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Abstract 

A Mixed-Integer Linear Programming model is proposed to determine the optimal number, location and 
capacity of the warehouses required to support a long-term forecast for a business with seasonal demand. 
Discrete transportation costs, dynamic warehouse contracting, and the handling of safety stock are the 
three main distinctive features of the problem. Four alternatives for addressing discrete transportation 
costs are compared. The most efficient formulation is obtained using integer variables to account for the 
number of units used of each transportation mode. Contracting policies constraints are derived to ensure 
warehouses are used for continuous periods. Safety stock with risk-pooling effect is considered using a 
piecewise-linear representation. To solve large-scale problems, tightening constraints, and simplified 
formulations are proposed. The simplified formulations are based on single-sourcing assumptions and 
yield near-optimal results with a large reduction in the solution time with a small increase in the total 
cost. 
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Introduction 

Supply chains have become increasingly complex in  
recent years. Globalization has made a large number of 
new markets and sourcing options available. The response 
from many companies to this situation has been to focus 
on their core business, outsourcing the logistics and 
warehousing operations. Strategic decisions can have a 
large impact in the success of a company. This is why such 
decisions must be made using the best tools available. 

A Mixed-Integer Linear Programming model that 
includes discrete transportation costs, dynamic 
warehousing contracting policies and safety stock with 

risk-pooling effect (Eppen, 1979), is proposed in this paper. 
These features are especially important when the logistics 
and warehousing operations are outsourced. The goal of 
the proposed model is to determine the optimal number, 
location and size of warehouses in a supply chain for a 
business with seasonal demand. This is not a trivial task 
because decisions on production of each commodity, 
transportation mode selection, flow and inventory must be 
optimized simultaneously. The features considered make 
the model more realistic, but at the same time significantly 
harder to solve. This is why efficient model formulations 

  
   



  
 
and solution strategies must be developed. This paper 
focuses on developing efficient formulations for the 
problem. 

The paper is a contribution to the research in the 
facility location problem. The extensive literature in the 
area is covered in the comprehensive reviews by Owen 
and Daskin (1998), Klose and Drexl (2005), Melo et al. 
(2009), Farahani et al. (2013). 

Discrete transportation costs are present in most 
supply chains. However, only a handful of problems 
consider this characteristic (Bravo and Vidal, 2013). 
Discrete costs mean that the transportation cost is fixed per 
each truck or container, whether the unit is full or not. The 
total cost is then a piecewise constant function of the 
transported amount. Park and Hong (2009) use an 
assignment problem approach. Another option is to use 
integer variables to represent the number of transportation 
units. This is presented by Manzini and Bindi (2009), 
Brahimi and Khan (2014), and Quttineh and Lidestam 
(2014). Gao et al. (2010) use a piecewise function to 
represent the transportation cost. In this work we compare 
4 alternatives of modeling the discrete transportation costs 
and identify the most efficient one (minimum solution 
time) for the current application. 

Another important feature considered is the 
warehouse contracting policies. Since the inventory 
storage service is supplied by an external company, 
constraints to ensure a continuous service must be 
enforced. Constraints derived from propositional logic 
impose two conditions: 1) once a warehouse is opened it 
must remain opened by at least a certain amount of time; 2) 
if a warehouse is closed, it will not be available for 
reopening before a certain amount of time. 

The handling of safety stock is another novel aspect of 
this article. Daskin et al. (2002) consider safety stock with 
risk-pooling effect (Eppen, 1979), with a nonlinear 
formulation. You and Grossmann (2008), and Miranda and 
Garrido (2009) propose similar formulations. We propose 
a piecewise-linear formulation that implicitly considers 
demand variability and the risk-pooling effect. 

With all the complicating issues included, obtaining 
the optimal solution becomes a challenging task. To solve 
larger problems tightening constraints and simplifying 
formulations are considered. These formulations have a 
big impact on the solution time, with only a small increase 
in the objective value. 

Problem Description 

Given a set of plants producing a specified number of 
products, it is required to determine the location, number 
and size of warehouses to serve several customers in a 
region. The goal is to minimize the transportation and 
inventory costs. A monthly demand forecast is available. 
Therefore, the planning horizon is divided in monthly 
periods. Figure 1 depicts the problem and also outlines the 
main nomenclature used in the paper. 

 

Figure 1: Network structure of supply chain 

Optimization Model 

The uncapacitated facility location model is the core 
optimization formulation to solve supply chain design 
problems. It can be formulated with the following general 
model: 
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x, 𝑠 ≥ 0, 𝑦 ∈ {0,1}  (5) 

Indices (i,j,k) denote the plant, warehouse and 
customer respectively. X represents flow, s represents 
stock and y is the binary variable indicating the use of a 
warehouse in a given period. FC, HC, CT and PC are the 
fixed, holding transportation and production costs, 
respectively. D represents the demand. Note that in the 
above model, the transportation cost is a linear function of 
the amount transported. We will replace that function with 
the appropriate discrete representation after determining 
the most efficient formulation. 

Discrete Transportation Costs 

In the first alternative considered, given by Eq. (6), 
integer variables are defined to compute the number of 
transportation units of each mode m used in a given link 

 



 

(warehouse j to customer k, for example) at a given time 
period t (ujkmt). The inequality states that the transported 
capacity, given by the right hand side, must exceed the 
selected amount to be transported. 

�𝑥𝑗𝑘𝑝𝑡 ≤  �𝑇𝐶𝑎𝑝𝑚𝑢𝑗𝑘𝑡𝑚
𝑚𝑝

 ∀𝑗, 𝑘, 𝑡 (6) 

The second alternative is based on direct interpolation 
on the cost function (Figure 2). The transportation cost is 
obtained interpolating with the transported quantity into 
the piecewise function, SOS2 variables are used to 
represent the function. Eq. (7)-(10) are the constraints 
included in this alternative. 

 

Figure 2. Piecewise cost function example 
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𝜆𝑗𝑘𝑝𝑡𝑛 ∈ 𝑆𝑂𝑆2  (10) 

where (𝑃𝑋𝑛,𝑃𝐶𝑛) are the breakpoints of the piecewise 
function 

The third and fourth alternatives are based on the 
disjunctive nature of the piecewise constant function. The 
transported amount can only be in one of the defined 
intervals of the cost function from Figure 2. This leads to 
the disjunction from Eq. (11). 
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The disjunction can be reformulated using the Big-M 
from Eq. (12)-(13) (Raman and Grossmann, 1994), or the 
Convex Hull from Eq. (14)-(15) (Balas, 1998). Eq (16)-(17) 
are common for both formulations. 
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The four alternatives were compared for different 
model sizes of the problem. The results are presented in 
Table 1. The values indicate the optimality gap after 10 
min of run with a target of 0.5%. When a value of 0.5% is 
reported the model solved the problem in 10 minutes or 
less. NF indicates that no feasible solution was found after 
the time limit was reached. The instance code indicates the 
problem size. For example, T6C4P5 indicates 6 periods, 4 
customers and 5 products. The 10-minute limit was chosen 
because the instances from the experiment are quite small 
compared to the size of the actual problem.  

Table 1. Optimality gap after 10 min 

Instance Integer 
Variables SOS2 BigM Convex 

Hull 
T6C4P1 0.5% 0.5% 0.5% 0.5% 
T6C4P5 0.5% 8.7% 0.6% 81% 

T12C8P5 0.5% 12.6% NF NF 
T36C8P5 0.5% NF NF NF 
As summarized in Table 1, the model with integer 

variables (Eq. 6) was able to solve all the instances in less 
than 2 minutes. Therefore, it is selected as the most 
efficient alternative to model discrete freight costs for the 
current application. A possible explanation for this result is 
the small number of variables and constraints of the model 
with integer variables compared to the other alternative 
models. For each integer variable many extra variables and 
constraints are required in the other formulations. 

Warehouse Contracting Policies 

When the warehousing service is outsourced 
contracting must be done for continuous periods of time. 
When a contract is started, the warehouse must remain 
opened for at least a minimum number of periods. When a 
contract is finished it cannot be renewed right away, it 
must remain closed for at least a number of periods. This 
restriction avoids the generation of short gaps in the use of 

 



  
 
a warehouse, which are difficult to fill with another 
customer. To enforce these restrictions, a minimum 
contracting length L and a minimum waiting period for 
contract renewal W are defined. The binary variable 𝑦𝑗𝑡 
represents whether a warehouse j is used in period t or not. 
New binary variables 𝑦𝑗𝑡𝑠  and 𝑦𝑗𝑡

𝑓  to indicate when a 
contract is started and finished, respectively, are also 
defined. With these elements, Eq. (18)-(21) are added to 
the model. 

−yjt + 𝑦𝑗𝑡−1 + 𝑦𝑗𝑡𝑠 ≥ 0 ∀𝑗, t > 1 (18) 
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Safety Stock with Risk-Pooling Effect 

The safety stock can be expressed by Eq. (22) (Daskin 
et al., 2002).  

𝑠𝑠 = 𝑧𝜎√𝐿  (22) 

To represent the safety stock with risk-pooling effect 
using only linear constraints we need to analyze this 
equation. First, for a given service level and lead time, the 
safety stock is proportional to the absolute variance 𝜎 , 
which is also proportional to the demand. Additionally, to 
account for the risk-pooling effect, the proportionality 
constant must decrease with the number of customers 
served, which is indirectly also represented by the 
demanded amount. The safety stock can then be 
approximated by a piecewise-linear function (Figure 3). 
Eq (23)-(26) are the constraints to model the function. 

 

Figure 3. Safety stock piecewise-linear function 
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𝜆𝑗𝑝𝑡𝑛 ∈ 𝑆𝑂𝑆2  (26) 

Tightening Constraints 

The various features considered by the model make it 
more realistic but at the same time harder to solve. This is 
why additional effort needs to be made to solve larger 
instances. The first alternative explored is to include valid 
inequalities in the formulation that are not strictly required 
to obtain the optimal solution, but contribute to 
strengthening the relaxation, and thus, potentially solve the 
problem faster. Four families of tightening constraints 
were studied. However, only one of them resulted in a 
modest speed up in the solution time. Namely,   

𝑇𝐶𝑎𝑝𝑚𝑢𝑗𝑘𝑡𝑚 ≤  �𝑥𝑗𝑘𝑝𝑡
𝑝

 ∀𝑗, 𝑘, 𝑡,𝑚 (27) 

Equation (27) illustrates the valid inequalities for the 
warehouse-customer link, similar constraints are added for 
plant-warehouse and warehouse-warehouse. Constraints 
from Eq. (27) provide a tighter upper bound for the 
transportation units. They indicate that the number of 
transportation units used in a given link at a specific time 
periods will be at most the number of units that would be 
used if that transportation mode is unique.  

Simplifying Approximations   

Another strategy to decrease the solution time is to 
make reasonable assumptions to simplify the MILP model 
to obtain approximate solutions. Two formulations are 

 



 

proposed based on assumptions of customer service 
policies.  

The first simplified formulation assumes that a given 
customer receives a given product from a single 
warehouse. In the following, we will refer to this 
formulation as JKP, because only one of the combinations 
warehouse-customer-product is allowed (single-sourcing). 
For example, if a customer demands products A and B, it 
could receive product A from one warehouse (W1), and 
product B from another warehouse (W2), but it could not 
receive the same product from two separate warehouses. 
The assumption is reasonable because products supply 
tend to follow minimum plant-warehouse-customer cost 
routes. The deviation from this assignment only occurs 
when limitations of capacity are reached. On the other 
hand, the network design is primarily driven by 
transportation costs on the warehouse-customer side. The 
modeling effect is that the variable that represents the flow 
between a warehouse j and a customer k for a given 
product p in time period t, 𝑥𝑗𝑘𝑝𝑡 , is replaced by the term 
𝐷𝑘𝑝𝑡𝑧𝑗𝑘𝑝, product between a new binary variable, 𝑧𝑗𝑘𝑝, and 
the Demand, 𝐷𝑘𝑝𝑡 . An additional constraint is needed to 
ensure the combination warehouse-customer-product is 
unique. The variable 𝑧𝑗𝑘𝑝 takes a value of one if warehouse 
j supplies product p to customer k 

�𝑧𝑗𝑘𝑝 = 1
𝑗

 ∀k, p (28) 

It is important to observe that with the JKP 
formulation, a large number of continuous variables, 𝑥𝑗𝑘𝑝𝑡 , 
are replaced by smaller yet significant number of binary 
variables, 𝑧𝑗𝑘𝑝 .Thus it is not straightforward to predict a 
decrease in solution time. However, our experiments, 
presented in the next section show that the impact of the 
reformulation is indeed positive. The second observation is 
that since this model represents a restriction of the original 
model, the objective value provides a valid upper bound 
cost of the original problem. This bound is typically no 
more than 1% higher than the optimal cost.  

Taking this idea further, we can also assume that a 
customer receives all its demanded products from a given 
warehouse. In this formulation (JK), the binary variable zjk 
indicates this assignment. As before, the variable xjkpt is 
replaced by Dkpt zjk, but additionally the transportation 
units in the warehouse-customer links can be precalculated 
offline, eliminating the integer variable ujktm. In this way, 
the number of binary variables added is much less than 
before. Furthermore, a large number of continuous and 
integer variables is eliminated. Since the assumption is 
even more restrictive the resulting objective value yields 
an upper bound to both, the original problem and the JKP 
formulation. 

Case Studies 

To illustrate the importance of considering discrete 
transportation costs a case study with 8 plants, 10 
warehouses, 6 customers, 5 products, 24 time periods and 
4 transportation modes is presented. The problem was 
solved using a continuous transportation costs formulation 
(proportional to transported amount), and discrete 
transportation costs (cost per transportation unit). The 
objective value and solution time is presented in Table 2, 
whereas Figures 4 and 5 illustrate the resulting supply 
chain networks 

Table 2. Comparison between considering 
discrete and continuous transportation costs 

Instance 
Continuous Freight 

Cost  
Discrete Freight 

Cost 
Objective CPU(s) Objective CPU(s) 

T6C4P1 84.1 53 262.4 10350 
The results show a very large difference in both 

solution time and objective value. This indicates then, 
even though the continuous costs model can solve much 
faster than the discrete transportation costs model, it fails 
to correctly estimate the costs and design the optimal 
network. It also fails to identify the mix of transportation 
modes used, because if the number of units available of 
each mode is not restricted it will always select the lowest 
cost mode. For these reasons, it is very important to 
consider discrete transportation costs in a supply chain 
design model to obtain the optimal design and plan. 

The second case study analyzes the effect of 
tightening constraints and the simplified formulations JKP 
and JK. They were evaluated in instances of different sizes. 
The results are presented in Table 3. “Orig” indicates the 
original formulation. “Orig-t” indicates the original 
formulation with the tightening constraints, and JK and 
JKP are the simplified formulations. As seen in Table 3, 
the introduction of tightening constraints yields a small 
reduction in solution time for instances C10P10T24 and 
C15P15T36. There is no reduction in solution time by 
using the simplified formulations for the smallest instance, 
C10P10T12. However, up to 95% reductions are observed 
for the larger problems. The objective values of the JK and 
JKP formulations are very close to the optimum.  

 

 



  
 

 
Figure 4. Optimal network for continuous cost model 
 

 
Figure 5. Optimal network for discrete cost model 

Conclusions 

In this paper we have addressed the optimal network 
design for a supply chain with seasonal demand as a 
facility location problem. The best formulation to model 
the distinctive characteristics of the supply chain under 
study was identified among several options and solved for 
a mid-size case study. 

The use of integer variables resulted in the most 
efficient formulation to address discrete transportation 
costs. The safety stock was modeled using a piecewise- 
linear approximation, and specific contracting policy 
constraints were derived from propositional logic. 

The importance of using discrete transportation costs 
was illustrated with the first case study. Most real 
applications have this kind of cost structures, yet most 

models developed simplify this by considering that the 
costs are proportional to the transported amount. We have 
showed that this simplification can result in poor supply 
chain network designs and incorrect costs estimations. 

All the features considered contribute to have more 
realistic models, especially when outsourcing logistic 
operations. But at the same time they pose a challenge in 
solving the optimization model. The first steps towards 
solving larger problems are presented. Valid inequalities   
that help to tighten the relaxation were derived. It was 
shown that the simplified formulations JKP and JK help 
significantly to reduce the solution time, allowing to solve 
larger problems with a small increase in the objective 
value. Larger problems will require designing efficient 
decomposition algorithms. 
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