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The solver DICOPT is based on an outer-approximation algorithm used for solving mixed-
integer nonlinear programming (MINLP) problems. This algorithm is very effective for solving
some types of convex MINLPs. However, there are certain problems that are difficult to
solve with this algorithm. One of these problems is when the nonlinear constraints are so
restrictive that the nonlinear subproblems produced by the algorithm are infeasible. This
problem is addressed in this paper with a feasibility pump algorithm, which modifies the
objective function in order to efficiently find feasible solutions. It has been implemented as a
preprocessing algorithm for DICOPT. Computational comparisons with previous versions of
DICOPT and other MINLP solvers on a set of convex MINLPs demonstrate the effectiveness
of the proposed algorithm in terms of solution quality and solving time.
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1. Introduction

The capabilities of the algorithms designed to solve mathematical programming problems
are continuously increasing. This allows solving increasingly larger and more complex
problems. Efficient solutions of mixed-integer linear programs (MIP) and nonlinear
programs (NLP) enable the solution of mixed-integer nonlinear programs (MINLP).
These problems are of great interest in chemical engineering and many other areas as they
combine integer terms (like discrete choices in superstructures or networks) with nonlinear
terms (for example blending equations or concave cost functions) [13, 14, 17, 20]. The
general form of an MINLP is

min
x,y

f(x, y)

s.t. g(x, y) ≤ 0

x ∈ Rnx , y ∈ Zny .

(MINLP)

where f : Rnx × Rny → R is the objective function and at least one of the constraints
g : Rnx × Rny → Rm or the objective function itself is nonlinear. MINLP models are
generally nonconvex due to the discrete nature of y and possible nonconvexity of f and
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g. Models in which f and gi, i = 1, . . . ,m, are convex, are denoted as convex MINLP
problems. We denote by (x∗, y∗) an optimal solution of the MINLP if it exists.

DICOPT (short for Discrete Continuous Optimizer) is an MINLP solver that has
been developed in 1988. It combines the outer-approximation method [11] with equality
relaxation and augmented penalty [23]. The algorithm decomposes the MINLP into
an NLP subproblem defined by fixing the discrete variables in the MINLP and a MIP
approximation defined by linearizations of the nonlinear functions in the MINLP. The
MIP and the NLP are solved alternately, whereby the MIP approximation provides values
for fixing the discrete variables in the NLP, and the NLP subproblem provides feasible
solutions to the MINLP and cutting planes to improve the MIP approximation. If the
MINLP is convex, then this MIP approximation is a relaxation of the MINLP (thus
providing a lower bound to its optimal value) and the NLP subproblems can be solved to
global optimality. By adding additional integer cut inequalities to the MIP approximation,
one can further ensure that any fixed values for the discrete variables are evaluated by
an NLP at most once. Therefore, for a convex MINLP, the stopping criterion is that the
bound defined by the objective of the last MIP master problem exceeds the objective
value of the best found solution [23].

For some problems, DICOPT has difficulty in finding a feasible solution. The main
reason for this is that by default, and to address nonconvex problems, DICOPT does not
include linearizations of nonlinearities from infeasible NLPs into the MIP. Instead, it only
excludes the infeasible fixed integer variables in the MIP and resolves it. Furthermore,
even if linearizations are included for infeasible NLPs, which is valid for convex MINLPs,
this issue persists in some problems. This behavior yields slow progress compared to the
case where feasible MINLP solutions are found early in the search.

In order to quickly find initial feasible solutions for convex MINLPs, an implementation
of a feasibility pump [6] has been incorporated into DICOPT as described in this paper.
The feasibility pump is similar to the outer-approximation algorithm, but its focus is on
finding feasible solutions. As with outer-approximation, the main idea of the feasibility
pump is to decompose the original MINLP problem into a MIP and a NLP. The MIP
problem yields solutions that satisfy integrality requirements (y ∈ Zny) but may violate
nonlinear constraints, while the NLP problems satisfy the constraints g(x, y) ≤ 0 but may
violate integrality requirements. In difference to outer-approximation, both MIP and NLP
are defined over relaxations of the feasible area of the original MINLP. By alternately
projecting onto the MIP and NLP relaxations, it is expected that a solution be obtained
that is feasible for both relaxations, and thus for the MINLP itself. The feasibility pump
can also be used as a standalone solver for convex MINLP problems including a bound
(cutoff-value) to the objective function, and iteratively applying the method. The bound
is obtained by the objective value of the best known solution and a desired ε-improvement.
This will result in finding an ε-global optimum of a convex MINLP [6]. The drawback of
this algorithm is that it may require many iterations, since only an ε-improvement of the
objective function is enforced at each iteration.

In this work, the feasibility pump is developed and applied in DICOPT before the
outer-approximation method is activated. In the feasibility pump, improvements in the
objective function are enforced at each iteration. After the method finishes, the cuts
that define the MIP relaxation of the feasibility pump and the best found solution are
passed on to the outer-approximation method to find and prove optimality. The described
extension of DICOPT has been available in GAMS1 since version 24.5. We present
computational results of the new method on a set of convex MINLP problems and show

1http://www.gams.com/latest/index.html
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that it outperforms the previous version of DICOPT.
This paper is organized as follows. Section 2 provides an overview of the outer-

approximation and the feasibility pump algorithms for convex MINLP problems. The
section also provides a brief introduction to hybrid algorithms that use parts of the two
algorithms described there. Section 3 describes the algorithms proposed in this work. This
algorithm uses the feasibility pump as initialization for DICOPT. An illustrative example
and computational results are presented in Section 4.

2. Background

In the following, we summarize the outer-approximation algorithm [11], the feasibility
pump algorithm [6], and a hybrid of both algorithms. These algorithms are intended to
solve problems of the form (MINLP). The following assumptions are made:

(A1) The set of constraints g(x, y) ≤ 0 includes lower and upper bounds for every integer
variable.

(A2) The constraint functions g(x, y) and the objective function f(x, y) are continuously
differentiable and convex with respect to variable bounds.

(A3) The continuous relaxation of the (MINLP) obtained by removing the integrality
requirement y ∈ Zny is bounded.

2.1 Outer-approximation algorithm

The outer-approximation algorithm was proposed by Duran and Grossmann in 1986
[11]. In the original version of the algorithm, the starting point was given by some fixed
values for the binary variables y. Viswanathan and Grossmann [23] proposed to solve the
continuous relaxation of the MINLP in the first iteration, which is obtained by relaxing
the integrality requirement on y,

min
x,y

f(x, y)

s.t. g(x, y) ≤ 0

x ∈ Rnx , y ∈ Rny .

(rMINLP)

If (rMINLP) is infeasible, then (MINLP) is also infeasible. Otherwise, let (x̄0, ȳ0) be a
solution to (rMINLP). If ȳ0 is integral, (x̄0, ȳ0) is an optimal solution to (MINLP) and
the algorithm stops.

If ȳ0 is not integral, a MIP relaxation of (MINLP) is constructed by means of linearizing
the nonlinear functions in g(x, y) by first-order Taylor series approximations, which, in the
case of convex functions, provide supporting hyperplanes [23]. Given a set of solutions x̄k,
k = 1, . . . , i− 1, the i-th MIP problem generated by the outer-approximation algorithm
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is as follows:

min
x,y

α

s.t. f(x̄k, ȳk) +∇f(x̄k, ȳk)>
(
x− x̄k
y − ȳk

)
≤ α, k = 0, . . . , i− 1,

gl(x̄
k, ȳk) +∇gl(x̄k, ȳk)>

(
x− x̄k
y − ȳk

)
≤ 0, l ∈ Lk, k = 0, . . . , i− 1,

‖y − ȳk‖1 ≥ 1, k ∈ Ci,

x ∈ Rnx , y ∈ Zny , α ∈ R

(MIPi)

where Lk ⊆ {1, . . . ,m} is a subset of constraints for which linearizations are included
(L0 = {1, . . . ,m}, typically) and Ci ⊆ {1, . . . , i − 1} is a subset of iterations in which
the so-called integer cut ‖y − ȳk‖1 is added [2](discussed below). Note, that due to
assumption (A1), the equation ‖y − ȳk‖1 ≥ 1 can be written in an equivalent linear form,
see Appendix A. (MIPi) is also called the master problem. We denote by (α̂i, x̂i, ŷi) a
solution for (MIPi), if feasible. Due to assumption (A2), the optimal value of (MIPi)
yields a lower bound to the optimal value of (MINLP), if Ci = ∅ (for now).

The solution of (MIPi) is used to define the following NLP subproblem of MINLP,
obtained by fixing the integer variables to ŷi:

min
x

f(x, ŷi)

s.t. g(x, ŷi) ≤ 0

x ∈ Rnx .

(NLPi)

Let x̄i be a solution to (NLPi), if feasible, and let ȳi := ŷi. Then (x̄i, ȳi) is a feasible point
to (MINLP) and provides an upper bound on its optimal value. If (NLPi) is not feasible,
then let (x̄i, s̄i) be a minimal infeasible solution to (NLPi), that is, a solution to the NLP

min
x,s

m∑
j=1

sj

s.t. g(x, ŷi)− s ≤ 0

x ∈ Rnx , s ∈ Rm
+ .

(NLP-feasi)

Note that adding linearization of gj(x, y) in (x̄i, ȳi) for those j ∈ {1, . . . ,m} with
gj(x̄

i, ȳi) > 0 to (MIPi) will eliminate (x̄i, ȳi) from its feasible set. However, there
may exist some other values of x for which (x, ȳi) is still feasible for (MIPi). Therefore,
one may, additionally or alternatively, add the integer-cut ‖y − ŷi‖1 ≥ 1 to (MIPi) to cut
off any point in Rnx × {ŷi}. Therefore, if only those iterations are included into Ci for
which (NLPi) is infeasible, then then optimal value of (MIPi) provides a lower bound to
the optimal value of (MINLP).

The outer-approximation algorithm is summarized in Algorithm 1. The NLP and MIP
problems are solved alternately until the gap between the bounds given by (NLPi) and
(MIPi) is less than the specified tolerance. It has been proved that this algorithm finds
the optimal solution of a convex MINLP in a finite number of iterations [11].
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Algorithm 1 Outer-approximation algorithm.

1: Set ZU =∞, ZL = −∞, i = 0 . Initialization
2: Define gap tolerance ε ≥ 0
3: Solve (rMINLP) . Solve initial relaxation
4: if (rMINLP) is infeasible then
5: Set ZL =∞ . (MINLP) is infeasible
6: else
7: Let (x̄0, ȳ0) be an optimal solution of (rMINLP)
8: Set ZL = f(x̄0, ȳ0)
9: Set L0 = {1, . . . ,m}, C0 = ∅

10: if ȳ0 ∈ Zny then
11: Set ZU = f(x̄0, ȳ0) and ŷ0 = ȳ0

12: while ZU − ZL > ε do
13: Set i = i+ 1
14: Solve (MIPi) . Solve master problem
15: if (MIPi) is infeasible then
16: Set ZL =∞ . (MINLP) is infeasible
17: else
18: Let (α̂i, x̂i, ŷi) be an optimal solution of (MIPi)
19: Set ZL = α̂i

20: Solve (NLPi) . Solve nonlinear subproblem
21: if (NLPi) is infeasible then
22: Solve (NLP-feasi)
23: Let (x̄i, s̄i) be an optimal solution of (NLP-feasi)
24: Set Ci+1 = Ci ∪ {i}
25: else
26: Let x̄i be an optimal solution of (NLPi)
27: Set Ci+1 = Ci

28: Set ZU = min(ZU , f(x̄i, ŷi))

29: Set Li = {j ∈ {1, . . . ,m} : gj(x̄
i, ŷi) ≥ 0 and gj is nonlinear}

30: (x̄i, ŷi) is an optimal solution of (MINLP), if ZU <∞, otherwise (MINLP) is infeasible

2.2 Outer-approximation in DICOPT

Outer-approximation is the main algorithm behind the solver DICOPT [15, 16, 23], which
has been developed in the late 1980’s by the research group of I.E. Grossmann at the
Engineering Research Design Center at Carnegie Mellon University. Since then, it has
been available in the commercial algebraic modeling system GAMS. DICOPT solves NLP
and MIP problems by means of other solvers that are available in GAMS and specialized
to these problem types.

As DICOPT is also intended as a heuristic for nonconvex MINLPs, the implementation
of the outer-approximation algorithm deviates slightly from Algorithm 1. The main
differences are:

• For nonconvex MINLPs, valid lower bounds and solving (NLPi) to global optimality are
not ensured. Therefore, by default DICOPT stops as soon as the upper bound ZU stops
improving. Although it is a heuristic, this stopping criterion has shown that in many
cases it yields optimal or near optimal integer solutions. However, for convex MINLP,
ZL and ZU yield valid lower and upper bounds on the optimal value of (MINLP) and
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(NLPi) is typically solved to global optimality. Therefore, closing the gap between these
bounds is a stopping criterion that ensures finding a global optimal solution in a finite
number of iterations. This can be enabled in DICOPT by setting the option stop to 1.

• If the NLP subproblem (NLPi) is infeasible, DICOPT by default adds only an integer cut
to eliminate the current fixing y = ŷi from (MIPi), but does not add the corresponding
linearizations of nonlinear functions, i.e., Li = ∅ if (NLPi) is infeasible in Line 29 of
Algorithm 1. This option is sufficient to avoid visiting the same solution point again and
improves the success rate on nonconvex MINLPs (where linearizations may not yield
supporting hyperplanes). However, it also yields slower progress as less information
is made available to the master problem. Thus, when solving a convex MINLP, these
valid linearizations should be added. This can be enabled in DICOPT by setting the
option infeasder.

• Also if the NLP subproblem (NLPi) is feasible, linearizations of nonlinear functions are
not added in their original form to (MIPi). Instead, they are added as soft-constraints,
that is, violation of these constraints is allowed but penalized in the objective function
(by default, a weight of 1000 is used) [23]. Also in the context of convex MINLP,
the penalty relaxation of linearizations is applied. Note, that the optimal value of
the modified master problem still provides a valid lower bound on the optimal value
of (MINLP) if the contribution of the penalty term is removed and termination is still
ensured due to the finite number of integer points y to be enumerated.

• Finally, for nonlinear equality constraints, DICOPT relaxes them as an inequalities
and adds its corresponding linearization in (MIPi). The dual multipliers in the solution
of (NLPi) are used to decide which direction to relax the inequalities [23]. For a convex
MINLP, such constraints do not appear.

2.3 Feasibility pump

The feasibility pump algorithm is a primal heuristic developed by Fischetti, Glover, and
Lodi to quickly find feasible solutions for MIPs where all integer variables are binaries [12].
Extensions and variations of the algorithm have been proposed, including an extension
to general integer variables [3]. Nowadays, many state-of-the-art commercial and non-
commercial MIP solvers feature implementations of the feasibility pump [3]. The first
extension of the feasibility pump algorithm to convex MINLP problems was introduced by
Bonami, Cornuéjols, Lodi, and Margot [6]. Subsequently, several authors have proposed
extensions to nonconvex MINLPs [4, 9], where the handling of the nonconvex nonlinear
constraints poses an additional challenge. The MINLP solvers BONMIN and Couenne
have implemented feasibility pump algorithms as primal heuristics [4, 6].

The main idea of this algorithm is to decompose the original mixed-integer problem into
two parts: integer feasibility and constraint feasibility. For convex MINLPs, a MIP is solved
to obtain a solution, which satisfies the integrality constraints on y, but may violate some
of the nonlinear constraints; next, by solving an NLP, a solution is computed that satisfies
the constraints (g(x, y) ≤ 0) but might again violate the integrality constraints on y. By
minimizing iteratively the distance between these two types of solutions, a solution that is
both constraint and integer feasible can be expected. The first iteration of the algorithm
proposed in [6] is the same as in outer-approximation, where the continuous relaxation
(rMINLP) of the original MINLP problem is solved. Following this, the next iteration
builds a MIP master problem with the outer-approximation linearization of the nonlinear
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constraints and a modified objective function called the Feasibility Outer-Approximation:

min
x,y

‖y − ȳi−1‖1

s.t. gl(x̄
k, ȳk) +∇gl(x̄k, ȳk)>

(
x− x̄k
y − ȳk

)
≤ 0, l ∈ Lk, k = 0, . . . , i− 1

x ∈ Rnx , y ∈ Zny

(FOAi)

where Lk ⊆ {1, . . . ,m} is chosen as in the outer-approximation algorithm, see Section 2.1.
The solution to this problem is denoted as (x̂i, ŷi). In (FOAi), the original objective
function has been replaced by the L1-distance of y to ȳi−1. In the first iteration, ȳ0

corresponds to the solution of the continuous relaxation (rMINLP) of (MINLP). However,
in the following iterations, ȳi−1 is given by the solution of the following nonlinear program
for the feasibility pump:

min
x,y

‖y − ŷi−1‖22

s.t. g(x, y) ≤ 0

x ∈ Rnx , y ∈ Rny

(FP-NLPi)

The solution of this problem is denoted as (x̄i, ȳi). If ȳi ∈ Zny , a feasible solution for
(MINLP) has been found.

To find further (and better) feasible solutions, the feasibility pump can be applied
iteratively, thereby excluding solutions for which the (linearized) objective function has a
worse value than the best known value. This is achieved by the following modification
to (FOAi):

min
x,y

‖y − ȳi−1‖1

s.t. f(x̄k, ȳk) +∇f(x̄k, ȳk)>
(
x− x̄k
y − ȳk

)
≤ α k = 0, ..., i− 1

gl(x̄
k, ȳk) +∇gl(x̄k, ȳk)>

(
x− x̄k
y − ȳk

)
≤ 0 l ∈ Lk, k = 0, ..., i− 1

α ≤ ZU − δ
x ∈ Rnx , y ∈ Zny , α ∈ R

(FP-OAi)

The variable α is initially unbounded (ZU =∞). When a new incumbent is found, ZU

is updated to the value of the original objective function in the incumbent. The small
positive constant δ ensures that the incumbent becomes infeasible in (FP-OAi) and
enforces the search for an improving solution.

The iterative feasibility pump algorithm is summarized in Algorithm 2. If (MINLP) is
feasible, the algorithm finds a δ-optimal solution.

3. Proposed Algorithm

While the main focus of the outer-approximation algorithm is to find a best possible
solution and proving its optimality, the feasibility pump algorithm mostly disregards the
original objective function and focuses primarily on simultaneously minimizing violation
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Algorithm 2 Feasibility pump algorithm.

1: Set ZU =∞, i = 0 . Initialization
2: Define zero tolerance ε ≥ 0
3: Define cutoff decrease δ ≥ 0
4: Solve (rMINLP) . Solve initial relaxation
5: if (rMINLP) is infeasible then
6: Stop . (MINLP) is infeasible

7: Let (x̄0, ȳ0) be an optimal solution of (rMINLP)
8: Set L0 = {1, . . . ,m}
9: if ȳ0 ∈ Zny then

10: Set ZU = f(x̄0, ȳ0) . Optimal solution found
11: else
12: Set i = 1
13: Solve (FP-OAi) . Solve feasibility OA problem
14: while (FP-OAi) is feasible do
15: Let (x̂i, ŷi) be an optimal solution of (FP-OAi)
16: Solve (FP-NLPi) . Solve nonlinear feasibility problem
17: Let (x̄i, ȳi) be an optimal solution of (FP-NLPi)
18: if ‖ȳi − ŷi‖ < ε then
19: Set ZU = f(x̄i, ȳi) . New incumbent solution

20: Set Li = {j ∈ {1, . . . ,m} : gj(x̄
i, ȳi) ≥ 0 and gj is nonlinear}

21: Set i = i+ 1
22: Solve (FP-OAi) . Solve feasibility OA problem

23: (x̄i, ŷi) is an optimal solution of (MINLP), if ZU <∞, otherwise (MINLP) is infeasible

of integrality and nonlinear constraints. Therefore, the outer-approximation algorithm
may be inefficient on problems where feasible solutions are difficult to find, while the
(iterative) feasibility pump algorithm may take long to find a (proven) optimal solution
on problems with many feasible points. To alleviate and explore the differences of these
algorithms, hybrid algorithms have been designed, the first one being in [6]. In this
variation of the outer-approximation algorithm, the feasibility pump algorithm is called
when the NLP subproblem (NLPi) is found to be infeasible. As the feasibility pump is
expected to quickly find (improved) feasible solutions, a two minutes and five iterations
limit was set for each call of the feasibility pump.

For DICOPT, we have implemented a variation of this hybrid algorithm. Instead of
starting the feasibility pump for one or several times within the outer-approximation
algorithm, we run the iterative feasibility pump once before the main outer-approximation
loop starts. Furthermore, we have slightly modified the feasibility pump algorithm as
stated in Section 2.3 in the following way.

A drawback of neglecting the original objective function in the feasibility pump algorithm
as stated in Section 2.3 is that although it may be successful in finding feasible solutions, the
quality of solutions in terms of the objective function value can be poor [1]. Therefore, as
in [6], after finding a feasible solution by means of solving (FP-NLPi), we try to improve
it further by solving the NLP subproblem obtained from fixing all integer variables
in (MINLP) to the values in the solution of (FP-NLPi) (that is, we solve (NLPi) with ŷi

replaced by ȳi). Another problem arises from the possibility of having several feasible
solutions with the same values in the integer variables. To avoid repeated evaluation
of the same values for y, we also add to (FP-OAi) an integer cut for every fixed y for
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which (NLPi) has been solved. Finally, we add the constraint f(x, y) ≤ ZU − δ̂|ZU | to
(FP-NLPi) in order to avoid non-improving solutions and replace an absolute cutoff δ by

a relative cutoff δ̂ in (FP-OAi).
When the feasibility pump terminates, the outer-approximation algorithm is initialized

not only by the best solution that the feasibility pump may have found, but also with the
linearizations and integer cuts that have been added to (FP-OAi). Thus, if the resulting
MIP relaxation (MIPi) is found to be infeasible by DICOPT, then this proves optimality
of the solution found by the feasibility pump.

Algorithm 3 Proposed algorithm.

1: Set ZU =∞, i = 0 . Initialization
2: Define zero tolerance ε ≥ 0
3: Define cutoff decrease δ̂ ≥ 0
4: Solve (rMINLP) . Solve initial relaxation
5: if (rMINLP) is infeasible then
6: Stop . (MINLP) is infeasible

7: Let (x̄0, ȳ0) be an optimal solution of (rMINLP)
8: Set L0 = {1, . . . ,m}, C0 = ∅
9: Set ZU = f(x̄0, ȳ0)

10: if ȳ0 ∈ Zny then
11: Set ZU = f(x̄0, ȳ0) . Optimal solution found
12: Stop

13: Set i = 1
14: Solve (FP-OAi) . Solve feasibility OA problem
15: while (FP-OAi) is feasible do
16: Let (x̂i, ŷi) be an optimal solution of (FP-OAi)
17: Solve (FP-NLPi) . Solve nonlinear feasibility problem
18: Let (x̄i, ȳi) be an optimal solution of (FP-NLPi)
19: if ‖ȳi − ŷi‖ < ε then
20: Solve (NLPi) . Solve nonlinear subproblem
21: Let x̄i be an optimal solution of (NLPi)
22: Set ZU = min(ZU , f(x̄i, ȳi)) . New incumbent solution
23: Set Ci+1 = Ci ∪ {i}
24: else
25: Set Ci+1 = Ci

26: Set Li = {j ∈ {1, . . . ,m} : gj(x̄
i, ȳi) ≥ 0 and gj is nonlinear}

27: Set i = i+ 1
28: Solve (FP-OAi) . Solve feasibility OA problem

29: Solve (MINLP) using DICOPT, initialized with incumbent solution (x̄i, ŷi), if ZU <∞,
and linearizations given by Li and the integer cuts given by Ci in the relaxation (MIPi).

A general outline of the proposed algorithm is given in Algorithm 3. It has been
implemented as part of the solver DICOPT and is available in GAMS since version 24.5.
To enable and adjust the algorithm, a number of options have been added, which are
summarized in Table 1. As DICOPT is often used for nonconvex MINLPs, see also the
discussion in Section 2.2, the default values for options convex and feaspump are 0.
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Table 1. Feasibility pump options in DICOPT

Option Description Default

convex If enabled, then the default values for the following
options are changed to be more appropriate for convex
MINLPs, see also Section 2.2: option step is set to 1,
option infeasder is set to 1, and option feaspump is
set to 1

0

feaspump Whether to run the feasibility pump 0
fp iterlimit Major iteration limit in the feasibility pump ∞
fp timelimit Time limit in the feasibility pump ∞
fp sollimit Limit on number of (improving) solutions found by

the feasibility pump
∞

fp stalllimit Limit on the number of consecutive iterations where
no improving solution is found

5

fp cutoffdecr Relative decrement of cutoff value for the objective
variable (δ̂)

0.1

fp acttol Tolerance on when a constraint is found active 10−6

fp projzerotol Tolerance on when to consider the optimal value of
(FP-NLPi) as zero

10−6

fp transfercuts Whether to transfer cuts from the feasibility pump
MIP to the DICOPT MIP (all except from the itera-
tion in which (FP-OAi) became infeasible)

1

4. Computational results

In the following, we evaluate the benefits of adding the feasibility pump to DICOPT on a
set of convex MINLPs selected from MINLPLib 2 (rev. 342, as of 14.2.2017)2 [21]. First,
we selected all instances that are marked as convex, have at least one binary or general
integer variable, no semicontinuous or semiinteger variables, and no special-ordered-sets.
This gives a set of 326 instances. Second, we run DICOPT with convex option enabled
and feasibility pump disabled and removed all instances for which DICOPT terminated
in less than one second. In this remaining set, there was still strong dominance of some
subsets of instances that were clearly derived from the same model (strong similarity in
name). Therefore, we reduced these subsets to the four largest instances. This leaves a
final set of 68 instances, which have their origin in a wide variety of applications, ranging
from process synthesis flowsheets, facilities layout problems, batch design with storage,
water treatment models, and investment portfolios. Appendix B provides this list of
instances.

For all the experiments, we have set a time limit of 1800 seconds and set the GAMS
gap tolerance (optcr) to 0. We used PAVER 2 [7] to help in the comparisons of various
test runs and GAMS/Examiner2 to check primal feasibility of the solutions returned by
the solvers. All runs were performed on a cluster of Dell PowerEdge M630 blades with
128 GB RAM, Intel Xeon E5-2690v4 CPUs running at 2.60 GHz, and Linux 4.4.0 (64bit).
GAMS 24.8.4 was used for all experiments. DICOPT 2 uses CPLEX 12.7.1.0 for solving
MIPs, and CONOPT 3.17C for solving NLPs.

2http://www.gamsworld.org/minlp/minlplib2/html/index.html

10

http://www.gamsworld.org/minlp/minlplib2/html/index.html


April 22, 2017 Optimization Methods & Software feaspump

Table 2. Results of the solution of the illustrative example o7 2 for each setting of DICOPT.

DICOPT w/o FP w/o FP w/ FP w/ FP
options w/o infeasder w/ infeasder w/o infeasder w/ infeasder

major iterations 6 8 2 2
feasible solutions found 0 1 5 5
FP iterations 0 0 10 10
FP time [s] 0 0 99.45 98.49
infeasible NLP 5 6 0 0
time to optimal sol. [s] – 547.77 184.42 182.85
solution time [s] 55.41* 839.97 427.25 425.26
final objective value – 116.94 116.94 116.94

*Time when the solver terminated due to an error.

4.1 Illustrative example

Before evaluating the performance of the new feasibility pump on the complete testset,
we discuss its behavior of a single instance. This instance’s application is the block layout
design problem with unequal areas. The original problem was proposed by Meller et al. [18]
and was reformulated by Castillo et al. [8] as a convex MINLP. This sort of problems
may be applied in piping design problems and in process plants layouts. The complete
formulation of this model is reported in [8]. The test case selected was the block layout
design problem of 7 departments and with an aspect ratio (the maximum permissible ratio
between its longest and shortest dimensions) of 5. The problem involves 211 constraints,
14 of them nonlinear, specifically signomial, and 114 variables, 42 of them binary. This
instance can be found in MINLPLib 2 under the name o7 23. The original authors of the
model used several MINLP solvers to find the optimal solution to this problem, among
them DICOPT. DICOPT performed very poorly because the linearizations in the initial
outer-approximation (MIPi) were not helpful and many nonlinear subproblems (NLPi)
are infeasible [8].

The given instance was tested using different options for DICOPT. The stopping criteria
for all the different options was the crossover between the objective values of the master
MIP problem and the NLP subproblem. The default setting for option infeasder requires
that if the nonlinear subproblem (NLPi) is infeasible, only a corresponding integer cut is
added to (MIPi). This approach, although rigourous for convex and non-convex MINLPs,
is not very efficient, particularly for this sort of problems where “a significant amount
of integer cuts may be required before a feasible solution is obtained” [8]. For convex
MINLPs another rigorous approach is to add linearization cuts if the nonlinear subproblem
is infeasible, using the solution of (NLP-feasi) as reference point. This can be enabled
by using the option infeasder. Note, that the setting of the infeasder option does not
influence the handling of infeasible NLPs within the feasibility pump. A comparison of
DICOPT on instance o7 2 with the feasibility pump and the infeasder option enabled
and disabled is given in Table 2.

We notice that DICOPT without feasibility pump and with infeasder disabled cannot
find a feasible solution within 30 minutes. In fact, the solver terminated with an error
when the optimal value of the master MIP problem (MIPi) that was solved unexpectedly
decreased (we are minimizing) after adding an integer cut. This issue was encountered
after 55 seconds of execution and was probably caused by numerical errors in the MIP

3http://www.gamsworld.org/minlp/minlplib2/html/o7_2.html
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subsolver4. During this time the solver performed 6 major iterations. That is, at each
iteration it solved a master MIP problem (MIPi) and an NLP subproblem (NLPi). All
NLP subproblems were infeasible.

Enabling the infeasder option, the problem could be solved in 840 seconds. During
this time, 5 out of the 7 solved NLP subproblems were infeasible. The only feasible
solution, found in the 7th iteration, was also an optimal solution to the problem. It
required another major iteration to prove its optimality. Notice that even after finding an
optimal solution, the next major iteration resulted in an infeasible NLP subproblem again,
something that did not happen while using the feasibility pump. The use of the feasibility
pump allowed the solver to find 4 feasible solutions in the first ≈ 100 seconds. After that,
a single major iteration was required to find an optimal solution, which required 183 and
184 seconds with and without the infeasder option, respectively. In that same major
iteration, optimality of the solution was proven. The results when using the feasibility
pump with and without the infeasder option are the same (except for variations in time
measurement) since none of the NLP subproblems (NLPi) in the outer-approximation
algorithm were infeasible.

These results highlight that first, enabling the infeasder option can be essential to
solving a problem or just finding a feasible solution. Second, the feasibility pump can
further improve the performance by finding feasible solutions early. That is, we obtained
a 66% reduction in the time needed to find an optimal solution to the problem, and a
49% reduction in the complete solution time by enabling the feasibility pump. It is also
interesting to note that when this problem is solved with AlphaECP it required 1363
seconds, with BONMIN 646 seconds, and with SCIP 946 seconds (see Table 5.

4.2 Feasibility pump alone

In the following, we consider the full test set of 68 instances. First, we run only our (iter-
ative) feasibility pump implementation with various settings, that is, without continuing
with the outer-approximation algorithm of DICOPT. In setting “default”, the feasibility
pump is run in its default settings, see Table 1, that is a stall limit of 5 and a cutoff
decrement of δ̂ = 0.1. In setting “stall10”, we increased the stall limit to 10. The setting
“findopt” targets on finding optimal solutions of the MINLP; that is, we disable the stall
limit and set the cutoff decrement to 0.

Figure 1 plots the primal gap of all runs where a feasible solution has been found and
Table 3 summarizes the results. Detailed results are given in Table C1. As primal gap, we
compute the relative distance between the objective function value of the best solution
found by the algorithm and the objective function value of the best known solution
reported in MINLPLib. We can observe that the feasibility pump in default settings
finds an optimal solution for 5 instances, good solutions (< 10% primal gap) for another
33 instances, and some feasible solutions (≥ 10% primal gap) for another 18 instances.
Increasing the stall limit helps on many of the instances where previously no or only bad
solutions were found. On instances where good solutions were already found in default
settings, increasing the stall limit has little effect, likely because the cutoff decrement δ̂
cuts off solutions that are only slightly better or optimal. By using the “findopt” setting,
however, the feasibility pump is able to find optimal solutions for many instances where
previously a small gap was remaining. However, there are also some instances where
the feasibility pump terminates with a solution worse than in default settings. This is

4With GAMS 24.8.3, using CPLEX 12.7.0.0, this failure did not occur. Instead, DICOPT terminated after 30

minutes without finding any feasible solution.
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Table 3. Results of running feasibility pump alone with different settings. For each setting, we show the number of
instances on which the feasibility pump hit the time limit, found an optimal solution (without necessarily proving

optimality), found a solution with primal gap ≤ 10%, and found any feasible solution, respectively.

setting timeout optimal good sol. feasible

default 0 5 38 56
stall10 2 5 52 63
findopt 35 45 55 64
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Figure 1. Primal gap of solutions found by feasibility pump (with different settings) for all instances in test set,

sorted by primal gap of “default” setting.

because by disabling the cutoff decrement, the feasibility pump searches less aggressively
for improving solutions.

For the runs with stall limit (“default” and “stall10”), the feasibility pump usually
terminates either when the MIP approximation (FP-OAi) becomes infeasible or the stall
limit is hit. In the “findopt” setting, however, 35 instances terminated when the time
limit of 1800 seconds was hit. Thus, the feasibility pump is not suited to prove optimality
of found solutions. This justifies the choice of the stall limit as stopping criterion.

4.3 DICOPT with feasibility pump

We have run DICOPT with the following settings: In the “DICOPT w/ FP” setting,
DICOPT was run with the convex option enabled, which also enables the feasibility pump.
In the “DICOPT w/o FP” setting, DICOPT was run with the convex option enabled, but
the feasibility pump disabled. In the “DICOPT w/ FP w/o OA init” setting, DICOPT
was run with the convex option enabled, but the transfer of cuts from the feasibility pump
MIP (FP-OAi) to the outer-approximation MIP (MIPi) has been disabled. Additionally,

13



April 22, 2017 Optimization Methods & Software feaspump

Table 4. Results of running DICOPT with different settings.

setting fail timeout optimal optimal w/ proof good sol.

DICOPT w/ FP 7 21 42 40 49
DICOPT w/o FP 10 21 40 37 44
FP only 1 35 45 32 55
DICOPT w/ FP w/o OA init 10 21 39 37 44
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Figure 2. Performance profile showing the number of instances solved to proven optimality (left) and where an

optimal solution has been found (right), respectively, with respect to solution time for various DICOPT settings.

with “FP only” we consider the results from running only the feasibility pump without
stall limit and cutoff decrement (“findopt” setting in Section 4.2).

Table 4 summarizes on how many instances out of 68 each setting yield an incorrect
result (claiming optimality for a non-optimal solution or returning a solution that is not
feasible), on how many instances it hit the time limit, for how many instances an optimal
solution was found, for how many instances optimality was proven, and for how many
instances a good solution was found (primal gap ≤ 10%). Detailed results are given in
Tables C2 and C3. The numbers show that adding the feasibility pump to DICOPT leads
to finding an optimal solution to two more instances than before and proving optimality
for three instances more than before. Running the feasibility pump alone increases the
number of found optimal solutions by another 3 and found good solutions by 6, but
considerably decreases the number of instances on which optimality is proven. Figure 2
shows performance profiles [10] comparing DICOPT with and without feasibility pump
and the feasibility pump alone. We see that enabling the feasibility pump leads to a small
performance loss with respect to solution time, but improvements in finding optimal
solutions and proving optimality. To conclude, using DICOPT with feasibility pump
shows to be a good compromise between finding good or optimal solutions and proving
optimality.

Figure 3 compares the runs of DICOPT with enabled or disabled initialization of the
outer-approximation MIP (MIPi) by cuts from the feasibility pump. Even though for
the same number of instances optimality is proved, the computing time is considerably
decreased by reusing the cuts from the feasibility pump.
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Figure 3. Performance profile showing the number of instances solved to proven optimality with respect to solving

time, with and without the initialization of (MIPi) with the cuts from the feasibility pump.

4.4 Comparison with other solvers

In the following, we compare the performance of DICOPT with some of the other
solvers for convex MINLP available in GAMS. We have run AlphaECP 2.10.06 [24] with
option ECPmaster set to 2 and TOLepsg set to 10−6. AlphaECP uses CPLEX 12.7.1.0
for MIP solves, and CONOPT 3.17C for NLP solves. It implements a variant of the
outer-approximation algorithm that requires less solutions of NLPs. Further, we have
run the B-Hyb algorithm of BONMIN 1.8 [5], which is variant of the branch-and-cut
algorithm by Quesada and Grossmann [19]. BONMIN uses Ipopt 3.12 (with MA27 as
linear solvers) for NLP solves and CPLEX 12.7.1.0 for MIP solves. Finally, we have run
SCIP 3.2 [22] with option constraints/nonlinear/assumeconvex enabled. This is a
branch-and-cut algorithm based solely on LP relaxations. SCIP uses CPLEX 12.7.1.0 for
LP solves and Ipopt 3.12 (with MA27 as linear solver) for NLP solves.

Table 5 reports on the number of instances each solver failed, run into the time limit,
find an optimal solution, prove optimality, and found a good solution (primal gap ≤ 10%).
Detailed results are given in Table C4. We see that on this testset, SCIP solves most
instances, followed by AlphaECP and DICOPT with feasibility pump. Further, especially
AlphaECP and SCIP succeed in finding good or optimal solutions to many instances.
DICOPT without feasibility pump finds good solutions on considerably fewer instances
than other solvers. Adding the feasibility pump reduces the distance, but having only one
primal heuristic does not seem sufficient.

Figure 4 shows a profile that compares the solvers performance with respect to proving
optimality. None of the solvers is fastest on a majority of instances, but SCIP is most
efficient, followed by the two variants of DICOPT.

5. Conclusions and perspectives

This paper has addressed the solution of convex MINLPs using the commercial solver
DICOPT. A modified iterative feasibility pump algorithm as a preprocessing for DICOPT
has been proposed and implemented. As seen in the illustrative example, DICOPT
in default settings has shown to perform poorly when the nonlinear subproblems are
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Table 5. Results from running various solvers.

setting fail timeout optimal optimal w/ proof good sol.

AlphaECP 2 26 50 40 58
BONMIN 9 24 38 34 53
DICOPT w/o FP 10 21 40 37 44
DICOPT w/ FP 7 21 42 40 49
SCIP 2 22 55 44 60
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Figure 4. Performance profile showing the number of instances solved to proven optimality with respect to solving
time for different solvers.

infeasible. Solving the illustrative example using DICOPT with the feasibility pump,
better performance in solution time and solution quality could be achieved. A key issue
to determine was when to stop the feasibility pump and start using DICOPT. As seen in
the results from Section 4.2, the feasibility pump is not efficient in proving optimality of
feasible solutions found, which validates the use of a stall limit as stopping criterion.

As seen in Figure 2, the use of the feasibility pump allows DICOPT to find better
solutions to convex MINLP problems. Taking into consideration that another algorithm
is run before passing the problem to DICOPT, the performance loss is marginal while
the improvement in the solution quality is considerable. The hypothesis that the outer-
approximation cuts generated while using the feasibility pump were useful for DICOPT
was confirmed, as seen in Figure 3. The proposed algorithm has shown better performance
than the original DICOPT without feasibility pump regarding solution quality, and has
similar performance regarding performance and stability. The proposed implementation
has been compared with the MINLP solvers AlphaECP, BONMIN, and SCIP. The latter
showed the best overall performance.

Further work to improve the feasibility pump implementation in DICOPT is motivated
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by the following observations. Achterberg and Bethold [1] proposed a modification to the
original algorithm that includes some information about the original objective function in
the objective function of the feasibility pump problems to mitigate the issue of finding poor
feasible solutions in terms of the original objective. Further, currently the feasibility pump
is only run at the beginning of DICOPT before the main loop of the outer-approximation
algorithm. It may be worth investigating a more extensive integration of the feasibility
pump into DICOPT, e.g., allowing it to be used also when infeasible NLP suproblems are
encountered in a similar manner as proposed by Bonami et al. [5]. Finally, the feasibility
pump implementation should be generalized to nonconvex MINLP problems. Several
authors have proposed such extensions [4, 9]. DICOPT itself already has heuristics to deal
with nonconvex MINLPs, see Section 2.2, which could be carried over to the feasibility
pump implementation.
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[6] P. Bonami, G. Cornuéjols, A. Lodi, and F. Margot, A Feasibility Pump for mixed integer nonlinear
programs, Mathematical Programming 119 (2009), pp. 331–352.

[7] M.R. Bussieck, S.P. Dirkse, and S. Vigerske, PAVER 2.0: an open source environment for automated
performance analysis of benchmarking data, Journal of Global Optimization 59 (2014), pp. 259–275.

[8] I. Castillo, J. Westerlund, S. Emet, and T. Westerlund, Optimization of block layout design prob-
lems with unequal areas: A comparison of MILP and MINLP optimization methods, Computers &
Chemical Engineering 30 (2005), pp. 54–69.

[9] C. D’Ambrosio, A. Frangioni, L. Liberti, and A. Lodi, A storm of feasibility pumps for nonconvex
MINLP, Mathematical Programming 136 (2012), pp. 375–402.
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Appendix A. Linearization of integer cut

For given bounds yL, yU ∈ Zny , yL ≤ yU , on the integer variables y and a point ȳ ∈ Zny ,
yL ≤ ȳ ≤ yU , consider the integer cut

‖y − ȳ‖1 ≥ 1. (A1)

A linear formulation of (A1) is easily found if ȳj ∈ {yLj , yUj } for every j ∈ J := {1, . . . , ny}.
Thus, for the specific case of binary variables only, i.e., yLj = 0, yUj = 1, j ∈ J , an (A1)
simplifies to ∑

j∈JL

yj −
∑
j∈JU

(1− yj) ≥ 1.

In the general case, we partition the set J into

JL = {j ∈ J : ȳj = yLj },
JU = {j ∈ J : ȳj = yUj },
JM = J \ (JL ∪ JU ).

Using this set partition, the absolute difference of the variables with given solution can
be expressed as a sum of three terms. In case the variables is at its lower bound, the
variable will alway be greater than that bound, and therefore the contraint get reduce to
the positive difference (yj − yLj ). The contrary case is given for those variables in their

upper bound, where the absolute difference reduces to (yUj − yj). The the integer cut (A1)
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can be written as ∑
j∈JL

(yj − yLj ) +
∑
j∈JU

(yUj − yj) +
∑
j∈JM

|yj − ȳj | ≥ 1.

For every j ∈ JM , we introduce a binary variable vj , which determines whether the
variable yj is greater than or less than ȳj , and a positive continuous variable wj to
represent the value |yj − ȳj |. This can be expressed using the following disjunction:[

vj = 0
yj ≤ ȳj

wj = ȳj − yj

]
∨

[
vj = 1
yj ≥ ȳj

wj = yj − ȳj

]
,

This disjunction can be reformulated into a mixed-integer linear form, which yields the
following reformulation of (A1):∑

j∈JL

(yj − yLj ) +
∑
j∈JU

(yUj − yj) +
∑
j∈JM

wj ≥ 1

− wj ≤ yj − ȳj ≤ wj j ∈ JM

wj ≤ yj − ȳj +M1
j (1− vj) j ∈ JM

wj ≤ ȳj − yj +M2
j vj j ∈ JM

wj ≥ 0 j ∈ JM

vj ∈ {0, 1} j ∈ JM

To avoid weak relaxations, the big-M constants M1
j and M2

j should be chosen as small as
possible and such that

yj − ȳj +M1
j ≥ wj = ȳj − yj ∀yj ∈ [yLj , ȳj ] (case vj = 0→ yj ≤ ȳj)

ȳj − yj +M2
j ≥ wj = yj − ȳj ∀yj ∈ [ȳj , y

U
j ] (case vj = 1→ yj ≥ ȳj)

Thus, M1
j = 2(ȳj − yLj ) and M2

j = 2(yUj − ȳj).

Appendix B. Test Set

Table B1 details the selected set of instances. For each instance, we show the number of
variables (nx + ny), the number of binary variables (nbin

y ), the number of general integer

variables (nint
y ), the number of constraint functions (m, excluding bound constraints),

and the number of nonlinear functions in objective and constraints (mnl).

Appendix C. Detailed Results

In the following, we present detailed results for the computations from Section 4 above.
Tables C1, C2, C3, and C4 report detailed data about the comparison of the feasibility
pump settings, the runs of DICOPT with and without feasibility pump, the evaluation of
initializing (MIPi), and the comparison with other solvers, respectively. For each instance,
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we provide the primal gap and gap at termination and the solvers running time. For the
feasibility pump comparison in Table C1, the gap is omitted, as it is not available.
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Table B1. List of instances in convex MINLP test set.

Instance nx + ny nbin
y nint

y m mnl

batch 46 24 0 73 2
batchs101006m 278 129 0 1019 2
batchs121208m 406 203 0 1511 2
batchs151208m 445 203 0 1781 2
batchs201210m 558 251 0 2327 2
clay0205m 80 50 0 135 40
clay0303m 33 21 0 66 36
clay0304m 56 36 0 106 48
clay0305m 85 55 0 155 60
du-opt 20 0 13 9 1
flay05h 382 40 0 465 5
flay05m 62 40 0 65 5
flay06h 566 60 0 693 6
flay06m 86 60 0 93 6
fo7 114 42 0 211 14
fo7 2 114 42 0 211 14
fo8 146 56 0 273 16
fo9 182 72 0 343 18
fo9 ar2 1 180 0 72 435 18
fo9 ar3 1 180 0 72 435 18
fo9 ar4 1 180 0 72 435 18
fo9 ar5 1 180 0 72 435 18
gams01 145 110 0 1268 111
ibs2 3010 1500 0 1821 10
m7 ar2 1 112 0 42 269 14
m7 ar3 1 112 0 42 269 14
m7 ar5 1 112 0 42 269 14
netmod dol1 1998 462 0 3137 1
netmod dol2 1998 462 0 3080 1
netmod kar1 456 136 0 666 1
netmod kar2 456 136 0 666 1
no7 ar2 1 112 0 42 269 14
no7 ar3 1 112 0 42 269 14
no7 ar4 1 112 0 42 269 14
no7 ar5 1 112 0 42 269 14
o7 114 42 0 211 14
o7 2 114 42 0 211 14
o7 ar25 1 112 0 42 269 14
o7 ar5 1 112 0 42 269 14
o8 ar4 1 144 0 56 347 16
o9 ar4 1 180 0 72 435 18
portfol classical050 1 150 50 0 103 1
portfol classical200 2 600 200 0 403 1
rsyn0830m04h 2344 496 0 4236 80
rsyn0830m04m 1240 496 0 3192 80
rsyn0840m04h 2720 576 0 4980 112
rsyn0840m04m 1440 576 0 3728 112
slay09h 810 144 0 1044 1
slay09m 234 144 0 324 1
slay10h 1010 180 0 1305 1
slay10m 290 180 0 405 1
squfl020-150 3020 20 0 3150 1
squfl030-100 3030 30 0 3100 1
squfl030-150 4530 30 0 4650 1
squfl040-080 3240 40 0 3280 1
sssd18-08 200 168 0 82 24
sssd20-08 216 184 0 84 24
sssd22-08 232 200 0 86 24
sssd25-08 256 224 0 89 24
stockcycle 480 432 0 97 1
syn40m03h 1146 240 0 1998 84
syn40m04h 1528 320 0 2904 112
tls12 812 656 12 384 12
tls5 161 131 5 90 5
tls6 215 173 6 120 6
tls7 345 289 7 154 7
watercontamination0303 107222 14 0 108217 1
watercontamination0303r 384 14 0 556 1
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Table C1. Detailed solving data for the comparison from Section 4.2.

default findopt stall10
Instance prim.gap time prim.gap time prim.gap time

batch 6.5 0.2 0.0 0.3 6.5 0.2
batchs101006m 5.8 1.3 0.0 6.1 5.8 1.2
batchs121208m 9.1 2.4 0.0 16.1 9.1 2.4
batchs151208m 3.3 3.1 0.0 19.2 3.3 3.2
batchs201210m 9.0 0.8 0.0 34.2 9.0 0.7
clay0205m 65.5 0.4 0.0 7.5 6.6 1.5
clay0303m ∞ 0.2 0.0 1.0 3.3 0.6
clay0304m ∞ 0.2 0.0 4.1 32.4 0.9
clay0305m 79.3 0.4 0.0 10.5 1.1 1.1
du-opt 1.5 0.3 0.0 50.9 1.5 0.3
flay05h 5.0 1.9 0.0 458.9 5.0 25.7
flay05m 0.0 0.3 0.0 358.5 0.0 2.6
flay06h 3.2 49.3 0.0 1800.1 3.2 397.0
flay06m 0.0 0.6 0.0 1800.0 0.0 43.8
fo7 5.1 10.1 0.0 67.9 5.1 10.0
fo7 2 0.0 8.9 0.0 23.3 0.0 8.9
fo8 31.1 21.5 0.0 1800.1 8.8 52.3
fo9 ∞ 1.7 36.5 1800.2 3.7 75.0
fo9 ar2 1 0.6 75.1 21.9 1800.4 0.6 75.5
fo9 ar3 1 6.6 17.7 34.1 1800.4 6.6 17.6
fo9 ar4 1 ∞ 1.7 3.7 1800.1 9.8 18.8
fo9 ar5 1 5.4 83.0 12.6 1800.8 5.4 83.5
gams01 4.9 7.6 0.0 1800.5 4.9 22.1
ibs2 ∞ 42.1 ∞ 1811.6 ∞ 46.5
m7 ar2 1 6.2 4.8 0.0 11.4 6.2 4.8
m7 ar3 1 0.0 8.4 0.0 1800.7 0.0 8.4
m7 ar5 1 0.0 1.3 0.0 510.9 0.0 1.3
netmod dol1 ∞ 19.0 0.0 1800.1 2.5 113.1
netmod dol2 6.0 28.2 0.0 162.9 6.0 53.4
netmod kar1 13.4 3.7 0.0 47.5 2.4 8.4
netmod kar2 13.4 3.7 0.0 47.5 2.4 8.4
no7 ar2 1 0.0 20.1 12.3 1800.3 0.0 20.4
no7 ar3 1 0.1 15.9 0.0 1800.3 0.1 16.0
no7 ar4 1 8.7 149.1 17.1 1800.5 8.7 151.6
no7 ar5 1 8.4 176.5 8.0 1800.4 8.4 176.5
o7 12.2 177.9 – – 2.2 459.6
o7 2 3.4 98.6 0.0 1229.6 3.4 98.7
o7 ar25 1 4.0 151.6 0.0 1800.2 4.0 151.5
o7 ar5 1 8.9 183.3 6.2 1800.4 8.9 183.8
o8 ar4 1 13.6 644.7 6.2 1800.3 4.2 1710.0
o9 ar4 1 ∞ 1.6 9.2 1800.4 9.6 1800.4
portfol classical050 1 7.6 1.3 0.0 1800.0 7.6 1.8
portfol classical200 2 ∞ 3.2 6.4 1800.2 19.4 10.9
rsyn0830m04h 2.2 10.4 0.0 31.0 2.2 10.3
rsyn0830m04m 7.6 81.1 0.0 367.5 7.6 81.2
rsyn0840m04h 2.8 11.1 0.0 55.2 2.8 11.4
rsyn0840m04m 5.9 25.8 0.0 1090.8 5.9 25.8
slay09h 16.6 11.3 0.0 1800.2 7.1 14.1
slay09m 10.9 2.7 0.0 847.8 1.0 3.4
slay10h 41.8 4.9 0.0 1800.5 12.8 27.7
slay10m 13.8 2.1 0.0 1450.5 13.8 2.8
squfl020-150 18.5 15.2 0.0 1800.8 18.5 23.8
squfl030-100 29.4 16.1 6.3 1800.5 29.4 24.0
squfl030-150 27.1 52.0 7.3 1801.4 15.8 88.9
squfl040-080 38.0 13.2 0.0 1800.6 38.0 20.2
sssd18-08 3.4 1.4 0.0 1800.8 3.4 1.4
sssd20-08 4.0 27.7 0.0 508.2 4.0 27.6
sssd22-08 4.7 100.5 0.0 244.3 4.7 99.8
sssd25-08 2.1 2.6 0.0 530.4 2.1 2.5
stockcycle 27.9 3.4 0.2 1800.1 16.1 5.3
syn40m03h 8.2 3.6 0.0 12.4 8.2 3.7
syn40m04h 8.2 2.3 0.0 14.3 8.2 2.3
tls12 ∞ 251.5 ∞ 1800.4 ∞ 1800.4
tls5 ∞ 2.0 10.4 1800.1 ∞ 9.3
tls6 ∞ 12.0 10.5 1800.1 ∞ 51.8
tls7 ∞ 14.4 ∞ 1800.1 ∞ 35.2
watercontamination0303 67.0 137.8 0.0 421.9 48.5 271.3
watercontamination0303r 91.8 3.0 85.6 1800.4 91.8 3.6
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Table C2. Detailed solving data for the comparison of DICOPT with and without feasibility pump from Sec-

tion 4.3.

DICOPT w/ FP DICOPT w/o FP FP only
Instance p.gap gap time p.gap gap time p.gap gap time

batch 0.0 0.0 0.3 0.0 0.0 0.1 0.0 0.0 0.3
batchs101006m 0.0 0.0 3.4 0.0 0.0 4.7 0.0 0.0 6.1
batchs121208m 0.0 0.0 5.7 0.0 0.0 3.9 0.0 0.0 16.1
batchs151208m 0.0 0.0 10.4 0.0 0.0 8.3 0.0 0.0 19.2
batchs201210m 0.0 0.0 8.2 0.0 0.0 7.9 0.0 0.0 34.2
clay0205m – – – – – – 0.0 0.0 7.5
clay0303m 0.0 0.0 9.5 0.0 0.0 374.2 0.0 0.0 1.0
clay0304m 0.0 68.6 1800.1 31.9 85.9 1800.0 0.0 0.0 4.1
clay0305m – – – – – – 0.0 0.0 10.5
du-opt 0.0 0.0 7.5 0.0 0.0 9.0 0.0 0.0 50.9
flay05h 0.0 0.0 608.4 0.0 0.0 520.7 0.0 0.0 458.9
flay05m 0.0 0.0 192.8 0.0 0.0 212.2 0.0 0.0 358.5
flay06h 0.0 2.8 1800.0 0.0 2.1 1800.0 0.0 ∞ 1800.1
flay06m 0.0 1.0 1800.0 0.0 0.8 1800.0 0.0 ∞ 1800.0
fo7 0.0 0.0 50.0 0.0 0.0 51.2 0.0 0.0 67.9
fo7 2 0.0 0.0 14.6 0.0 0.0 7.9 0.0 0.0 23.3
fo8 0.0 0.0 110.8 0.0 0.0 98.8 0.0 ∞ 1800.1
fo9 0.0 0.0 356.2 0.0 0.0 209.3 36.5 ∞ 1800.2
fo9 ar2 1 0.0 0.0 958.3 0.0 0.0 724.9 21.9 ∞ 1800.4
fo9 ar3 1 0.0 0.0 38.7 0.0 0.0 48.6 34.1 ∞ 1800.4
fo9 ar4 1 0.0 0.0 47.4 0.0 0.0 69.7 3.7 ∞ 1800.1
fo9 ar5 1 0.0 0.0 175.7 0.0 0.0 584.2 12.6 ∞ 1800.8
gams01 4.9 ∞ 1800.0 ∞ ∞ 1800.0 0.0 ∞ 1800.5
ibs2 77.1 77.2 1800.0 73.2 73.2 1800.0 ∞ ∞ 1811.6
m7 ar2 1 0.0 0.0 6.7 0.0 0.0 4.6 0.0 0.0 11.4
m7 ar3 1 0.0 0.0 9.5 0.0 0.0 4.8 0.0 ∞ 1800.7
m7 ar5 1 0.0 0.0 2.9 0.0 0.0 1.5 0.0 0.0 510.9
netmod dol1 8.5 21.5 1800.0 8.5 21.5 1800.0 0.0 ∞ 1800.1
netmod dol2 0.0 0.0 167.0 – – – 0.0 0.0 162.9
netmod kar1 0.0 0.0 53.2 0.0 0.0 60.5 0.0 0.0 47.5
netmod kar2 0.0 0.0 52.6 0.0 0.0 60.4 0.0 0.0 47.5
no7 ar2 1 – – – – – – 12.3 ∞ 1800.3
no7 ar3 1 – – – – – – 0.0 ∞ 1800.3
no7 ar4 1 0.0 0.0 215.5 0.0 0.0 198.8 17.1 ∞ 1800.5
no7 ar5 1 0.0 0.0 231.7 0.0 0.0 140.5 8.0 ∞ 1800.4
o7 0.0 0.5 1800.0 0.0 0.4 1800.0 – – –
o7 2 0.0 0.0 420.6 0.0 0.0 834.3 0.0 0.0 1229.6
o7 ar25 1 0.0 0.0 526.1 0.0 0.0 345.7 0.0 ∞ 1800.2
o7 ar5 1 0.0 0.0 384.0 0.0 0.0 636.1 6.2 ∞ 1800.4
o8 ar4 1 13.6 ∞ 1800.0 ∞ ∞ 1800.0 6.2 ∞ 1800.3
o9 ar4 1 ∞ ∞ 1800.0 ∞ ∞ 1800.0 9.2 ∞ 1800.4
portfol classical050 1 0.5 3.4 1800.0 0.2 3.3 1800.0 0.0 ∞ 1800.0
portfol classical200 2 8.6 19.3 1800.0 7.1 17.9 1800.1 6.4 ∞ 1800.2
rsyn0830m04h 0.0 0.0 11.3 0.0 0.0 4.0 0.0 0.0 31.0
rsyn0830m04m 0.0 0.0 89.0 0.0 0.0 10.5 0.0 0.0 367.5
rsyn0840m04h 0.0 0.0 11.5 0.0 0.0 4.1 0.0 0.0 55.2
rsyn0840m04m 0.0 0.0 29.7 – – – 0.0 0.0 1090.8
slay09h 0.0 0.0 157.3 0.0 0.0 69.3 0.0 ∞ 1800.2
slay09m 0.0 0.0 27.3 0.0 0.0 27.9 0.0 0.0 847.8
slay10h 0.0 0.7 1800.0 0.0 0.6 1800.0 0.0 ∞ 1800.5
slay10m 0.0 0.0 1283.8 0.0 0.0 961.8 0.0 0.0 1450.5
squfl020-150 18.5 64.8 1800.0 20.9 65.8 1800.0 0.0 ∞ 1800.8
squfl030-100 22.7 70.5 1800.0 22.7 70.5 1800.0 6.3 ∞ 1800.5
squfl030-150 27.1 72.5 1800.1 35.1 75.6 1800.1 7.3 ∞ 1801.4
squfl040-080 26.1 71.8 1800.0 17.7 68.6 1800.0 0.0 ∞ 1800.6
sssd18-08 0.0 0.0 297.2 – – – 0.0 ∞ 1800.8
sssd20-08 – – – – – – 0.0 0.0 508.2
sssd22-08 – – – – – – 0.0 0.0 244.3
sssd25-08 0.0 0.0 40.5 0.0 0.0 91.7 0.0 0.0 530.4
stockcycle 15.6 17.1 1800.0 42.6 43.6 1800.0 0.2 ∞ 1800.1
syn40m03h 0.0 0.0 3.8 0.0 0.0 1.6 0.0 0.0 12.4
syn40m04h – – – – – – 0.0 0.0 14.3
tls12 ∞ ∞ 1802.2 ∞ ∞ 1815.0 ∞ ∞ 1800.4
tls5 ∞ ∞ 1800.0 ∞ ∞ 1800.0 10.4 ∞ 1800.1
tls6 ∞ ∞ 1800.0 ∞ ∞ 1800.0 10.5 ∞ 1800.1
tls7 ∞ ∞ 1801.0 ∞ ∞ 1800.0 ∞ ∞ 1800.1
watercontamination0303 0.0 0.0 224.5 0.0 0.0 126.9 0.0 0.0 421.9
watercontamination0303r 0.0 0.0 29.2 0.0 0.0 25.1 85.6 ∞ 1800.4
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Table C3. Detailed solving data for the evaluation of initializing (MIPi) in Section 4.3.

DICOPT w/ FP DICOPT w/ FP w/o OA init
Instance p.gap gap time p.gap gap time

batch 0.0 0.0 0.3 0.0 0.0 0.3
batchs101006m 0.0 0.0 3.4 0.0 0.0 5.9
batchs121208m 0.0 0.0 5.7 0.0 0.0 6.1
batchs151208m 0.0 0.0 10.4 0.0 0.0 11.3
batchs201210m 0.0 0.0 8.2 0.0 0.0 8.4
clay0205m – – – – – –
clay0303m 0.0 0.0 9.5 0.0 0.0 374.5
clay0304m 0.0 68.6 1800.1 31.9 85.9 1800.0
clay0305m – – – – – –
du-opt 0.0 0.0 7.5 0.0 0.0 9.3
flay05h 0.0 0.0 608.4 0.0 0.0 522.3
flay05m 0.0 0.0 192.8 0.0 0.0 210.9
flay06h 0.0 2.8 1800.0 0.0 3.5 1800.0
flay06m 0.0 1.0 1800.0 0.0 0.8 1800.0
fo7 0.0 0.0 50.0 0.0 0.0 61.3
fo7 2 0.0 0.0 14.6 0.0 0.0 16.8
fo8 0.0 0.0 110.8 0.0 0.0 120.7
fo9 0.0 0.0 356.2 0.0 0.0 212.0
fo9 ar2 1 0.0 0.0 958.3 0.0 0.0 793.3
fo9 ar3 1 0.0 0.0 38.7 0.0 0.0 65.8
fo9 ar4 1 0.0 0.0 47.4 0.0 0.0 71.6
fo9 ar5 1 0.0 0.0 175.7 0.0 0.0 665.3
gams01 4.9 ∞ 1800.0 4.9 ∞ 1800.0
ibs2 77.1 77.2 1800.0 73.2 73.2 1800.0
m7 ar2 1 0.0 0.0 6.7 0.0 0.0 9.3
m7 ar3 1 0.0 0.0 9.5 0.0 0.0 13.1
m7 ar5 1 0.0 0.0 2.9 0.0 0.0 2.8
netmod dol1 8.5 21.5 1800.0 8.5 21.5 1800.0
netmod dol2 0.0 0.0 167.0 – – –
netmod kar1 0.0 0.0 53.2 0.0 0.0 64.0
netmod kar2 0.0 0.0 52.6 0.0 0.0 64.0
no7 ar2 1 – – – – – –
no7 ar3 1 – – – – – –
no7 ar4 1 0.0 0.0 215.5 0.0 0.0 346.8
no7 ar5 1 0.0 0.0 231.7 0.0 0.0 316.8
o7 0.0 0.5 1800.0 12.2 12.8 1800.0
o7 2 0.0 0.0 420.6 0.0 0.0 936.8
o7 ar25 1 0.0 0.0 526.1 0.0 0.0 496.9
o7 ar5 1 0.0 0.0 384.0 0.0 0.0 814.1
o8 ar4 1 13.6 ∞ 1800.0 13.6 19.5 1800.0
o9 ar4 1 ∞ ∞ 1800.0 ∞ ∞ 1800.0
portfol classical050 1 0.5 3.4 1800.0 0.2 3.3 1800.0
portfol classical200 2 8.6 19.3 1800.0 7.1 17.9 1800.1
rsyn0830m04h 0.0 0.0 11.3 0.0 0.0 11.5
rsyn0830m04m 0.0 0.0 89.0 0.0 0.0 91.3
rsyn0840m04h 0.0 0.0 11.5 0.0 0.0 11.8
rsyn0840m04m 0.0 0.0 29.7 – – –
slay09h 0.0 0.0 157.3 0.0 0.0 80.4
slay09m 0.0 0.0 27.3 0.0 0.0 30.3
slay10h 0.0 0.7 1800.0 0.0 0.6 1800.0
slay10m 0.0 0.0 1283.8 0.0 0.0 959.0
squfl020-150 18.5 64.8 1800.0 18.5 64.7 1800.0
squfl030-100 22.7 70.5 1800.0 22.7 70.5 1800.0
squfl030-150 27.1 72.5 1800.1 27.1 72.7 1800.1
squfl040-080 26.1 71.8 1800.0 26.7 72.1 1800.0
sssd18-08 0.0 0.0 297.2 – – –
sssd20-08 – – – – – –
sssd22-08 – – – – – –
sssd25-08 0.0 0.0 40.5 0.0 0.0 93.8
stockcycle 15.6 17.1 1800.0 27.9 29.1 1800.0
syn40m03h 0.0 0.0 3.8 0.0 0.0 4.4
syn40m04h – – – – – –
tls12 ∞ ∞ 1802.2 ∞ ∞ 1810.9
tls5 ∞ ∞ 1800.0 ∞ ∞ 1800.0
tls6 ∞ ∞ 1800.0 ∞ ∞ 1800.0
tls7 ∞ ∞ 1801.0 ∞ ∞ 1800.0
watercontamination0303 0.0 0.0 224.5 0.0 0.0 223.2
watercontamination0303r 0.0 0.0 29.2 0.0 0.0 27.8
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Table C4. Detailed solving data for the comparison of the different MINLP solvers in Section 4.4.
AlphaECP BONMIN DICOPT w/ FP DICOPT w/o FP SCIP

Instance p.gap gap time p.gap gap time p.gap gap time p.gap gap time p.gap gap time

batch 0.0 0.0 0.8 0.0 0.0 0.1 0.0 0.0 0.3 0.0 0.0 0.1 0.0 0.0 0.2
batchs101006m 0.0 0.0 15.7 0.0 0.0 15.7 0.0 0.0 3.4 0.0 0.0 4.7 0.0 0.0 7.5
batchs121208m 0.0 0.0 78.6 0.0 0.0 24.9 0.0 0.0 5.7 0.0 0.0 3.9 0.0 0.0 13.8
batchs151208m – – – 0.0 0.0 33.5 0.0 0.0 10.4 0.0 0.0 8.3 0.0 0.0 16.0
batchs201210m 0.0 0.0 122.9 0.0 0.0 66.0 0.0 0.0 8.2 0.0 0.0 7.9 0.0 0.0 18.0
clay0205m 0.0 0.0 20.1 0.0 0.0 14.2 – – – – – – 0.0 0.0 7.6
clay0303m 0.0 0.0 4.1 0.0 0.0 6.2 0.0 0.0 9.5 0.0 0.0 374.2 0.0 0.0 1.8
clay0304m 0.0 0.0 13.5 0.0 0.0 156.5 0.0 68.6 1800.1 31.9 85.9 1800.0 0.0 0.0 5.0
clay0305m 0.0 0.0 31.6 0.0 0.0 19.0 – – – – – – 0.0 0.0 15.7
du-opt 0.0 0.0 44.1 – – – 0.0 0.0 7.5 0.0 0.0 9.0 0.0 0.0 1.5
flay05h 0.0 10.8 1802.0 0.0 0.0 374.6 0.0 0.0 608.4 0.0 0.0 520.7 0.0 0.0 212.2
flay05m 0.0 2.9 1802.0 0.0 0.0 99.0 0.0 0.0 192.8 0.0 0.0 212.2 0.0 0.0 70.3
flay06h 0.0 3.8 1802.2 0.0 6.4 1840.8 0.0 2.8 1800.0 0.0 2.1 1800.0 0.0 10.1 1800.0
flay06m 0.0 4.3 1802.0 0.0 9.3 1841.8 0.0 1.0 1800.0 0.0 0.8 1800.0 – – –
fo7 0.0 0.0 198.3 0.0 0.0 102.2 0.0 0.0 50.0 0.0 0.0 51.2 0.0 0.0 104.7
fo7 2 0.0 0.0 18.3 0.0 0.0 70.2 0.0 0.0 14.6 0.0 0.0 7.9 0.0 0.0 31.8
fo8 0.0 0.0 691.7 0.0 0.0 181.1 0.0 0.0 110.8 0.0 0.0 98.8 0.0 0.0 300.0
fo9 0.0 0.0 725.3 0.0 0.0 826.7 0.0 0.0 356.2 0.0 0.0 209.3 0.0 29.0 1800.0
fo9 ar2 1 0.0 0.0 1620.1 0.0 9.7 1813.0 0.0 0.0 958.3 0.0 0.0 724.9 0.0 0.0 1057.2
fo9 ar3 1 0.0 0.0 749.3 0.0 0.0 851.7 0.0 0.0 38.7 0.0 0.0 48.6 0.0 0.0 64.9
fo9 ar4 1 0.0 0.0 457.9 0.0 0.0 652.5 0.0 0.0 47.4 0.0 0.0 69.7 0.0 0.0 717.8
fo9 ar5 1 0.0 0.0 1696.8 0.0 0.0 574.6 0.0 0.0 175.7 0.0 0.0 584.2 0.0 0.0 1249.3
gams01 24.8 ∞ 1802.5 6.1 93.8 1801.7 4.9 ∞ 1800.0 ∞ ∞ 1800.0 0.6 93.7 1800.0
ibs2 74.6 ∞ 1802.0 ∞ ∞ nan 77.1 77.2 1800.0 73.2 73.2 1800.0 0.3 33.3 1800.0
m7 ar2 1 0.0 0.0 12.9 0.0 0.0 53.2 0.0 0.0 6.7 0.0 0.0 4.6 0.0 0.0 6.6
m7 ar3 1 0.0 0.0 6.6 0.0 0.0 43.8 0.0 0.0 9.5 0.0 0.0 4.8 0.0 0.0 10.3
m7 ar5 1 0.0 0.0 3.8 0.0 0.0 136.4 0.0 0.0 2.9 0.0 0.0 1.5 0.0 0.0 9.8
netmod dol1 8.5 27.2 1802.0 – – – 8.5 21.5 1800.0 8.5 21.5 1800.0 0.0 9.8 1800.0
netmod dol2 0.0 0.0 279.5 – – – 0.0 0.0 167.0 – – – 0.0 0.0 36.9
netmod kar1 0.0 0.0 71.5 – – – 0.0 0.0 53.2 0.0 0.0 60.5 0.0 0.0 3.0
netmod kar2 0.0 0.0 71.7 – – – 0.0 0.0 52.6 0.0 0.0 60.4 0.0 0.0 3.0
no7 ar2 1 0.0 0.0 88.0 0.0 0.0 220.7 – – – – – – 0.0 0.0 46.8
no7 ar3 1 0.0 0.0 346.5 0.0 0.0 224.9 – – – – – – 0.0 0.0 221.6
no7 ar4 1 0.0 0.0 404.3 0.0 0.0 172.0 0.0 0.0 215.5 0.0 0.0 198.8 0.0 0.0 150.2
no7 ar5 1 0.0 0.0 234.1 0.0 0.0 96.7 0.0 0.0 231.7 0.0 0.0 140.5 0.0 0.0 65.8
o7 0.0 11.4 1802.1 0.0 0.0 1785.4 0.0 0.5 1800.0 0.0 0.4 1800.0 0.0 9.7 1800.0
o7 2 0.0 0.0 1362.9 0.0 0.0 645.6 0.0 0.0 420.6 0.0 0.0 834.3 0.0 0.0 945.6
o7 ar25 1 0.0 0.0 1015.4 0.0 0.0 722.3 0.0 0.0 526.1 0.0 0.0 345.7 0.0 0.0 423.7
o7 ar5 1 0.0 0.0 891.5 0.0 0.0 489.4 0.0 0.0 384.0 0.0 0.0 636.1 0.0 0.0 580.8
o8 ar4 1 10.5 19.1 1802.4 0.0 10.5 1812.7 13.6 ∞ 1800.0 ∞ ∞ 1800.0 0.0 23.6 1800.0
o9 ar4 1 12.7 51.6 1802.1 10.6 34.8 1811.3 ∞ ∞ 1800.0 ∞ ∞ 1800.0 0.0 25.5 1800.0
portfol classical050 1 0.0 5.1 1802.0 1.4 4.5 1828.2 0.5 3.4 1800.0 0.2 3.3 1800.0 0.0 0.0 127.2
portfol classical200 2 44.5 63.2 1802.0 7.0 17.8 1807.8 8.6 19.3 1800.0 7.1 17.9 1800.1 3.6 17.5 1800.0
rsyn0830m04h 0.0 0.0 54.8 0.0 0.0 23.3 0.0 0.0 11.3 0.0 0.0 4.0 0.0 0.0 3.4
rsyn0830m04m 0.0 0.0 302.0 0.8 9.5 1848.2 0.0 0.0 89.0 0.0 0.0 10.5 0.4 19.1 1800.0
rsyn0840m04h 0.0 0.0 59.1 0.0 0.0 19.2 0.0 0.0 11.5 0.0 0.0 4.1 0.0 0.0 3.3
rsyn0840m04m 0.0 0.0 446.2 1.3 19.7 1845.0 0.0 0.0 29.7 – – – – – –
slay09h 0.0 3.4 1802.0 1.4 4.5 1838.3 0.0 0.0 157.3 0.0 0.0 69.3 0.0 0.0 248.7
slay09m – – – 0.0 0.0 31.3 0.0 0.0 27.3 0.0 0.0 27.9 0.0 0.0 26.5
slay10h 0.0 4.6 1802.0 3.3 10.6 1840.3 0.0 0.7 1800.0 0.0 0.6 1800.0 0.0 5.4 1800.0
slay10m 0.0 2.4 1802.0 0.0 0.0 548.7 0.0 0.0 1283.8 0.0 0.0 961.8 0.0 0.0 149.4
squfl020-150 0.8 ∞ 1802.1 5.7 49.8 1804.5 18.5 64.8 1800.0 20.9 65.8 1800.0 30.1 99.2 1800.1
squfl030-100 20.1 ∞ 1802.1 5.5 57.4 1805.0 22.7 70.5 1800.0 22.7 70.5 1800.0 78.1 93.8 1800.2
squfl030-150 9.3 ∞ 1802.1 10.2 64.7 1801.8 27.1 72.5 1800.1 35.1 75.6 1800.1 24.5 ∞ 1800.0
squfl040-080 26.2 ∞ 1802.0 9.6 64.4 1807.7 26.1 71.8 1800.0 17.7 68.6 1800.0 78.8 94.1 1800.2
sssd18-08 0.0 0.0 152.2 2.0 24.0 1840.9 0.0 0.0 297.2 – – – 0.0 0.0 967.8
sssd20-08 0.0 0.0 378.7 0.5 15.7 1836.5 – – – – – – 0.0 0.0 1800.0
sssd22-08 0.0 0.0 308.2 0.8 17.1 1839.1 – – – – – – 0.0 0.0 815.6
sssd25-08 0.0 0.0 901.0 0.9 14.7 1844.5 0.0 0.0 40.5 0.0 0.0 91.7 0.0 0.0 432.1
stockcycle 2.2 10.3 1802.0 6.9 8.5 1830.8 15.6 17.1 1800.0 42.6 43.6 1800.0 0.0 0.0 197.6
syn40m03h 0.0 0.0 17.7 – – – 0.0 0.0 3.8 0.0 0.0 1.6 0.0 0.0 1.2
syn40m04h 0.0 0.0 28.4 – – – – – – – – – 0.0 0.0 1.7
tls12 ∞ ∞ 1802.2 ∞ ∞ 1812.5 ∞ ∞ 1802.2 ∞ ∞ 1815.0 ∞ ∞ 1800.3
tls5 24.3 60.3 1802.0 23.7 68.3 1812.4 ∞ ∞ 1800.0 ∞ ∞ 1800.0 0.0 31.1 1800.3
tls6 59.8 80.8 1802.1 – – – ∞ ∞ 1800.0 ∞ ∞ 1800.0 0.0 44.5 1800.6
tls7 69.9 93.0 1802.2 ∞ ∞ 1802.6 ∞ ∞ 1801.0 ∞ ∞ 1800.0 6.8 69.6 1800.4
watercontamination0303 0.0 ∞ 1800.6 – – – 0.0 0.0 224.5 0.0 0.0 126.9 74.8 ∞ 1800.1
watercontamination0303r 0.0 ∞ 1800.1 0.0 0.0 25.6 0.0 0.0 29.2 0.0 0.0 25.1 0.0 0.0 1800.0
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