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Abstract

The problem of integrating planning and scheduling models is addressed. Many of the previous

models proposed in the literature assume that both models need to be solved over the same time hori-

zon, leading to intractable models. Integrated models with shorter scheduling horizons are considered.

To maintain the trade-off balance between the decision levels, the objective functions are appropriately

scaled. The second modeling aspect explored is the communication between planners and schedulers.

Communication through inventory policies is explored as an alternative to the traditional communi-

cation through production and inventory targets. The resulting models are evaluated in a tailored

simulation framework. Models with a shorter scheduling horizon, which cover the decision horizon of

the planning, obtain similar profits as the full space models. The communication through inventory

policies leads to lower inventories, while maintaining similar profit levels. The proposed models and

the modular modeling methodology used are contributions to bring decision support systems closer to

practice.

1 Introduction

Supply chain decisions are hierarchically organized in strategic, tactical, and operational decisions (Fig. 1).

In practice, these planning processes are often conducted independently in practice with limited exchange

of information between them. Achieving a better coordination between these processes allows companies

to capture benefits that are currently out of their reach and improve the communication among their

functional areas (Brunaud and Grossmann, 2017). Optimization methods for the integration of strategic

and tactical decisions are well established (Barbosa-Póvoa, 2012). Nevertheless, the integration of tactical
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and operational decisions remains a challenge (Bassett et al., 1996; Maravelias and Sung, 2009; Garcia

and You, 2015; Dias and Ierapetritou, 2017; Castro et al., 2018). In previous models for the integration

of planning and scheduling reported in the literature, two assumptions have been frequently made: (1)

planning and scheduling models need to be solved in the same time horizon, and (2) the communication

is done through inventory and production targets. We propose alternatives to these assumptions in order

to improve the underlying models.

Figure 1. Supply chain decision network structure

For the first assumption addressed—the matching of optimization horizons for planning and scheduling—

solving the scheduling problem in a shorter horizon is explored. The trade-off between both levels is

maintained by scaling the objective functions. When the scheduling models are solved separately from

the planning, the horizon considered is shorter. Decisions associated to optimal scheduling of processes

are not required for several weeks in advance. Defining models with shorter horizon can reduce the com-

putational complexity, facilitating the implementation of decision support systems based on these models.

Assessing the effects of decreasing the scheduling horizon is not straightforward. For this task a tailored

simulation framework is designed to evaluate the models in the same setting they are meant to be used,

including planning and scheduling agents that run optimization models to make their decisions.

The second aspect studied is the effect of establishing a communication between planners and sched-

ulers through inventory policies. The traditional approach has been to assume that the planner defines
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production and inventory targets, which are followed by the scheduler. The alternative proposed is to

optimize an (s,S) policy (Vrat et al., 2016) at the planning level using the models proposed by Brunaud

et al. (2019) and pass the policy parameters to the scheduling level. In order to be able to enforce the

policy, the scheduling model also needs to consider inventory policy constraints. The inclusion of these

constraints leads to novel integrated planning and scheduling models (IPSM) with simultaneous optimiza-

tion of inventory policies. The performance of the alternative communication mode is evaluated in the

same simulation framework that is proposed.

The proposed models bring the IPSM closer to the application. The reduction of complexity ob-

tained from decreasing the scheduling horizon can reduce the implementation barriers in decision support

systems, while the communication through inventory policies offers an alternative with the potential to

improve the communication between planners and schedulers. The proposed models represent an ad-

vance in IPSM. Nevertheless, the integration challenge still remains an important problem to be solved in

Enterprise-wise Optimization (Grossmann, 2005). The rest of the paper is organized as follows. Section 2

reviews the related literature. Section 3 presents the problem statement. Section 4 develop in detail the

modeling alternatives proposed. Section 6 describes the simulation framework proposed. The planning

and scheduling models considered are presented in Section 5.
:::::::
Section

:
6
:::::::::
describes

::::
the

:::::::::::
simulation

::::::::::
framework

:::::::::
proposed.

:
Finally, a case study and its results are discussed in Section 7, to conclude in Section 8 with

the most relevant contributions of the paper.

2 Literature review

The importance of hierarchical approaches for the integration of planning and scheduling has been rec-

ognized for many decades (Hax and Meal, 1975). In the early approach by Bitran and Hax (1977), the

levels are defined by aggregation of products into families and types. A multiperiod model is only solved

at the top level, while the next levels are disaggregation models.

In the process industry several authors have considered the hierarchical approach. Birewar and Gross-

mann (1990) propose a planning model that incorporates an aggregated scheduling model, which deter-

mines the number of batches to be produced for each product, and then used to solve the detailed schedul-

ing. The model is extended by Petkov and Maranas (1997) to consider demand uncertainty. van den

Heever and Grossmann (2003) address a hydrogen supply chain problem in which the planning determines

production targets and energy prices, while the scheduling manages the pipeline operation. They propose



Novel Approaches for the Integration of Planning and Scheduling — 4/33

a heuristic solution based on Lagrangean decomposition (Guignard and Kim, 1987). Lagrangean decom-

position is also employed by Terrazas-Moreno and Grossmann (2011) to solve an integrated problem with

continuous time scheduling.

Other solution methods proposed are based on Benders decomposition (Benders, 1962). The planning

and scheduling models are solved iteratively adding cuts in the planning model at each iteration until

ε-convergence is achieved. The downside of these methods is that the scheduling model usually includes

discrete variables (Grossmann et al., 2002) that do not allow to obtain dual information to generate

standard Benders cuts. Therefore, ad-hoc cuts or convexification strategies are required. For example,

Erdirik-Dogan and Grossmann (2006) consider a planning model that determines production and inven-

tory targets. They add integer and logic cuts to the upper level to propose a rigorous decomposition

algorithm. Recent advances in these solution strategies come from the stochastic programming commu-

nity in their attempts to solve stochastic mixed-integer problems (Laporte and Louveaux, 1993; Sherali

and Fraticelli, 2002; Gade et al., 2014; Zou et al., 2017). These problems share the same structure with

IPSM. A third group of solution strategies comes from projecting the feasible space of the scheduling

model into the planning model (Sung and Maravelias, 2007; Li and Ierapetritou, 2009).

The large number of publications and frequent review papers in the topic of IPSM are an indicator

that the problem is relevant for the process industry, and that it is still a challenging problem that needs

to be solved. Since the decrease in the scheduling horizon and the incorporation of inventory policies

are not considered in any of the papers reviewed, the proposed models in this paper are contributions to

address this difficult problem.

3 Problem statement

In every supply chain there is a hierarchy of decisions that needs to be coordinated in order to deliver

products in the right amount, with the required quality, in a timely manner. The customer satisfaction

strongly depends on consistently achieving these three targets. Several employees are tasked with making

planning decisions to ensure the highest customer satisfaction. The paper considers the integration of

tactical and operational decisions, in which a single planner must coordinate with one or more schedulers.

The planner receives a demand forecast for the next 3-6 months, and must decide the allocation of

demand to each plant under his area of responsibility. The allocation of demand comes in the form of

aggregated production and inventory targets for each plant, or alternatively, in the form of an inventory
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policy. At each plant there is a scheduler responsible for short-term production planning to meet the

requests from the planner and satisfy the delivery orders occurring in the next 2-4 weeks. The decision

processes are executed periodically. The planning is done every month, while the scheduling is done on

a weekly basis. These periods are referred to as decision horizons in the paper. When the time in which

these processes must be executed matches, an integrated decision must be obtained. The decisions made

remain unchanged until the next time the decision processes are updated. For example, if the planning

process is due every 4 weeks, and the scheduling process is executed every week, every time the planning

process must be executed the scheduling process also would need to be updated. In these periods when

both processes are due, an integrated decision is obtained by coordinating both processes. The planning

decisions remain unchanged until the next time the planning process is due.

Given a set of manufacturing plants serving demand for a set of customers of a set of products,

the planner needs to determine the optimal monthly delivery flows to customers, production plan at

each manufacturing plant, and inventory levels, to maximize the profit from satisfying demand, while

minimizing production, inventory, and transportation costs. At the same time, the planner must determine

the optimal parameters for an (s,S) inventory policy for each product at each manufacturing plant.

At each plant, there is scheduler responsible of
:
a
::::::::::
scheduler

:::::::::::
responsible

::::
for determining the optimum

production plan for the short term. The scheduler is given a set of processing units and storage tanks with

their connectivity, capacities, initial inventory levels, batch processing tasks that can be performed at each

unit, and their respective recipes and processing times. The scheduler must determine the amount and

timing for every batch produced at each processing unit, the inventory level at each storage tank to satisfy

the inputs from the planner, and a list of delivery orders that need to be satisfied. The optimal schedule

maximizes the satisfaction of orders, while meeting the planning inputs, and minimizing inventory and

backlogs. Both the planning and inventory models are described in detail in Section 5.

4 Novel modeling approaches in IPSMs

Alternatives for two traditional assumptions in IPSMs are considered. The shortening of the scheduling

horizon, and the communication between decision levels using inventory policies. In this section the

current assumptions and the proposed methods are described.



Novel Approaches for the Integration of Planning and Scheduling — 6/33

4.1 Alternative optimization horizons for IPSMs

The first assumption, the matching of optimization horizon for planning and scheduling, stems from the

timescale difference between both processes. Planning is usually conducted to make decisions for a horizon

ranging from one month to one year, which leads to discrete time optimization models with weekly or

monthly time periods. On the other hand, the decision horizon for scheduling is much shorter, ranging

from days to several weeks. In discrete time scheduling models the time discretization is of the order of

hours or even shorter. Furthermore, the optimization models are longer than the decision horizons to

ensure the stability of the plan at the end of the horizon (Fig. 2). This extra horizon considered is called

look-ahead horizon (Harmonosky, 1990), also sometimes called terminal constraints.

Decision Horizon Look-ahead Horizon

Optimization Horizon

Figure 2. Time horizons in optimization models

The most common approach in integrated planning and scheduling models (IPSMs), has been to

formulate a single large scale model using the largest of the two optimization horizons (the planning

and the scheduling horizon), and the smallest time discretization (Bassett et al., 1996). The resulting

models have an horizon of several months divided in hours (Fig. 3). Because of the intractability of

these models, the research has been focused on proposing algorithms to deal with the model, and also on

approximation strategies to reduce the model complexity, such as representative day approaches. These

strategies also allow to work around the lack of information available to schedule production far into

the future. Scheduling models are driven by delivery orders, which are only available for 2-4 weeks in

the future. When optimizing scheduling models with a longer horizon, the order information needs to

be extrapolated. Representative day approaches are also used to extrapolate this information further

(Heuberger et al., 2017; Lara et al., 2018). Both the large scale of the integrated models, and the need

for extrapolating information, complicates their optimization and implementation.

In scheduling model with a long optimization horizon, the optimum
::::::::
solution

::
of

::::
the

::::::::
problem

:
prescribes

decisions that include a detailed schedule for several months in the future. As mentioned before, there is a

high level of uncertainty in these decisions because the required information to determine these decisions
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Planning

Delivery
Orders

Scheduling

Figure 3. Integration of timescales in planning and scheduling

is estimated through extrapolation of information for the short term, namely the delivery orders for the

upcoming weeks. Even if the decision obtained is the optimal for the model, it may not be the optimal

decision for the system, considering that there is a dynamic aspect of the implementation in which both

information and decisions are frequently updated.

When the scheduling is not coupled with planning, the optimization horizon for the scheduling models

is shorter than the horizon for the integrated models. We investigate the possibility to decrease the

scheduling look-ahead horizon in an integrated model and still obtain good decisions for the system.

That is, designing a decision support system capable of maximizing the profit when implemented in a

real-world application, re-optimized on a defined frequency. A shorter scheduling horizon could reduce

the model complexity, thus improving the implementability of integrated planning and scheduling models.

Since one of the effects of matching the scheduling and planning horizons is balancing the trade-offs

of both models in the objective function, when decreasing the scheduling horizon, the objective function

needs to be scaled to maintain the balance in the trade-off. The scaling factor chosen is the ratio of the

optimization horizons between scheduling, h, and planing, H (Eq. 1).

zIPSM = Max
h

H
zpl + zsc (1)

In Eq. 1, zIPSM , zpl, zsc represent the objective function for the integrated planning and scheduling

model, for the planning model, and the scheduling model, respectively. h represents the optimization

horizon for the scheduling, and H is the optimization horizon for the planning model.

An alternative approach to shortening the scheduling look-ahead horizon is to solve a relaxation of

the model considering continuous variables in the last portion of the optimization horizon (Fig. 4), which

yields a model closer to the full space optimization, but also with the benefits of complexity reduction.

Since the effects of designing integrated models with shorter scheduling horizons is not evident, we evaluate
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the models using a simulation framework to determine if the decisions prescribed by each model allow

to maximize the benefits for the system. The different scenarios and their performance are presented in

Section 7.

Planning

Decision

Scheduling

Look-ahead Relaxation

Figure 4. Integration of planning and scheduling with relaxation period

4.2 Communication through inventory policies

The second assumption commonly made in the literature is that the planner communicates with the

scheduler through production and inventory targets. Since the planning decisions are optimized less

frequently than the scheduling decisions, setting strict targets may lead to conflicting objectives for the

scheduler who must adapt the production plan more frequently in response to a changing environment.

An alternative observed in practice is the communication through inventory policies. When the planner

sets the policy parameters, the scheduler can adjust the production plan while maintaining optimized

inventory management decisions. A model with an (s,S) inventory policy (Vrat et al., 2016) (Fig. 5)

and weekly review based on the proposed planning models by Brunaud et al. (2019) is considered in this

paper.

Under the (s,S) policy the inventory is reviewed in specified intervals. If the inventory is found below

level s an order for the difference between the base stock level S and the inventory level at the review

period is placed. In the example from Fig. 5, the review periods are fixed. However, the timing and

amount of replenishments and the policy parameters, are optimization variables. The proposed workflow

is for the planner to optimize the mid-term plan together with the inventory policy, and then pass the (s,S)

parameters to the scheduler to optimize the production plan to meet short-term deliveries, while managing

the finished product inventories according to the prescribed policy. This communication alternative is

also evaluated in Section 7 using simulation.
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Figure 5. (s,S) inventory policy example with review of 3 periods, and lead time of 3 periods

5 Optimization models

As mentioned in the previous sections, the integrated planning and scheduling model is composed by a

planning model and a scheduling model joined by linking constraints. In this section both models are

described in detail.

5.1 Planning model

The planning model is a discrete time multiperiod model with weekly time resolution, with an optimization

horizon of Θ time periods. Given a set of plants i ∈ I, that need to serve the demand for different products

p ∈ P of a set of customers c ∈ C, the goal is to allocate production to the different plants taking the

demand forecast as input. The supply chain network for the model is shown in Fig. 6. The output of the

model is the flows from plants to customers, and the inventory levels for products at each plant.

For each inventory in the system, an (s,S) inventory policy is also optimized. The review period is

fixed to one week. A single pair of values for the (s,S) parameters is determined for the entire optimization
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Figure 6. Supply chain planning network

horizon. The planning model is defined by Eqs. (2)–(10)

(PM) : Max
∑
icpτ

ηpficpτ +
∑
icpτ

γipricpτ −
∑
ipτ

HCpinvpipτ

−
∑
icpτ

TCicficpτ −
∑
ipτ

PCipxipτ (2)

s.t.
∑
i

ficpτ +
∑
i

ricpτ = DFcpτ ∀c, p, τ (3)

invpipτ = invpipτ−1 + xipτ −
∑
c

ficpτ ∀i, p, τ (4)

rtipτ =
∑
c

ricpτ ∀i, p, τ (5)

ε−Muipτ ≤ invpipτ−L − sip ∀i, p, τ, τ > L (6)

invpipτ−L − sip ≤M(1− uipτ ) ∀i, p, τ, τ > L (7)

invpipτ + xipτ − Sip ≤M(1− uipτ ) ∀i, p, τ (8)

Sip − invpipτ − xipτ ≤M(1− uipτ ) ∀i, p, τ (9)

fipcτ , ricpτ , rtipτ , invpipτ , xipτsip, Sip ≥ 0, uipτ ∈ {0, 1} (10)

The main decision variable is the flow between plants, and customers. ficpτ represents the amount

of product p delivered to customer c from plant i in week τ , with its corresponding transportation cost

TCic. It is assumed that all the products arriving to a customer are sold at a price ηp. Alternatively, the

planner can choose to have part of the demand forecast (DFcpτ ) supplied by a third party manufacturer

or by a facility that is not explicitly considered in the system (not part of the set I). This is allocated in
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the plant-specific variable ricpτ , and cumulative in variable rtipτ (Eq. 5). Products allocated through this

alternative generate income with price γip, where γip < ηp. This parameter depends on the plant i and

the product p; it is assumed that there is an alternative source for each manufacturing facility charging

different rates, usually negotiated through contracts. Demand allocation is controlled by Eq. 3.

The production amount is encoded by xipτ , while the inventory is invpipτ . These variables are deter-

mined with the inventory balance constraint from Eq. (4), The inventory level has an associated cost due

to the inventory holding cost HCp, while the unit production cost is PCip. Finally, the inventory policy

is optimized with Eqs. (6)–(10). The trigger level sip, and base stock level Sip use a binary variable uipτ

to indicate when a replenishment is done. Eqs. (6) and (7) ensure a replenishment is triggered when the

inventory level is less than sip. In these constraints ε is a small positive tolerance, L is the replenishment

lead time, and M is a large positive quantity. The inventory policy constraints are a simplified version of

the formulation proposed by Brunaud et al. (2019).

5.2 Scheduling model

The scheduling model is a discrete time Unit-Operation-Port-State-Superstructure (UOPSS) formulation

(Zyngier and Kelly, 2012). The UOPSS formulation was chosen because of its flexibility and scalability

(Brunaud and Grossmann, 2019). The model is based on units that can perform different tasks, connected

with tanks or other units through ports (Fig. 7). The scheduling horizon is divided in T discrete time

periods each with equal duration, usuarlly in the order of hours.

Op A1

Op A2

Unit A

Tank 1

Inlet
Ports

Outlet
Ports

Figure 7. Basic elements of the UOPSS scheduling formulation

Compared to the base UOPSS formulation, a few extra considerations are required. First, a backlog

variable is included to account for demand amounts that cannot be satisfied on time. Second, a demand

redirection variable is considered to adjust the orders that are allocated to third party manufacturing by

the planner. The variables of the model for a single manufacturing plant are the following:
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sujkt : a binary variable indicating if operation k starts in unit j at the beginning of period t
sdjkt : a binary variable indicating if operation k is shutdown in unit j at the beginning of period t
swjkt : a binary variable indicating if operation k continues operation in unit j at period t.
yjkt : a binary variable indicating if operation k is active in unit j in period t
bjkt : the size of the batch processed in period t, executing operation k in unit j
invsjpt : inventory of material p at tank j at the end of period t at the scheduling level
xovt : flow through outlet port v at period t
xivt : flow through inlet port v at period t
xvv′t : flow between port v and port v′ at period t
dpt: demand of product p satisfied at period t
blpt: backlog amount of product p at period t
rdpt: redirected demand of product p at period t

All the variables are defined for each manufacturing plant. The subindex i for each plant at every

variable has been omitted for simplicity. The constraints of the model are given by Eqs. (11)–(27).
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∑
k∈Kj

PTjk∑
θ=0

sujkt−θ ≤ 1 ∀j, t (11)

yjkt =

PTjk−1∑
θ=0

sujkt−θ ∀j, k ∈ Kj , t (12)

swjkt =

PTjk−1∑
θ=1

sujkt−θ ∀j, k ∈ Kj , t (13)

sdjkt = sujkt−PTjk ∀j, k ∈ Kj , t, t− PTjk ≥ 1 (14)

yjkt − yjkt−1 − sujkt + sdjkt = 0 ∀j, k ∈ Kj , t ≥ 1 (15)

yjkt + yjkt−1 − sujkt − sdjkt − 2swjkt = 0 ∀j, k ∈ Kj , t ≥ 1 (16)

sujkt + swjkt ≤ 1 ∀j, k ∈ Kj , t (17)

sdjkt + swjkt ≤ 1 ∀j, k ∈ Kj , t (18)

bjkt ≤ bUjksujkt ∀j, k ∈ Kj , t (19)

bjkt ≥ bLjksujkt ∀j, k ∈ Kj , t (20)

xivt = ρjkvbj,k,t+1 + µjkvsuj,k,t+1 ∀j, k ∈ Kj , v ∈ IPjk, t ≤ T (21)

xovt = ρjkvbj,k,t−PTjk−1 + µjkvsuj,k,t−PTjk−1 ∀j, k ∈ Kj , v ∈ OPjk, t (22)

invsjpt = invsjpt−1 + xivt − xov′t ∀j, p, t > 1, v ∈ IPjp, v′ ∈ OPjp (23)

xivt =
∑
v′∈Ωv

xv′vt ∀v, t (24)

xovt =
∑

v′∈∆jkv

xvv′t ∀v, t (25)

∑
j∈Jp

∑
v∈OPjp

xovt = dpt

:::::::::::::::::::

∀p, t
::::

(26)

dpt + blpt + rdpt = Dpt ∀p, t (27)

bjkt, xivt, xovt, xvv′t, invsjpt, dpt, blpt, rdpt ≥ 0 (28)

sujkt, swjkt, yjkt, sdjkt ∈ {1, 0} (29)

Eqs. (11)–(18) are the logic constraints of the system, where PTjk is the processing time for operation

k in unit j in terms of number of time periods, and Kj is the set of operations that can be performed in
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unit j. Eqs (19) and (20) are the logistic constraints that link continuous variables with binary variables;

the parameters bLjk and bUjk are lower and upper bounds for the batch size, respectively. Eqs (21)–(25) are

the material and flow balances of the system; ρjkv is the variable proportion that flows through port v

when a batch of size b is produced, while µjkv is the amount that flows through port v, independent of

the batch size. ρjkv is the consumption or production factor for materials or resources that depend on the

batch size, while µjkv is the factor for resources that are consumed or produced in fixed amounts. The

set IPjk represents the inlet ports of operation k at unit j, while OPjk is the set of outlet ports. Ωv are

the origin ports for inlet port v, while ∆jkv are the ports connected to the outlet port v for operation k in

unit j. Eq. 27 is the demand satisfaction constraint for the system. The demand orders Dpt can either be

satisfied (dpt), redirected (rdpt), or backlogged (blpt). It is assumed that each customer order is assigned

to a single plant and the assignment is known in advance. As mentioned before, the amount that can be

redirected is a decision made in conjunction with the planner, when the model is optimized without the

input from the planner, the variable rdpt is fixed to zero. The redirection decision is communicated as to

the scheduler as an aggregated amount. The scheduler must use that information to decide which specific

orders are selected for redirection. For a detailed description of each constraint, the reader is referred to

Zyngier and Kelly (2009).

To link the planning and scheduling models through inventory policies, additional constraints to

execute the policy are required in the scheduling model. Eqs. (30)–(35) enforce the inventory of finished

product p is replenished when the level falls below sp. These constraints are analogous to Eqs. (6)–(10)

in the planning model.

ε−Muptwjpt
:::
≤ invsjpt − sp ∀p, pj

:
∈ Jp, t (30)

invsjpt − sp ≤M(1− uptwjpt
:::

) ∀p, j ∈ Jp, t (31)

θ=t∑
θ=max(t−L+1,1)

zpθjpθ
::
≥ uptwjpt

:::
∀p, j ∈ Jp,

::::::
t (32)

θ=min(t+L−1,T )∑
θ=t

xivθ + slppt − Sp+invsjpt
::::::::

≤M(1− zpt) ∀p, j ∈ Jp,
::::::

t, v ∈ Vp (33)

Sp − invsjpt
::::::

θ=min(t+L−1,T )∑
θ=t

xivθ − slppt ≤M(1− zpt) ∀p, j ∈ Jp,
::::::

t, v ∈ Vp (34)

Sp, sp, slppt ≥ 0, uptwjpt
:::

, zptjpt
::
∈ {1, 0} (35)
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where upt ::::
wjpt: is a binary variable indicating when the inventory falls below the replenishment level,

zpt ::::
zjpt :is a binary variable indicating when production is triggered to replenish the inventory, L is the

replenishment lead time in hours, Jp is the set containing the singleton index for the tank j that holds

product p, and Vp is the inlet port for the same tank. The positive slack variable slppt is used to allow

deviations in production, from the targets proposed by the planner. The set of constraints enforces that

a replenishment is triggered the first time the inventory is found below level sp.

The objective function is to maximize the profit from delivery of products, minus inventory costs

and penalties for backlog, and not meeting the planning targets. The planning targets are given as soft

constraints because a scheduler can always choose to ignore the target in practice, or may not be able

to replenish the stock fully. The objective function for the scheduling model is given by Eq. (36). The

complete scheduling model for plant i, SMPi for communication through inventory policies is given by

Eqs. (11)–(36).

∑
p

∑
t

(ηpdpt −HCpinvspt − βblpt − νslppt) (36)

When the communication between planners and schedulers is done by inventory and production tar-

gets, an additional term to penalize for the deviation of the inventory target is required. The objective

function for this case is given by Eq. (37).

∑
p

∑
t

(ηpdpt −HCpinvspt − βblpt − ξslppt − ξslipt) (37)

The parameter β is the backlog penalty, while ξ is the penalty for not meeting the targets set by

the planner. The positive slack variable sliipt accounts for deviations in the inventory targets. Its use is

defined in the linking constraints in the next section. The scheduling model for communication through

inventory and production targets for plant i, SMTi is given by Eqs. (11)–(27) and (37).

5.3 Linking constraints

In a modular modeling approach, integrated models can be constructed by connecting different models

through linking constraints. An integrated planning and scheduling model is constructed connecting

model PM with one or more scheduling models, whether is SMTi or SMPi. The linking constraints

involve variables of both connected models.
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When the communication is done through targets, Eqs. (38)– (40) are the linking constraints.

invsipθ + sliipθ ≥ invpipτ ∀i, p, τ, θ ∈ Θτ (38)∑
θ∈Θτ

∑
v∈Vp

(xiivθ + slpipθ) ≥ xipt ∀i, p, τ (39)

∑
θ∈Θτ

rdipθ = rtipτ ∀i, p, τ (40)

In each linking constraint, the left-hand side contains variables coming from the scheduling model,

while the right-hand side has only variables from the planning model. In all the constraints the index

t represents the time periods of the planning model (weeks). Eq. (38) enforces the satisfaction of the

production target invpipt. If the target is not satisfied, the slack variable sliipt takes a positive value

with the corresponding penalty in the objective function. Similarly, Eq. (39) enforces the satisfaction of

the production target xipt. If unsatisfied, the corresponding slack variable slpipt takes a positive value.

The leftmost term in the constraint is the material flow incoming to the storage tank for product p. The

set Θτ represents the time periods of the scheduling model that correspond to a given planning period.

For example, Θ1 could be the set of hours of the first week, Θ1 = {1, 2, 3, . . . , 168}. Eq. (40) helps to

coordinate the orders that are being redirected to a third party manufacturing. When the communication

is done through inventory policies the linking constraints are obtained from equating the values of spt and

Spt for the planning and the scheduling model in addition to Eq. (40).

6 Simulation framework

Enterprise wide-optimization models are developed to help managers, planners, and schedulers to select

the best decision among many alternatives. The models are meant to be executed with a certain frequency

(the decision horizon), updating the input parameters to obtain a new decision valid until the next time

the model is executed. Since we propose models that are different than the previous work in the literature,

a simulation framework is developed to evaluate the models, mimicking the conditions in which decision

makers use the models.
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6.1 Simulation agents

The simulation framework considers several agents that provide information or make decisions at different

points in time. The decision agents and their interactions are described in Fig. 8

Demand
Planner

Scheduler

Logistics
Planner

Tactical
Planner

Scheduler

Operator

Maintenance
Planning

Model

Scheduling
Model

Deliveries

Forecast

Targets /
Policies Production

Orders

Figure 8. Simulation agents and their interactions

The agents included in the simulation framework and their actions are the following:

Demand Planner. Updates a mid-term demand forecast, which corresponds to the average weekly

demand for each product at each customer site. The forecast takes into consideration the short

term delivery orders received by the logistics planner.

Logistics Planner. Receives and allocates the delivery orders for the short term. The orders define the

product, time, and amount for each product at each manufacturing plant. Keeps track of the status

of each order including deliveries and backlogs.

Integrated Planner and Scheduler. The interaction between planner and scheduler is captured as a

single agent that solves the integrated planning and scheduling model in intervals spaced by the

planning decision horizon. In addition to the short term plan, the output includes production and

inventory targets, or inventory policies. When the communication is done through targets, this

agent makes decisions running an integrated model comprised by models PM , SMTi and linking

constraints from Eqs. (38)–(40). When the communication is done through inventory policies the

integrated model is defined by aggregating models PM , SMPi, the linking constraint from Eq.
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(40), and the linking constraints defined from equating the variables sp and Sp in models PM and

SMPi.

Scheduler. In intervals defined by the scheduling decision horizon, the scheduler agent defines the short

term plan considering the new delivery orders and the guidelines from the planner. The scheduler

agent operates only at times when the integrated agent process is not executed, i.e. the integrated

agent replaces the role of the scheduler agent. The scheduler agent makes decisions running the

model SMTi for communication through targets or SMPi for communication through inventory

policies.

Operator. At every hour, this agent executes production, loading and unloading processing equipment,

and also serving demand deliveries. It is assumed that partial deliveries are possible. If there is not

enough material to serve an order, the available material is delivered and a new backlog order is

created one week later for the difference.

Maintenance. Repairs equipment when required. The spacing between equipment failures is an expo-

nential random variable, while the duration of a failure is assumed to have normal distribution.

6.2 Sources of uncertainty

In order to define a realistic simulation, several sources of uncertainty must be considered in the framework.

The ones considered in the current application are the following:

Demand uncertainty. The forecast estimated by the demand planners is not perfect due to varying

demand. The demand forecasted can be smaller or larger than the short term orders received.

Processing time. The short term plan is elaborated considering the average duration of the processing

operations. However, operations can finish earlier or later. A delay term with a Poisson distribution

is considered. The term can also be negative, indicating that an operation actually finishes earlier.

Delivery times. Although the logistics are planned with the best information available, it is often the

case that pick ups arrive earlier or later than anticipated. This is also captured in the simulation

framework.
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6.3 Evaluation metrics

The objective of the simulation is to compare the “goodness” of the decision models. To accomplish

this task, several metrics are defined and evaluated for each simulation run. The first and main metric

is the profit, which includes sales from delivery of products substracting the inventory costs. Late and

insufficient deliveries, as well as production in secondary plants or third party manufacturing hinder the

profits.

The second metric considered is the backlog percent, defined as the number of backlogged deliveries

over the total deliveries. The last metric reported is the average inventory. A good plan will result in

very few backlogs with the least amount of inventory as possible. As is evident from our results, there is

a trade-off between these two metrics so it is important to analyze both.

6.4 Simulation workflow example

To better understand the way the simulation works consider an example workflow for a planning model

with a decision horizon of four weeks, integrated with a scheduling model with a decision horizon of one

week. The actual definition of the models is presented in Section 5. A flowchart of the workflow is shown

in Fig. 9.

Demand
Planner

Scheduler

Logistics
Planner

Tactical
Planner

Scheduler

Operator

Figure 9. Simulation agents and their interactions

The simulation starts when the demand planner estimates the forecast for the mid-term, 8 weeks

in the example case. Values that were previously estimated and lie within the forecasting horizon are

updated. Next, the logistics planner collects the delivery orders for the next two weeks. If orders for a

longer period are required, the values are extrapolated considering the same weekly distribution adjusting

by the average demand in the forecast. For example, if there is an order for Thursday at 3 pm in week
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one, the order is extrapolated to week three considering an order for the same day and time, scaled by

the ratio between the average demands of weeks one and three for the same product. Because of demand

uncertainty, the total amount defined by the delivery orders for a given week does not necessarily match

the forecasted demand.

With the information provided by demand and logistics planners, the production plan processes are

triggered. Every four weeks the integrated planning and scheduling is performed, like the case of the

beginning of the simulation. The next week, only the scheduling is performed fixing the variables that

come from the planning model.

The short term plan in the form of a list of production orders that need to be executed is provided

to the operator. The operator then checks every hour for events that require an action, such as loading

equipment at the beginning of a task, unloading when a task is finished, and fulfilling delivery orders.

When the unit where a task must be performed is not available, either because it is running another task

or it is under maintenance, the task is postponed by one hour. At the next hour, the operator checks

again if it is possible to start the task. Sales are accounted when a delivery task is completed, at full price

when it is completed on time, and at a lower price otherwise due to late delivery penalties.

6.5 Computational implementation

The simulation framework is implemented in the Julia programming language (Bezanson et al., 2017),

using JuMP (Dunning et al., 2017) to define the optimization models. The planning and scheduling

models are defined separately and included into a single model graph using Plasmo (Jalving et al., 2017).

The modular implementation allows to quickly modify parts of the model, such as the scheduling horizon

or the linking constraints between the planning and scheduling models to easily generate the different

scenarios for the study. In order to make the scenarios more comparable, they were run with the same

number of repetitions using the same set of random seeds. In that way, they were exposed to the same

demands and unplanned outages.

7 Case study

The effect of the scheduling look-ahead horizon and communication variables is evaluated through sim-

ulation. The case study considers a single planner integrated with a single manufacturing plant for the

production of four products. The planning process is performed every 4 weeks, while the scheduling is
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done every week. The look-ahead horizon for the planning is also 4 weeks, with a total optimization

horizon of
::::::::
planning

:::::::::::::
optimization

::::::::
horizon

::
is 8 weeks. The look-ahead horizon for the scheduling is 7 weeks

in the base scenario. The time discretization for the planning is one week, while the scheduling horizon

is divided into periods of 4 hours. The State-Task-Network diagram (Kondili et al., 1993) for the manu-

facturing plant is shown in Fig. 10. For each scenario, 20 simulation runs were executed, considering a

simulated process time of 1 year.

Figure 10. STN diagram for the manufacturing plant

7.1 The importance of communication

As stated before, the common practice in companies is for different decision makers to plan independently

with few or no iterations. This is equivalent to not solving the IPSM to optimality. In this context, an

iteration refers to the process in which the planner makes a decision and then communicates the outcome

to the scheduler, who takes the planning decision as an input to the scheduler’s own decision-making

process. Then, the scheduler gives feedback to the planner, who proposes a new decision until both agree

the integrated plan is the best for the entire system. This bargaining process can be mathematically repre-

sented with Benders decomposition (Benders, 1962; Brunaud and Grossmann, 2017), in which the planner

solves the PM model, the scheduler solves the SMTi (or SMPi) model and provides dual information to

generate a cut in the PM model. Fig. 11 is a schematic representation of this process.
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SchedulerPlanner

Dual Information

Targets

Figure 11. Representation of iterations between planner and scheduler

To illustrate the effect of iterations, and conversely, the benefits of integrated models, the process is

simulated solving the IPSM with 1, 5 iterations, and to convergence within a 1% optimality gap. The last

scenario is referred to as Inf , because there is no limit in the number of iterations allowed. The results

for profit and backlog obtained are shown in Fig. 12.

(a) Profit (b) Backlog

Figure 12. Summary of metrics for varying iterations between planner and scheduler

As expected, increasing the number of iterations increases the profit and decreases the backlog. The

results help to validate the simulation and to stress the importance of fluent communication between

planners and schedulers. To better understand the results, and conversely, the value of integrated decisions

the results of the first week are analyzed in detail for the three scenarios considered. Table 1 shows a

summary of the plan agreed by the planner and scheduler.

::::::::
Because

::::
the

::::::::
number

::
of

::::::::::
iterations

:::::::
brings

::::
the

::::::::
solution

::::::
closer

::::
the

:::::::::
optimum

::::
for

::::
the

::::::::::
integrated

:::::::::
planning

::::
and

::::::::::
scheduling

::::::::
model,

::
it

::
is

:::::::::
expected

:::::
that

::::
the

::::::
profit

::::::::::
increases.

::::::::::
However,

::
it
:::

is
::::
not

::::::::
possible

:::
to

::::::::::
generalize

:::::
these

:::::::
results.

:::::::
There

::::::
could

:::
be

::::::
cases

::
in

:::::::
which

:::
the

:::::
first

::::::::::
iterations

::::::::
provide

:::::
good

:::::::::
solutions

:::
in

::::
few

::::::::::
iterations,

::::
and

::
if

:::::
they

::::
are

::::::::
applied

::
to

::
a
::::::

high
::::::::::
variability

:::::::::
scenario,

:::::::
mixed

:::::::
results

::::::
could

:::
be

::::::::::
obtained.

::::
In

:::::
most

::::::
cases
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1 5 Inf

Planning
Demand 6128 6128 6128
Flow from M1 6128 6128 2402
3rd Party 0 0 3726
Production Target 5363 7784 2369
Inventory Target 35 2457 767

Scheduling
Net Demand 6311.3 6311 2586
Served 2209 2430 2586
Backlog 4103 3881 0

Table 1. First week plan summary for each scenario

::::
with

::::::::::
moderate

::::::::::::
variability,

::::
the

:::::::
results

:::::
will

::::::
hold,

:::
as

::::
the

:::::::
larger

::::::::
number

:::
of

::::::::::
iterations

:::::::::::
represents

::::::
more

:::::::::::::::
communication

::::::::
between

::::::::
planner

:::::
and

::::::::::
scheduler,

::::::::
leading

:::
to

::
a
:::::::::
stronger

:::::
plan.

::
In the scenario with 1 it-

eration, the planner instructs the scheduler of plant M1 to completely satisfy the demand of customer

C1, while maintaining low inventory levels. Since there is no feedback in this scenario, the scheduler

optimizes the best possible plan, and estimates that only 2, 209 kg can be supplied and a backlog of

4, 103 kg will be generated. It is important to note that the availability of a scheduling model enables an

accurate estimation of the backlog amount.

At the other end, in the scenario where planner and scheduler iterate until convergence (scenario

Inf), the planner is capable of correctly assessing the capacity of the scheduling, and redirect demand

to a third party manufacturer in a timely manner. The scheduler agrees with the plan, and no backlog

is anticipated. In the intermediate scenario with 5 iterations the planner increases the production target

allowing to reduce the projected backlog.

After implementing the respective plans, the profits obtained after 1 week are $19, 259, $54, 422, and

$137, 385, for scenarios 1, 5, and Inf , respectively. A summary of delivered amounts including completed

deliveries, partial deliveries, and backlogs is shown in Fig. 13.

In the scenario Inf , the scheduler completes 100% of the orders committed, while in the other scenarios

the excessive amount of deliveries committed leads to a large amount of partial deliveries and backlog,

which lead to a smaller profit. The use of integrated models allows to correctly estimate production

capacity to generate timely and efficient product allocations.
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Figure 13. One week delivery summary

7.2 Effect of the scheduling look-ahead horizon

As explained in Section 4.1, different lengths of the scheduling look-ahead horizon are evaluated. The

metrics collected are the profit, backlog, and average inventory level. Four scenarios are constructed

integrating planning and scheduling through inventory and production targets. The scenarios considered

are the following (Fig. 14):

Base Look-ahead horizon of 7 weeks. The planning and scheduling are solved in the same horizon of 8

weeks.

LA1 Look-ahead horizon of 1 week, with a total scheduling optimization horizon of 2 weeks. The planning

objective function is scaled according to Eq. (1).

LA3 Look-ahead horizon of 3 weeks, with a scheduling optimization horizon of 4 weeks, matching the

decision horizon of the planning model. The planning objective function is scaled according to Eq.

(1).

LA3+R4 Same as LA3 but with additional 4 weeks of relaxation. For weeks 1-4 consider the scheduling

model SMT , for weeks 5-8 the same model is considered but all the binary variables are relaxed to

the [0, 1] interval

The average backlog and average inventory for 20 simulation runs is shown in Table 2.

The average profits and error bars for the 95% confidence interval for the mean are shown in Fig. 15.

The results from Fig. 15 show that there is no significant difference in the means for models that

have a look-ahead horizon of at least three weeks (scenarios Base, LA3, and LA3+R4). The results are
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Figure 14. Scenarios considered for the effect of the look-ahead horizon

Table 2. Average backlog and inventory of 20 simulation runs

Avg. Backlog Avg. Inventory

Base 1.19 % 457.11
LA1 9.89 % 381.87
LA3 3.98 % 466.43
LA3+R4 1.22 % 468.64

also related to the average backlog. The backlog for scenario L1 is significantly larger than for the other

scenarios. The average backlog for scenario LA3 is also larger than the value for scenarios Base and

LA3+R4. However, the profit is not much worse
::::::
similar. The average inventory is similar for the scenarios

with the larger profit, at around 460 units, and lower for the scenario with the worst profit, LA1, at an

average of 382 units. Because the planning model is optimized every four weeks, when the scheduling look-

ahead horizon is at least three weeks, all the variables that fixed for implementation
::::::::
planning

:::::::::
variables

::::
that

::::
are

:::::
part

::
of

::::
the

:::::::
frozen

:::::::
period

:::
(4

:::::::
weeks)

:
consider the effect of the scheduling in their optimization.

This is not the case for the LA1 scenario. The planning decisions for weeks 3 and 4 are made without

considering the effects on the scheduling, which does not allow to correctly anticipate the demand. This

is reflected in the lower average inventory.



Novel Approaches for the Integration of Planning and Scheduling — 26/33

Figure 15. Average profit values for scheduling look-ahead horizon scenarios

7.3 Effect of communication variables

The second feature evaluated is the effect of the variables that the planner communicates to the scheduler.

The traditional approach (Targets scenario) is to assume that the planner passes production and inventory

targets to the scheduler. The alternative proposed is for the planner to communicate optimized inventory

policy parameters (Policy scenario). In this case, the scheduler receives the values of s and S, which uses

to manage the finished products inventories. The average values obtained for profit and backlog, with

their respective standard deviations, σ, are shown in Table 3. For every run the optimization horizon for

the scheduling is equal to the optimization horizon of the planner.

Table 3. Average profit and backlog of 20 simulation runs

Avg. Backlog σbacklog Avg. Profit σprofit

Target 1.21 % 0.37 % 4.26 M$ 0.15 M$
Policy 1.30 % 0.44 % 4.30 M$ 0.18 M$

Even though the average profit is somewhat larger for the Policy scenario, and the average backlog is

lower for the Targets scenario, there is no significant difference between both scenarios in these metrics.

The p-value of paired t-test is 0.20 for the profit, and 0.24 for the backlog. On the other hand, the average

inventory is significantly lower for the Policy scenario (p-value 0.00058), as shown by the radial plot from

Fig. 16, where the average inventory is reported for both scenarios at each simulation run.

The lower average inventory of the Policy scenario is explained by the increase of degrees of freedom
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Figure 16. Average inventory in each simulation run

observed by the scheduler when the planner provides policy parameters instead of inventory targets. The

scheduler can simultaneously determine the best plan to serve the short-term demand, while minimizing

the inventory. It also allows the scheduler to adapt the plan better to changing conditions in the process.

The policy provides a way to obtain better decisions without sacrificing the profit. The difference in

inventory is not translated in a profit difference because the cost component of the inventory cost is too

small compared to the revenue.

8 Conclusions

The problem of integrating planning and scheduling, one of the central challenges in Enterprise-wide

Optimization (Grossmann, 2005), was addressed with novel modeling concepts. Alternatives for two of

the most frequent assumptions in the integrated planning and scheduling literature were proposed and

evaluated using simulation. The assumptions considered are that the planning and scheduling models need

to be optimized in the same time horizon, and that the communication is done by passing production and

inventory targets from the planner to the scheduler.

The paper also presents novel ideas in the construction of integrated planning and scheduling models.

First, the use of modular modeling is demonstrated. This technique enables the seamless development

of complex models, connecting different simpler models with linking constraints. The modular approach
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also helps to increase the understanding of the communication relationships in a complex system such as

supply chain decision-making. Second, both planning and scheduling models that incorporate inventory

policies were presented. They allow to simultaneously optimize inventory levels and policy parameters,

which are useful to define simple guidelines for process operations.

The proposed simulation framework mimics the conditions in which the models are meant to be used

as part of a decision support system. Agents to provide demand information, both mid-term and short-

term are considered; together with planners and schedulers that run optimization models to make their

decisions. The simulation framework and its use are a contribution themselves to motivate the evaluation

of supply chain optimization models in realistic scenarios, beyond the typical evaluation of computational

efficiency.

The comparison of models with reduced scheduling look-ahead horizon shows that it is possible to

reduce the overall model size, while maintaining the same profit. This facilitates the implementation

decision support systems including integrated models. The results show that as long as the scheduling

optimization horizon matches the planning decision horizon the decision system will have a good per-

formance. It is important to consider a high level of detail in decisions that are committed and remain

unchanged for the rest of the operation. The good performance of the scenario LA3+R4 shows that

having a rigorous model in both planning and scheduling levels does not necessarily translate into the

best performance in practice.

In the second feature considered, the communication variables between planner and schedulers were

evaluated. When the communication is done through through inventory policies the profits are similar to

the profits obtained when the communication is done through production and inventory targets. However,

the average inventory is significantly lower for the first case. This could also lead to improved profits in

applications were the inventory costs are more important. The inventory is decreased because of the larger

number of degrees of freedom that the scheduler has, compared to the communication through targets.

Besides the quantitative benefits, this also brings benefits to the working relationship between planners

and schedulers. As more decision options are available to schedulers, they feel more empowered to make

better decisions in their area of responsibility. These benefits are also achievable maintaining the same

levels of profit.

Because multilevel modeling systems are a representation of the decision-making organizational struc-

tures (Brunaud and Grossmann, 2017), the results obtained from the evaluation of optimization models
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can also influence the work processes and the organizational structures themselves. The novel modeling

approaches for the integrated planning and scheduling presented from this paper are contributions to

continue advancing towards the digitalization of manufacturing operations and the associated decision-

making processes.
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