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Abstract 
This manuscript presents the recent advances in Mixed-Integer Nonlinear Programming 
(MINLP) and Generalized Disjunctive Programming (GDP) with a particular scope for 
superstructure optimization within Process Systems Engineering (PSE). We present an 
environment of open-source software packages written in Python and based on the 
algebraic modeling language Pyomo. These packages include MindtPy, a solver for 
MINLP that implements decomposition algorithms for such problems, CORAMIN, a 
toolset for MINLP algorithms providing relaxation generators for nonlinear constraints, 
Pyomo.GDP, a modeling extension for Generalized Disjunctive Programming that allows 
users to represent their problem as a GDP natively, and GDPOpt, a collection of 
algorithms explicitly tailored for GDP problems. Combining these tools has allowed us 
to solve several problems relevant to PSE, which we have gathered in an easily installable 
and accessible library, GDPLib. We show two examples of these models and how the 
flexibility of modeling given by Pyomo.GDP allows for efficient solutions to these 
complex optimization problems. Finally, we show an example of integrating these tools 
with the framework IDAES PSE, leading to optimal process synthesis and conceptual 
design with advanced multi-scale PSE modeling systems. 
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1. Introduction 
Process superstructure optimization is a challenging problem within Process Systems 
Engineering (PSE). Using a mathematical programming formulation, the problem of 
superstructure optimization can be written as a set of constraints to be satisfied by 
selecting the values of variables while optimizing an objective function. These variables 
can be continuous, and represent properties of a process (e.g., temperature, pressure), or 
discrete, representing discrete choices (e.g., selecting a piece of given equipment). The 
constraints include the superstructure model equations (e.g., mass and energy balances, 
thermodynamic equations), and the objective function is a goal to reach by selecting the 
decision variables (e.g., maximize profit, minimize environmental impact). It is 
particularly challenging to obtain the globally optimal solutions to problems whose 
nonlinear constraints describe a non-convex region (Kronqvist et al., 2019). 
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This paper covers two different modeling paradigms for such superstructure optimization 
problems, Mixed-Integer Nonlinear Programming (MINLP), which relies only on 
algebraic functions of discrete and continuous variables, and Generalized Disjunctive 
Programming (GDP) that considers disjunctions, logical variables, and constraints for 
these problems. After mentioning the different solution methods for each paradigm, we 
present a set of examples of process superstructure optimization problems that have been 
modeled and solved using each of these approaches. The modeling has been done through 
the open-source software Pyomo.GDP (Chen et al., 2021), and made available as part of 
the problem library GDPLib. Finally, we demonstrate how these modeling tools and 
solution methods can be applied to a more intricate model created through the advanced 
modeling framework IDAES PSE (Miller et al., 2018). 

2. Mixed-Integer Nonlinear Programming 
The optimization models obtained from process superstructures have traditionally been 
written in algebraic equations and variables with both continuous and discrete domains. 
Mathematical optimization models with these characteristics are known as Mixed-Integer 
Nonlinear Programs (MINLP). The solution methods for this challenging type of 
optimization problem usually rely on the separate treatment of the two sources of 
complexity of the problem, the nonlinearity of the constraints and the integer variables' 
discreteness. Among the best-known deterministic solution strategies for these problems, 
we can count the Branch-and-Bound (BB) method and decomposition methods. 

Both methods rely on finding bounds to the optimal objective function value through 
relaxations and restrictions of the original problem. A relaxation accounts for a different 
optimization problem whose feasible region is larger than the one of the original problem, 
whose solution is an optimistic bound of the optimal solution. Among these relaxations, 
the usual ones are continuous relaxations, where the discreteness of the integer variables 
is ignored, yielding a continuous problem, and linear relaxations, where the nonlinearities 
of the problems are replaced by linear feasible region that encompasses the feasible region 
of the original problem. These relaxations are not unique, and the successful solution of 
these problems can strongly depend on how close the relaxation approximates the original 
feasible region, known as its tightness, and other factors such as its size. The restriction 
of the original problem usually appears when fixing the value of some of the discrete 
variables, leading to a continuous problem in a lower-dimensional space. In the case that 
the original problem's objective is minimized, the optimal solution of a relaxation yields 
a lower bound of the optimal objective function, while any feasible solution to the 
problem, usually found through a partial or total fixing of the discrete variables and an 
optimization on the remaining variables, leads to an upper bound of the optimal solution. 

In the BB method, starting from the solution of the continuous relaxation of the original 
MINLP, one systematically enforces values on the discrete variables to explore 
increasingly smaller and restricted subproblems. The solution of specific subproblems 
allows the derivation of extra inequalities that can help better approximate the original 
problem's feasible region, improving the quality of the lower bound obtained by solving 
it. Although effort has been made to derive strong inequalities, or cuts, for the nonlinear 
case and this can be generalized for branching on continuous variables, the BB method is 
better known for its highly successful implementations in modern solvers when 
addressing Mixed-Integer Linear Programming (MILP). 
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The decomposition methods for MINLP usually rely on MILP relaxations, which can be 
efficiently solved through BB, and continuous subproblems. As with BB, the MILP 
relaxations can be improved iteratively using cuts derived from the solution of the 
continuous restrictions. Eventually, if the relaxations are rigorous and each subproblem 
is solved optimally, either the decomposition methods or the BB methods will find the 
optimal solution in a finite number of steps/iterations. These two algorithms are the main 
ingredients of most known MINLP solvers (Kronqvist et al., 2019). 

Considering this, a solver for MINLP is usually a meta-solver, where the solution of the 
original problem relies on other solvers to tackle subproblems. This observation has led 
us to develop the open-source Mixed-Integer Nonlinear Decomposition Toolbox in 
Pyomo - MindtPy (Bernal et al., 2018). This solver uses the interface that the Python-
based algebraic modeling language Pyomo (Hart et al., 2017) has to solvers of continuous 
problems and MILP solvers and provides a flexible implementation of several of the 
decomposition methods known in the literature, such as the Outer-Approximation 
method. Furthermore, it includes implementations of heuristic techniques and 
enhancements such as single-tree solution methods and regularization-based algorithms. 
Furthermore, the derivation of strong relaxations to nonlinear terms is vital to solving 
these problems efficiently. We have also developed the open-source software CORAMIN 
(Bynum et al., 2019), which generates easily refinable relaxations of a Pyomo model's 
nonlinear constraints. These relaxations can be integrated within MINLP algorithms. 

The convergence to the optimal solution of the MINLP is guaranteed when the relaxations 
are valid and can be further refined after each subsequent iteration and when the 
continuous subproblems are guaranteed to be solved to global optimality. This is easier 
to achieve when assuming well-behaved nonlinearities, e.g., convexity in the nonlinear 
functions. In this case, the linear relaxation can be found through the 1st-order Taylor 
expansions of the nonlinear functions in a method known as the Outer-Approximation 
(OA). When the convexity assumption is not satisfied, disciplined relaxations can still be 
derived as implemented in CORAMIN or through generalized McCormick relaxations 
(Scott et al., 2011) available in the software MC++. These allow our methods to solve 
even non-convex MINLP problems using a Global Outer-Approximation (GOA). 

3. Generalized Disjunctive Programming 
A more natural framework to represent superstructure optimization problems is 
Generalized Disjunctive Programming (GDP), which extends the modeling capabilities 
of traditional mathematical programming with the incorporation of logic variables 
involved in propositions and disjunctions. In general, a GDP problem can be written as 

min
𝐱𝐱,𝐘𝐘,𝐳𝐳

f(𝐱𝐱, 𝐳𝐳)

s. t. 𝐠𝐠(𝐱𝐱, 𝐳𝐳) ≤ 0;  Ω(𝐘𝐘) = True

∨i∈Dk �
Yik

𝐫𝐫ik(𝐱𝐱, 𝐳𝐳) ≤ 0� ∀ k ∈ K

𝐱𝐱 ∈ X ⊆ ℝnx ;𝐘𝐘 ∈ {True, False}ny; 𝐳𝐳 ∈ Z ⊆ ℤnz

  (1) 

where the continuous variables are denoted by the nx-dimensional vector 𝐱𝐱 within a 
bounded set X, the discrete variables are denoted by the nz-dimensional vector 𝐳𝐳 within a 
bounded set Z, the function f:ℝnx × ℝnz → ℝ is the objective function, and the vector 
function 𝐠𝐠:ℝnx × ℝnz → ℝng  denotes the global constraints. Besides, the logical 
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structure of the problem includes 𝐘𝐘 as a ny-dimensional vector of logic variables, where 
for each disjunct i ∈ Dk of each disjunction k ∈ K the set of inequalities 𝐫𝐫ik:ℝnx × ℝnz →
ℝnik  are enforced by the individual logic variables Yik, and Ω: {True, False}ny →
{True, False} that encodes logical relationships among the logical variables. Notice that 
if the disjunctions set K is empty, Eq.(1) represents an MINLP problem. 

The modeling framework of GDP allows for a more intuitive representation of the 
problems arising from superstructure optimization. The structure of such a representation 
can be exploited by a tailored solution algorithm to solve these problems more efficiently. 
First, some reformulations can convert a GDP into MINLP, such as the Big-M and the 
Hull reformulations. These reformulations include all the constraints involved in the GDP 
and enforce or make trivially satisfiable certain constraints depending on the values of 
newly introduced binary variables yik ∈ {0,1} ↔ Yik ∈ {True, False}. The capabilities of 
writing a model directly as a GDP are presented as part of the open-source 
implementation Pyomo.GDP (Chen et al., 2021). 

We present two algorithms that generalize ideas from MINLP for GDP: the Logic-based 
Branch-and-Bound (LBB) and the Logic-based Outer-Approximation (LOA) algorithms. 
Like their MINLP counterpart, these algorithms have a search strategy for the values of 
the discrete variables, including the logic variables 𝐘𝐘, but consider the logical constraint 
Ω, pruning it. On the other hand, by leveraging the existing structure provided by the 
disjunctive formulation of the GDP, some algorithms selectively remove constraints that 
are not involved in each combination of the logical variables while exploring that 
combination. This approach is beneficial given the numerical issues that can appear from 
evaluating nonlinear constraints on vanishing variables, i.e., "zero-flow". 

Similar to the MINLP case, if the subproblems are solved to optimality, for example, 
through the global solvers mentioned earlier, the relaxations of the nonlinear constraints 
are built rigorously, using MC++ or tailored relaxations as those in CORAMIN, these 
algorithms can solve non-convex problems to global optimality. We call this method 
Global Logic-based Outer Approximation (GLOA). These algorithms are implemented 
in the open-source GDP solver GDPOpt (Chen et al., 2021). 

4. GDPLib, the library for GDP models 
Finally, we highlight the usability of our framework and solution methods by solving 
different process superstructure problems. These problems have been previously 
presented in the literature, mainly starting from an MINLP formulation. We have put 
together several of these examples in the Pyomo.GDP format and made it openly 
available in the repository https://github.com/grossmann-group/gdplib. 

The library currently contains nine different examples of process or unit superstructure 
optimization, including a Methanol production process (Türkay & Grossmann, 1996), a 
Hydrodealkylation (HDA) process to produce Toluene (Kocis & Grossmann, 1989), a 
biofuel processing network, a heat exchanger network evaluating modular process design, 
a plant capacity expansion model, a synthesis gas production plant from methane, a 
Kaibel distillation column, and a tray distillation column design. Several of these 
examples include a few test cases leading to 25 GDP problems related to PSE. These 
examples range from nx ∈[6,31968], ny ∈[2,516], nz ∈[0,5040], ng ∈[30,14927]. 

We show two cases with more detail related to process superstructures. The first detailed 
case for the process superstructure optimization is the profit maximization of a methanol 

https://github.com/grossmann-group/gdplib
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production process (Türkay & Grossmann, 1996). Mass balances define the global 
constraints of the problem, and there are 4 disjunctions in this problem as seen in Fig.(1a), 
one associated with the feed choice, another one choosing between a high-cost and high-
conversion reactor or a low-cost and low-conversion reactor, and having a single or two-
stage compression for the feed and the recycle. This problem involves 285 variables, of 
which 8 are Boolean and the remaining continuous. The total number of configurations 
is 24 but GDPOpt using LOA requires only 2 iterations to find the optimal solution. 

Figure 1. Flowsheet superstructure for (a) Methanol production and (b) Hydrodealkylation of 
Toluene. Alternatives highlighted correspond to optimal solutions. 

The second example is the profit maximization of the Toluene production through the 
HDA process (Kocis & Grossmann, 1989). This superstructure, shown in Fig.(1b) 
considers 6 disjunctions: the choice to pretreat the hydrogen feed, whether to use an 
adiabatic or isothermal reactor, whether to purge or treat a methane stream for it to be 
recycled, considering the installation of an absorber or recycle a vapor stream, using a 
stabilizing column or a flash to remove extra methane from the process, and whether to 
use a distillation column to separate Toluene or a flash to obtain Diphenyl as a byproduct. 
There are 733 variables, with 12 being Boolean and the rest continuous, and 728 
constraints, of which 12 are nonlinear. The MINLP transformation of this model is quite 
challenging for solvers, and both ANTIGONE and BARON fail to solve this problem to 
global optimality. Through LOA, GDPOpt was able to find the globally optimal solution, 
verified via enumeration. When using IPOPT and Gurobi as subsolvers, LOA converged 
to that solution in 17 iterations and 1 minute of computation in a standard desktop. 

We highlight that the modeling paradigms and algorithms presented here, given their 
roots in Pyomo, can be used within more complicated process modeling alternatives. That 
is the case of the next-generation multi-scale PSE framework IDAES. This framework, 
by being based on Python and Pyomo, leads to supporting our implementations natively. 
This results in the potential use of detailed process models, including property and 
thermodynamic packages and a disjunctive framework. We do this through the Methanol 
production example, which has been reimplemented as an IDAES PSE model and is 
available in GDPLib. The integration with IDAES PSE allows considering rigorous 
thermodynamic properties, resulting in more challenging optimization problems. 

5. Conclusions 
This paper presents two modeling paradigms for process superstructure optimization 
problems: Mixed-Integer Nonlinear Programming (MINLP) and Generalized Disjunctive 
Programming (GDP). MINLP is the one traditionally used and for which powerful solvers 
have been developed. On the other hand, GDP can be not only transformed into MINLP 
through different reformulations, leading to a difference in solution performance but can 
also be solved directly by algorithms that take advantage of the disjunctive and logical 
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structure encoded in it. We have developed open-source software tools for such models 
to be implemented, as is the case for Pyomo.GDP, and solved, which is the case for 
MindtPy and GDPOpt, within the algebraic modeling language in Python, Pyomo. 

Moreover, this paper presents process superstructure optimization problems that have 
been implemented using GDP. These Python implementations are available in the 
repository GDPLib and are freely available and installable through the package manager 
pip (pip install gdplib). We show two examples of flowsheet superstructure optimization, 
namely Methanol and Toluene production processes. Finally, we include the Methanol 
production process case implemented using the IDAES PSE framework. This example 
highlights the applicability of this paper's modeling and algorithmic ideas to an advanced 
process modeling framework, enabling conceptual process design through superstructure 
optimization integrated with rigorous property models and unit operations blocks. 

We hope this library leads process designers to adopt these modeling paradigms and 
algorithm developers to use these examples as a testbed to improve solution methods for 
these optimization problems. We envision more models becoming part of GDPLib, 
leading to a richer resource for the process design and optimization communities. 

Disclaimer: Sandia National Laboratories is a multimission laboratory managed and operated by 
National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of 
Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security 
Administration under contract DE-NA-0003525. This paper describes objective technical results 
and analysis. Any subjective views or opinions that might be expressed in the paper do not 
necessarily represent the views of the U.S. Department of Energy or the United States Government. 
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