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Abstract

A Mixed-integer Linear Programming model is proposed to determine the optimal number, location

and capacity of the warehouses required to support a long-term forecast for a business with seasonal

demand. Discrete transportation costs, dynamic warehouse contracting, and the handling of safety

stock are the three main distinctive features of the problem. Four alternatives for addressing discrete

transportation costs are compared. The most efficient formulation is obtained using integer variables to

account for the number of units used of each transportation mode. Contracting policies constraints are

derived to ensure use of warehouses for continuous periods. Similar constraints are included for the case

when a warehouse is closed. Safety stock with risk-pooling effect is considered using a piecewise-linear

representation. To solve large-scale problems, tightening constraints, and simplified formulations are

proposed. These formulations are based on single-sourcing assumptions and yield near-optimal results

with a large reduction in the solution time and a low impact on the optimum cost.

1 Introduction

Supply chains have become increasingly complex in recent years. Globalization has made a large number

of new markets and sourcing options available. The response from many companies to this situation

1
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has been to focus on their core business, outsourcing the logistics and warehousing operations. Strategic

decisions can have a large impact in the success of a company. This is why such decisions must be made

using the best tools available.

A Mixed-integer Linear Programming (MILP) model that includes discrete transportation costs, dy-

namic warehousing contracting policies and safety stock with risk-pooling effect (Eppen, 1979) is proposed

in this paper. These features are especially important when the logistics and warehousing operations are

outsourced. The goal of the proposed model is to determine the optimal number, location and size of

warehouses in a supply chain for a business with seasonal demand. This is not a trivial task because

decisions on production of each commodity, transportation mode selection, flows between facilities and

inventory must be simultaneously optimized. The features considered make the model more realistic but

at the same time significantly harder to solve. This is why efficient model formulations and solution

strategies must be developed. This paper focuses on developing efficient formulations for the problem and

its solution.

Transportation costs are commonly discrete in practice. The rates are usually fixed over prespecified

weight intervals. This important fact has been neglected in most of the previous work presented on

the facility location problem (Cornuéjols et al., 1983). Only a handful of problems consider discrete

transportation costs using different approaches (Bravo and Vidal, 2013). In this paper, four alternatives

to model discrete transportation costs are presented and compared to yield the most efficient formulation

for the current application. Section 4.2 details this analysis.

Another important feature considered is warehouse contracting policies. Since the inventory storage

service is supplied by an external company, constraints that ensure a continuous service must be enforced.

The constraints are derived from propositional logic and impose two conditions: 1) Once a warehouse is

opened it must remain open by at least a certain length of time; 2) If a warehouse is closed, it will not be

available for reopening before a certain length of time. Even though these constraints are problem-specific,

they can be useful in other applications. Further discussion on this topic can be found in Section 4.3.

The handling of safety stock, covered in section 4.4, is another novel aspect of this article. Most

previous works that include this feature involve nonlinear models, which are much harder to solve (You

and Grossmann, 2008; de Bittencourt et al., 2015). We propose a piecewise linear formulation that

implicitly considers demand variability and the risk-pooling effect (Eppen, 1979).

With all the complicating issues considered, obtaining the optimal solution becomes a challenging task.
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To solve larger problems, additional modeling schemes are considered. Valid inequalities are proposed to

tighten the formulation and to reduce the solution time (section 5). Finally, simplifying formulations are

derived based on reasonable assumptions (section 6). These formulations have a large impact on reducing

the solution time with only a small increase in the total cost.

2 Literature Review

The unique mix of features included in the present work make it different to the previous articles published

on facility location problems. The extensive literature in the area is covered in the comprehensive reviews

by Owen and Daskin (1998), Klose and Drexl (2005), Melo et al. (2009) and Farahani et al. (2013). Owen

and Daskin (1998) stress the difficulty of the problem pointing out that most of the resulting models are

NP-Hard. They also classify the problems in static and deterministic, dynamic, and stochastic. In another

review by Klose and Drexl (2005), besides analyzing special types of problems, the continuous and network

location models, they classify mixed-integer models into several categories: network topology, objectives,

capacitated or uncapacitated, number of stages, single and multi-commodity, dynamic and static, and

deterministic and stochastic models. Melo et al. (2009) review 139 articles, and present classifications

in terms of complementary decisions considered, solution strategy, network structure and application.

Farahani et al. (2013) present another review to the subject, focusing on hub location problems.

The relevance of discrete transportation costs in supply chain design was pointed out by Gupta (1992).

However, as it can be observed in the recent review by Bravo and Vidal (2013), focused on the freight

cost function, most authors have neglected this issue. Discrete costs mean that the transportation cost

is fixed per each truck or container, whether the unit is full or not. The total cost is then a piecewise

constant function of the transported amount. Very few articles have taken into account this situation.

Park and Hong (2009) considered a set of trucks and binary variables to indicate if the vehicle is used in

a defined route and solved it with a Genetic Algorithm (Fogel, 1966). Manzini and Bindi (2009), in their

strategic model III, consider integer variables for the transportation containers and the corresponding cost

is expressed per container. Brahimi and Khan (2014), in a model for a multinational oil company supply

chain, also consider integer variables to represent the number of trucks in each link. They solve a small

scale single-product problem. Quttineh and Lidestam (2014) develop a planning model with boat and

truck transportation using integer variables to account for the number of boats or trucks that are used

in a determined link and period. They solve the problem using a rolling-horizon technique. However,
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they also attempted to solve a full scale model with 366 periods. After 48 hours of computation the

optimality gap was still 3%. A different approach was taken by Gao et al. (2010) for a supply chain

design problem with freight cost discounts in which the unit transportation cost is a piecewise function

of the transported amount. The disjunction is reformulated using the convex-hull (Balas, 1998) and

solved using Benders decomposition (Geoffrion, 1972). As reported in the literature, there are several

alternatives to represent discrete freight costs. However, no previous work has done a critical review to

identify the most efficient formulation among the alternatives. In this work we compare 4 alternatives of

modeling the discrete transportation costs and identify the most efficient one (minimum solution time)

for the current application.

Demand uncertainty is present in most supply chains. In order to hedge against stock-outs a safety

stock is kept at warehouses. When the demand is assumed to be have a normal distribution, the magnitude

of this inventory is given by the product of the demand variance (σ), the service level (z), and the square

root of the replenishment lead time (L). Eppen (1979) showed that when more customers are served by

the same warehouse, unexpected increases in the demand of one customer are offset by the unexpected

decrease in the demand of another customer. Thus the joint variance decreases. This is known as the

“risk-pooling effect”. Several authors have included these concepts in supply chain design and planning

models. The first example and the derivation of the formulation is presented in Daskin et al. (2002).

Other examples include You and Grossmann (2008) and Miranda and Garrido (2009). The downside

of the formulations in the aforementioned articles is that they give rise to nonlinear constraints in the

model, making it very difficult to solve (de Bittencourt et al., 2015). This has motivated attempts of

linearizing the constraints in order to keep the model as an MILP (Diabat and Theodorou, 2015). Unlike

the previous works reported in the literature, we model the safety stock with risk-pooling effect using

piecewise linear functions.

3 Problem Description

Given a set of plants producing a specified number of products, it is required to determine the location,

number and size of warehouses to serve several customers in a region. The goal is to minimize the

transportation and inventory costs.

Additionally to the given network topology, the problem has the following considerations and assump-

tions:
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1. Not all plants produce all products. The allowed lanes in the network are defined by a set of feasible

combinations of origin-destination-product.

2. At each link (plant-warehouse, warehouse-warehouse or warehouse-customer), there are several

transportation modes that are available. The freight cost is a discrete amount defined by the

number of transportation units used.

3. A transportation mode is defined by the capacity of the unit. For example, 10 ton trucks, 15 ton

trucks and 20 ton oceanic containers each are considered different transportation modes. There is

no limit in the number of available units.

4. Since the warehouses are contracted to third party logistics companies, there are minimum contract

length restrictions, and when a contract is terminated, there is a minimum waiting period before a

contract can be renewed.

5. The inventory flow cost is given by an inbound and outbound fee per unit of material. When the

incoming or outgoing amount exceeds a defined threshold, a penalty must be paid by charging a

larger fee for the amount that is exceeded.

6. The planing horizon is divided into discrete monthly periods.

7. A monthly demand forecast is available and assumed to be deterministic.

8. The warehouses must be selected among a set of previously defined potential locations.

Figure 1 depicts the problem and also indicates the main nomenclature used in the paper.

4 Optimization Model

The multi-period facility location problem serves as a basis for developing the optimization model. From

this starting point, the modeling of each complicating issue will be addressed in detail to yield the final

model.

4.1 The Uncapacitated Facility Location Problem

The uncapacitated facility location model is the core optimization formulation to solve supply chain design

problems. It can be formulated with the following general model:
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Plants
i

Potential
Warehouses

j
Customers

k

t: periods (months) p: products m: transportation modes

xijpt
xjkpt

yjt

xjj′pt

sjpt

Figure 1. Network structure of supply chain

Min Fixed Cost + Inventory Cost + Production Cost + Transportation Cost

s.t. Demand satisfaction

Inventory balance

Conditional warehouse upper bound

where, the inventory costs include the flow costs and the warehouse renting costs. The conditional

warehouse upper bound constraint serves to indicate when a warehouse is in use. A simple version is

given by Equations (1a)-(1e) in which a single product is considered.

Min
∑
t

∑
j

CFjyj,t +
∑
j

HCjsjt +
∑
i

∑
j

(PCi + CTij)xijt +
∑
j

∑
k

CTjkxjkt

 (1a)

s.t.
∑
j

xjkt = Dkt ∀k, t (1b)

sjt = sjt−1 +
∑
i

xijt −
∑
k

xjkt ∀j, t (1c)

sjt +
∑
k

xjkt ≤Myjt ∀j, t (1d)

x, s ≥ 0, y ∈ {0, 1} (1e)

Indices (i,j,k) denote the plant i ,warehouse j and customer k, respectively. x represents flow, s repre-
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sents stock and y is the binary variable indicating the potential use of a warehouse in a given time period

(see Figure 1). We initially consider, a single-commodity problem without shipments between warehouses.

These features will be added later in the paper. Note that in the above model, the transportation cost is

a linear function of the amount transported. This is the most common freight cost function used in the

articles reviewed by Bravo and Vidal (2013). We will replace that function with the appropriate discrete

representation after determining the most efficient formulation.

4.2 Discrete Transportation Costs

One of the most distinctive characteristics of the problem is that the transportation costs are discrete.

The cost for each unit is fixed, no matter if the unit is full or half-full. At each time period and network

link, the number of trucks or containers to be used must be selected. The units determined are then used

to correctly account for the transportation costs.

Figure 2. At a given time period and transportation link the number of units of each type must be
determined

As reported in the literature, there are several alternatives to represent discrete freight costs. However,

no previous work has done a critical review to identify the most efficient formulation. In this work we

compare 4 alternatives of modeling the discrete transportation costs.

In the first alternative, given by Equation 2, integer variables are defined to compute the number of

transportation units of each mode m used in a given link (warehouse j to customer k, for example) at

a given time period t (ujkmt), where TCapm is the capacity of transportation mode m. The inequality

states that the transported capacity, given by the right hand side, must exceed the selected amount to be

transported. In the following, to clarify the notation we would refer to the transported amount with an

auxiliary variable vjkt, defined as vjkt :=
∑

p xjkpt.
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vjkt ≤
∑

m∈Mjk

TCapm ujkmt ∀j, k, t (2)

The second alternative is based on a piecewise constant freight cost function. For example, consider

the case when 10 and 3 ton trucks are available and the cost of using a truck is $400 and $500, respectively.

If the amount transported is between 0.1 and 3 tons, we would use one small truck and the freight cost

would be $400. If the amount is anything greater than 3 tons and less or equal than 10 tons, we would

use one large truck and the cost would be $500. If the amount is between 10 and 13 tons we would use a

truck of each kind with a freight cost of $900, and so on. The key concept is that for every amount there

is a combination of trucks yielding the lowest cost, and the combination is the same in an interval for the

amount. The cost function for the example is represented in Figure 3.

Cost

v

400
500

900
1000

3 10 13 20

Figure 3. Piecewise constant cost function for the example

There are multiple ways of representing these functions (Padberg, 2000; Vielma and Nemhauser, 2011).

For this work we have chosen to represent the function using Special Ordered Sets of Type II (SOS2)

(Beale and Tomlin, 1970). Besides being ordered, the variables meet an additional adjacency condition:

no more than two variables can be non-zero at a time. The non-zero variables must be adjacent. Variables

of these kind are set to each of the n breakpoints of the stepwise function are used to interpolate and

obtain the cost (Figure 4). Equations (3b)–(3d) represent the constraints that would be part of the model

when selecting this alternative.

vjkt =
∑
n

PXjktnλjktn ∀j, k, t (3a)
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Cost

v

400
500

900
1000

3 10 13 20

(x3, c3) (x4, c4)

(xn, cn)

Figure 4. Piecewise constant cost function for the example

Cost =
∑
n

PCjktnλjktn ∀j, k, t (3b)

∑
n

λjktn = 1 ∀j, k, t (3c)

λjktn ∈ SOS2 ∀j, k, t, n (3d)

where λjktn are the SOS2 variables, and (PXjtkn, PCjktn) are the breakpoints of the piecewise function

for transported amount vs. cost.

The third and fourth alternatives are based on the disjunctive nature of the piecewise constant function.

The transported amount can only be in one of the defined intervals of the cost function from (Figure 5).

This leads to the disjunction from Equation 4.

Cost

v

400
500

900
1000

3 10 13 20

Y1 Y2 Y3 Y4

Figure 5. Piecewise constant cost function for the example

∨
n∈N


Yjktn

Ljkn ≤ vjkt ≤ Ujkn

FreightCost = Cjkn

 ∀j, k, t (4)
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The Boolean variables Yjktn take a value True if the amount vjkt lies in the interval [Ljkn, Ujkn]. Raman

and Grossmann (1994) describe a series of modeling techniques to deal with this kind of expressions in

mathematical programming. One of them is known as the Big-M reformulation given by Equations

(5a)–(5c).

Ljkyjktn ≤ vjkt ≤ Ujkn +M(1− yjktn) ∀j, k, t (5a)∑
n

yjktn = 1 ∀j, k, t (5b)

yjktn ∈ {0, 1} (5c)

where M is a big number and yjktn are binary variables corresponding to each boolean variable Yjktn.

Another way of reformulating the disjunction from Equation 4 is using the Convex Hull (Balas, 1998)

given by Equations (6a)–(6d) where vjktn are disaggregated variables.

vjkt =
∑
n

vjktn ∀j, k, t (6a)

Ljknyjktn ≤ vjktn ≤ Ujknyjktn ∀j, k, t, n (6b)∑
n

yjktn = 1 ∀j, k, t (6c)

yjktn ∈ {0, 1} ∀j, k, t, n (6d)

The four alternatives were compared for different model sizes for a simplified instance of the problem.

The results are presented in Table 1. The values indicate solution times for each instance. When the 10

minutes time limit was reached the optimality gap is also reported. NF indicates that no feasible solution

was found after the time limit was reached. The 10-minute limit was chosen because the instances from

the experiment are quite small compared to the actual problem size intended to solve.

Table 1. Comparison of solution time. For all instances the number of plants and warehouses is 3 and 6
respectively

Instance Customers Products Periods
Solution Time (s)

Integer Units SOS2 Convex Hull Big M

T6C4P1 4 1 6 1 4 180 60
T6C4P5 4 5 6 20 600(8.7%) 600(0.6%) 600(81%)
T12C8P5 8 5 12 60 600(12.6%) NF NF
T36C8P5 8 5 36 120 NF NF NF
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As summarized in Table 1, the model with integer variables (Equation 2) was able to solve all the

instances in under 2 minutes. Therefore, it is selected as the most efficient alternative to model discrete

freight costs for the current application. A possible explanation for this result is the small number of

variables and constraints of the model with integer variables compared to the other alternative models

(Table 2), in a problem with 3 plants, 6 warehouses, 8 customers, 5 products, 36 time periods, and 4

modes of transportation. Furthermore, the LP relaxations for the convex hull and the integer variables

formulations are very similar and tighter than the other alternatives.

Table 2. Model size comparison for modeling alternatives for transportation costs

Continuous Discrete T6C4P5
Variables Variables Constraints LP relaxation

Integer Variables 34280 8532 8000 33%
BigM 483344 453852 919736 96%

Convex Hull 936944 453852 924272 35%
SOS2 936944 252 17072 50%

4.3 Dynamic Contracting Policies

When the warehousing service is outsourced contracting must be done for continuous periods of time,

and when a contract is finished it cannot be renewed right away. This restriction avoids the generation of

short gaps in the use of a warehouse, which are difficult to fill with another customer. Figure 6 illustrates

this situation.

1 2 3 4 5 6 7 8 9 10 11 12

Not Allowed

Allowed

Figure 6. The second row is preferred because the warehouse is contracted in consecutive periods with
few gaps

To enforce these restrictions, a minimum contracting length L and a minimum waiting period for

contract renewal W are defined. The binary variable yjt represents whether a warehouse j is used in

period t or not. New binary variables ysjt and yfjt to indicate when a contract is started and finished

(Mitra et al., 2012), respectively, are also defined. With these elements, Equations (7a)–(7d) are added

to the model. The reader may notice that Equations (7b) and (7d) are surrogates of the constraints

derived for a single time period. Our experiments show that there is no difference in the solution time
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between using the previous constraints or the disaggregated versions. The derivation of these constraints

is presented in Appendix A.

−yjt + yjt−1 + ysjt ≥ 0 ∀j, t , t > 1 (7a)

t+L−1∑
τ=t

yjτ ≥ Lysjt ∀j, t , t+ L− 1 ≤ |T | (7b)

−yjt + yjt+1 + yfjt ≥ 0 ∀j, t , t < |T | (7c)

t+W∑
τ=t+1

yjτ +Wyfjt ≤W ∀j, t , t+W ≤ |T | (7d)

If a warehouse j is used in a given period t and not in the previous period (t − 1), ysjt is set to one

(Equation 7a), indicating a contract is started in period t. This implies that yjt must be set to one for

the next L-1 periods (Equation 7b). A similar logic is used for the case when a contract is finished. Note

that Equations 7b and 7d can be disaggregated yielding a larger number of constraints but a tighter

formulation. Our experiments indicated that there is no difference in the solution time between the two

options.

4.4 Safety Stock with Risk-Pooling effect

When the demand is assumed to have a normal distribution, the safety stock can be expressed by Equation

(8) ((Daskin et al., 2002)).

ss = σz
√
L (8)

To represent the safety stock with risk-pooling effect using only linear constraints we need to analyze

this equation. First, for a given service level (z) and lead time (L), the safety stock is proportional to the

absolute variance (σ), which is also proportional to the demand. Additionally, to account for the risk-

pooling effect, the proportionality constant must decrease with the number of customers served, which is

indirectly also represented by the throughput. The throughput can be measured as the amount entering

or leaving the warehouse j. For this problem, the first (incoming amount from plants i) is more convenient

because it allows for warehouses to close at any given time period without leaving safety stock. The safety
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stock can then be approximated by the following piecewise linear function defined over n intervals.

∑
i

xijpt =
∑
n

λjptnSSxn ∀j, p, t (9a)

ssjpt =
∑
n

λjptnSSyn ∀j, p, t (9b)

∑
n

λjpn = 1 ∀j, p (9c)

0 ≤ λjpn ≤ 1,∈ SOS2 ∀j, p, n (9d)

where (SSx, SSy) are the breaking points of the piecewise linear function(Figure 7).

SafetyStock

Throughput

(SSx2, SSy2)

(SSx3, SSy3)

Figure 7. Safety stock piecewise linear function

4.5 Inventory Flow Costing

The inventory costing is quite atypical. It is given by a per-unit inbound and outbound fee, with a penalty

for inbound or outbound amounts exceeding defined thresholds. None of the articles reviewed consider

this special case. This costing structure allows warehousing providers to offer different business models.

Low per unit fees and large fixed cost, or the opposite.

In order to efficiently model this situation, continuous variables to account for incoming (xwijth) and

outgoing (xwojth) product at a warehouse must be defined. The variables are also indexed by the level h
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to distinguish between amounts below and above the penalty threshold. These variables are only used for

costing purposes; they are not used to represent any decision. Figure 8 illustrates this case. The upper

bound for the low volume level variable must be set to the threshold (TIj , TOj).

∑
i

∑
p

xijpt = xwijt,low + xwijt,high ∀j, t (10)

xwijt,low ≤ TIj ∀j, t (11)∑
k

∑
p

xjkpt = xwojt,low + xwojt,high ∀j, t (12)

xwojt,low ≤ TOj ∀j, t (13)

xijpt

xwijt,low + xwijt,high xwojt,low + xwojt,high

xjkpt

Figure 8. Cargo consolidation variables

4.6 Optimization model

Considering all the elements analyzed in the previous section the resulting optimization model can be

formulated as follows:

Sets

i Plants

j Warehouses

k Customers

p Products

t Time periods

m Modes of transportation

h High/Low storage volume

n Safety stock interpolation points
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Parameters

Dkpt Demand of product p in period t at customer k

TCapm Capacity of a unit of transportation mode m

CTijm Transportation cost from plant i to warehouse j using mode m [$/truck] or [$/container]

CTjj′m Transportation cost from warehouse j to warehouse j’ using mode m [$/truck] or [$/container]

CTjkm Transportation cost from warehouse j to customer k using mode m [$/truck] or [$/container]

CIjh Inbound inventory fee at warehouse j per volume level h [$/ton]

COjh Outbound inventory fee at warehouse j per volume level h [$/ton]

TIj Inbound threshold level at warehouse j [ton]

TOj Outbound threshold level at warehouse j [ton]

CWFj Monthly fixed cost for renting warehouse j [$]

CWSj Variable cost for renting warehouse j [$/ton]

PCip Production cost of product p at plant i

SSxjpn Safety stock function breaking point

SSyjpn Safety stock function breaking point

PCapi Plant i capacity

M Big number

L Minimum warehouse contract length

W Minimum wait for warehouse contract renewal

Continuous Variables

xijpt, xjj′pt, xjkpt Amount of product p shipped in each link in period t

sjpt Inventory of product p in warehouse j at the end of period t

ssjpt Safety stock of product p in warehouse j at the end of period t

xwijth Incoming quantity to warehouse j of volume level h in period t

xwojth Incoming quantity to warehouse j of volume level h in period t

wcapj Capacity of warehouse j

λj,p,t,n Interpolating coefficient for safety stock function
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Discrete Variables

yjt Binary variable to indicate if the warehouse j is used in period t

ysjt Binary variable to indicate if a contract with warehouse j is started in period t

yfjt Binary variable to indicate if a contract with the warehouse j is finished in period t

uijmt Units of transportation mode m used from plant m to warehouse j in period t

ujj′mt Units of transportation mode m used from warehouse j to another warehouse j’ in period t

ujkmt Units of transportation mode m used from warehouse j to customer k in period t

Constraints

Demand satisfaction,∑
j

xjkpt = Dkpt ∀k, p, t (14)

Inventory balance,

sjpt + ssjpt = sjpt−1 + ssjpt−1 +
∑
i

xijpt +
∑
j′

xj′jpt −
∑
j′

xjj′pt −
∑
k

xjkpt ∀j, p, t (15)

Warehouse upper bound,

sjpt +
∑
k

xjkpt +
∑
j′

xjj′pt ≤M yjt ∀j, p, t (16)

Plant capacity,∑
j

∑
p

xijpt ≤ PCapi ∀i, t (17)

Transportation units,∑
p

xijpt ≤
∑
m

TCapm uijmt ∀i, j, t (18)

∑
p

xjj′pt ≤
∑
m

TCapm ujj′mt ∀j, j′, t (19)

∑
p

xjkpt ≤
∑
m

TCapm ujkmt ∀j, k, t (20)

Inventory Flow costing,∑
i

∑
p

xijpt +
∑
j′

∑
p

xj′jpt =
∑
h

xwijth ∀j, t (21)

xwijt,low ≤ TIj ∀j, t (22)∑
k

∑
p

xjkpt +
∑
j′

∑
p

xjj′pt =
∑
h

xwojth ∀j, t (23)
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xwojt,low ≤ TOj ∀j, t (24)

Warehouse capacity,

wcapj ≥
∑
p

sjpt +
∑
h

xwijht ∀j, t (25)

Warehouse contracting policies,

− yjt + yjt−1 + ysjt ≥ 0 ∀j, t (26)

t+L−1∑
τ=t

yjτ ≥ Lysjt ∀j, t (27)

− yjt + yjt+1 + yfjt ≥ 0 ∀j, t (28)

t+W∑
τ=t+1

yjτ +Wyfjt ≤W ∀j, t (29)

Safety stock with risk-pooling,∑
i

xijpt =
∑
n

λjptnSSxjpn ∀j, p, t (30)

ssjpt =
∑
n

λjptnSSyjpn ∀j, p, t (31)

∑
n

λjptn = 1 ∀j, p, t (32)

Objective Function

Min TotalCost =WhCost+ TranspCost+ ProdCost+ InvCost (33)

WhCost =
∑
j

∑
t

yjtCWFj +
∑
j

wcapjCWVj (34)

TranspCost =
∑
m

∑
t

∑
i

∑
j

uijtmCTijm +
∑
j

∑
j′

ujj′tmCTjj′m +
∑
j

∑
k

ujktmCTjkm

 (35)

ProdCost =
∑
i

∑
j

∑
p

∑
t

PCipxijpt (36)

InvCost =
∑
j

∑
h

∑
t

(xwijhtCIjh + xwojhtCOjh) (37)
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Variable Domains

xijpt, xjj′pt, xjkpt, sjpt, ssjpt, xwijth, xwojth, wcapj ≥ 0 (38)

uijtm, ujj′tm, ujktm ∈ Z+
0 (39)

yjt, y
s
jt, y

f
jt ∈ {1, 0} (40)

λjptn ∈ SOS2 (41)

5 Tightening Constraints

The various features considered by the model make it more realistic but at the same time harder to solve.

This is why additional effort needs to be made in the modeling for solving larger instances. The first

alternative explored is to include valid inequalities in the formulation that are not strictly required to

obtain the optimal solution, but contribute to strengthening the relaxation, and thus, potentially solve the

problem faster. Four families of tightening constraints were studied. However, only one of them resulted

in a speed up in the solution time. They are presented in Equations 42a–42c.

uijtm ≤
1

TCapm

∑
p

xijpt + 1 ∀i, j, t,m (42a)

ujj′tm ≤
1

TCapm

∑
p

xjj′pt + 1 ∀j, j′, t,m (42b)

ujktm ≤
1

TCapm

∑
p

xjkpt + 1 ∀j, k, t,m (42c)

Constraints from Equations (42a)–(42c), provide a tight upper bound for the transportation units.

They indicate that the number of transportation units used in a given link at specific time periods will

be at most the number of units that would be used if that transportation mode is unique. For example,

assume 12 tons of material need to be transported, and trucks of 3 and 10 tons capacity are available.

The maximum number of 3-ton trucks used would be 4, and the maximum number of 10-ton trucks used

would be 2. Even though, it is very likely that the minimum cost alternative would be to use one of each

size.
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6 Simplified Formulations

Another strategy to decrease the solution time is to make reasonable assumptions to simplify the MILP

model to obtain an approximate solution. Two formulations are proposed based on assumptions of

customers service policies.

The first simplified formulation assumes that a given customer receives a given product from a single

warehouse. In the following, we will refer to this formulation as JKP, because only one of the combinations

warehouse-customer-product is allowed (single-sourcing). For example, if a customer demands products

A and B, it could receive product A from one warehouse (W1), and product B from another warehouse

(W2), but it could not receive the same product from two separate warehouses. The assumption is

reasonable because products supply tend to follow minimum plant-warehouse-customer cost routes. The

deviation from this assignment only occurs when limitations of capacity are reached. On the other hand,

the network design is primarily driven by transportation costs on the warehouse-customer side. The

modeling simplification is that the variable that represents the flow between a warehouse j and a customer

k for a given product p in time period t, xjkpt, can be replaced by the product between a new binary

variable, zjkp, and the Demand, Dkpt. An additional constraint is needed to ensure the combination

warehouse-customer-product is unique. The variable zjkp takes a value of one if warehouse j supplies

product p to customer k

∑
j

zjkp = 1 ∀k, p (43)

With this new formulation (JKP), Equations (15,16, 20, 23) are replaced by Equations (44-47). Equa-

tion (14) is no longer needed.

sjpt + ssjpt = sjpt−1 + ssjpt−1 +
∑
i

xijpt +
∑
j′

xj′jpt −
∑
j′

xjj′pt −
∑
k

zjkpDkpt ∀j, p, t (44)

sjpt +
∑
k

zjkpDkpt +
∑
j′

xjj′pt ≤ U yjt ∀j, p, t (45)

∑
p

zjkpDkpt ≤
∑
m

TCapm ujkmt ∀j, k, t (46)

∑
k

∑
p

zjkpDkpt +
∑
j′

∑
p

xjj′pt =
∑
h

xwojth ∀j, t (47)

It is important to observe that with the JKP formulation, a large number of continuous variables, xjkpt,
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are replaced by smaller yet significant number of binary variables, zjkp. Thus it is not straightforward

to predict a decrease in solution time. However, our experiments, presented in section 7, show that the

impact of the reformulation is indeed positive. The second observation is that since this model represents

a restriction of the original model, the objective value provides a valid upper bound cost of the original

problem. Our experiments have indicated that this bound is very tight and typically no more than 1%

higher than the optimal cost.

Taking this idea further, we can also assume that a customer receives all its demanded products from a

given warehouse. In this formulation (JK), the binary variable zjk indicates this assignment. As before, the

variable xjkpt is replaced by zjkDkpt, but additionally the transportation units in the warehouse-customer

links can be precalculated offline, eliminating the integer variable ujktm. In this way, the number of

binary variables added is much smaller than before. Furthermore, a large number of continuous and

integer variables is eliminated, thereby reducing the model complexity. Since the assumption is even

more restrictive, the resulting objective value yields an upper bound to both, the original problem and

the JKP formulation. With this formulation Equations (15,16, 23) are replaced by Equations (48-50).

Equations (14, 20) are no longer needed.

sjpt + ssjpt = sjpt−1 + ssjpt−1 +
∑
i

xijpt +
∑
j′

xj′jpt −
∑
j′

xjj′pt −
∑
k

zjkDkpt ∀j, p, t (48)

sjpt +
∑
k

zjkDkpt +
∑
j′

xjj′pt ≤ U yjt ∀j, p, t (49)

∑
k

∑
p

zjkDkpt +
∑
j′

∑
p

xjj′pt =
∑
h

xwojth ∀j, t (50)

As with the JKP formulation, a constraint is needed to ensure the combination warehouse-customer

is unique.

∑
j

zjk = 1 ∀k (51)

7 Case Studies

To illustrate the capability and performance of the proposed models, three case studies are presented in

this section. All the instances considered are problems of different size, with the same features described

in Section 3.
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7.1 Small Example

Now we provide a small example, case study 1, representative of the full problem so it can be reproduced

by the readers. The problem considers 2 transportation modes, 3 products (A,B,C), 2 plants, 2 warehouses

and 2 customers. The planning horizon is 6 months, and the minimum contract duration and minimum

renewal wait are both 3 months. Tables 5–8 provide the data required for the model.

Table 5. Plant data for small example

Plant
ProdCap ProdCost [$/t]
[t/month] A B C

M1 2137 0.20 0.64
M2 3674 0.47 0.52

Table 6. Warehouse data for small example

Warehouse FixedCost VarCost Threshold InboundCost OutboundCost

WHP1 5906 0.1 0 0 0
WHP2 0 0.1 0 0.00779 0.00779

Table 7. Demand(t) for small problem

Periods
Customer 1 Customer 2
A B C A B C

1 259.6 8.7 4.0 2.4
2 115.4 2.9 54.5 10.3 6.5
3 194.5 52.7 64.8 20.1
4 161.9 28.7 20.7 15.9
5 217.0 4.2 9.0 58.6 26.1
6 234.3 53.5 114.8 33.7

The optimal network with a cost of $213,149 is presented in Figure 9. The MILP model involves

698 variables, 156 discrete variables, and 536 constraints. It was solved in 0.24 seconds using Gurobi 6.5

(Gurobi Optimization, 2015) on GAMS 24.6.1 (GAMS Development Corporation, 2015).

Figure 10 presents the number of transportation units used in each time period. The model selects

the largest trucks (32 ton) in most periods. However, as it can be seen in the points for period 5, this

cannot be generalized since the selected units will be those who match better the transported amount.
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Table 8. Transportation costs for small problem

Orig/Dest
24 ton truck 32 ton truck

CUS1 CUS2 WHP1 WHP2 CUS1 CUS2 WHP1 WHP2

MFG3 1.20 1.20 1.48 1.48
MFG5 0.97 1.55 1.17 1.17 1.26 1.83 1.45 1.45
WHP1 1.10 1.30 0.73 1.38 1.57 1.02
WHP2 1.12 1.27 0.73 1.40 1.55 1.02

Figure 9. Total flows over 6 months for the optimal supply chain network from for case study 1

Figure 10. Number of transportation units used per time period in case study 1
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7.2 The importance of considering discrete transportation costs

Including discrete transportation costs in a supply chain model makes the problem much harder to solve.

On the other hand, considering continuous costs proportional to the transported quantity leads to sub-

optimal solutions. To quantify the magnitude of the trade-off between these two approaches, consider

case study 2 with 8 plants, 10 warehouses, 6 customers, 5 products, 24 time periods and 4 transportation

modes.

The solution with continuous costs is obtained by relaxing the integrality of the transportation unit

variables (uijtm,ujj′tm,ujktm). Table 9 shows the results using continuous and discrete transportation

costs. The resulting supply chain network structures are presented in Figure 11.

(a) Continuous costs formulation (b) Discrete costs formulation

Figure 11. Optimal network structures for Case Study 1

Table 9. Comparison of discrete transportation costs versus continuous proportional transportation costs
in case study 2

Metric Continuous Cost Discrete Cost

Objective 84.1 262.4
Inventory(ton) 193 723
Shipments 807 417
Avg.Shipment Size 1.8 2.9
Constraints 20422 20422
Variables 54840 54840
Integer variables 0 21912
Binary variables 528 528
CPU(s) 53 10350

The continuous transportation cost formulation solves in at least one order of magnitude faster than

the discrete cost formulation. However, it fails to correctly estimate the total costs, it does not allow
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to identify the transportation modes that are used (it selects the lowest unit cost mode), and obtains a

suboptimal network. Another important observation is that the continuous costs formulation obtains a

plan with frequent and small shipments, which is not desirable in practice. It fails to capture the benefits

of economies of scale in transportation. For these reasons it is important to consider discrete freight costs.

7.3 Tightening constraints and simplified formulations

For case study 3, the effect of tightening constraints and the simplified formulations JKP and JK were

evaluated in three instances of different size. The results are presented in Table 10

Table 10. Case study 3 objective values, solution times(s) and explored nodes for the original
formulation (Orig), the original formulation including tightening constraints (Orig-t) and the simplified
formulations JKP and JK

Instance Size Metric Orig Orig-t JKP JK

C10P10T12 Plants 14 Products 10 Obj 2798 2798 2798 2799
Warehouses 18 Periods 12 CPU(s) 15 15 10 18
Customers 10 Modes 14 Nodes 0 0 0 0

C10P10T24 Plants 14 Products 10 Obj 5422 5422 5422 5430
Warehouses 18 Periods 24 CPU(s) 379 379 84 71
Customers 10 Modes 14 Nodes 1469 1469 0 0

C15P15T36 Plants 14 Products 15 Obj 10316 10316 10373 10417
Warehouses 18 Periods 36 CPU(s) 3667 3650 366 177
Customers 15 Modes 14 Nodes 2506 2506 0 0

Table 11. Problem size for instance C15P15T36

Orig Orig-t JKP JK

Constraints 104717 150329 104717 104717
Variables 292759 292759 234834 212114
Integer variables 45378 45378 45378 22482
Binary variables 1332 1332 4475 1414

As shown in Table 10, the introduction of tightening constraints yields a negligible reduction in

solution time for instances C10P10T24 and C15P15T36. There is no reduction in solution time by using

the simplified formulations for the smallest instance, C10P10T12. However, up to 95% reductions are

observed for the two larger problems.

The increase in the objective value of the JKP fomulation is very small (up to 0.55% higher), while

the one at the JKP formulation has slightly higher value (up to 0.98%). Tables 12 and 13, and Figure 12

present details on the optimal solution of the instance C15P15T36.
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Table 12. Optimal warehouse selection summary for instance C15P15T36. All amounts in tonnes

Warehouse Capacity Total Stock Throughput

WH1 3350 17167 64991
WH3 287 1209 3763
WH6 760 2520 11004

Table 13. Transportation modes used in optimal solution for instance C15P15T36

Mode Capacity Units

3.5 3
4.5 3
8 2
10 21
15 17
20 898
24 5
25 765
25 1028
32 3123
35 1

8 Conclusions and Future Work

In this paper we have addressed the optimal network design of a supply chain with seasonal demand

as a facility location problem. The best formulation to address the distinctive characteristics of the

supply chain under study was identified among several options and solved for 3 case studies, the larger

of which involved 14 plants, 18 warehouses, 15 customers, 15 products, 36 time periods, and 14 modes of

transportation.

The use of integer variables resulted in the most efficient formulation to address discrete transportation

costs. As was observed in the results of Table 1, there are several ways to model the problem; the choice

of a formulation can make the difference between finding the optimum and not being able to solve the

problem. The safety stock was modeled using a piecewise linear approximation, and specific contracting

policy constraints were derived from propositional logic. This is why, when facing an optimization problem

it is critical to devote enough time to identify the most efficient formulation. Another lesson in terms

of formulation is the variety of different alternatives reported in the literature. For a similar problem,

several modeling alternatives can be found. However, clear consensus on which is the best among them is

rarely found. Therefore, for every problem some degree of experimentation is required to determine the

best formulation for the intended application.

All the features considered contribute to have more realistic models, especially when outsourcing
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Figure 12. Optimal plant throughput summary for instance C15P15T36

logistic operations. But at the same time they pose a challenge in solving the optimization problems.

The first steps towards solving larger problems are presented. Valid inequalities that help to tighten the

relaxation were derived. It was shown that the simplified formulations JKP and JK help significantly to

reduce the solution time, allowing to solve larger problems with a small impact in the objective value.

Larger problems will require an additional effort in designing efficient algorithms employing decomposition

techniques.
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Appendices

A Modeling of contracting policies

In this section we present the derivation of the formulation the Contracting Policy constraints. The

constraints must enforce a minimum contract length, and, once a warehouse is closed, a minimum wait

for the warehouse to be available for opening again. In order to correctly represent the situation, new

binary variables need to be defined.

yst Indicates that a contract has been started during period t

yft Indicates that a contract has been finished at the end of period t

The variable yt represents if the warehouse is used during the period t.

A.1 Contract start/finish variable setting constraints

To indicate that a contract has been started we check the warehouse is being used in the current period

and not being used in the previous one.

yt ∧ ¬yt−1 =⇒ yst

The corresponding constraint is,

− yt + yt−1 + yst ≥ 0 (52)

To indicate that a contract is finished, we check that the warehouse is being used in the current period

and not used in the next period,

yt ∧ ¬yt+1 =⇒ yft

The corresponding constraint is

− yt + yt+1 + yft ≥ 0 (53)
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A.2 Minimum contract length constraints

When a contract is started the warehouse needs to be used in the next L periods. The logic expression

describing this proposition is:

yst =⇒
t+L−1∧
τ=t

[yτ ]

which can be represented as a linear constraint with the following steps:

¬yst ∧

[
t+L−1∧
τ=t

[yτ ]

]
(54)

t+L−1∧
τ=t

[¬yst ∧ yτ ] (55)

1− yst + yτ ≥ 1 ∀τ (56)

which can be aggregated as the surrogate,

t+L−1∑
τ=t

yτ ≥ Lyst (57)

A.3 Minimum waiting period for rehire constraints

When a contract is finished it cannot be renovated in the next W periods. The logic expression describing

this proposition is:

yft =⇒
t+W∧
τ=t+1

[¬yτ ]

which can also be represented as a linear constraint.

¬yft ∧

[
t+W∧
τ=t

[¬yτ ]

]
(58)

t+W∧
τ=t

[¬yft ∧ ¬yτ ] (59)

1− yft + 1− yτ ≥ 1 ∀τ (60)
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which can be aggregated as the surrogate,

t+W∑
τ=t+1

yτ +Wyft ≤W (61)

Eq. (56) yields tighter constraints than the surrogate Eq. (57) but a much larger number of constraints.

A similar situation is found between Eqs. (60) and (61)
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