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Abstract 

This manuscript introduces a Logic-based Discrete-Steepest Descent Algorithm (LD-

SDA) to tackle problems arising from process superstructure optimization. These 

problems often appear in Process Systems Engineering and become challenging when 

trying to address Process Intensification applications. The current algorithm considers a 

disjunctive interpretation of these optimization problems through Generalized 

Disjunctive Programming (GDP). This formulation allows further analysis of the solution 

method as a tailored approach for GDP and results in a general open-source 

implementation of the method relying on the modeling paradigm Pyomo.GDP. 

Complementing our previous studies in the subject, we compare the LD-SDA against 

other well-known GDP solution methods and previous versions of D-SDA, not 

considering the disjunctive nature of these problems showcasing its advantages when 

dealing with superstructure problems arising from process intensification. 

Keywords: superstructure optimization; process intensification; convex discrete analysis. 

1. Introduction 

The optimal design of processes is a challenge faced by the Process Systems Engineering 

(PSE) community. To remain competitive, chemical processes require a systematic 

procedure to find such optimal design. Recent developments from Process Intensification 

(PI) have shown to be promising alternatives to traditional processes by integrating and 

interconnecting units and achieving superior processes in terms of economic, 

environmental, and efficiency objectives (Sitter et al., 2019). Different process flowsheets 

can be integrated into a single process superstructure, where potential units and 

interconnections are considered. Superstructure models allow for the units and 

interconnections' equations to be constraints in optimization problems. 

Since these equations can involve nonlinear functions and depend on both continuous 

(e.g., flowrates or temperatures) and discrete variables (e.g., equipment choice, 

interconnection location), the mathematical models become Mixed-Integer Nonlinear 

Programs (MINLP). The solution to these optimization problems is challenging given 

their combinatorial and nonconvex nature. Generalized Disjunctive Programming (GDP) 
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has been proposed to tackle specific modeling and solution challenges of MINLP. In 

GDP, the modeling capabilities of traditional mathematical programming are extended 

by introducing Boolean variables involved in propositions and disjunctions. 

The novelty of this work is to frame a Discrete-Steepest Descent Algorithm (D-SDA) for 

the solution of discrete nonlinear problems within the scope of GDP and use it to address 

process superstructure problems with ordered interconnections. Such problems arise in 

PI applications, such as studying a series of units with interunit refluxes, e.g., the tray-by-

tray models in distillation columns. 

2. Generalized Disjunctive Programming 

In general, a GDP problem can be written as 

min
𝐱,𝐘,𝐳

f(𝐱, 𝐳) + ∑ ckk∈K

s. t. 𝐠(𝐱, 𝐳) ≤ 0;  𝛀(𝐘) = True

∨i∈Dk
[

Yik

𝐫ik(𝐱, 𝐳) ≤ 0; ck = γik
] ∀ k ∈ K

𝐱 ∈ X ⊆ ℝnx; 𝐘 ∈ {True, False}ny; 𝐳 ∈ Z ⊆ ℤnz ; 𝐜 ⊆ ℝ|K|

  (1) 

Where the continuous variables are denoted by the nx-dimensional vector 𝐱 bounded by 

the finite set X, and the discrete variables are denoted by the nz-dimensional vector 𝐳, 

bounded by the finite set Z. The function f: ℝnx × ℝnz → ℝ is the objective function, and 

the vector function 𝐠: ℝnx × ℝnz → ℝnl denotes the global inequality constraints. 𝐘 is a 

ny-dimensional vector of logic variables, where for each disjunct i ∈ Dk of each 

disjunction k ∈ K the individual logic variable Yik enforce the set of inequalities 

𝐫ik: ℝnx × ℝnz → ℝnik and the fixed cost γik. Logical constraints 𝛀: {True, False}ny →
{True, False} encode logical relationships among the logical variables. 

Besides offering a more intuitive modeling paradigm of discrete problems through 

disjunctions, a GDP model can inform computational solution tools of the original 

problem's underlying structure of the original problem, thus leading to improved solving 

performance. The GDP framework has successfully addressed problems derived from 

process superstructure optimization (Chen et al., 2021). 

GDP problems are often solved by reformulating them as MINLP problems, by adding a 

binary variable yik for each Boolean variable Yik, and reformulating the constraints 𝐫ik 

within the disjunctions to be enforced when the corresponding variable yik = 1 or 

trivially satisfied otherwise. The two best-known cases are the Big-M and the Hull 

reformulation, for which the Big-M case requires fewer continuous variables while the 

Hull reformulation is always at least as tight as the Big-M reformulation. 

The tailored solution methods for GDP are usually based on generalizing algorithms for 

MINLP. The optimization problems are decomposed in a way where the discrete variables 

are fixed into what we call a discrete combination and allow to solve the problem only in 

terms of the continuous variables. Different methods are used to select the combination 

of these discrete variables, including branching across the different values the discrete 

variables can take (i.e., Branch-and-Bound) or solving a linear approximation of the 

original problem (Kronqvist et al., 2019). For GDP algorithms, contrary to the case in 

MINLP, these (possibly Mixed-Integer) Nonlinear Programming (NLP) subproblems that 

arise when fixing a particular discrete combination, now including the logical variables, 
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only include the constraints that concern the logical variables within each combination. 

Namely, for a given logical combination 𝐘̂ the subproblem becomes 

min
𝐱,𝐳

f(𝐱, 𝐳) + ∑ γikik if  Ŷik=True

s. t. 𝐠(𝐱, 𝐳) ≤ 0

𝐫ik(𝐱, 𝐳) ≤ 0 if Ŷik = True ∀i ∈ Dk , k ∈ K
𝐱 ∈ X ⊆ ℝnx , 𝐳 ∈ Z ⊆ ℤnz

  (2) 

Notice that in the most general case, the problem in Eq.(2) is an MINLP, although in most 

applications, nz = 0, leading to the problem being an NLP. This problem avoids 

evaluating numerically challenging nonlinear equations whenever its corresponding 

logical variables are irrelevant (i.e., "zero-flow" issues). 

The different tailored algorithms for GDP are defined in the strategy to find the logical 

combination 𝐘̂ such that subproblems as in Eq.(2) solve to the optimal solution Eq.(1). 

One alternative is using gradient-based linearizations of the nonlinear constraints at the 

optimal solution of Eq.(2) to approximate the original problem feasible region. This 

defines a Mixed-Integer Linear Program (MILP) whose optimal solution returns values 

for the integer combinations. This method is known as the Logic-based Outer-

Approximation (LOA) method. One can also systematically explore the values of the 

Boolean variables in a search tree where the nodes correspond to partial fixations of these 

variables, whose solutions provide bounds to the optimal solution, in a method called the 

Logic-based Branch-and-Bound (LBB) method (Chen et al., 2021). Both methods seek 

to find potentially optimal combinations of logical variables efficiently. 

3. Discrete Steepest Descent Optimization 

In a previous study, we presented the D-SDA (Liñán et al., 2020a) based on the theory of 

discrete convex analysis (Murota, 1998). The algorithm aims to solve Mixed-Binary 

Nonlinear Programs (MBNLP) and relies on reformulating the original discrete problem, 

in terms of binary variables, into a problem of integer choices, referred to as external 

variables. This reformulation was designed for binary variables defined in an ordered set 

constrained to an assignment constraint, meaning that only one of these ordered binary 

variables can be 1. These external variables, which are no longer representable in the 

original problem constraints, provide a concise representation of the discrete feasible 

region. This structure often appears in process superstructure optimization problems, e.g., 

when a binary variable defines the location of a reflux stream within a stages sequence, 

implicitly defining the existence of left-over stages after them. 

Exploring discrete neighborhoods of the external variables provides the D-SDA with an 

efficient approach to choose which combination of the discrete variables should be 

considered to solve the subproblems that appear by fixing such values, NLPs in this case, 

thus efficiently searching the combinatorial space of the discrete variables. The D-SDA 

uses the integrally local optimality as a termination criterion (Murota, 1998), enabling the 

efficient solution of process superstructure optimization problems. 

When considering a series of continuously stirred tank reactors (CSTR), the D-SDA 

outperforms MINLP solvers in solution time and quality (Liñán et al., 2020a). 

Furthermore, we applied the algorithm to the optimal design of a PI application involving 

reactive distillation, where we tackled the production of Ethyl tert-butyl ether (ETBE) 

from iso-butene and ethanol through the optimal design of a catalytic distillation column. 
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The D-SDA revealed a better performance against MINLP solvers when optimizing an 

economic objective in this problem (Liñán et al., 2020b). This allowed us to consider 

more complex models for this system, i.e., modeling multi-scale phenomena through a 

rate-based model for mass and energy transfer (Liñán et al., 2021). 

(a) (b)  

Figure 1. Pictorial representation of (a) different search neighborhoods in external variables lattice 

and (b) D-SDA with the neighbor and line search using 𝑘 = ∞ 

4. Discrete-steepest descent optimization as a disjunctive algorithm LD-SDA 

The problem in Eq. (1) suggests that the structure fitting for the D-SDA algorithm appears 

naturally in GDP, namely the disjunctions (∨i∈Dk
Yik) enforce the assignment constraint, 

ExactlyOne(Y1k, … , Y|Dk|k) for the reformulation to be performed. This can also appear 

across other sets of Boolean variables S = {s1, … , s|S|} and if the set S is ordered, which 

is usually the case with process superstructures, then the reformulation into external 

variables 𝐳E ∈ {1, … , |S|} ⊆ ℤ becomes Y𝑆(𝑎) ⇔ 𝑧𝐸 = 𝑎, where we denote the element of 

S in its a-th position as S(a). Notice that this reformulation also adds interpretability to 

the external variables, turning them into an indicator of the position within the set. 

Such a reformulation allows us to map the Boolean variables into a lattice of integer 

variables, on which we can perform exploration based on ideas from discrete convex 

analysis (Murota, 1998). This leads to the Logic-based D-SDA (LD-SDA), which 

compares the objective function of each problem solved at a lattice site with its neighbors, 

defined by either a 𝑘 = 2 or 𝑘 = ∞ norm as seen in Fig.(1a), together with a line search 

along the direction provided by the best objective improvement after a complete neighbor 

search, as seen in Fig.(1b). The stopping criterion is determined by the local optimality 

of the solution compared to its neighbors, leading to certain convergence guarantees in 

the discrete convex (Murota, 1998). 

From a GDP perspective, the external variables delineate a branching rule in the 

disjunctions, informing the problem structure. Notice that the more ExactlyOne(YS) 

constraints the problem have, the more effective this reformulation is, with the limiting 

case of not having any other apart from the disjunctions, making it equivalent to LBB. 

5. Numerical Experiments 

We implement this method in open-source code using Python, available in 

https://github.com/bernalde/dsda-gdp. This code automatically transforms Pyomo.GDP 

(Chen et al., 2021) models, reformulates the disjunctions and the logical constraints 

ExactlyOne(YS(1), … , YS(|S|)) automatically and solves the models using LD-SDA. We 

present the following two case studies after solving these problems with the solvers in 

GAMS 34.2 and using an Intel Core i7-7700 @ 3.6GHz PC with 16 Gb of RAM Memory. 

https://github.com/bernalde/dsda-gdp
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5.1. Continuously Stirred Tank Reactors in series superstructure 

We consider a superstructure of NT CSTR in series where its total volume is minimized 

given an autocatalytic reaction A + B → 2B with 1st order reaction rate. This example is 

generalized from the one presented in (Liñán et al., 2020a). This example is illustrative 

given that we have an analytical solution at the limit of NT → ∞ equivalent to the Plug 

Flow reactor, and that we can explore the behavior in instances varying the value of 𝑁𝑇. 

Fig.(2) presents a scheme of the problem and its GDP formulation, together with its 

external variables reformulation. 

(a) (b)  

Figure 2. Scheme of (a) CSTR reactor superstructure and (b) Case with 𝑁𝑇 = 5 and reformulation 

using external variables 𝑧𝐸,1 the number of reactors, 𝑧𝐸,2 the relative position of the reflux 

For this instance of the problem, there is a locally optimal solution with five reactors and 

reflux before the first reactor 𝐳𝐸 = (5,1). 

We considered a whole set of different solver approaches to this problem with NT =
[5, … ,25], including reformulating it into MINLP via Big-M and Hull reformulations, 

using LBB, LOA, and GLOA, and LD-SDA with two different norms, as seen in Fig.(3). 

We also include the total enumerations through the external variable reformulation. 

 

Figure 3. Execution time to achieve global minimum vs 𝑁𝑇  for optimization of CSTR 

superstructure problem using different combinations of NLP solvers and reformulation methods. 

From Fig.(3), one can see that LD-SDA provides the most efficient methods to solve this 

problem to global optimality. For this problem, the 𝑘 = 2 norm neighborhood does not 

obtain the optimal solution. Notice that the external variable reformulation leads to a 

better search procedure, as seen when a total enumeration in this space can be more 

efficient than other GDP solution alternatives. 

5.2. Rate-based catalytic distillation column 

The economic objective maximization of a catalytic distillation column to produce ETBE 

from butenes and methanol was solved using a D-SDA (Liñán et al., 2021). This test case 

is relevant since it deals with a PI design problem, where several traditional optimization 

methods fail even to compute feasible solutions (Liñán et al., 2021). The derivation of the 

D-SDA method was initially motivated to address this PI superstructure optimization 

problems, leading to a series of papers as seen in (Liñán et al., 2020b, 2020a, 2021) 

The previous D-SDA would tackle the problem as an MBNLP, fixing and unfixing binary 

variables and including constraints of the form yg(x) ≤ 0 to enforce the logic constraints. 
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Here we show that, when considering the problem from a disjunctive point of view as in 

LD-SDA, leads to the solution of subproblems as in Eq.(2) instead of including irrelevant 

and numerically challenging nonlinear constraints. 

Table 1. Execution time of Catalytic distillation optimal design problem from (Liñán et al., 2021) 
 

D-SDA: (Liñán et al., 2021) LD-SDA: This work 

NLP Solver CONOPT MSNLP CONOPT MSNLP 

Neighborhood k=2 k=inf k=2 k=inf k=2 k=inf k=2 k=inf 

Time [s] 367.1 16880.0 3626.0 102030.7 118.7 6751.1 2000.0 38532.5 

As seen in Table (1), the proposed LD-SDA method leads to speedups up to 3x in this 

challenging PI problem. We could obtain the same solution to all subproblems more 

efficiently, given that only the relevant constraints were included for each problem. 

Adding to the fact that the previous results using the D-SDA were already beating state-

of-the-art MINLP solution methods shows the advantages of the LD-SDA. 

6. Conclusions 

The current manuscript presents the usage of a disjunctive discrete steepest descent 

optimization algorithm LD-SDA to tackle process superstructure problems. This 

algorithm is presented from the perspective of Generalized Disjunctive Programming 

solution methods, showing its relationship with existing algorithms for GDP. Moreover, 

this allowed for the algorithm to be implemented in Python and through the modeling 

paradigm of Pyomo.GDP. With this implementation, we solved problems of 

superstructure optimization, a series of CSTR volume minimization, and a rate-based 

catalytic distillation column economical design more efficiently than other proposed 

solution methods. These solution methods include MINLP reformulations, GDP-tailored 

algorithms, and a previous version aimed at MBNLP problems. The results in this 

manuscript show how LD-SDA becomes a valuable tool to address process superstructure 

problems, of which many challenges instances arise from PI applications. 
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