecewise underestimator can be formulated as a disjunction with k terms: 
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The mixed-integer formulation based on the convex hull relaxation (Raman and 
Grossmann, 1994) is as follows, 
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 Let us define γk =  wk-1 - λk-1 + λk , k=2,…, K , γ1 =  λ1 and γK+1 =  wK - λK.  With 
these weights, the convex combination can be expressed as the equivalent formulation: 
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 This second formulation is the same as the formulation given in Nemhauser and 
Wolsey (1999).  
 An interesting discussion about the quality of two formulations of piecewise-linear 
estimators can be found in Padberg (2000). 

 

Appendix B. Piecewise underestimators for bilinear terms 
Consider the bilinear term f(x,y) = xy, defined in the domain D = [xlo,xup]× 

[ylo,yup], and consider the partition  { }K
kkD 1= , with Dk=[xk, xk+1] ]× [ylo,yup], k=1,…,K, 

x1=xlo, xk+1=xup. A piecewise linear underestimator uf  will be derived, such that 
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The mixed-integer formulation based on the convex hull relaxation is as follows, 
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Figure 1: Feasible region for disjunction 3 at first master. 
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Figure 2: Relations between the original and bounding problems 
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Figure 1: Feasible region for disjunction 3 at first master. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Scheme of the algorithm. 
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Figure 4: Feasible region and solution for MILP-1 and MILP-2 in the first iteration in the 

illustrative example 
 
 
 
 

 
 
 
 
 

Figure 5: Superstructure for Example 1 with stream prices p. 
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Figure 6: Superstructure in the Example 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Optimal solution of Example 2 
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Figure 8: Optimal solution of Example 3 
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Figure 9: Superstructure for Example 4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10: Optimal solution for Example 4 
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Figure 11: Bound Progress in Example 5 
 
 

 
 
 

Figure 12: Global optimal solution for Example 5 
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Table 1: Results using GAMS/DICOPT with different initial points in Example 1 
CPU time (sec) Initialization 

for variables x 
Optimal 
Solution 

Stopping 
Criterion MIP NLP 

Major 
iterations 

Units 

x=xup 82.627 3 0.19 0.30 3 7 and 8 
x=xlo 117.627 3 0.21 0.20 3 1, 3 and 8 
x=xopt 55.627 3 0.24 0.17 3 1, 7 and 8 
x=xopt 10.627 0 0.90 0.71 10 1 

 
 
 
 
 

 
Table 2 : Solution steps and problem sizes for Example 1 

Cont vars Outer 
iteration 

Inner 
iteration 

Solution 
MILP-1

Solution 
NLP 

Solution 
MILP-2

Binary 
Variables NLP MILP

 
1 

- 
83.317 

- 
71.910 

14 
8 

1 

2 
3 
4 

-93.530

83.317 
83.317 
83.317 

79.636 
81.647 
82.937 

10 
12 
14 

 
 

21 

68 
74 
80 
86 
92 

2  
1 

6.261 - 
7.011 

- 
7.011 

25 
18 

 
14 

100 
104 

3  10.627 - - 26 - 104 
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Table 3: Solution steps and problem sizes for Example 2 
Cont vars Outer 

iteration 
Inner 

iteration 
Solution 
MILP-1

Solution 
NLP 

Solution 
MILP-2

Binary 
Variables NLP MILP

1  
1 
2 
3 
4 

-539.66  
-470.13 
-470.13 
-470.13 
-470.13

 
-481.88 
-476.91 
-473.75 
-471.44

6 
8 
12 
16 
20 

 
 

25 

71 
89 
107 
125 
167 

2  
1 

-510.39  
-510.08

 
- 

22 
- 

 
31 

167 

 
Table 4: Solution steps for Example 3 

Outer 
iteration 

Solution 
MILP-1 

Solution 
NLP 

Solution 
MILP-2 

GUB LUB GLB LLB 

216.920  216.920 216.920 186.276 186.276 1 186.276 

 216.918  216.920  216.918 

214.711  214.711 214.711 199.702 199.702 2 199.702 

 214.710  214.711  214.710 

236.567  214.711 236.567 210.602 210.602 3 210.602 

 236.567  236.567  236.567 

4 215.619   214.711  215.619  

 
 

Table 5: CPU time and model sizes in the solution of Example 3 
Solution MILP-1 Solution NLP Solution MILP-2 Outer 

iteration CPU time 
(sec) 

Disc vars/ 
Cont vars

CPU time
(sec) 

Cont vars CPU time
(sec) 

Disc vars/ 
Cont vars 

1 0.203 249/34 0.039 67 0.109 283/34 

2 0.625 283/51 0.066 59 0.140 317/51 

3 1.921 317/68 0.027 71 0.140 341/68 

4 2.171 351/85     

Total time 4.920  0.132  0.389  

 
Table 6: CPU time using BARON for solving the NLP subproblems in Example 3. 

Outer 
iteration 

MILP-1 NLP 

1 0.203 0.060 

2 0.640 0.110 

3 1.968 0.060 

4 2.171  

Total 4.982 0.230 
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Table 7. Solution steps for Example 4 

Outer 
iteration 

Inner 
iteration 

Solution 
MILP-1 

Solution 
NLP 

Solution 
MILP-2 

GUB LUB GLB LLB 

1  
1 

1080714.18  
Infeasible 

 
Infeasible 

 
- 

 
- 

1080714.18 1080714.18

2  
1 

1082892.69  
Infeasible 

 
Infeasible 

 
- 

 
- 

1082892.69 1082892.69

3  
1 
2 
3 
4 
5 

1235559.63  
1992836.21
1692583.88
1992836.21
1692583.88
1697253.17

 
1449071.22
1482263.35
1508500.95
1635451.81
1683607.48

 
1992836.21
1692583.88

 
1992836.21
1692583.88

1235559.63 1235559.63
1449071.22
1482263.35
1508500.95
1635451.81
1683607.48

4  1235559.63*     1235559.63  

5  1235559.63*     1235559.63  

6  inf       

*: The selection of the equipment from the MILP-1 is proven to be worse than the best solution in the 
reduction steps. 

 

 

 

 
Table 8. Model sizes and solution time for Example 4 

Solution MILP-1 Solution NLP Solution MILP-2 Outer 
iteration 

Inner 
iteration CPU time 

(sec) 
Disc vars/ 
Cont vars

CPU time
(sec) 

Cont vars CPU time 
(sec) 

Disc vars/ 
Cont vars 

1  
1 

2.062 33/544  
0.039 

 
180 

 
1.265 

 
30/616 

2  
1 

1.953 33/544  
0.098 

 
180 

 
1.453 

 
30/616 

3  
1 
2 
3 
4 
5 

3.359 33/544  
0.059 
0.121 
0.090 
0.095 
0.041 

 
180 
180 
180 
180 
180 

 
1.593 

11.921 
15.468 
30.670 
55.187 

 
31/624 
41/740 
48/820 
51/856 
57/916 

4  1.437 33/544     

5  1.218 33/544     

6  1.281 33/544     

Total time 11.310  0.543  117.557  
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Table 9: Distribution of the pollutant Hej and concentration of pollutant in organic phase Coj 

Unit A B C 
Hej 1900 1700 0 Treatment X Coj 200 200 0 
Hej 0 1700 1900 Treatment XX Coj 0 200 200 
Hej 1700 0 1500 Treatment XXX Coj 200 0 200 

 

 

 

 

Table 10: Inlet Streams data for Example 5 
Inlet Stream  Flowrate (ton/h) Pollutant ppm 

A 390 
B 100 1 13.1 
C 250 
A 168 
B 110 2 32.7 
C 400 
A 250 
B 100 3 56.5 
C 350 

 

 

 

 

Table 11: Cost and removal ratio data for the equipments in Example 5 
Cost Function* (αF0.6 + γF) Treatment 

Unit k 
Equipment 

H 
NM 

Investment α  Operating γ  
EA 15 250.00  0.0180  
EB 20 301.40  0.0247  

 
1 

EC 25 348.45  0.0316  
ED 15 250.00  0.0180  
EE 20 301.40  0.0247  

 
2 

EF 25 348.45  0.0316  
EG 15 250.00 0.0180  
EH 20 301.40 0.0247  

 
3 

EI 25 348.45 0.0316  
 
 
 
 



 41

Table 12. Solution steps for Example 5 
Outer 

iteration 
Inner 

iteration 
Solution 
MILP-1 

Solution 
NLP 

Solution 
MILP-2 

GUB LUB GLB LLB 

1  
1 
2 
3 
4 

25963.96  
30598.67 
30481.13 
30481.13 
30481.13 

 
28773.15 
29051.94 
29809.68 
30170.21 

- 
30598.67 
30481.13 

- 
30598.67 
30481.13 
30481.13 
30481.13 

25963.96 25963.96 
28773.15 
29051.94 
29809.68 
30170.21 

2  
1 
2 

26070.73  
35182.82 
31972.22 

 
30167.93 
31373.77 

30481.13  
35182.82 
31972.22 

26070.73 26070.73 
30167.93 
31373.77 

3   
1 

27100.94  
35531.09 

 
30351.09 

30481.13  
35531.09 

27100.94 27100.94 
30351.09 

4  
1 
2 

27533.17  

31488.26 
31796.13 

 
29830.80 
30700.72 

30481.13  
31488.26 
31488.26 

27533.17 27533.17 
29830.80 
30700.72 

5  
1 

28876.28  
34882.90 

 
31494.12 

30481.13  
34882.90 

28876.28 28876.28 
31494.12 

6  
1 

29038.51  
37100.28 

 
32135.22 

30481.13  
37100.28 

29038.51 29038.51 
32135.22 

7  
1 

29098.96  
36675.09 

 
31969.28 

30481.13  
36675.09 

 29098.96 
31969.28 

8  
1 

29832.45  
40905.71 

 
31442.17 

30481.13  
40905.71 

 29832.45 
31442.17 

9  29924.85  
36071.18 

 
31369.43 

30481.13  
36071.18 

29924.85 29924.85 
31369.43 

10  30191.21   30481.13  30191.21  

 

 
Table 13: Global lower and upper bounds and CPU time using BARON in Example 5 

Iteration Sol. MILP-1 Sol reduced 
NLP 

CPU time in 
solving NLP 

Baron’s 
iterations 

1 25963.96 30481.13 3.16 0 

2 26070.73 31972.22 3.27 0 

3 27100.94 32429.18 90.10 2934 

4 27533.17 31704.21 60.14 1907 

5 28876.28 Inf - - 

6 29038.51 - - - 
 

 


