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Abstract 
Lagrangean decomposition has been used to overcome the difficulties in optimizing 
large-scale supply chain planning models. Decomposing the problem by time periods has 
been established as a useful technique. In this paper a novel decomposition scheme by 
products is presented. The decomposition is based on a reformulation of knapsack 
constraints in the problem. The new approach also allows for simultaneous decomposition 
by products and time periods, enabling the generation of a large number of subproblems, 
with the potential benefit of using parallel computing. The case study shows that product 
decomposition shows a similar performance than temporal decomposition. Selecting 
different orders of products and aggregating the linking constraints can improve the 
efficiency of the algorithm. 
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1. Introduction 
Tactical planning of supply chains involves the decision of material flows and inventories 
throughout a network of manufacturing sites and warehouses to satisfy the demand of 
each customer. To ensure that best decisions are made for the mid-term, optimization 
models are employed. These models can be very large and hard to solve. To obtain the 
optimal solution in reasonable time, decomposition techniques such as Lagrangean 
decomposition (Guignard and Kim, 1987) can be used. In this type of decomposition, the 
model is broken into subproblems, and the constraints linking them are dualized, i.e. 
transferred to the objective function with a penalty term known as Lagrange multiplier. 
The objective is to find the multipliers that yield the tightest bound for the problem.  

Jackson and Grossmann (2003) use temporal decomposition to solve a multi-site, multi-
period planning problem. Terrazas-Moreno et al. (2011) compare spatial and temporal 
decomposition for the same kind of problem. They conclude that the temporal 
decomposition gives tighter bounds than spatial decomposition for some types of 
production planning problems. In temporal decomposition, the problem is decomposed 
by time periods, which are linked by an inventory balance constraint. There is a natural 
dynamic structure when decomposing by time periods. The solution of a subproblem at a 
given time period depends only on the inventory at the end of the previous period. 

A typical supply chain planning problem has between 6 and 24 periods. At the same time 
the optimal decisions must be determined for a number of products that ranges typically 
from 50 to 1,000. However, products do not exhibit the same dynamic structure as time 
periods; it is not possible to say that one product comes before another. In this paper we 
show that such a dynamic structure can be exposed through reformulation allowing to 
decompose the problem by products and apply Lagrangean decomposition. Furthermore, 
we show that the problem can be decomposed simultaneously by products and time 
periods. van Elzakker et al. (2014) propose a decomposition by SKU based on heuristics, 
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different to the exact reformulation followed by Lagrangean decomposition from this 
paper.  

We evaluate each decomposition scheme, and explore the effects of subproblem 
aggregation, linking constraint aggregation, and order of products through a multi-period 
multi-product production planning example. 

2. Problem Description  
Given is a demand forecast for a set of products p ∈ P. It is required to determine the 
optimal production amounts, inventory levels, and shipments to markets j ∈ J at several 
multi-product facilities i ∈ I. The objective is to maximize the profit for a finite horizon 
divided in time periods t ∈ T of length Lt. Since the production rate is different for each 
product, the production amount is expressed in terms of the number of hours devoted to 
produce a product in a given period. Fig. 1 describes the problem and the main variables 
used.  

 
Figure 1. Problem diagram and nomenclature 
 
The problem is formulated as an MILP from Eqs. (1)-(7). 
 

Max ���𝛽𝛽𝑝𝑝𝑧𝑧𝑗𝑗𝑝𝑝𝑗𝑗
𝑗𝑗𝑗𝑗

−����𝛾𝛾𝑖𝑖𝑝𝑝𝑥𝑥𝑖𝑖𝑝𝑝𝑗𝑗 + 𝐻𝐻𝑖𝑖𝑠𝑠𝑖𝑖𝑝𝑝𝑗𝑗 + 𝜎𝜎𝑝𝑝𝑦𝑦𝑖𝑖𝑝𝑝𝑗𝑗�
𝑗𝑗𝑝𝑝𝑖𝑖𝑖𝑖

−����𝑇𝑇𝐶𝐶𝑖𝑖𝑗𝑗𝑓𝑓𝑖𝑖𝑗𝑗𝑝𝑝𝑗𝑗
𝑗𝑗𝑝𝑝𝑗𝑗𝑖𝑖

 (1) 

s.t. 𝑠𝑠𝑖𝑖𝑝𝑝𝑗𝑗 = 𝑠𝑠𝑖𝑖𝑝𝑝𝑗𝑗−1 + 𝑥𝑥𝑖𝑖𝑝𝑝𝑗𝑗 − ∑ 𝑓𝑓𝑖𝑖𝑗𝑗𝑝𝑝𝑗𝑗   ∀𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗     (2) 

 𝜃𝜃𝑖𝑖𝑝𝑝𝑗𝑗 + 𝑆𝑆𝑆𝑆𝑇𝑇𝑖𝑖𝑝𝑝𝑦𝑦𝑖𝑖𝑝𝑝𝑗𝑗 ≤ 𝐿𝐿𝑗𝑗    ∀𝑖𝑖𝑖𝑖𝑖𝑖 (3) 

 𝑅𝑅𝑖𝑖𝑝𝑝𝜃𝜃𝑖𝑖𝑝𝑝𝑗𝑗 = 𝑥𝑥𝑖𝑖𝑝𝑝𝑗𝑗    ∀𝑖𝑖𝑖𝑖𝑖𝑖 (4) 

 �𝑓𝑓𝑖𝑖𝑗𝑗𝑝𝑝𝑗𝑗
𝑖𝑖

= 𝑧𝑧𝑗𝑗𝑝𝑝𝑗𝑗    ∀𝑗𝑗𝑖𝑖𝑖𝑖 (5) 

 𝑧𝑧𝑗𝑗𝑝𝑝𝑗𝑗 ≤ 𝐷𝐷𝑗𝑗𝑝𝑝𝑗𝑗    ∀𝑗𝑗𝑖𝑖𝑖𝑖 (6) 
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 𝑥𝑥𝑖𝑖𝑝𝑝𝑗𝑗 ,𝜃𝜃𝑖𝑖𝑝𝑝𝑗𝑗 , 𝑠𝑠𝑖𝑖𝑝𝑝𝑗𝑗 , 𝑓𝑓𝑖𝑖𝑗𝑗𝑝𝑝𝑗𝑗 , 𝑧𝑧𝑗𝑗𝑝𝑝𝑗𝑗 ≥ 0, 𝑦𝑦𝑖𝑖𝑝𝑝𝑗𝑗 ∈ {0,1} (7) 

3. Temporal Decomposition  
In temporal decomposition, the goal is to divide the problem into individual time periods, 
which are linked by inventory variables. In Fig. 2 the inventory balance constraint is 
represented by the nodes, and the inventory continuity constraint ensuring that the final 
inventory at a given period is equal to the initial in the next period, is represented by the 
box. The problem can be decomposed dualizing the inventory continuity constraint. 

Following the representation from Fig. 2 the previous model needs to be reformulated 
including variables to represent the initial (si) and final stock (sf). With these variables, 
Eq. (2) is replaced by Eqs. (8) and (9). Eq. (9) is then dualized to decompose the problem. 
 

𝑠𝑠𝑓𝑓𝑖𝑖𝑝𝑝𝑗𝑗 = 𝑠𝑠𝑖𝑖𝑖𝑖𝑝𝑝𝑗𝑗 + 𝑥𝑥𝑖𝑖𝑝𝑝𝑗𝑗 − ∑ 𝑓𝑓𝑖𝑖𝑗𝑗𝑝𝑝𝑗𝑗   ∀𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗     (8) 

𝑠𝑠𝑓𝑓𝑖𝑖𝑝𝑝𝑗𝑗 = 𝑠𝑠𝑖𝑖𝑖𝑖𝑝𝑝𝑗𝑗+1   ∀𝑖𝑖𝑖𝑖𝑖𝑖 (9) 

4. Product Decomposition 
Unlike time periods, products do not have the same dynamic structure. They are usually 
sharing capacity in a knapsack constraint, whether is production, transportation, or 
inventory capacity. To reformulate the problem and obtain an equivalent dynamic 
structure, consider a planner that optimizes one product at a time. After the first flows and 
inventory for the first product have been optimized, the planner needs to know how much 
capacity is left for the next product. This process is shown in Fig. 3. We reformulate Eq. 
(3) according to the representation in Fig. 3 to obtain Eqs. (10) and (11). 

𝑐𝑐𝑓𝑓𝑖𝑖𝑝𝑝𝑗𝑗 = 𝑐𝑐𝑖𝑖𝑖𝑖𝑝𝑝𝑗𝑗 − 𝜃𝜃𝑖𝑖𝑝𝑝𝑗𝑗   ∀𝑖𝑖𝑖𝑖𝑖𝑖    (10) 

𝑐𝑐𝑓𝑓𝑖𝑖𝑝𝑝𝑗𝑗 = 𝑐𝑐𝑖𝑖𝑖𝑖(𝑝𝑝+1)𝑗𝑗    ∀𝑖𝑖𝑖𝑖𝑖𝑖 (11) 

 
Figure 2. Representation of temporal linking constraints 
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The production capacity is a local variable for each product. The initial capacity for the 
first product is the entire capacity Lt. Note that in order to write down Eq. (11) an arbitrary 
order is given to the products. When Eq. (11) is dualized, the problem is decomposed into 
subproblems for each product. 

Note that once the problem is decomposed, each subproblem is still a multi-period 
problem. Thus, it can also be decomposed by time periods following the reformulation 
from the previous section. This leads to a simultaneous decomposition by products and 
time periods where a subproblem can be as small as containing a single product and a 
single time period, opening the door to generating thousands of subproblems if desired. 

5. Case Study 
The computational performance of the proposed decomposition schemes is assessed 
through their application on the problem described in Section 2. The problem studied has 
6 manufacturing sites and 10 markets. The number of products and time periods was set 
to 6 and 20, keeping the number of products equal to the number of time periods to ensure 
a fair comparison between product and temporal decomposition. Each time period 
represents 720 hours. The MILP formulations are modeled in JuMP and solved with 
Gurobi 7.5 in an Intel i7 machine with 16 Gb of RAM. Problem sizes are shown in Table 
1. 
 
Table 1. Case study problem sizes 
Problem Size Constraints Variables Binaries 
6 2,232 4,032 216 
20 24,800 44,800 2,400 
 
5.1. Decomposition Schemes Comparison 

Product decomposition (P), temporal decomposition (T), and simultaneous product and 
temporal decomposition (PT) were compared using two options to initialize the Lagrange 
multipliers: (1) zero (λ= 0), and (2) the multipliers obtained from solving the LP 
relaxation (λ = LP). The results for the wall clock time and optimality gap for 50 iterations 
are presented in Table 2.  

Even though the performance of the product decomposition was superior in the examples 
presented, in other cases the temporal decomposition obtained a lower gap. It is not 
possible to conclude that one decomposition scheme is superior to the other. The 
simultaneous product and temporal decomposition does not result in an increased 
performance for small problems, because with a larger number of subproblems there is a 
larger number of multipliers that need to optimized. 

 
Figure 3. Product decomposition representation 
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Table 2. Comparison of decomposition schemes for 50 iterations 
  λ = 0    λ = LP  
 P T PT P T PT 

Size = 6         
Time (s) 65 144 4  288 12 17 
Gap (%) 6.8 6.1 19  2.7 12 13 

Size = 20         
Time (s) 106 905 18  132 131 152 
Gap (%) 8.8 18 62  40 76 146 

5.2. Aggregation of linking constraints 

Since the difficulty of the Lagrangean decomposition algorithm lies in finding the optimal 
set of multipliers giving the tightest bound, the algorithm can benefit from reducing the 
number of multipliers. One way to accomplish this while keeping the size of the 
subproblems, is to aggregate the linking constraints before dualization. For example, Eq. 
(9) linking initial and final inventories can be replaced by the surrogate constraint from 
Eq. (12). 

�𝑠𝑠𝑓𝑓𝑖𝑖𝑝𝑝𝑗𝑗
𝑖𝑖

= �𝑠𝑠𝑖𝑖𝑖𝑖𝑝𝑝𝑗𝑗+1
𝑖𝑖

    ∀𝑖𝑖𝑖𝑖 (12) 

The results of applying this aggregation for the three decomposition schemes is presented 
in Table 3. The column header indicates the summation indices of the aggregated 
constraint. For example, (ip) indicates sum Eq. (9) over sites and products. 
 
Table 3. Effect of linking constraint aggregation 
  P  T  PT 
  none i t It  none i p ip  none ip/it 
Size = 6               
Time (s)  288 6 2476 6  9 48 62 27  17 17 
Gap (%)  2.8 0.0 

 
1.28 0.0  12 0.6 0.3 2.4  13 9.2 

Size = 20              
Time (s)  132 1,072 114 300  131 65 156 49  151 160 
Gap (%)  40 20 24 41  76 124 42 2.8  146 57 
 
The results show that the aggregation can help in improving the performance of the 
algorithm. The improvements are problem dependent and require experimentation. 
5.3. Order of products 

As mentioned before, in order to decompose the problem by products, an arbitrary order 
is given to the set. This effect was explored by solving the problem of size 6 for 1,000 
random orderings of the products. The gap obtained after 10 iterations is presented in the 
histogram in Fig. 4. With most orderings, the gap obtained is less than 10%. However, 
there is a significant number of orderings that yield a large gap with this algorithm 
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6.  Conclusions 
Product decomposition is a novel decomposition scheme that can potentially lead to 
improved results when applied to Lagrangean decomposition. Decomposing the problem 
by products is not consistently better or worse than decomposing by time periods. This is 
explained by the mathematical equivalency of both reformulations. This novel 
decomposition scheme is then presented as an alternative to modelers to experiment 
during the implementation of Lagrangean decomposition. Simultaneous product and 
temporal decomposition allows to generate a larger number of subproblems and take more 
advantage of parallel computing. The number of subproblems used is also a matter of 
experimentation in the implementation phase of the algorithm. 

Aggregating linking constraints to reduce the number of multipliers can also lead to 
improved performance and quality of the bounds obtained. This offers additional options 
to optimize the performance of the decomposition algorithms. The order of products is 
another lever that can be adjusted to improve the obtained results. 

In summary, product decomposition is a novel approach that gives several parameters to 
optimize the performance of decomposition algorithms, and obtain better results. 
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