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Abstract

We formulate the capacity expansion planning as a bilevel optimization to model the hier-

archical decision structure involving industrial producers and consumers. The formulation is

a mixed-integer bilevel linear program in which the upper level maximizes the profit of a pro-

ducer and the lower level minimizes the cost paid by markets. The upper-level problem includes

mixed-integer variables that establish the expansion plan; the lower level problem is an LP that

decides demands assignments. We reformulate the bilevel optimization as a single-level problem

using two different approaches: KKT reformulation and duality-based reformulation. We ana-

lyze the performance of these reformulations and compare their results with the expansion plans

obtained from the traditional single-level formulation. For the solution of large-scale problems,

we propose improvements on the duality-based reformulation that allows reducing the number

of variables and constraints. The formulations and the solution methods are illustrated with

examples from the air separation industry.

Keywords: Capacity planning; Bilevel optimization; Rational markets.

1 Introduction

Capacity expansion is one of the most important strategic decisions for industrial gas companies. In

this industry, most of the markets are served by local producers because of the competitive advan-

tage given by the location of the production facilities. The dynamics of the industrial gas markets

imply that companies must anticipate demand increases in order to plan their capacity expansion,

maintain supply availability, and avoid regional incursion of new producers. The selection of the

right investment and distribution plan plays a critical role for companies in this environment. A

rigorous approach based on mathematical modeling and optimization offers the possibility to find

the investment and distribution plan that yields the greatest economic benefit.
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A rather large body of literature has been published on capacity planning problems in several in-

dustries [20]. Since the late 1950s, capacity expansion planning has been studied to develop models

and solution approaches for diverse applications in the process industries [30], communication net-

works [7], electric power services [24], and water resource systems [25]. Sahinidis et al. [31] proposed

a comprehensive MILP model for long range planning of process networks. Van den Heever and

Grossmann [35] used disjunctive programming to extend this methodology to multi-period design

and planning of nonlinear chemical processes. An MILP formulation that integrates scheduling

with capacity planning for product development was presented by Maravelias and Grossmann [21].

Sundaramoorthy et al. [34] proposed a two-stage stochastic programming formulation for the inte-

gration of capacity and operations planning. In summary, capacity planning is considered a central

problem for enterprise-wide optimization, a topic for which comprehensive reviews are available

[15, 16].

Despite the importance of capacity expansion in industry, the study of the problem in a compet-

itive environment has not received much attention. Soyster and Murphy [33] formulated a capacity

planning problem for a perfectly competitive market. However, perfect competition is a strong as-

sumption. A more realistic hypothesis is to assume an oligopolistic market as presented by Murphy

and Smeers [23]. Game theory models have also been used [37] for the supply chain planning in

cooperative and competitive environments.

The competition between two players whose decisions are made sequentially can be modeled as a

Stackelberg game [36]. A Stackelberg competition is an extensive game with perfect information in

which the leader chooses his actions before the follower has the opportunity to play. It is known that

the most interesting equilibria of such games correspond to the solution of a bilevel optimization

problem [26].

Bilevel optimization problems are mathematical programs with optimization problems in the

constraints [4]. They are suitable to model problems in which two independent decision makers try

to optimize their own objective functions [6, 2]. We present a mixed-integer linear bilevel formula-

tion for the capacity expansion planning of an industrial gas company operating in a competitive

environment. The purpose of the upper-level problem is to determine the investment and distribu-

tion plan that maximizes the Net Present Value (NPV). The response of markets that can choose

among different producers is modeled in the lower-level as a linear programming (LP) problem.

The lower-level objective function is selected to represent the rational behavior of the markets.

Solution approaches for bilevel optimization problems with lower-level LPs leverage the fact that

optimal solutions occur at vertexes of the region described by upper and lower level constraints.

They rely on vertex enumeration, directional derivatives, penalty terms, or optimality conditions

[29]. The most direct approach is to reformulate the bilevel optimization as a single-level problem

using the optimality conditions of the lower-level LP. The classic reformulation using Karush-

Kuhn-Tucker (KKT) conditions maintains linearity of the problem except for the introduction of

complementarity constraints [12, 1, 3]. An equivalent reformulation replaces the lower level problem

by its primal and dual constraints, and guarantees optimality by enforcing strong duality [22, 14].

Strategic investment planning for electric power networks has been the most prolific application
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of bilevel optimization models. Motto et al. [22] implemented the duality-based reformulation for

the analysis of electric grid security under disruptive threat. This bilevel problem was originally

formulated by Salmeron et al. [32] with the purpose of identifying the interdictions that maximize

network disruptions. A bilevel formulation for the expansion of transmission networks was devel-

oped by Garces et al. [14] to maximize the average social welfare over a set of lower-level problems

representing different market clearing scenarios; they also implemented the duality-based reformu-

lation. Ruiz et al. [27] modeled electricity markets as an Equilibrium Problem with Equilibrium

Constraints (EPEC) in which competing producers maximize their profit in the upper level and

a market operator maximizes social welfare in the lower level; they use the duality-based refor-

mulation to guarantee optimality of the lower level problem and obtain an equilibrium solution

by jointly formulating the KKT conditions of all producers. A similar strategy that includes the

combination of duality-based and KKT reformulations was used by Huppmann and Egerer [18] to

solve a three-level optimization problem that models the roles of independent system operators,

regional planners, and supra-national coordination in the European energy system.

Another interesting application of bilevel optimization is the facility location problem in a

duopolistic environment. The model presented by Fischer [11] selects facilities among a set of

candidate locations and considers selling prices as optimization variables, which leads to a nonlin-

ear bilevel formulation. The problem is simplified to a linear discrete bilevel formulation under the

assumption that Nash equilibrium is reached for the prices. The solution to the discrete bilevel

optimization problem is obtained using a heuristic algorithm.

Bilevel optimization models have also found application in chemical engineering. Clark and

Westerberg [9] presented a nonlinear bilevel programming approach for the design of chemical

processes and proposed algorithms to solve them. In their formulation, the upper level optimizes

the process design and the lower level models thermodynamic equilibrium by minimizing Gibbs free

energy. Burgard and Maranas [5] used bilevel optimization to test the consistency of experimental

data obtained from metabolic networks with hypothesized objective functions. In the upper level,

the problem minimizes the square deviation of the fluxes predicted by the metabolic model with

respect to experimental data, whereas the lower level quantifies the individual importance of the

fluxes. A bilevel programming model for supply chain optimization under uncertainty was developed

by Ryu et al. [28]; the conflicting interests of production and distribution operations in a supply

chain are modeled using separate objective functions. They reformulate the bilevel problem in

single-level after finding the solution of the lower-level problem as parametric functions of the upper-

level variables and the uncertain parameters. Chu and You [8] presented an integrated scheduling

and dynamic optimization problem for batch processes. The scheduling problem, formulated in

the upper level, is subject to the processing times and costs determined by the nonlinear dynamic

lower-level problem. The bilevel formulation is transformed to a single level problem by replacing

the lower-level with piece-wise linear response functions. They assert that the bilevel formulation

can be used as a distributed optimization approach whose solutions can easily adapt to variation

in the problem’s parameters.

The novelty of our research resides on the application of bilevel optimization for capacity ex-
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pansion planning in a competitive environment. Bilevel programming for these kind of problems

can be seen as a risk mitigation strategy given the significant influence of external decision mak-

ers in the economic success of investment plans. In particular, we propose a mathematical model

that includes a rational market behavior beyond the classic game theoretical models. The invest-

ment plans obtained from this approach are found to be less sensitive to changes in the business

environment in comparison to the single-level formulations.

In order to solve the challenging bilevel formulation, we test the KKT and the duality-based

reformulations with an illustrative example, a middle-size example, and an industrial example.

The results show the advantages of the duality-based reformulation in terms of computational

effort. Despite the efficiency obtained with this reformulation, we found necessary to implement

two additional improvement strategies to solve large-scale instances.

The remaining paper is organized as follows. In Section 2, we describe the problem. In Section

3, we present the single-level capacity planning formulation. Section 4 presents the bilevel capacity

planning problem with rational markets. In Section 5, we develop two reformulations that allow

solving the bilevel optimization problem. Section 6, presents a small example that illustrates the

proposed formulations. Subsequently, in Section 7 we evaluate the performance of the proposed

reformulations with a middle-size example. In section 8, we elaborate on solution approaches for

large-scale bilevel capacity planning problems. Section 9 presents an industrial example. Finally,

in Section 10 we present our analysis and conclusions.

2 Problem statement

A company that produces and commercializes industrial products in a given geographic region is

interested in developing an investment plan to expand its capacity in anticipation of future demand

increase. The company operates some facilities with limited production capacity. Existing facilities

are eligible for capacity expansion and other locations are candidates to open new facilities. The

construction and expansion of facilities requires the investment of capital to develop the project

and install new production lines. The potential increases in production capacity are assumed to

be discrete and the corresponding investments are given by fixed costs. Based on the available

capacity in the facilities, the company allocates production to market demands. Figure 1 shows a

schematic representation of a region with several industrial producers and gas markets.

The company obtains revenue from selling its products at fixed prices in each market. The goal of

the company is to find the investment plan that maximizes the Net Present Value (NPV) of its profit

during a finite time horizon. The NPV is calculated by applying the appropriate discount factor to

the income received from sales and the expenses related to investment, production, maintenance,

and transportation costs.
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Figure 1: Superstructure of regional gas markets.

3 Single-level Capacity Planning with Captive Markets

The basic model to plan the capacity expansion of a company serving industrial markets assumes

that all market demands are willing to buy the products at the price offered. In this context,

markets are regarded as captive. The capacity expansion planning with captive markets can be

formulated as the single-level Mixed-Integer Linear Program (MILP) presented in Eqns. (1) - (7).

max
∑
t∈T

∑
i∈I1

∑
j∈J

∑
k∈K

1

(1 +R)t
Pt,i,j,kyt,i,j,k

−
∑
t∈T

∑
i∈I1

1

(1 +R)t
(At,ivt,i +Bt,iwt,i)

−
∑
t∈T

∑
i∈I1

∑
k∈K

1

(1 +R)t

Et,i,kxt,i,k + Ft,i,k
∑
j∈J

yt,i,j,k


−
∑
t∈T

∑
i∈I1

∑
j∈I

∑
k∈K

1

(1 +R)t
Gt,i,j,kyt,i,j,k (1)

s.t. wt,i = V0,i +
∑
t′∈T ′

t

vt′,i ∀ t ∈ T, i ∈ I1 (2)

xt,i,k ≤ wt,i ∀ t ∈ T, i ∈ I1, k ∈ K (3)

ct,i,k = C0,i,k +
∑
t′∈T ′

t

Hi,kxt′,i,k ∀ t ∈ T, i ∈ I1, k ∈ K (4)

∑
j∈J

yt,i,j,k ≤ ct,i,k ∀ t ∈ T, i ∈ I1, k ∈ K (5)

∑
i∈I1

yt,i,j,k ≤ Dt,j,k ∀ t ∈ T, j ∈ J, k ∈ K (6)

vt,i, wt,i, xt,i,k ∈ {0, 1} ; ct,i,k, yt,i,j,k ∈ R+ ∀ t ∈ T, i ∈ I1, j ∈ J, k ∈ K (7)

where T , I1, J , and K are respectively, the index sets for time (t), production facilities of the

decision maker (i1), markets (j), and products (k). We also define T ′ as the subset of time periods

T in which expansions are allowed, and T ′
t as the subset of time periods before t in which expansions

are allowed. Formally, T ′
t = {t′ : t′ ∈ T ′, t′ ≤ t}.
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The first term in expression (1) represents the income obtained from sales. Income is proportional

to demand assignments (yt,i,j,k) according to the price paid by the markets (Pt,i,j,k). The second

term includes the cost of opening new facilities and the maintenance cost of open facilities. The

binary variable deciding if a new facility is open at location i at time period t is vt,i; parameter At,i

determines the fixed cost to build a new facility. The binary variable wt,i indicates if facility i is open

at time period t; if the facility is open at period t, a fixed cost Bt,i must be paid for maintenance.

The third term includes expansion and production costs. The expansion of production capacity

for product k in facility j at period t is decided with binary variable xt,i,k; the cost of expansions

is given by parameter Et,i,k. Production costs are proportional to demand assignments (yt,i,j,k)

according to their unit production cost (Ft,i,k). Finally, the last term represents the transportation

cost from production facilities to markets. Transportation is proportional to demand assignments

(yt,i,j,k) according to the unit transportation cost (Gt,i,j,k). All terms are discounted in every time

period with an interest rate (R).

Constraint set (2) is used to model the maintenance cost of facilities during the time periods when

they are open; the binary parameter V 0
i indicates the facilities that are initially open. Constraint set

(3) requires capacity expansions to take place only at open facilities. Constraint set (4) determines

the production capacity of facilities according to the expansion decisions; parameters C0,i,k indicate

the initial capacities and Hk is the magnitude of the potential capacity expansion. Constraints (5)

bound the demand assignments according to the production capacities. Finally, constraints set (6)

bounds demand assignments according to market demands. The domains of the variables are given

by expressions (7).

4 Bilevel Capacity Planning with Rational Markets

The most intuitive way to model a competitive environment is to assume that the markets have the

possibility to select their providers according to their own interest. The rational behavior of the

markets can be modeled with a mathematical program that optimizes their objective function. The

behavior of the markets is included in the constraints of the capacity planning problem, yielding

a bilevel optimization formulation. In this formulation, the upper-level problem is intended to

find the optimal capacity expansion plan by selecting the investments that maximize the NPV of

the leader. The lower-level represents the response of markets that select production facilities as

providers with the unique interest of satisfying their demands at lowest cost.

The formulation presented in Section 3 is modified to ensure that market demands are com-

pletely satisfied. This is achieved by transforming constraint set (6) into equality constraints. This

change is necessary to avoid the market cost from dropping to zero by leaving all demands unsatis-

fied. Additionally, the set of potential providers is expanded to include facilities from independent

producers. We assume that the initial capacity of all production facilities is large enough to satisfy

all market demands regardless of the expansion plan of the leader. This assumption is also useful

to avoid unprofitable investments in capacity expansions driven by the need to maintain feasibility

of the problem.

6



The products offered by the competing producers are considered homogeneous and the markets

have no other preference for producers than price. Cases in which the markets have no preference

between two or more facilities are resolved by the upper level according to the interest of the leader;

this modeling framework is known as the optimistic approach [19]. In our model, the optimistic

approach is a key assumption because all facilities controlled by the leader offer the same price

to each market. Therefore, the optimization problem of the markets is degenerate. However, the

markets are only concerned about selecting the producer that offers the lowest price and they are

indifferent to the facility from which they are served; consequently, the leader is free to choose the

facilities it uses to satisfy its demands.

The bilevel optimization problem for the capacity expansion planning in a competitive environ-

ment is presented in Eqn. (8) - (18).

max
v,w,x

∑
t∈T

∑
i∈I1

∑
j∈J

∑
k∈K

1

(1 +R)t
Pt,i,j,kyt,i,j,k

−
∑
t∈T

∑
i∈I1

1

(1 +R)t
(At,ivt,i +Bt,iwt,i)

−
∑
t∈T

∑
i∈I1

∑
k∈K

1

(1 +R)t

Et,i,kxt,i,k + Ft,i,k
∑
j∈J

yt,i,j,k


−
∑
t∈T

∑
i∈I1

∑
j∈J

∑
k∈K

1

(1 +R)t
Gt,i,j,kyt,i,j,k (8)

s.t. wt,i = V 0
i +

∑
t′∈T ′

t

vt′,i ∀ t ∈ T, i ∈ I1 (9)

xt,i,k ≤ wt,i ∀ t ∈ T, i ∈ I1, k ∈ K (10)

ct,i,k = C0
i,k +

∑
t′∈T ′

t

Hi,kxt′,i,k ∀ t ∈ T, i ∈ I1, k ∈ K (11)

min
y

∑
t∈T

∑
i∈I

∑
j∈J

∑
k∈K

1

(1 +R)t
Pt,i,j,kyt,i,j,k (12)

s.t.
∑
j∈J

yt,i,j,k ≤ ct,i,k ∀ t ∈ T, i ∈ I1, k ∈ K (13)

∑
j∈J

yt,i,j,k ≤ C0
i,k ∀ t ∈ T, i ∈ I2, k ∈ K (14)

∑
i∈I

yt,i,j,k = Dt,j,k ∀ t ∈ T, j ∈ J, k ∈ K (15)

yt,i,j,k ∈ R+ ∀ t ∈ T, i ∈ I, j ∈ J, k ∈ K (16)

ct,i,k ∈ R+ ∀ t ∈ T, i ∈ I1, j ∈ J, k ∈ K (17)

vt,i, wt,i, xt,i,k ∈ {0, 1} ∀ t ∈ T, i ∈ I1, k ∈ K (18)

where I is the set of all production facilities, I1 ⊂ I is the subset of facilities controlled by the

leader, and I2 ⊂ I is the subset of facilities controlled by the competitors. It should be noted

that Eqns. (8) - (11) are identical to Eqns. (1) - (4) in the single-level formulation. However, in

the bilevel formulation the upper-level decision maker only controls variables vt,i, wt,i, xt,i,k, and
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ct,i,k. Demand assignment decisions (yt,i,j,k) are controlled by the lower level with the objective of

minimizing the cost paid by the markets according to Eqn. (12). Eqns. (13) and (14) constrain the

production capacity of the facilities; Eqn. (15) enforces demand satisfaction in every time period.

The domains of the variables are presented in Eqns. (16) - (18). It is important to note that upper-

level variables only take discrete values and all lower-level variables are continuous. This attribute

of the model is crucial for the reformulations that we propose.

5 Reformulation as a Single-level Optimization Problem

An optimistic bilevel program with a convex and regular lower-level can be transformed into a

single-level optimization problem using its optimality conditions [10]. The key property of convex

programs is that their KKT conditions are necessary and sufficient to characterize their corre-

sponding global optimal solutions. In the case of linear programs, KKT optimality conditions are

equivalent to the satisfaction of primal feasibility, dual feasibility, and strong duality [13]. Based

on this equivalence, we derive two single-level reformulations for the capacity planning problem in

a competitive environment.

5.1 KKT Reformulation

The classic reformulation for bilevel programs with a lower-level LP is to replace the lower lower-level

problem by its KKT conditions. In the case of the capacity planning in a competitive environment,

the KKT reformulation is obtained by introducing constraints that guarantee the stationarity con-

ditions, primal feasibility, dual feasibility, and complementary slackness for the cost minimization

problem modeling markets behavior. The resulting reformulation is presented in Eqns. (19) - (32).

max
∑
t∈T

∑
i∈I1

∑
j∈J

∑
k∈K

1

(1 +R)t
Pt,i,j,kyt,i,j,k

−
∑
t∈T

∑
i∈I1

1

(1 +R)t
(At,ivt,i +Bt,iwt,i)

−
∑
t∈T

∑
i∈I1

∑
k∈K

1

(1 +R)t

Et,i,kxt,i,k + Ft,i,k
∑
j∈J

yt,i,j,k


−
∑
t∈T

∑
i∈I1

∑
j∈I

∑
k∈K

1

(1 +R)t
Gt,i,j,kyt,i,j,k (19)

s.t. wt,i = V 0
i +

∑
t′∈T ′

t

vt′,i ∀ t ∈ T, i ∈ I1 (20)

xt,i,k ≤ wt,i ∀ t ∈ T, i ∈ I1, k ∈ K (21)

ct,i,k = C0
i,k +

∑
t′∈T ′

t

Hi,kxt′,i,k ∀ t ∈ T, i ∈ I1, k ∈ K (22)

∑
j∈J

yt,i,j,k ≤ ct,i,k ∀ t ∈ T, i ∈ I1, k ∈ K (23)
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∑
j∈J

yt,i,j,k ≤ C0
i,k ∀ t ∈ T, i ∈ I2, k ∈ K (24)

∑
i∈I

yt,i,j,k = Dt,j,k ∀ t ∈ T, j ∈ J, k ∈ K (25)

1

(1 +R)t
Pt,i,k + λt,j,k + µt,i,k − γt,i,j,k = 0 ∀ t ∈ T, i ∈ I, j ∈ J, k ∈ K (26)

µt,i,k

∑
j

yt,i,j,k − ct,i,k

 = 0 ∀ t ∈ T, i ∈ I1, k ∈ K (27)

µt,i,k

∑
j

yt,i,j,k − C0
i,k

 = 0 ∀ t ∈ T, i ∈ I2, k ∈ K (28)

γt,i,j,kyt,i,j,k = 0 ∀ t ∈ T, i ∈ I, j ∈ J, k ∈ K (29)

yt,i,j,k, µt,i,k, γt,i,j,k ∈ R+ ∀ t ∈ T, i ∈ I, j ∈ J, k ∈ K (30)

λt,j,k ∈ R, ∀ t ∈ T, j ∈ J, k ∈ K (31)

ct,i,k ∈ R+ ∀ t ∈ T, i ∈ I1, k ∈ K (32)

vt,i, wt,i, xt,i,k ∈ {0, 1} ∀ t ∈ T, i ∈ I1, k ∈ K (33)

where µt,i,k, λt,j,k, and γt,i,j,k are the Lagrange multipliers of the lower-level constraints presented

in Eqns. (13) - (14), (15), and (16), respectively. The upper-level problem is kept unchanged as

shown in Eqns. (19) - (22). Constraints (23) - (25) ensure primal feasibility of the lower level; the

constraints presented in (26) are the stationary conditions for the lower level; Eqns. (27) and (28)

represent the complementary conditions corresponding to inequalities (13) and (14); the constraints

(29) are the complementary conditions corresponding to the domain of the lower-level variables

presented in Eqn. (16). The domains are presented in Eqns. (30) - (33).

The main disadvantage associated to this reformulation is the introduction of non-linear com-

plementary constraints. In order to avoid the solution of a nonconvex Mixed-Integer Non-Linear

Program (MINLP), the complementary constraints can be formulated as disjunctions that are

transformed into mixed-integer constraints [17]. In particular, we rewrite Eqns. (23) and (24) as

equality constraints by introducing the slack variables st,i,k,

∑
j∈J

yt,i,j,k + st,i,k = ct,i,k ∀t ∈ T, i ∈ I1, k ∈ K (34)

∑
j∈J

yt,i,j,k + st,i,k = C0
i,k ∀t ∈ T, i ∈ I2, k ∈ K (35)

and use the Big-M reformulation to express that either constraints (34) and (35) are active or the

corresponding multipliers (µt,i,k) are zero. The Big-M constraints modeling this disjunction are

presented in Eqn. (36) using binary variable z1t,i,k.

st,i,k ≤Mz1t,i,k

µt,i,k ≤M
(
1− z1t,i,k

)
∀t ∈ T, i ∈ I, k ∈ K (36)

z1t,i,k ∈ {0, 1}
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Similarely, the Big-M reformulation of constraint set (29) is presented in Eqn. (37).

yt,i,j,k ≤Mz2t,i,k

γt,i,j,k ≤M
(
1− z2t,i,k

)
∀t ∈ T, i ∈ I, j ∈ J, k ∈ K (37)

z2t,i,j,k ∈ {0, 1}

The result of replacing constraints (23), (24), (27), (28) and (29) by (34), (35), (36), and (37) is

a single-level MILP formulation that is equivalent to the bilevel formulation presented in Section

4.

5.2 Duality-based Reformulation

The alternative reformulation for the bilevel capacity planning problem is obtained by introducing

constraints that guarantee the satisfaction of strong duality [22, 14]. This is achieved by replacing

the lower-level problem described by Eqns. (12) - (16) with its primal and dual constraints, and

equating their objective functions. The dual formulation corresponding to the lower-level LP is

presented by Eqns. (38) - (41).

max
∑
t∈T

∑
k∈K

∑
j∈J

Dt,j,kλt,j,k −
∑
i∈I1

ct,i,kµt,i,k −
∑
i∈I2

C0
i,kµt,i,k

 (38)

s.t. λt,j,k − µt,i,k ≤
1

(1 +R)t
Pt,i,j,k ∀ t ∈ T, i ∈ I, j ∈ J, k ∈ K (39)

µt,i,k ∈ R+ ∀ t ∈ T, i ∈ I, k ∈ K (40)

λt,j,k ∈ R, ∀ t ∈ T, j ∈ J, k ∈ K (41)

The resulting duality-based reformulation is presented in Eqns. (42) - (54).

max
∑
t∈T

∑
i∈I1

∑
j∈J

∑
k∈K

1

(1 +R)t
Pt,i,j,kyt,i,j,k

−
∑
t∈T

∑
i∈I1

1

(1 +R)t
(At,ivt,i +Bt,iwt,i)

−
∑
t∈T

∑
i∈I1

∑
k∈K

1

(1 +R)t

Et,i,kxt,i,k + Ft,i,k
∑
j∈J

yt,i,j,k


−
∑
t∈T

∑
i∈I1

∑
j∈I

∑
k∈K

1

(1 +R)t
Gt,i,j,kyt,i,j,k (42)

s.t. wt,i = V 0
i +

∑
t′∈T ′

t

vt′,i ∀ t ∈ T, i ∈ I1 (43)

xt,i,k ≤ wt,i ∀ t ∈ T, i ∈ I1, k ∈ K (44)

ct,i,k = C0
i,k +

∑
t′∈T ′

t

Hi,kxt′,i,k ∀ t ∈ T, i ∈ I1, k ∈ K (45)
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∑
t∈T

∑
i∈I

∑
j∈J

∑
k∈K

1

(1 +R)t
Pt,i,j,kyt,i,j,k

=
∑
t∈T

∑
k∈K

∑
j∈J

Dt,j,kλt,j,k −
∑
i∈I1

ct,i,kµt,i,k −
∑
i∈I2

C0
i,kµt,i,k

 (46)

∑
j∈J

yt,i,j,k ≤ ct,i,k ∀ t ∈ T, i ∈ I1, k ∈ K (47)

∑
j∈J

yt,i,j,k ≤ C0
i,k ∀ t ∈ T, i ∈ I2, k ∈ K (48)

∑
i∈I

yt,i,j,k = Dt,j,k ∀ t ∈ T, j ∈ J, k ∈ K (49)

λt,j,k − µt,i,k ≤
1

(1 +R)t
Pt,i,j,k ∀ t ∈ T, i ∈ I, j ∈ J, k ∈ K (50)

yt,i,j,k, µt,i,k ∈ R+ ∀ t ∈ T, i ∈ I, j ∈ J, k ∈ K (51)

λt,j,k ∈ R, ∀ t ∈ T, j ∈ J, k ∈ K (52)

ct,i,k ∈ R+ ∀ t ∈ T, i ∈ I1, k ∈ K (53)

vt,i, wt,i, xt,i,k ∈ {0, 1} ∀ t ∈ T, i ∈ I1, k ∈ K (54)

The upper-level problem represented by Eqns. (42) - (45) remains unchanged in the duality-based

reformulation. Strong duality is enforced by equating the primal and dual objective functions as

presented in Eqn. (46). Lower-level primal constraints (47) and (49) are kept in the formulation to

guarantee primal feasibility. Dual feasibility of the lower level is ensured with constraints (50).

It must be noted that this reformulation yields a Mixed-Integer Nonlinear Program (MINLP).

The nonlinearity arises from the dual objective function in the right hand side of Eqn. (46), because

of the product of upper-level variable ct,i,k and lower-level dual variable µt,i,k. Fortunately, the

problem can be posed as a MILP because the variable ct,i,k only takes values in discrete increments

as indicated by Eqn. (45). The linearization procedure is based on eliminating variable ct,i,k from

the formulation by replacing it according to Eqn. (45). The resulting bilinear terms are products

of continuous variables (µt,i,k) and binary variables (xt′,i,k). Therefore, they can be modeled with a

set of mixed-integer constraints by including a continuous variable (ut′,t,i,k) for each bilinear term.

The resulting linearized MILP formulation is obtained after replacing Eqn. (46) with Eqn. (55),

∑
t∈T

∑
i∈I

∑
j∈J

∑
k∈K

1

(1 +R)t
Pt,i,j,kyt,i,j,k

=
∑
t∈T

∑
k∈K

∑
j∈J

Dt,j,kλt,j,k −
∑
i∈I

C0
i,kµt,i,k −

∑
i∈I1

∑
t′∈T ′

t

Hi,kut,t′,i,k

 (55)

and introducing the mixed-integer constraints in Eqns. (56) - (57).

ut,t′,i,k ≥ µt,i,k −M (1− xt′,i,k) t ∈ T, t′ ∈ T ′t , i ∈ I1, k ∈ K (56)

ut,t′,i,k ∈ R+ (57)

11



It is important to note that only the two terms presented in Eqns. (56) and (57) are necessary

to linearize the bilinear terms because they are sufficient to bound the values of ut,t′,i,k in the

improving direction of the objective function.

6 Illustrative Example

Both MILP reformulations of the bilevel capacity planning problem are implemented to solve a

small case study from the air separation industry. The illustrative example considers two existing

facilities of the leader, one candidate location for a new facility of the leader, and a single facility of

the competition. Facilities controlled by the leader and the competitor must satisfy the demand of

15 markets for a single commodity. The problem has a time horizon of 3 years divided in 12 time

periods (quarters of year). In this time horizon, the leader is allowed to execute investment decisions

in time periods 1, 5, and 12. Capacity expansion is achieved by installing additional production lines

with capacity of 9,000 ton/period. The complete dataset for this illustrative example is presented

in Appendix A. All examples use a discount rate (R) of 3% per time period.

The computational statistics of the single-level capacity planning with captive markets and the

reformulations of the capacity planning in a competitive environment are presented in Table 1. All

MILP problems were implemented in GAMS 24.4.1 and solved using GUROBI 6.0.0 on an Intel

Core i7 CPU 2.93 Ghz processor with 4 GB of RAM.

Table 1: Model statistics for the illustrative example.

Model statistic
Single-level with KKT Dualilty-base

captive markets reformulation reformulation

Number of constraints: 225 1,473 682

Number of continuous variables: 420 996 636

Number of binary variables: 48 480 48

LP relaxation at rootnode: 110 110 101

Final incumbent value: 110 97 97

Final optimality gap: 0.00% 0.00% 0.00%

Number of B&B nodes: 1 262 1

Solution time: 0.01 s 0.63 s 0.19 s

Table 1 shows the number of constraints and variables for the proposed formulations. It can be

observed that the KKT reformulation is significantly larger than the duality-based reformulation;

in particular, it requires 10 times more binary variables because of the complementarity constraints.

The growth in the number of binary variables does not have much impact for the solution time of

this small example, but it is likely to complicate the solution of larger instances.

The solutions obtained from the optimization problems establish the investment plan for the

leader. The plan obtained from the formulation with captive markets does not expand any facilities

in the time horizon. The optimal investment plan obtained from the bilevel formulation (both

reformulations) expands facility 1 in the first time period. The bilevel optimal demand assignments

12



in the first time period of this illustrative example are presented in Fig. 2; it can be observed

that some markets have dual sourcing because of the capacity limitations of production facilities.

Table 2 compares the income, investment costs, and operating costs for the single-level and bilevel

expansion plans. In order to quantify the potential regret of implementing an expansion plan

that ignores the decision criterion of markets, the expansion plan obtained from the single-level

formulation is also evaluated in an environment of rational markets.

Figure 2: Optimal demand assignments obtained in the first time period of the illustrative example

using the bilevel formulation.

Table 2: Results of the single-level and bilevel expansion plans for the illustrative example.

Term in objective function
Single-level with Single-level with Bilevel with

captive markets rational markets rational markets

Income from sales (MM$): 354 345 398

Investment in new facilities (MM$): 0 0 0

Expansion cost (MM$): 0 0 29

Maintenance cost (MM$): 31 31 31

Production cost (MM$): 139 139 162

Transportation cost (MM$): 74 118 79

NPV (MM$): 110 57 97

Market cost (MM$): 523 510 508

Table 2 shows the benefits of the expansion plan obtained from the bilevel formulation when

markets are considered rational. The single-level formulation with captive markets predicts a level

of income that is not attainable with rational markets. The bilevel formulation offers the lowest

cost for the markets with a small deterioration of the leader’s NPV in comparison to what could be

obtained with captive markets. When markets are considered rational, the NPV obtained with the

bilevel expansion plan is MM$40 higher than the one obtained by the single-level expansion plan;

this measure of regret accounts for 41% of the potential NPV.
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7 Middle-size Instances

From the illustrative example presented in Section 6, we observe that the KKT and the duality-

based reformulations yield exactly the same results. Despite the difference in formulation sizes

shown in Table 1, both reformulation solve the illustrative example in approximately the same

time. In order to predict the performance of the reformulations on large-scale instances, we use a

middle-size example of the capacity planning problem.

The example comprises the production and distribution of one product to 15 markets. Ini-

tially, the leader has three production facilities with capacities equal to 27,000 ton/period, 13,500

ton/period, and 31,500 ton/period. The leader also considers the possibility of opening a new

facility at a candidate location. We evaluate the investment decisions in a time horizon of 5 years

divided in 20 time periods.

We analyze two instances that share the same data but allow different timing for the investment

decisions. In the first instance (Middle-size 1), the leader is allowed to open the new facility and

expand capacities in every fourth time period. In the second instance (Middle-size 2), the leader

is allowed to execute the investments only every eight time periods. In both cases, capacity must

be expanded in discrete increments of 9,000 ton/period. The investment costs associated with

opening the new facility and expanding production capacity grow in time according to inflation;

the maintenance cost of open facilities also increase with time.

Market demands in each time period vary during the time horizon. Fig. 3 shows the trajectory

of the demands for the middle-size example. The selling prices offered by the leader to the markets

are presented in Fig. 4; each market is offered a different price based on their proximity to the

production facilities of the leader. Unit production costs at the facilities controlled by the leader

are presented in Fig. 5; they show the characteristic seasonal variation caused by the electricity

cost. Other cost coefficients of the example are not revealed by confidentiality reasons, but they

maintain the same magnitudes presented in Appendix A.

Figure 3: Evolution of market demands in the middle-size instances.

The computational statistics for the two middle-size instances of the capacity planning with

rational markets are presented in Table 3. The KKT and the duality-based reformulations were
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Figure 4: Evolution of selling prices in the middle-size instances.

Figure 5: Evolution of production costs in the middle-size instances.

implemented in GAMS 24.4.1 and solved using GUROBI 6.0.0.

Table 3 demonstrates the benefits of the duality-based reformulation in comparison to the KKT

reformulation. The time required to solve both instances using the duality-based reformulation

is less than 1 second, whereas the KKT reformulation requires a few minutes for each instance.

Interestingly, the KKT reformulation takes longer to solve the second middle-size instance that has

fewer investment options. The reason behind this counter-intuitive behavior is that the solver takes

longer to find a feasible solution to the problem.

The significant difference in solution time for both reformulations is explained by the number of

constraints and variables in the problem. The KKT reformulation requires in both instances 2,240

additional binary variables to model complementarity conditions. The growth in the number of

binary variables has a severe impact in the solution time of the problem.

Table 4 compares the income, investment costs, and operating costs of the proposed expansion

plans. It shows that the expansion plan obtained for the first instance produces a slightly higher

NPV when compared with the plan obtained for the second instance. This result can be anticipated

because the feasible region of the first instance contains the feasible region of the second instance

completely. However, the additional restrictions for the execution of investment decisions in the
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Table 3: Model statistics for middle-size instances.

Model statistic

Middle-size 1 Middle-size 2

KKT Dualilty-base KKT Dualilty-base

reformulation reformulation reformulation reformulation

Number of constraints: 7,200 2,961 7,192 2,857

Number of continuous variables: 4,860 2,965 4,860 2,763

Number of binary variables: 2,345 105 2,335 95

LP relaxation at rootnode: 372 346 346 324

Final incumbent value: 316 316 308 308

Final optimality gap: 0.01% 0.00% 0.01% 0.00%

Number of B&B nodes: 1 11,367 16,786 1

Solution time: 157 s 0.83 s 282 s 0.73 s

Table 4: Results of the bilevel expansion plans for the middle-size instances.
Term in objective function Middle-size 1 Middle-size 2

Income from sales (MM$): 895 885

Investment in new facilities (MM$): 0 0

Expansion cost (MM$): 85 82

Maintenance cost (MM$): 94 94

Production cost (MM$): 315 313

Transportation cost (MM$): 85 88

NPV (MM$): 316 308

Market cost (MM$): 1,319 1,319
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second instance only produces a decrease of 1.1% in its NPV.

The investment plans obtained from the bilevel formulation do not invest to open the new facility

in any of the instances. In the first instance, the plan expands facilities 2 and 3 in the first time

period, and facility 3 in the fifth time period. The optimal capacities and production levels at

the facilities controlled by the leader in first instance are presented in Fig. 6; arrows indicate the

time periods in which capacity is expanded. We can observe in Fig. 6 that all production facilities

have high utilization. The expanded capacities in facilities 2 and 3 are used as soon as they are

available; facility 1 experiences a temporary decrease in its production because of the capacity

increase at facility 3, but it returns to full utilization with demand growth. The bilevel expansion

plan obtained for the second instance is very similar to the plan obtained for the first instance; it

expands facilities 2 and 3 in the first time period, and delays the second expansion of facility 3

until the ninth time period. In both instances, investment and maintenance cost are equal for all

facilities controlled by the leader; therefore, the expansion trends observed are good indicators of

the competitiveness of facilities with respect production and transportation cost.

Figure 6: Capacity and production of the leader in the first instance of the middle-size example.

8 Solution Strategies for Large-scale problems

The implementation of the bilevel formulation for capacity planning problems in industrial instances

requires developing a solution strategy for large-scale problems. The results obtained from the
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middle-size instance suggest that the KKT reformulation is not appropriate to solve large instances.

Additionally, we can expect the duality-based reformulation to struggle solving large-scale instances

given the relative weakness of its LP relaxation. Therefore, we propose an improved duality-based

reformulation and a domain reduction scheme; these solution strategies are evaluated in Section 9

with an industrial example.

8.1 Strengthened Duality-based Reformulation

The LP relaxation of the duality-based reformulation can be strengthened by enforcing strong du-

ality independently for each commodity in every time period. The justification for this modification

comes from the observation that once the leader has fixed its capacity, the optimization problem

of the follower can be decomposed by time period and commodity. Consequently, we can replace

Eqn. (55) by its disaggregated version presented in Eqn. (58).

∑
i∈I

∑
j∈J

1

(1 +R)t
Pt,i,j,kyt,i,j,k

=
∑
j∈J

Dt,j,kλt,j,k −
∑
i∈I

C0
i,kµt,i,k −

∑
i∈I1

t∑
t′=1

Hi,kut,t′,i,k ∀t ∈ T, k ∈ K (58)

Replacing Eqn. (55) by Eqn. (58) yields a modest improvement in the LP relaxation of the

duality-based reformulation. In the first instance of the middle-size example presented in Section 7,

the value of the LP relaxation is reduced from MM$346 to MM$343 (9.49% to 8.54% initial gap).

8.2 Domain Reduction for the Duality-based Reformulation

A clever strategy to reduce the size of the capacity planning problem with rational markets derives

from the analysis of the feasible region of the bilevel optimization problem. In the bilevel optimiza-

tion literature, the bilevel feasible region is called the inducible region [2]. In essence, the inducible

region is the set of upper-level feasible solutions and their corresponding rational reactions in the

lower-level problem. In order to describe the inducible region mathematically, we define the set of

upper-level feasible solutions as the capacity expansion plans that satisfy upper-level constraints.

This set of upper-level feasible solutions is represented in Eqn. (59),

(v, w, x, c) ∈ X (59)

where X denotes the polyhedron described by upper-level constraints (9)-(11) and upper-level

domains (17)-(18).

The rational reaction set for the follower is defined by expression (60) as a function of the

upper-level variables,

Ψ(v, w, x, c) =

y : arg min
y∈Y

∑
t∈T

∑
i∈I

∑
j∈J

∑
k∈K

1

(1 +R)t
Pt,i,j,kyt,i,j,k

 (60)
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where Y denotes the polyhedron described by lower-level constraints (13)-(16).

According to expressions (59) and (60), the inducible region of the bilevel capacity expansion

problem is defined by expression (61).

IR = {(v, w, x, c, y) : (v, w, x, c) ∈ X, y ∈ Ψ(v, w, x, c)} (61)

We know from our original assumptions that any expansion plan satisfying Eqn. (59) has a

nonempty rational reaction set (Ψ(v, w, x, c)). However, not all demand assignments satisfying

the lower-level constraints (y ∈ Y ) are bilevel feasible because some of them might be suboptimal

for all expansion plans of the leader. Hence, it is possible to reduce the dimension of the bilevel

formulation by excluding from its domain those demand assignments (y ∈ Y ) that are never optimal

in the lower level.

The first step to identify demand assignments that are bilevel infeasible is to solve the lower-level

problem with the production capacities of the leader fixed to their upper bounds. Once we know

the optimal demand assignments in the lower-level problem with maximum capacity, we can infer

which demands are never assigned to the leader. The intuition for this inference is that only the

demands (Dt,j,k) that are assigned to the leader when the capacity is at its upper bound, can be

assigned to the leader when its capacity is more constrained.

The idea behind the domain reduction is that demand assignments that are nonbasic in the

optimal solution of the LP with maximum capacity, must remain nonbasic when capacity is reduced.

Proposition 1 formalizes this idea. Its proof can be found in Appendix B.

Proposition 1. A demand assignment (yt,i,j,k) with positive reduced cost in the optimal solution

of the lower-level problem with maximum capacity also has a positive reduced cost when capacities

are reduced.

For the implementation of the domain reduction strategy, it is important to remember that

nonbasic variables are associated with positive reduced costs in the minimization problem. In

order to identify nonbasic variables, we denote by µUt,i,k and λUt,j,k the optimal dual solution of the

lower-level problem with capacities of the leader are at their upper bound (CU
t,i,k ∀i ∈ I1). Then,

according to Proposition 1, Eqn. (62) establishes valid upper bounds for the demand assignments

in the bilevel capacity expansion problem.

yt,i,j,k ≤

0 if 1
(1+R)tPt,i,j,k + µUt,i,k − λUt,j,k > 0

Dt,j,k otherwise
∀t ∈ T, i ∈ I1, j ∈ J, k ∈ K (62)

The range reduction proposed in expression (62) can have a significant impact in the size of

the bilevel formulation because many assignment variables can be fixed if we determine that zero

is their only bilevel feasible value. However, it is not the only advantage of the domain reduction

strategy when we use the duality-based reformulation. If we analyze the lower-level LP in light
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of complementary slackness, we can conclude that expression (62) also implies that some dual

constraints (50) are never active. In particular, those dual constraints (50) corresponding to the

variables yt,i,j,k that can be fixed to zero are irrelevant in the duality-based formulation. Therefore,

the domain reduction strategy proposed for the bilevel capacity expansion planning offers the

double benefit of reducing the number of continuous variables and the number of constraints in the

duality-based reformulation.

9 Industrial Example

The solution strategies proposed for large-scale instances are tested with a capacity planning prob-

lem for an air separation company. This large-scale example includes 3 existing facilities of the

leader, 2 candidate facilities of the leader, and 5 facilities of competitors. Demands of 20 markets

for 2 different commodities are considered in a time horizon of 20 years divided in 80 time peri-

ods. Two instances allowing different timing for the investment decisions are analyzed: the first

instance allows investments every fourth time period and the second instance allows investments

every eighth time period.

According to the formulation, the leader maximizes the NPV obtained during the 20-year time

horizon. Markets select their providers by controlling the demand assignments with the objective

of minimizing the discounted cost they pay. A discount rate (R) of 3% per time period is used

in both objective functions. Cost coefficients and all other parameters are omitted because of

confidentiality reasons.

The computational statistics for the original duality-based reformulation and the large-scale

duality-based reformulation are presented in Table 5; the large-scale reformulation enforces strong

duality for each commodity in every time period and implements the domain reduction strategy to

fix variables and eliminate constraints. Table 5 shows that both instances of the industrial example

have a significant number of constraints, continuous and discrete variables. However, if we compare

the original and the large-scale duality-based reformulations, we observe a reduction between 13%

and 17% in the number of continuous variables and constraints.

The performance of both reformulations is also presented in Table 5; we observe a significant

difference in the performance of the original and the large-scale duality-based reformulations. A

major advantage of the large-scale reformulation is related to its LP relaxation at the rootnode.

This improvement derives partially from disaggregating strong duality, and more importantly from

excluding demand assignments that are bilevel infeasible. In the first industrial instance the LP re-

laxation gap is reduced from 34.9% to 3.9%, whereas in the second industrial instance the reduction

is from 34.4% to 3.7%.

Even after implementing the proposed strategies for large-scale problems, the industrial instances

are still difficult to solve using GUROBI 6.0.0. For our industrial example, only the second instance

was solved to the desired optimality gap of 1% with the large-scale duality-based reformulation.

However, if we compare the best solutions obtained for both industrial instances, we observe that

allowing more frequent expansions in the first instance produces a NPV that is MM$45 higher,
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Table 5: Model statistics for industrial instances.

Model statistic

Industrial 1 Industrial 2

Original large-scale Original large-scale

duality-based duality-based duality-based duality-based

Number of constraints: 46,601 40,025 42,501 35,925

Number of continuous variables: 46,000 39,905 42,520 35,265

Number of binary variables: 640 640 520 520

LP relaxation at rootnode: 4,289 2,906 4,002 2,851

Final incumbent value: 2,662 2,791 2,689 2,746

Final optimality gap: 33.2% 1.27% 26.4% 0.98%

Solution time: 60 min∗ 60 min∗ 60 min∗ 5 min
∗ Time limit reached

Table 6: Results of the bilevel expansion plans for the industrial instances.
Term in objective function Industrial 1 Industrial 2

Income from sales (MM$): 5,984 5,888

Investment in new facilities (MM$): 0 0

Expansion cost (MM$): 439 411

Maintenance cost (MM$): 215 215

Production cost (MM$): 2,100 2,072

Transportation cost (MM$): 439 444

NPV (MM$): 2,791 2,746

Market cost (MM$): 10,545 10,546

which accounts for 1.6% of the potential profit. Table 6 presents in detail the terms in the objective

function for the best solutions obtained; the table shows that allowing more frequent expansions

in the first instance generates a more dynamic expansion plan that can capture a higher market

share. However, the optimal number of expansions is the same for both instances and none of them

includes investments in new facilities.

The optimal capacity and production levels at facilities controlled by the leader in the first

industrial instance are presented in Figs. 7 and 8 for commodity 1 and 2, respectively; the figures

show that utilization of the production capacities is high for all the facilities being expanded.

The only capacity that is not expanded in the entire time horizon is the production capacity of

commodity 1 at facility 1; the utilization of this production capacity fluctuates according to the

available capacity at the facilities 2 and 3. The expansion trends observed preserve a close relation

with the competitiveness of facilities that is mainly determined by their production and distribution

costs.

10 Conclusions

We have developed a novel formulation for capacity planning problems that considers markets

as rational decision makers. The formulation is based on bilevel optimization, a framework that
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Figure 7: Capacity and production of commodity 1 at the facilities controlled by the leader in the

first instance of the industrial example.

allows modeling the conflicting interests of producers and consumers. The expansion plans obtained

from the bilevel formulation produce greater economic benefits when the producers operate in a

competitive environment. In particular, the single-level formulation tends to overestimate the

market share that can be obtained and might generate expensive investment plans that are less

profitable.

The bilevel formulation for capacity planning is a challenging optimization problem. We have

proposed two different approaches to reformulate it as a single-level MILP. The first approach

ensures optimality of the lower-level problem through its KKT conditions. The second approach

uses strong duality of LPs for the reformulation. In the middle-size instances, we have shown that

the duality-based reformulation offers superior performance compared to the KKT reformulation;

this result is explained by the large number of binary variables required in the KKT approach

to linearize the complementarity constraints. The duality-based reformulation does not require

the addition of binary variables but the strong duality condition gives rise to nonlinearities; for

the case in which all upper-level variables are discrete, the nonlinearities can be avoided with the

introduction of continuous variables and linear constraints.

Despite the relative advantage of the duality-based reformulation, the solution of large-scale

instances of the bilevel capacity planning problem is still computationally demanding. We proposed

two strategies to improve the duality-based reformulation. The first strategy leverages separability

of the lower-level problem by disaggregating the strong duality constraint. The second strategy uses
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Figure 8: Capacity and production of commodity 2 at the facilities controlled by the leader in the

first instance of the industrial example.

the topology of the bilevel feasible region to reduce the number of variables and constraints in the

duality-based reformulation. The implementation of these strategies yields a significant reduction

in the solution time of large-scale problems.

The bilevel formulation for capacity planning has shown to be useful for developing capacity

expansion plans that considers markets as rational decision makers. This novel approach is more

realistic than the traditional formulation because it models the dynamic nature of industrial mar-

kets. Furthermore, we have proposed an effective strategy to solve large-scale instances that allows

using the bilevel capacity planning formulation in industrial applications.
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Appendix A: data for illustrative example

Table A.1 shows the cardinality of the datasets used for the three examples presented in the paper.

Table A.1: Summary of the datasets used in examples.

Illustrative middle-size Industrial

example instance instance

Existing facilities of the leader: 2 3 3

Candidate facilities of the leader: 1 1 2

Facilities of the competitors: 1 3 5

Markets: 8 15 20

Commodities: 1 1 2

Time periods: 12 20 80

The complete dataset for the illustrative example is presented in Tables A.2 - A.10. The initial production

capacity of the facilities is presented in Table A.2.

Table A.2: Initial capacities for facilities in the illustrative example.

Facility Commodity 1

[ton/period]

Leader 1 22,500

Leader 2 36,000

Leader 3 0

Competitor 1 36,000

Market demands for all time periods are presented in Table A.3.

Table A.3: Market demands (Dt,j,k) in the illustrative example.

Time Market demand [ton/period]

period D1 D2 D3 D4 D5 D6 D7 D8

1 15,300 8,100 4,500 4,500 5,400 11,700 3,600 27,000

2 15,500 8,200 4,600 4,600 5,500 11,900 3,700 27,600

3 15,700 8,300 4,600 4,700 5,500 12,200 3,800 27,900

4 15,800 8,400 4,700 4,700 5,600 12,400 3,800 28,000

5 15,900 8,400 4,800 4,800 5,600 12,600 3,900 28,200

6 15,900 8,400 4,800 4,900 5,600 12,700 3,900 28,100

7 16,000 8,500 4,900 5,000 5,700 13,000 4,000 28,600

8 16,100 8,500 5,000 5,000 5,700 13,300 4,100 29,100

9 16,200 8,600 5,100 5,100 5,800 13,500 4,200 29,800

10 16,200 8,600 5,200 5,100 5,800 13,700 4,200 29,900

11 16,100 8,500 5,300 5,200 5,800 13,600 4,200 29,700

12 16,200 8,600 5,300 5,200 5,800 13,600 4,200 29,800
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Tables A.4 - A.10 present the cost coefficients for the objective function of the illustrative example. Table

A.4 shows the cost (At,3) of opening the candidate production facility in different time periods. In the

illustrative example, it is allowed to open the new facility only in time periods 1, 5, and 9.

Table A.4: Investment cost (At,3) for the leader to open facility 3 in the illustrative example.

Time period Investment cost [MM$]

1 20.00

5 20.40

9 20.86

Table A.5 presents the maintenance cost per time period (Bt,i) incurred by open facilities.

Table A.5: Maintenance cost (Bt,i) in the illustrative example.

Time Maintenance cost [MM$/period]

period Leader 1 Leader 2 Leader 3

1 1.000 2.000 3.000

2 1.005 2.010 3.015

3 1.010 2.020 3.030

4 1.013 2.026 3.039

5 1.020 2.040 3.060

6 1.029 2.058 3.087

7 1.032 2.064 3.096

8 1.035 2.070 3.105

9 1.043 2.086 3.129

10 1.049 2.098 3.147

11 1.054 2.108 3.162

12 1.058 2.116 3.174

Table A.6 presents the investment cost (Et,i,1) associated to the expansion of production capacity by

9,000 ton/period. In the illustrative example, all facilities are assumed to have the same expansion cost and

expansions are allowed only in time periods 1, 5, and 9.

Table A.6: Expansion cost (Et,i,1) in the illustrative example.

Time Expansion cost [MM$/9,000 ton]

period Leader 1 Leader 2 Leader 3

1 30.00 30.00 30.00

5 30.60 30.60 30.60

9 31.29 31.29 31.29

The production cost of facilities (Ft,i,1) in the illustrative example are presented in Table A.7.
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Table A.7: Production cost (Ft,i,1) in the illustrative example.

Time Production cost [$/ton]

period Leader 1 Leader 2 Leader 3

1 250 220 180

2 257 226 185

3 246 217 177

4 246 216 177

5 254 223 183

6 263 231 189

7 253 222 182

8 255 225 184

9 262 230 188

10 284 250 204

11 271 239 195

12 269 237 194

The transportation cost from facilities to markets in each time period are calculated from the transporta-

tion costs at the initial time period and their growth rate, according to Eqn. A.1. Initial transportation

costs (G0
i,j,k) are presented in Table A.8; their growth rate (GRtt ) are presented in Table A.10.

Gt,i,j,k = G0
i,j,kG

Rt
t (A.1)

Table A.8: Transportation cost (Gt,i,j,1) in the illustrative example.

Transportation cost [$/ton]

Market Leader 1 Leader 2 Leader 3

1 26 325 234

2 13 299 260

3 65 195 325

4 104 130 156

5 78 260 221

6 208 195 46

7 195 169 59

8 234 169 0.4

Selling prices offered by facilities to markets are calculated from the selling prices at the initial time

period and their growth rate according to Eqn. A.2. Initial selling prices (P 0
i,j,k) are presented in Table A.9;

their growth rates (PRtt ) are presented in Table A.10.

Pt,i,j,k = P 0
i,j,kP

Rt
t (A.2)
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Table A.9: Initial selling prices (P 0
i,j,k) from facilities to markets in the illustrative example.

Leader 1, 2 & 3 Competitor 1

Market [$/ton] [$/ton]

1 586 615

2 573 726

3 625 785

4 664 633

5 638 794

6 606 619

7 619 606

8 560 580

Table A.10: Growth rates for transportation costs (GRt
t ) and selling prices (PRt

t ) in the illustrative

example.

Time period Growth rate Grow rate [MM$]

for transportation for selling prices

1 1.00 1

2 1.00 1

3 1.03 1.001

4 1.05 1.002

5 1.09 1.013

6 1.09 1.013

7 1.12 1.015

8 1.12 1.015

9 1.12 1.047

10 1.14 1.048

11 1.14 1.048

12 1.16 1.049
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Appendix B: proof of Proposition 1

Proposition 1. A demand assignment (yt,i,j,k) with positive reduced cost in the optimal solution of the

lower-level problem with maximum capacity also has a positive reduced cost when capacities are reduced.

Proof. We want to prove that the optimal reduced cost of the leader’s assignment variables cannot decrease

when capacities are reduced from their maximum feasible value (CUt,i,k). For this analysis, we decompose

the lower-level problems by time periods (t ∈ T ) and by commodities (k ∈ K); the problem minimizing the

cost paid by markets is decomposable since all terms in the objective function and constraints are indexed

by (t, k). Intuitively, this means that we can solve independent problems to minimize the cost paid at time

period t for commodity k. The lower-level problem resulting from this decomposition is presented in Eqns.

(B.1)-(B.5).

min
1

(1 +R)t

∑
i∈I

∑
j∈J

Pi,jyi,j (B.1)

s.t.
∑
j∈J

yi,j ≤ Ci ∀ i ∈ I1 (B.2)

∑
j∈J

yi,j ≤ C0
i ∀ i ∈ I2 (B.3)

∑
i∈I

yi,j = Dj ∀ j ∈ J (B.4)

yi,j ∈ R+ ∀ i ∈ I, j ∈ J (B.5)

Similarly, the dual lower-level problem disaggregated by time periods and commodities is presented in

Eqns. (B.6) - (B.10).

max
∑
j∈J

Djλj −
∑
i∈I1

Ciµi −
∑
i∈I2

C0
i µi (B.6)

s.t. λj − µi ≤
1

(1 +R)t
Pi,j ∀ i ∈ I1, j ∈ J (B.7)

λj − µi ≤
1

(1 +R)t
Pi,j ∀ i ∈ I2, j ∈ J (B.8)

µi ∈ R+ ∀ i ∈ I (B.9)

λj ∈ R ∀ j ∈ J (B.10)

We assume that the dual lower-level problem is bounded (and the primal lower-level problem is feasible).

The condition that guarantees a finite solution for the dual of the lower-level problem is presented in Eqn.

(B.11).

∑
j∈J

Dj ≤
∑
i∈I1

Ci +
∑
i∈I2

C0
i (B.11)

An important observation regarding dual variables µi (i ∈ I1) is that they all have the same optimal

value. It is the case because constraints (B.7) are identical for all facilities of the leader (facilities of the leader

offer the same price to each market) and the coefficients of all µi have the same sign in the objective function.
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We also note that the condition presented in Eqn. (B.12) must be satisfied by the optimal solution of the

dual lower-level problem in order to get the largest values of λj allowed by dual constraints (B.7) - (B.8).

λj = min
i∈I

(
1

(1 +R)t
Pi,j + µi

)
∀j ∈ J (B.12)

Using Eqn. (B.12), we can rewrite the dual lower-level problem as presented by Eqn. (B.13).

max
µi≥0

∑
j∈J

Dj

[
min
i∈I

(
1

(1 +R)t
Pi,j + µi

)]
−
∑
i∈I1

Ciµi −
∑
i∈I2

C0
i µi

 (B.13)

In order to prove that the optimal reduced costs of the leader’s assignment variables cannot decrease

when capacities are reduced, we divide the proof in four steps.

Step 1: optimal values of µi (i ∈ I1) cannot be less than their optimal values obtained with maximum

capacity.

We assume that CUi is the upper bound of the coefficient of dual variable µi in Eqn. (B.6), and we denote

by (µUi , λ
U
j ) the corresponding optimal solution of the dual lower-level problem. Now, let us assume that the

coefficients of µi are reduced by ∆Ci, and let us denote by (µ∗i , λ
∗
j ) the optimal dual solution corresponding

to capacities C∗i = CUi −∆Ci. If we consider that Eqn. (B.13) is a maximization problem, we can establish

the sequence of inequalities (B.14)-(B.17).

∑
j∈J

Dj

[
min
i∈I

(
1

(1 +R)t
Pi,j + µ∗i

)]
−
∑
i∈I1

CUi µ
∗
i −

∑
i∈I2

C0
i µ
∗
i (B.14)

≤
∑
j∈J

Dj

[
min
i∈I

(
1

(1 +R)t
Pi,j + µUi

)]
−
∑
i∈I1

CUi µ
U
i −

∑
i∈I2

C0
i µ

U
i (B.15)

≤
∑
j∈J

Dj

[
min
i∈I

(
1

(1 +R)t
Pi,j + µUi

)]
−
∑
i∈I1

(
CUi −∆Ci

)
µUi −

∑
i∈I2

C0
i µ

U
i (B.16)

≤
∑
j∈J

Dj

[
min
i∈I

(
1

(1 +R)t
Pi,j + µ∗i

)]
−
∑
i∈I1

(
CUi −∆Ci

)
µ∗i −

∑
i∈I2

C0
i µ
∗
i (B.17)

We note that
∑
i∈I1 ∆Ciµ

∗
i is the difference between expressions (B.17) and (B.14). Similarly, the dif-

ference between expressions (B.16) and (B.15) is
∑
i∈I1 ∆Ciµ

U
i . Hence, we can infer that

∑
i∈I1 ∆Ciµ

∗
i ≥∑

i∈I1 ∆Ciµ
U
i . Since dual variables µi must have the same optimal value for all i ∈ I1, then µ∗i ≥ µUi for all

i ∈ I1.

Step 2: optimal values of µi (i ∈ I2) cannot be less than their optimal values obtained with maximum

capacity.

In order to continue with the argument, let us define εi according to Eqn. (B.18).

εi = µ∗i − µUi (B.18)
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By optimality of Eqn. (B.15), we know that any deviation of µUi from their optimal values yields a lower

bound as presented in Eqns. (B.19) - (B.20).

∑
j∈J

Dj

[
min
i∈I

(
1

(1 +R)t
Pi,j + µUi + min

i′
[εi′ ]

)]
−
∑
i∈I1

CUi (µUi + min
i′

[εi′ ])−
∑
i∈I2

C0
i (µUi + min

i′
[εi′ ])

(B.19)

≤
∑
j∈J

Dj

[
min
i∈I

(
1

(1 +R)t
Pi,j + µUi

)]
−
∑
i∈I1

CUi µ
U
i −

∑
i∈I2

C0
i µ

U
i (B.20)

subtracting (B.20) from (B.19), we obtain inequality (B.21),

−
∑
j∈J

Dj min
i′

[εi′ ] +
∑
i∈I1

CUi min
i′

[εi′ ] +
∑
i∈I2

C0
i min

i′
[εi′ ] ≥ 0 (B.21)

which implies mini∈I [εi] ≥ 0 according to inequality (B.11).

Step 3: if capacities of the leader are reduced, optimal values of µi (i ∈ I2) cannot increase faster than the

values of µi (i ∈ I1).

We want to show that maxi∈I [εi] = maxi∈I1 [εi]. Since all dual variables µi have the same optimal value

for all i ∈ I1, we denote by µU1 their optimal value in the problem with maximum capacity and by ε1 their

optimal deviation when capacities of the leader are reduced by ∆Ci.

By optimality of Eqn. (B.15), we can deduce inequality (B.22).

∑
j∈J

Dj

{
min
i∈I

(
1

(1 +R)t
Pi,j + µUi + εi − ε1

)}
−
∑
i∈I1

CUi
(
µUi + εi − ε1

)
−
∑
i∈I2

C0
i

(
µUi + εi − ε1

)
≤
∑
j∈J

Dj

{
min
i∈I

(
1

(1 +R)t
Pi,j + µUi

)}
−
∑
i∈I1

CUi µ
U
i −

∑
i∈I2

C0
i µ

U
i (B.22)

which implies inequality (B.23),

∑
j∈J

Dj

{
min
i∈I

(
1

(1 +R)t
Pi,j + µUi + εi

)}
−
∑
i∈I1

CUi
(
µUi + εi

)
−
∑
i∈I2

C0
i

(
µUi + εi

)
≤
∑
j∈J

Dj

{
min
i∈I

(
1

(1 +R)t
Pi,j + µUi + ε1

)}
−
∑
i∈I1

CUi
(
µUi + ε1

)
−
∑
i∈I2

C0
i

(
µUi + ε1

)
(B.23)

By optimality, we also know that inequality (B.24) must be satisfied.

∑
j∈J

Dj

{
min
i∈I

(
1

(1 +R)t
Pi,j + µUi + ε1

)}
−
∑
i∈I1

(
CUi −∆Ci

) (
µUi + ε1

)
−
∑
i∈I2

C0
i

(
µUi + ε1

)
≤
∑
j∈J

Dj

{
min
i∈I

(
1

(1 +R)t
Pi,j + µUi + εi

)}
−
∑
i∈I1

(
CUi −∆Ci

) (
µUi + εi

)
−
∑
i∈I2

C0
i

(
µUi + εi

)
(B.24)

Furthermore, an upper bound on the right-hand side of inequality (B.24) is presented in Eqn. (B.25).
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∑
j∈J

Dj

{
min
i∈I

(
1

(1 +R)t
Pi,j + µUi + εi

)}
−
∑
i∈I1

(
CUi −∆Ci

) (
µUi + εi

)
−
∑
i∈I2

C0
i

(
µUi + εi

)
≤
∑
j∈J

Dj

{
min
i∈I

(
1

(1 +R)t
Pi,j + µUi

)
+ max

i
[εi]

}
−
∑
i∈I1

(
CUi −∆Ci

) (
µUi + εi

)
−
∑
i∈I2

C0
i

(
µUi + εi

)
(B.25)

If we subtract the left-hand side of (B.24) from the right-hand side of (B.25), we can infer inequality

(B.26),

∑
j∈J

Dj

{
max
i

[εi]− ε1
}
−
∑
i∈I2

C0
i (εi − ε1) ≥ 0 (B.26)

Now, let us assume that maxi∈I [εi] > ε1. Then, for i′ = argmax[εi], inequality (B.27) must be satisfied.

C0
i′ ≤

∑
j∈J {maxi[εi]− ε1} −

∑
i∈I2\{i′} C

0
i (εi − ε1)

(εi′ − ε1)
(B.27)

But we have not imposed any restrictions on the capacity of the competitors. Therefore, ε1 = maxi[εi].

Step 4: reduced costs of assignment variables for the leader cannot decrease when its capacities are re-

duced.

A necessary condition for optimality of a minimization linear program is that the reduced cost of the

nonbasic variables must be nonnegative. Therefore, optimal demand assignments to the leader that are

nonbasic (yUi,j = 0 i ∈ I1) in the problem with maximum capacity must have nonnegative reduced costs as

presented by inequality (B.28).

rUi,j =
1

(1 +R)t
Pi,j + µUi − λUj ≥ 0 ∀(i, j) ∈

{
(i, j) : i ∈ I1, j ∈ J, yUi,j = 0

}
(B.28)

Using Eqn. (B.12), we can rewrite the reduced cost (ri,j) for nonbasic variables yi,j only in terms of dual

variables µi,

rUi,j =
1

(1 +R)t
Pi,j + µUi −min

i′∈I

(
1

(1 +R)t
Pi,j + µUi

)
≥ 0 ∀(i, j) ∈

{
(i, j) : i ∈ I1, j ∈ J, yUi,j = 0

}
(B.29)

Recall that the lower-level problem is degenerate because the leader offers a single price to each market

from all facilities. This degeneracy implies that some assignment variables are nonbasic but their reduced

costs are strictly equal to zero. In order to keep in the bilevel problem the degenerate assignments, we

restrict the domain reduction to variables with strictly positive reduced costs in the lower-level problem with

maximum capacity.

In Step 3, we established that dual variables µi (i ∈ I2) cannot increase more than dual variables µi

(i ∈ I1) when production capacities of the leader are reduced from CUi to CUi − ∆Ci. Then, according to

inequality (B.30), the reduced cost of the variables of the leader cannot decrease when capacities are reduced.

33



1

(1 +R)t
Pi,j + µUi −min

i′∈I

(
1

(1 +R)t
Pi,j + µUi

)
≤ 1

(1 +R)t
Pi,j + µUi + εi −min

i′∈I

(
1

(1 +R)t
Pi,j + µUi + εi

)
∀(i, j) ∈

{
(i, j) : i ∈ I1, j ∈ J

}
(B.30)

Therefore, variables yi,j (i ∈ I1) with positive reduced cost in the lower-level problem with maximum

capacity have positive reduced cost regardless of the leader’s expansion strategy.

34


