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Abstract

This paper addresses the optimal design and planning of sustainable chemical supply
chains (SCs) in the presence of uncertainty in the damage model used to evaluate
their environmental performance. The environmental damage is assessed through
the Eco-indicator 99, which includes the recent advances made in Life Cycle As-
sessment (LCA). The overall problem is formulated as a bi-criterion stochastic non-
convex MINLP. The deterministic equivalent of such a model is obtained by refor-
mulating the joint chance constraint employed to calculate the environmental per-
formance of the SC in the space of uncertain parameters. The resulting bi-criterion
non-convex MINLP is solved by applying the epsilon constraint method. To guar-
antee the global optimality of the Pareto solutions found, we propose a novel spatial
branch and bound method that exploits the specific structure of the problem. The
capabilities of our modeling framework and the performance of the proposed solu-
tion strategy are illustrated through a case study.

Key words: Multi-objective optimization, supply chain management, life cycle
assessment, uncertainty, global optimization.

1 Introduction

Recently, Guillén-Gosálbez and Grossmann (2008) presented a mathemati-
cal formulation to address the environmentally conscious design and planning
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of chemical supply chains. The problem was mathematically formulated as a
bi-criterion mixed-integer nonlinear problem (moMINLP) accounting for the
maximization of the NPV and minimization of the environmental impact. The
environmental performance was measured through the Eco-indicator 99(PRé-
Consultants, 2000), which includes the recent advances made in Life Cycle
Assessment (LCA). A key issue in this model was the treatment of the un-
certainty associated with the life cycle inventory. In this regard, the authors
proposed to use a probabilistic constraint to measure the environmental im-
pact of the SC in the space of uncertain parameters. Concepts from chance
constrained programming were used to reformulate this constraint into a de-
terministic equivalent form, and the resulting convex MINLP was solved by
a new decomposition strategy based on parametric programming. This ap-
proach allowed to decrease the probability of high Eco-indicator 99 values,
but did not provide any simultaneous control of the impacts caused in each of
its damage categories.

The aim of this paper is to extend the capabilities of the mathematical formu-
lation previously presented by Guillén-Gosálbez and Grossmann (2008) with
the aim of dealing with another type of uncertainty that can be encountered
in practice, i.e. uncertainty in the parameters of the damage model. An ad-
ditional objective of this work is to address the simultaneous control of all
the damage categories included in the Eco-indicator 99. The core of our new
formulation is a joint chance constraint that imposes a probability target of
simultaneously satisfying the environmental requirements defined in each im-
pact category. This probabilistic constraint, which replaces the original single
chance constraint, leads to a non-convex objective function. To solve the re-
sulting problem to global optimality, we propose a novel spatial branch and
bound algorithm that takes advantage of its specific structure. The paper is
organized as follows. Section 2 presents a formal definition of the problem
under study. In section 3, the mathematical formulation derived to address
this problem is presented. Section 4 describes the strategy introduced to solve
such a formulation. In section 5 the capabilities of the proposed modeling
framework and solution strategy are illustrated through a case study and the
conclusions of the work are finally drawn in section 6.

2 Problem statement

Given are a potential network configuration, a fixed time horizon, demand
and prices of products in each market and time period, fixed and variable in-
vestment costs associated with capacity expansions of plants and warehouses,
lower and upper bounds on capacity expansions of plants and warehouses,
and costs associated with the SC operation (operating costs of technologies
at each manufacturing plant, costs of raw materials, inventory costs at ware-
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houses, interest rate, tax rate and salvage value).

The goal is to determine the SC configuration along with the planning deci-
sions that maximize the NPV and minimize the environmental impact. The
decisions to be made include:

• Structural decisions: number, location and capacities of plants (including
the technologies selected in each of them) and warehouses to be set; trans-
portation links between the SC entities.

• Planning decisions: production rates at the plants in each time period; ma-
terials flows between plants, warehouses and markets.

The mathematical formulation derived to address the problem presented above
can be found in Guillén-Gosálbez and Grossmann (2008). A brief outline of
such a formulation is next given for the sake of completeness of this work.

3 Mathematical formulation

3.1 Mass balances

The mass balances in the manufacturing plants and warehouses are expressed
via constraints 1 and 2, and 3, respectively.

PUjpt +
∑

i∈OUT (p)

Wijpt =
∑

k

QPL
jkpt +

∑

i∈IN(p)

Wijpt ∀j, p, t (1)

Wijpt = µipWijp′t ∀i, j, p, t ∀p′ ∈ MP (i) (2)

INVkpt−1 +
∑

j

QPL
jkpt =

∑

l

QWH
klpt + INVkpt ∀k, p, t (3)

In these equations PUjpt represents the amount of product p purchased by
plant j in period t, Wijpt is the input/output flow of p associated with tech-
nology i at plant j in t, QPL

jkpt and QWH
klpt are the flows of p between plant j and

warehouse k and warehouse k and market l, respectively, in t, and INVkpt is
the inventory of p kept at warehouse k at the end of period t.

Constraints 4 and 6 impose lower and upper limits on the purchases of raw
materials (PUjpt) and the sales of products (SAlpt), respectively.

PUjpt ≤ PUjpt ≤ PUjpt ∀j, p, t (4)

∑

k

QWH
klpt = SAlpt ∀l, p, t (5)
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DMK
lpt ≤ SAlpt ≤ DMK

lpt ∀l, p, t (6)

3.2 Capacity constraints

3.2.1 Plants

Equation 7 bounds the capacity expansion in each time period (CEPL
ijt ), whereas

equation 8 defines the total capacity in period t (CPL
ijt ). Equation 9 limits the

number of expansions for technology i available at plant j over the entire
planning horizon. Finally, constraint 10 imposes lower and upper production
limits based on the existing capacities.

CEPL
ijt XPL

ijt ≤ CEPL
ijt ≤ CEPL

ijt XPL
ijt ∀i, j, t (7)

CPL
ijt = CPL

ijt−1 + CEPL
ijt ∀i, j, t (8)

∑

t

XPL
ijt ≤ NEXP PL

ij ∀i, j (9)

τCPL
ijt ≤ Wijpt ≤ CPL

ijt ∀i, j, t ∀p ∈ MP (i) (10)

3.2.2 Warehouses

Constraints 11, 12 and 13 are equivalent to equations 7, 8 and 9, but apply to
warehouses.

CEWH
kt XWH

kt ≤ CEWH
kt ≤ CEWH

kt XWH
kt ∀k, t (11)

CWH
kt = CWH

kt−1 + CEWH
kt ∀k, t (12)

∑

t

XWH
kt ≤ NEXPWH

k ∀k (13)

In these equations CWH
kt and CEWH

kt denote the total capacity and capacity
expansion of warehouse k in period t, respectively. Equations 14 and 15 impose
limits on the inventory kept at each warehouse at the end of period t (INVkpt)
and also on the average inventory level (ILkt), which is calculated via equation
16.

∑
p

INVkpt ≤ CWH
kt ∀k, t (14)

2ILkt ≤ CWH
kt ∀k, t (15)

ILkt =

∑
l

∑
p QWH

klpt

TORk

∀k, t (16)
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3.2.3 Transportation links

The amount of products sent from plants to warehouses (QPL
jkt) and from ware-

houses to plants (QWH
klt ) must lie between upper and lower limits, provided a

transportation link between the corresponding nodes of the network is estab-
lished, as stated in equations 17 and 18.

QPL
jktY

PL
jkt ≤ QPL

jkt ≤ QPL
jktY

PL
jkt ∀j, k, t (17)

QWH
klt Y WH

klt ≤ QWH
klt ≤ QWH

klt Y WH
klt ∀k, l, t (18)

3.3 Objective function

3.3.1 NPV

Equations 19 to 25 are employed to calculate the NPV, which is determined
from the cash flow in each period t (CFt). This variable is calculated from the
net earnings (NEt), and the fixed investment term in period t(FTDCt).

NPV =
∑

t

CFt

(1 + ir)t−1
(19)

CFt = NEt − FTDCt t = 1, ..., NT − 1 (20)

CFt = NEt − FTDCt + SV FCI t = NT (21)

NEt = (1− ϕ)


∑

l

∑
p

γFP
lpt SAlpt −

∑

j

∑
p

γRM
jpt PUjpt

−∑

i

∑

j

∑
p

υijptWijpt −
∑

k

πkILkt −
∑

j

∑

k

∑
p

ψPL
jkptQ

PL
jkpt

−∑

k

∑

l

∑
p

ψWH
klpt QWH

klpt

]
+ ϕDEPt ∀t

(22)

DEPt =
(1− SV )FCI

NT
∀t (23)

FCI =
∑

i

∑

j

∑

t

(
αPL

ijt CEPL
ijt + βPL

ijt XP
ijt

)
+

∑

k

∑

t

(
αWH

kt CEWH
kt + βWH

kt XWH
kt

)

∑

j

∑

k

∑

t

(
βTPL

jkt Y PL
jkt

)
+

∑

k

∑

l

∑

t

(
βTWH

klt Y WH
klt

)

(24)

FTDCt =
FCI

NT
∀t (25)
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Finally, the total amount of capital investment can be constrained to be lower
than an upper limit, as stated in equation 26

FCI ≤ FCI (26)

3.3.2 Environmental impact

The environmental performance of the network is measured by the Eco-indicator
99. To calculate such a metric, we first compute the life cycle inventory as-
sociated with the SC operation (equation 27), which includes the emissions
released and feedstock requirements (LCIb). These entries of the life cycle
inventory, which are given by the production of raw materials (PUjpt), the
manufacture of final products (Wijpt) and the transport of materials between
plants and warehouses (QPL

jkpt) and warehouses and final markets (QWH
klpt ), are

then translated into a set of damages (DAMd) caused to the environment
(equation 28). In the latter equation, θbc represents the damage in impact
category c per unit of chemical b released to/extracted from the environment.

LCIb =
∑

j

∑
p

∑

t

ωPU
bp PUjpt +

∑

i

∑

j

∑
p

∑

t

ωPR
bp Wijpt +

∑

i

∑

j

∑
p

∑

t

ωEN
b ηEN

ijp Wijpt

∑

j

∑

k

∑
p

∑

t

ωTR
b λPL

jk QPL
jkpt +

∑

k

∑

l

∑
p

∑

t

ωTR
b λWH

kl QWH
klpt ∀b

(27)

DAMd =
∑

c∈ID(d)

∑

b

θbcLCIb ∀d (28)

The impacts in each damage category (human health, ecosystem quality and
resources) are further aggregated into a single metric (i.e., Eco-indicator 99,
ECO99) by making using of normalization (δd) and weighting factors (ξd):

ECO99 =
∑

d

δdξd ·DAMd (29)

3.4 Environmental performance under uncertainty: joint chance constraint

In this work, we assume that the life cycle inventory can be perfectly known
in advance, whereas the damage factors θbc are uncertain parameters than can
be described through Gaussian probability functions. We should note that
the normal probability distribution is one of the most widely used statistical
distributions in LCA, and has been repeatedly applied in the literature to
characterize different types of uncertainties (Heijungs and Frischknecht, 2005;
Heijungs et al., 2005; Sugiyama et al., 2005).

To explicitly control the environmental performance under uncertainty, our
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model includes a joint-chance constraint. Such a probabilistic constraint im-
poses a probability target for simultaneously satisfying the desired environ-
mental requirements in each damage category. This joint chance constraint
can be expressed as follows:

Pr [∩DAMd ≤ Ωd] ≥ κ (30)

In this equation, κ represents a lower limit for the joint probability of not
exceeding the individual target levels Ωd that are defined in each impact cate-
gory d. The value of κ allows to capture the environmental performance under
uncertainty and enters the model as an additional objective to be maximized
along with the NPV .

If the damage factors are assumed to be independent (uncorrelated) random
variables, then the joint chance constraint can be decomposed into the product
of the constituting chance constraints:

∏

d

Pr[DAMd ≤ Ωd] ≥ κ (31)

If we now assume that the damage factors follow normal probability distribu-
tions, then we can subtract the mean value ˆDAMd and divide by the standard
deviation DAMSD

d in order to obtain the corresponding standardized normal
distributions in each term of the product:

∏

d

Pr

[
DAMd − ˆDAMd

DAMSD
d

≤ Ωd − ˆDAMd

DAMSD
d

]
≥ κ (32)

∏

d

Φ

(
Ωd − ˆDAMd

DAMSD
d

)
≥ κ (33)

where the mean and standard deviation of the impact caused in each damage
category are calculated from the entries of the life cycle inventory and the
damage factors as follows:

DAMSD
d =


 ∑

c∈ID(d)

∑

b

(
σDF

bc LCIb

)2




1/2

∀d (34)

ˆDAMd =
∑

c∈ID(d)

∑

b

θ̂bcLCIb ∀d (35)

Note that the product on the left-hand side of constraint 33 is neither convex
nor concave. However, it is possible to apply a logarithmic transformation in
order to express this product as a summation of logarithmic functions:

∑

d

ln Φ

(
Ωd − ˆDAMd

DAMSD
d

)
≥ ln κ (36)
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The environmental performance under uncertainty, which is defined by equa-
tion 36, is finally incorporated into the model. This gives rise to a bi-criterion
non-convex MINLP of the following form:

(P1) max
x,y

(
NPV (x, y),

∑
d ln Φ

(
Ωd− ˆDAMd

DAMSD
d

))

s.t. equations 1-27 and 34-35

Model (P1) can then be solved by any standard algorithm for multi-objective
optimization, such as the epsilon constraint or weighted-sum methods, or
strategies based on parametric programming. Note that the weighted-sum
method is not suitable for our problem, since the Pareto set of (P1) is non-
convex due to the presence of binary variables and also to the non-convex na-
ture of the objective function. Furthermore, this non-convexity brought by the
calculation of the environmental performance under uncertainty hampers the
application of the decomposition strategy based on parametric programming
introduced in our previous work (Guillén-Gosálbez and Grossmann, 2008).

Thus, to approximate the Pareto set of (P1) we propose to use the epsilon
constraint method (Haimes et al., 1971), which in our case entails the solution
of a set of single-objective problems (P2), which are solved for different values
of the parameter ε:

(P2) max
x,y

∑
d ln Φ

(
Ωd− ˆDAMd

DAMSD
d

)

s.t. NPV (x, y) ≤ ε

equations 1-27 and 34-35

The objective function in (P2) can be reformulated as follows:

max
x,y

∑
d ln Φ

(
Ad

Bd

)

where Ad and Bd are two auxiliary continuous variables whose definition is
enforced via the following constraints:

Ad = Ωd − ˆDAMd ∀d (37)


 ∑

c∈ID(d)

∑

b

(
σDF

bc LCIb

)2




1/2

= Bd ∀d (38)

The left-hand side of equation 38 defines a convex mathematical function, as
was shown by Kataoka (1963). Since the equality leads to a non-convex feasible
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region, the equation can be relaxed for positive values of Ad as follows:


 ∑

c∈ID(d)

∑

b

(
σDF

bc LCIb

)2




1/2

≤ Bd ∀d (39)

The overall problem can therefore be expressed as follows:

(P3) max
x,y

∑
d ln Φ

(
Ad

Bd

)

s.t. NPV (x, y) ≤ ε

equations 1-27, 35,37 and 39

In this formulation, the lower and upper limits that define the interval within
which the epsilon parameter must fall (i.e, ε ∈ [ε, ε]), can be obtained by
solving each objective separately:

(P3a) (x∗, y∗) = arg max
x,y

∑
d ln Φ

(
Ad

Bd

)

s.t. equations 1-27, 35,37 and 39

which defines ε = NPV (x∗, y∗) and

(P3b) (x∗, y∗) = arg max
x,y

NPV (x, y)

s.t. equations 1-27, 35,37 and 39

which defines ε = NPV (x∗, y∗).

With the transformations presented before, (P2) has been reformulated into
a model (P3) with a non-convex objective function subject to a set of convex
constraints that define a convex feasible region. We next present a method to
solve (P3) to global optimality that exploits its specific mathematical struc-
ture.

4 Solution procedure

We describe in this section an optimization method to solve to global opti-
mality any instance of problem (P3), which will be denoted from now on as
follows:
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(P4) max
x,y

∑
d ln Φ

(
Ad

Bd

)

s.t. hj(x, y) = 0 j = 1, ...J

gl(x, y) ≤ 0 l = 1, ...L

x ∈ <n , y ∈ {0, 1}m

where the equality constraints hj(x, y) are all linear, and the inequalities
gl(x, y) are all linear except constraint 39, which is nonlinear but convex.

Our solution method relies on some properties of (P4) that are formalized in
the propositions given bellow. The proofs of these propositions can be found
in the Appendix.

Proposition 1. Consider the multi-objective problem:

(P5) max
x,y

(
ln Φ

(
A1

B1

)
, ..., ln Φ

(
AD

BD

))

s.t. hj(x, y) = 0 j = 1, ...J

gl(x, y) ≤ 0 l = 1, ...L

x ∈ <n , y ∈ {0, 1}m

Let (x̂, ŷ) be a global maximum of (P4). Then (x̂, ŷ) is a Pareto solution of
(P5).

The global maximum of (P4) is a Pareto solution of (P5), and therefore can be
generated by the epsilon constraint method. The application of such a method
to (P5) entails the solution of different instances of (P6), each of which is
calculated for a specific set of values of the auxiliary epsilon parameters εd:

(P6) max
x,y

ln Φ
(

Ak

Bk

)

s.t. ln Φ
(

Ad

Bd

)
≥ εd d 6= k

hj(x, y) = 0 j = 1, ...J

gl(x, y) ≤ 0 l = 1, ...L

x ∈ <n , y ∈ {0, 1}m

In this formulation, εd denotes the targets imposed to the terms of the objective
function that are transferred to some constraints. Problem (P6) has a useful
property that is formally stated in the following proposition.

Proposition 2. Any point satisfying the Karush-Kuhn-Tucker conditions of
(P6) is a global maximum of (P6).
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Our method also exploits another mathematical property satisfied by a global
maximum of (P4), which is given in the next proposition.

Proposition 3. Let (x̂, ŷ) satisfy the Karush-Kuhn-Tucker conditions of (P4).
Then (x̂, ŷ) is a Pareto solution of (P5) that satisfies the following condition:


∂ ln Φ

(
Ak

Bk

)

∂ ln Φ
(

Ad

Bd

)



(
δlnΦ

(
Ai
Bi

)
=0, i 6=d,k

)
∧(δgl(x,y)=0)

= −1 d 6= k (40)

Figure 1 illustrates the idea behind Propositions 1 and 3 for a problem with
two terms in the objective function. The top of the figure depicts the objective
function of the problem in the space of the original set of decision variables.
In the bottom of the Figure, the Pareto curve that trades-off the terms of the
objective function is given. In this example, the model has two different local
optima, one of which is in turn a global optimum. As can be observed in the
figure, the global optimum of (P4) belongs to the Pareto set that trades-off
the terms of its objective function. Furthermore, it can be observed how the
local maxima are the intersection points of the line ln Φ(A1

B1
) + ln Φ(A2

B2
) = c,

with the feasible region of (P5), where the value of c is the local maximum
value that makes this intersection non-empty. In these local solutions, the
KKT conditions of (P4) are satisfied and we also have:


 ∂ ln Φ(A1

B1
)

∂ ln Φ
(

A2

B2

)

 =


∂ ln Φ

(
A2

B2

)

∂ ln Φ
(

A1

B1

)

 = −1

In general, model (P4) may have several KKT points, so the problem consists
of identifying the one that corresponds to a global optimum of (P4). These
theoretical insights into (P4) suggest a possible solution procedure that con-
sists of calculating the Pareto set of (P5) and then picking the Pareto solution
for which the summation of the terms of the original objective function is
maximum.

As mentioned above, the global maximum of (P4) can be obtained by gen-
erating the Pareto set of (P5). Furthermore, if (P5) is solved by the epsilon
constraint method, then from Proposition 2 we know that a local optimum of
any instance of (P6) is also a global optimum.

In fact, there is more efficient way of conducting the search of a global optimum
of (P4) by making use of a spatial branch and bound framework (see Figure
2). The underlying idea consists of partitioning the feasible space into smaller
domains, each of which corresponds to a node of the branch and bound tree,
in which valid lower and upper bounds on the value of the objective function
are obtained. The partition of the feasible region is carried out by choosing a
term k of the objective function, which will be regarded as main objective, and
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then branching on the values of the remaining |D| − 1 terms. Thus, at each
node i, valid lower bounds are calculated by locally optimizing the following
single objective problem:

(P7) max
x,y

∑
d ln Φ

(
Ad

Bd

)

s.t. εi
d ≤ ln Φ

(
Ap

Bp

)
≤ εi

d d 6= k

hj(x, y) = 0 j = 1, ...J

gl(x, y) ≤ 0 l = 1, ...L

x ∈ <n , y ∈ {0, 1}m

where εi
d and εi

d denote the lower and upper limits imposed to the term d of
the objective function in each node i of the tree, and k represents the term of
the objective function that is regarded as main objective. Valid upper bounds
on the objective function value can also be obtained by making use of the
following proposition:

Proposition 4. A valid upper bound to problem (P7) at node i is given by
the following expression

UBi = UBi
k +

∑

d6=k

εi
d (41)

where UBk denotes the value of a global optimal solution of the following
problem:

(P8) UBi
k = max

x,y
ln Φ

(
Ak

Bk

)

s.t. ln Φ
(

Ad

Bd

)
≥ εi

d d 6= k

hj(x, y) = 0 j = 1, ...J

gl(x, y) ≤ 0 l = 1, ...L

x ∈ <n , y ∈ {0, 1}m

Note that from Proposition 2, any KKT point of (P8) is a global maximum
of (P8).

4.1 Algorithmic steps

The outline of the proposed global optimization algorithm is as follows:

• Step 0 (initialization). Set the following values: number of nodes, i = 1;
overall lower bound, OLB = −∞; overall upper bound, OUB = ∞. Com-
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pute for every d the lower and upper limits εi
d and εi

d that define the intervals

[εi
d, ε

i
d] within which the terms of the objective function must fall as follows:

(P9) εi
d = max

x,y
ln Φ

(
Ad

Bd

)

s.t. hj(x, y) = 0 j = 1, ...J

gl(x, y) ≤ 0 l = 1, ...L

x ∈ <n , y ∈ {0, 1}m

εi
d = min

d
(fd(x̂d, ŷd))

where (x̂d, ŷd) denotes the optimal solution of (P9), and fd(x̂d, ŷd) is the
value of the term d of the objective function associated with such a solution.
Identify the k term of the objective function for which the difference εi

d− εi
d

is maximum. This term will be regarded as the main objective.
• Step 1 (lower bound). Obtain a lower bound (LBi) of (P4) in node i by

locally optimizing (P7) in the search space defined by the intervals [εi
d, ε

i
d].

Update the overall lower bound (OLB) whenever an improvement takes
place.

• Step 2 (upper bound). Obtain an upper bound (UBi) of (P4) in node i
by making use of Proposition 4. The overall upper bound (OUB) must be
updated in each iteration.

• Step 3 (convergence). A node can be discarded from the tree if the upper
bound at that node is lower than the current best lower bound OLB, or
if it is within a tolerance tol of OLB. Thus, those nodes i for which the
relaxation gap (gapi) is less than tol, are fathomed. The relaxation gap is
defined as:

gapi = |OLB − UBi

OLB
| (42)

The search is stopped when no open nodes are left in the tree.
• Step 4 (spatial branch and bound). Select a node n for which the relaxation

gap gapn is greater than the specified tolerance. Branch down this node
according to some rules in order to create two child nodes. This is done by
partitioning the search space of the original node, which is defined by the
intervals [εn

d , εn
d ], into two disjoint sub-regions, each of which corresponds

to the sub-intervals [εn+1
d , εn+1

d ] and [εn+2
d , εn+2

d ], respectively. Update the
number of nodes (i.e., i = i+2) and then repeat steps 1 to 4 for each of the
new nodes.

It is important to highlight the following points of the algorithm:

(1) The method presented in this paper can be applied to any minimiza-
tion/maximization problem where the objective function can be expressed

13



as a summation of pseudoconvex/pseudoconcave or strictly quasicon-
vex/quasiconcave functions over a convex feasible region.

(2) The proposed strategy does not make use of convex envelopes to calculate
valid upper bounds for the problem. The computation of these bounds is
carried out by solving problem (P8) in each node of the tree, for which
any KKT point is a global maximum.

(3) Problem (P7) can be expressed as follows:

(P7’) max
x,y

∑
d ln Φ(Ad

Bd
)

s.t. −Ad + Φ−1(e
εi
d)Bd ≤ 0 d 6= k

Ad − Φ−1(eεi
d)Bd ≤ 0 d 6= k

hj(x, y) = 0 j = 1, ...J

gl(x, y) ≤ 0 l = 1, ...L

x ∈ <n , y ∈ {0, 1}m

where the nonlinear epsilon constraints have been reformulated into a
linear form. Furthermore, problem (P8) can also be reformulated into
the following form:

(P8’) UBi
k = max

x,y

Ak

Bk

s.t. −Ad + Φ−1(e
εi
d)Bd ≤ 0 d 6= k

hj(x, y) = 0 j = 1, ...J

gl(x, y) ≤ 0 l = 1, ...L

x ∈ <n , y ∈ {0, 1}m

since the function ln Φ(·) is monotone increasing. These reformulations
reduce the number of non-linearities and improve the robustness of the
NLP subproblems.

(4) The optimality gap should be expressed in the domain of the original
joint probability (i.e.,

∏
d Φ(·)) associated with the best solution found

so far and the best possible solution. This leads to lower optimality gaps
and more efficient of the algorithm.

(5) One of the child nodes generated after branching down a parent node will
inherit the value of UBi

k from the parent node. Thus, the upper bounding
problem (P8) has to be solved in half of the nodes of the tree. This is
illustrated in Figure 3. Notice that the calculation of valid upper bounds
for the parent node and its child nodes entails solving the same instance of
(P8). Furthermore, since no upper limits are imposed on the terms of the
objective function, it may also happen that both child nodes will inherit
the value of UBi

k from the parent node. This will lead to a decrease in
the total number of upper bounding problems to be solved, and therefore
to a reduction in the CPU time required by the algorithm.

(6) The lower bounding problem is only solved after calculating the upper
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bound and checking the convergence criteria in the node. This expedites
the search, since those nodes of the tree for which the solution of the
upper bounding problem (i.e., UBi

k) is given by the parent node will be
quickly fathomed if they do not satisfy the convergence criteria. This
avoids having to solve a large number of lower bounding problems in the
entire tree.

(7) The upper and lower bounds calculated through the estimator equations
are updated in each child node, so we obtain tighter bounds in each of
the sub-regions.

(8) Certain heuristics are followed to branch on the terms of the objective
function. Specifically, in each node we branch on the term d of the objec-
tive function for which the difference difd between the upper and lower
limits that define the search space (i.e., difd = εi

d − εi
d) is maximum.

Furthermore, we select the mid-point of the limits of the term d as the
branching point (bisection rule). A depth first strategy is used to explore
the nodes of the tree.

(9) Theoretically, the spatial branch and bound is an infinite process since
the branching is done on the continuous variables, but terminates in a
finite number of nodes when we apply the convergence criteria for the
desired non-zero tolerance tol.

(10) Our method can only generate Pareto solutions for which the probability
of satisfying each target level is at least 50 %. This is due to the reformu-
lation made in equation 38, which preserves the convexity of the model
by forcing the numerator inside the normal function to take positive val-
ues. This however is not a major limitation since one is only normally
interested in those Pareto solutions that have large probabilities of satis-
fying the target levels. Furthermore, the maximum NPV solution, which
does not necessarily have to satisfy the above posed requirement, can be
computed by solving an MILP, in which the NPV is regarded as main
objective, and the nonlinear equations that define the joint chance con-
straint are dropped.

5 Case study

We next consider two variants of the first example introduced by Guillén-
Gosálbez and Grossmann (2008) to illustrate the application and computa-
tional effectiveness of the proposed algorithm. These new examples only differ
in the transportation costs, which play a major role in the design problem.

The models were implemented in GAMS 21.4 (Brooke et al., 1998), and solved
with the MINLP solver SBB using CONOPT 3 on an Intel 1.2 GHz machine.
Note that the nonlinear branch and bound method implemented in SBB guar-
antees the global optimality of the solutions found. This is due to the fact that
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CONOPT solves the NLPs of the nodes of the tree to global optimality (see
Proposition 2). We should also remark that DICOPT does not exhibit this
property and therefore has not been used, since the supporting hyper-planes
employed by the outer approximation method are only valid for convex prob-
lems, which is not our case. Finally, a direct comparison between our strategy
and BARON, the state of the art software for global optimization, was not
possible, since BARON cannot handle the error function that appears in the
objective function of our model.

5.1 Case study 1A

This problem addresses the optimal retrofit of an existing SC established in
Europe in terms of economic and environmental performance under uncer-
tainty. The superstructure of the case study is depicted in Figure 4, whereas
the set of available technologies is given in Figure 5. Specifically, there are 6
different technologies available to manufacture six main products: acetalde-
hyde, acetone, acrylonitrile, cumene, isopropanol and phenol. The original SC
comprises 1 plant and 1 warehouse that are both placed in Tarragona (Spain),
and 4 final markets that are located in the following European cities: Leuna
(Germany), Neratovice (Czech Republic), Sines (Portugal) and Tarragona.
The demand is expected to increase in Leuna and Neratovice, so the prob-
lem consists of determining whether it is better to expand the capacity of the
existing plant or open a new one in Neratovice, which would be close to the
growing markets.

A demand satisfaction target level of 40 % must be attained in each of the
years of a 3-year time horizon. The existing plant has an installed capacity of
100 kton/year for each available technology, whereas the capacity of the exist-
ing warehouse equals 100 kton. No limits on the total number of expansions
of plants and warehouses are imposed. The lower and upper bounds for the
capacity expansions at plants and warehouses are 10 and 400 kton/year for
the plants, and 5 and 400 ktons for the warehouses, respectively.

No upper limits on the purchases of raw materials are specified. On the other
hand, to prevent outsourcing from taking place, we set zero upper limits on
the purchases of intermediate and final products. The lower and upper bounds
on the flows of materials between plants and warehouses, and warehouses and
markets are 5 and 500 kton/year in both cases, respectively. The turnover
ratio is equal to 10 and the initial inventories at the warehouses are assumed
to be zero. No minimum production levels are fixed at the plants. The interest
rate, the salvage value and the tax rate are equal to 10%, 20% and 30%,
respectively. In this first example, we assume low transportation costs equal to
1.7 ¢/ton · km. The fixed investment terms associated with the establishment
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of transportation links are all set to zero. All the remaining data associated
with the problem is given in Tables 1 to 7.

The entries of the life cycle inventory of our example are taken from different
databases that are integrated within the Simapro software (PRé-Consultants,
1998). The direct emissions associated with the manufacturing technologies
are neglected. With regard to the description of the uncertainty that affects
the damage model, we assume standard deviations of 10% in all the damage
factors that fall in the human health impact category, except for the damage
caused by climate change, for which a 30% value is considered. On the other
hand, the standard deviations considered in the impacts that belong to the
ecosystem quality and resources categories are 20 and 25 %, respectively. The
mean values of the damage factors are all taken from the literature (PRé-
Consultants, 2000). The environmental targets that should not be exceeded
in each impact category are 4.5 ·103 DALYs for the human health, 3.3 ·108

PDF·m2·year for the ecosystem quality and 1.2 ·1010 MJ for the resources.

The values of ε and ε that define the interval within which the NPV of the
problem must fall are firstly calculated by maximizing both objectives sep-
arately. The interval [ε, ε] is next partitioned into 20 subintervals of equal
length, and model (P3) is then calculated for every possible value of ε. Each
instance of (P3) is solved to global optimality with an optimality gap (i.e., tol-
erance) of 0.1%. The model has 1,963 constraints, 1,837 continuous variables
and 78 binary variables. The total CPU time that was required is 1,127.55
CPU seconds.

Figure 6 shows the Pareto solutions obtained by following the proposed pro-
cedure. Each point of the Pareto set entails a specific SC structure and a set
of planning decisions. As can be observed, there is a clear trade-off between
the NPV and the environmental impact.

Note that the Pareto solutions given in Figure 6 are those for which the prob-
abilities of satisfying each individual target level are at least 50%. The most
profitable solution of this example does not satisfy this condition, and therefore
is computed by an additional MILP, as described before. Such a solution leads
to a NPV of $ 157 millions, which is 45 % higher than the one obtained by the
minimum environmental impact solution ($ 157 millions vs. $ 108 millions).

Figures 7 and 8 show the SC configurations of the extreme solutions (the
maximum NPV and minimum environmental impact alternatives). The figures
in the plot represent the capacities of the plants and warehouses expressed in
tons per year and tons, respectively. As can be observed, both solutions entail
the construction of a new plant in Neratovice. However, they primarily differ
in the SC topology and the total network capacity. In the maximum NPV
solution, part of the total production is made in the new plant that will be
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opened in Neratovice, and then shipped to the warehouse that is close to the
existing plant. By doing so, the model takes advantage of the lower investment
and production costs in Czech Republic compared to Spain. On the other hand,
in the minimum environmental impact solution, products are manufactured
as close as possible to the markets. This SC topology reduces the emissions
due to the transportation tasks. The second difference lies in the SC capacity,
which is lower in the minimum environmental impact design. In this solution,
the production rates are reduced and the demand satisfaction level drops to
its lower limit which was set to 40 %.

Figures 9 to 11 depict the probability curves associated with the maximum
NPV and minimum environmental impact solutions, respectively. As can be
observed, when the joint probability is increased, the probability curves are
all shifted to the left, thus providing a simultaneous control of all the impact
categories in the space of uncertain parameters.

Figure 12 depicts for each of the extreme solutions, the expected environmen-
tal impacts in all the damage categories covered by the Eco-indicator 99. In
both cases, the main impacts are: (3) respiratory effects on humans caused by
inorganic substances, (4) damage to human health caused by climate change
and (11) damage to resources caused by extraction of fossil fuels. Finally, Fig-
ures 13 and 14 show the contribution of the different sources of impact to the
total environmental damage. Note that in all the cases the generation of raw
materials represents the most significant contribution to the total impact.

5.2 Case study 1B

In the former case study, the extreme solutions of the Pareto set led to differ-
ent SC topologies. This was motivated by the low transportation costs, as was
commented before. In this new example, the materials flows between the SC
entities are penalized with higher transportation costs (i.e., 21 ¢/ ton · km).
The goal is to investigate the impact that this cost has in the topological fea-
tures of the extreme solutions of the Pareto set, assuming that the remaining
data of the problem are kept constant.

We compute 20 Pareto points with an optimality gap of 0.1% by following
the same strategy as before. The total CPU time required is 213.94 s. Figure
15 shows the Pareto solutions of the problem. As can be observed, the higher
transportation costs make the NPV drop about 15% on average. As a result,
the entire Pareto set is moved to the left. As occurred in the previous case, an
additional MILP is required to calculate the most profitable alternative. This
solution yields an NPV of $ 124 millions, whereas the minimum environmental
impact alternative leads to $ 90 millions.
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The extreme configurations of the Pareto set are given in Figures 16 and
17, along with the capacities of the plants and warehouses. As opposed to
the previous case, in this example the extreme solutions lead to the same
topology and only differ in the total network capacity, which is lower in the
minimum environmental impact solution. Thus, both solutions seek to reduce
the transportation flows, since this policy simultaneously results in lower total
costs and environmental impacts.

The probability curves associated with the aforementioned solutions are shown
in Figures 18 to 20. Comparing the probability curves of the maximum NPV
solutions obtained in both examples, one can notice that in the second case
they have been moved to the left. This is due to the higher transportation
costs, which have forced the model to reduce the materials flows and therefore
the emissions generated by the transportation tasks. On the other hand, the
minimum environmental impact curves are similar in both cases.

6 Conclusions

This paper has addressed the optimal design and planning of sustainable chem-
ical processes with environmental concerns. The environmental impact asso-
ciated with the SC operation has been assessed through the Eco-indicator 99,
which includes recent advances made in LCA. The uncertainty of the dam-
age model that translates the life cycle inventory into impacts caused to the
environment has been explicitly incorporated into our formulation.

The overall problem has been formulated as a bi-criterion chance constrained
MINLP. Two objectives has been considered in such a formulation: (1) the
NPV and (2) the joint probability of simultaneously satisfying all the envi-
ronmental targets defined in each damage category of the Eco-indicator 99.
The deterministic equivalent of this model has been derived by reformulating
the joint chance constraint that defines the environmental performance under
uncertainty. The resulting bi-criterion non-convex MINLP has been solved by
applying the epsilon constraint method. To guarantee the global optimality of
the Pareto solutions, we have introduced a novel branch and bound strategy
that exploits the mathematical structure of the model.

The performance of our modeling framework and solution strategy have been
illustrated through two examples of a case study. Our tool provides a simul-
taneous control of the impacts caused in the damage categories covered by
the Eco-indicator 99. The SC design and planning decisions calculated by the
model, which represent the optimal compromise between NPV and environ-
mental performance, aim at facilitating the decision-making process in the
area of sustainable chemical process design.
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7 Notation

Indices

b environmental burdens

c impact categories

d damage categories

i manufacturing technologies

j plants

k warehouses

l markets

p products

t time periods

Sets

ID(d) set of impacts c contributing to damage category d

IN(p) set of manufacturing technologies that consume p

MP (i) set of main products p of technology i

OUT (p) set of manufacturing technologies that produce p

Parameters

CEPL
ijt upper bound on the capacity expansion of manufacturing technology i

at plant j in time period t

CEPL
ijt lower bound on the capacity expansion of manufacturing technology i

at plant j in time period t

CEWH
kt upper bound on the capacity expansion of warehouse k in time period t

CEWH
kt lower bound on the capacity expansion of warehouse k in time period t

DMK
lpt maximum demand of product p sold at market l in period t

DMK
lpt minimum demand of product p to be satisfied at market l in period t

ir interest rate

FCI upper limit on the total capital investment

NEXP PL
ij maximum number of capacity expansions for technology i available at plant j
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NEXPWH
k maximum number of capacity expansions for warehouse k

NT number of time periods

PUjpt upper bound on the purchases of product p at plant j in period t

PUjpt lower bound on the purchases of product p at plant j in period t

QPL
jkt upper bound on the flow of materials between plant j and warehouse k

in time period t

QPL
jkt lower bound on the flow of materials between plant j and warehouse k

in time period t

QWH
klt upper bound on the flow of materials between warehouse k and market l

in time period t

QWH
klt lower bound on the flow of materials between warehouse k and market l

in time period t

SV salvage value

TORk turnover ratio of warehouse k

µip mass balance coefficient associated with product p

and manufacturing technology i

ϕ tax rate

γFP
lpt price of final product p sold at market l in time period t

γRM
jpt price of raw material p purchased at plant j in time period t

υijpt operating cost of manufacturing technology i available at plant j

per unit of main product p in time period t

πkt inventory cost at warehouse k in period t

ψPL
jkpt unitary transport cost of product p sent from plant j

to warehouse k in time period t

ψWH
klpt unitary transport cost of product p sent from warehouse k

to market l in time period t

αPL
ijt variable investment term associated with technology i

at plant j in time period t

αWH
kt variable investment term associated with warehouse k in time period t

βPL
ijt fixed investment term associated with technology i at plant j in time period t
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βWH
kt fixed investment term associated with warehouse k in time period t

βTPL
jkt fixed investment term associated with the establishment of a transport link

between plant j and warehouse k in time period t

βTWH
klt fixed investment term associated with the establishment of a transport link

between warehouse k and market l in time period t

ωPU
bp emissisions/feedstock requirements of chemical b

per unit of raw material p generated

ωPR
bp emissisions/feedstock requirements of chemical b

per unit of intermediate/final product p generated

ωEN
b emissisions/feedstock requirements of chemical b

per unit of FOET combusted

ωTR
b emissisions/feedstock requirements of chemical b

per unit of mass transported one unit of distance

ηEN
ijp energy consumed per unit of chemical p produced

with manufacturing technology i at plant j

λPL
jk distance between plant j and warehouse k

λWH
kl distance between warehouse k and market l

θbc damage factor of chemical b contributing to impact category c

θ̂bc mean value of damage factor of chemical b contributing to impact category c

σDF
bc standard deviation of damage factor of chemical b

contributing to impact category c

Ωd Target level for damage category d

κ joint probability of not exceeding the individual target levels Ωd)

δd normalization factor for damage category d

ξd weighting factor for damage category d

τ minimum desired percentage of the available installed capacity

that must be utilized

Variables

CPL
ijt capacity of manufacturing technology i at plant j in time period t
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CEPL
ijt capacity expansion of manufacturing technology i at plant j in time period t

CWH
kt capacity of warehouse k in time period t

CEWH
kt capacity expansion of warehouse k in time period t

CFt cash flow in period t

DAMd impact in damage category d

ˆDAMd mean value of impact in damage category d

DAMSD
d standard deviation of impact in damage category d

DEPt depreciation term in period t

ECO99 Eco-indicator 99

FCI fixed capital investment

FTDCt fraction of the total depreciable capital that must be paid in period t

ILkt average inventory level at warehouse k in time period t

IMc damage in impact category c

INVkpt inventory of product p kept at warehouse k in period t

LCIb life cycle inventory entry (i.e., emissisions/feedstock requirements)

associated with chemical b

NEt net earnings in period t

NPV net present value

PUjpt purchases of product p made by plant j in period t

QPL
jkpt flow of product p sent from plant j to warehouse k in period t

QWH
klpt flow of product p sent from warehouse k to market l in period t

SAlpt sales of product p at market l in time period t

Wijpt input/output flow of product p associated with technology i at plant j in t

XPL
ijt binary variable (1 if the capacity of manufacturing technology i at plant j

is expanded in time period t, 0 otherwise)

XWH
kt binary variable (1 if the capacity of warehouse k

is expanded in time period t, 0 otherwise)

Y PL
jkt binary variable (1 if a transportation link between plant j and warehouse k

is established in time period t, 0 otherwise)

Y WH
klt binary variable (1 if a transportation link between warehouse k and market l

is established in time period t, 0 otherwise)
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Appendix

For convenience in the presentation of the proofs, we set fd(x, y) = ln Φ(Ad

Bd
).

Proof of Proposition 1. Assume that (x̂, ŷ) does not belong to the Pareto
set of (P5). Then there is a solution of (P5) (x∗, y∗) that dominates (x̂, ŷ),
such that fd(x

∗, y∗) > fd(x̂, ŷ) for d = 1, ..., D. Since (P4) and (P5) have the
same feasible region, then (x∗, y∗) is also feasible for (P4), and satisfies that
(
∑

d fd(x
∗, y∗)) > (

∑
d fd(x̂, ŷ)). This contradicts the assumption that (x̂, ŷ) is

a global optimal solution of (P4). ¥

Proof of Proposition 2. We first show that the function ln Φ(ptz
qtz

), where

p,q and z are two-dimensional vectors defined as follows pt = (1, 0), qt = (0, 1)
and zt = (z1, z2), is pseudoconcave for ptz ≥ 0 and qtz 6= 0 over a convex set

S. Assume that z1 and z2 ∈ S, with (z2 − z1)
t∇(ln Φ(ptz1

qtz1
)) ≤ 0. We need to

show that ln Φ(ptz2

qtz2
) ≤ ln Φ(ptz1

qtz1
). Note that:

∇
(

ln Φ

(
ptz1

qtz1

))
=

1√
2π

e
−1
2

(
ptz1
qtz1

)2

Φ
(

ptz1

qtz1

)
[
(qtz1) p− (ptz1) q

(qtz1)
2

]
(43)

Since (z2 − z1)
t∇(ln Φ(ptz1

qtz1
)) ≤ 0 and since

1√
2π

e

−1
2

(
ptz1
qtz1

)2

Φ

(
ptz1
qtz1

)
(qtz1)2

≥ 0, it follows that

(z2 − z1)
t
[(

qtz1

)
p−

(
ptz1

)
q
]
≤ 0 (44)

which leads to

0 ≥
(
z1
2 − z1

1 , z
2
2 − z2

1

)



z2
1

−z1
1


 =

(
z1
2 − z1

1

) (
z2
1

)
−

(
z2
2 − z2

1

) (
z1
1

)
=

(
z1
2z

2
1 − z2

2z
1
1

)

(45)

This implies that
z1
2

z2
2
≤ z1

1

z2
1
, which in turn leads to ln Φ(ptz2

qtz2
) ≤ ln Φ(ptz1

qtz1
), since

ln Φ(·) is monotone increasing. Therefore, ln Φ(Ad

Bd
) is pseudoconcave. From

Theorem 3.5.11 in Bazaraa et al. (1979), ln Φ(Ad

Bd
) is also quasiconcave and

strictily quasiconcave. Thus, (P6) is a maximization problem with a pseudo-
concave objective function subject to a set of linear equality constraints and
convex and quasiconvex inequality constraints (i.e., all the original constraints
of (P5) are linear except one that is nonlinear but convex, and the epsilon con-
straints of the form εd − ln Φ(Ad

Bd
) ≤ 0 have been shown to be quasiconvex).

Then, from Theorem 4.3.8 in Bazaraa et al. (1979), a point satisfying the
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KKT conditions for such a problem is also a global maximum over the feasible
region, and the proof is complete. ¥

Proof of Proposition 3. Consider the Karush-Kuhn-Tucker conditions of
problem (P4) that are satisfied in (x̂, ŷ):

∑

d∈D

∇fd(x̂, ŷ) +
∑

l∈Al

ul∇gl(x̂, ŷ) +
∑

j∈J

vj∇hj(x̂, ŷ) = 0 (46)

where Al := {l : gl(x) = 0}, and ul for l ∈ Al, and vj for j = 1, ..., J , denote
the Karush-Kuhn-Tucker multipliers for the active inequality and equality
constraints, respectively. Now consider the KKT conditions of (P6):

∇fk(x, y)− ∑

d 6=k

ud∇fd(x, y) +
∑

l∈Al

ul∇gl(x, y) +
∑

j∈J

vj∇hj(x, y) = 0 (47)

where ud are the Lagrangean multipliers associated with the epsilon con-
straints (i.e., εd − ln Φ(Ad

Bd
) ≤ 0), which are mathematically given by:

ud =

(
∂fk(x, y)

∂fd(x, y)

)

(δfi(x,y)=0, i 6=d,k)∧(δgl(x,y)=0)

d 6= k

If we substitute (x̂, ŷ) in 47 and set ud = −1, then this solution satisfies the
KKT conditions of (P6). Notice that by imposing the condition ud = −1, the
point also satisfies equation 40. Furthermore, from Proposition 2, we know that
a KKT point of (P6) is a global maximum of (P6). Finally, from Proposition
4.1 in Ehrgott (2000) we know that a global optimal solution of (P6) is a
Pareto solution of (P5), and the proof is complete. ¥

Proof of Proposition 4. Assume that (x̂, ŷ) is a feasible solution of (P7)

that satisfies (
∑

d fd(x̂, ŷ)) >
(
UBi

k +
∑

d 6=k εi
d

)
. This implies that there exists

at least one term of the summation on the left hand side of the inequality
with a higher value than its counterpart on the right hand side. First, assume
that fd(x̂, ŷ) > εi

d for at least one d 6= k. This contradicts the assumption that
(x̂, ŷ) is a feasible solution of (P7). Second, assume that fk(x̂, ŷ) > UBi

k. Since
the feasible region of (P7) is tighter than that of (P8), a global maximum
of (P8) yields a valid upper bound on the value of fk(x̂, ŷ) over the feasible
region of (P7). This contradicts fk(x̂, ŷ) > UBi

k, and the proof is complete. ¥
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Original search space

Fig. 1. Illustrative example of Propositions 1 and 2.

30



Fig. 2. Spatial branch and bound.
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Mathematical formulation

Fig. 3. Spatial branch and bound.
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T1-One step oxidation of ethyleneT2-Cyanation / oxidation of ehtylene AcetaldehydeAcrylonitrileEthylene T3-Ammoxidation of propylenePropylene Phenol
HCN HClH2SO4O2NH4T4-Hydration of propyleneT5- Reaction of benzene and propylene IsopropanolT6-Oxidation of cumeneBenzene Cumene Acetone0.670.38 1.35 10.610.831.200.76

H2SO4 NaOH0.010.011 10.43 0.15 110.900.6 0.170.68 0.40 1O2

Fig. 5. Superstructure of technologies.
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Fig. 6. Pareto set of case study 1a.

35



Plants j=1,…,J Warehouses k=1,…,K Marketsl=1,…,L100,000100,000100,000 100,000100,000100,000Tarragona (existing plant)
Neratovice (new plant)56,227 151,83170,817

TarragonaSinesLeunaNeratovice
Tarragona (existing warehouse)
Neratovice (new warehouse)39,377
100,000

33,600 51,818
Fig. 7. Maximum NPV solution.
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Plants j=1,…,J Warehouses k=1,…,K Marketsl=1,…,L100,000100,000100,000 100,000100,000100,000Tarragona (existing plant)
Neratovice (new plant)

TarragonaSinesLeunaNeratovice
Tarragona (existing warehouse)

Neratovice (new warehouse)22,783
100,00056,22729,988 14,994118,51248,120

Fig. 8. Minimum environmental impact solution.
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Fig. 9. Probability curves (impact category: human health)
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Fig. 10. Probability curves (impact category: ecosystem quality)
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Fig. 11. Probability curves (impact category: resources)
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40



1 2 3 4 5 6 7 8 9 10 11TOTAL
0

10

20

30

40

50

60

70

80

90

100

Impact category

E
xp

ec
te

d 
co

nt
rib

ut
io

n 
to

 im
pa

ct
 c

at
eg

or
y 

(%
)

Raw materials production
Utilities (main processes)
Transportation tasks

Fig. 13. Expected contribution to Eco-indicator 99 (maximum NPV solution).
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Fig. 14. Expected contribution to Eco-indicator 99 (minimum environmental impact
solution).
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Fig. 15. Pareto set of case study 1b.
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Plants j=1,…,J Warehouses k=1,…,K Marketsl=1,…,L100,000100,000100,000 100,000100,000100,000Tarragona (existing plant)
Neratovice (new plant)56,227 123,75450,019

TarragonaSinesLeunaNeratovice
Tarragona (existing warehouse)
Neratovice (new warehouse)29,131
100,000

29,988 37,485
Fig. 16. Maximum NPV solution.
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Plants j=1,…,J Warehouses k=1,…,K Marketsl=1,…,L100,000100,000100,000 100,000100,000100,000Tarragona (existing plant)
Neratovice (new plant)

TarragonaSinesLeunaNeratovice
Tarragona (existing warehouse)

Neratovice (new warehouse)21,133
100,00053,55029,988 14,994107,16047,600

Fig. 17. Minimum environmental impact solution.
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Fig. 18. Probability curves (impact category: human health)
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Fig. 19. Probability curves (impact category: ecosystem quality)
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Fig. 20. Probability curves (impact category: resources)
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Table 1
Case study 1: variable and fixed investment cost of plants for t = 1 (assume a 5%
increase in each period of time)

αPL
ijt ($/ton) βPL

ijt (thousand $)

Tech./Plant Neratovice Tarragona Neratovice Tarragona

T1 48.68 91.28 4,430.11 8,306.45

T2 49.83 93.43 4,534.83 8,502.82

T3 125.76 235.81 11,445.06 21,459.49

T4 55.86 104.73 5,083.10 9,530.80

T5 24.71 46.34 2,248.92 4,216.72

T6 88.31 165.59 8,036.80 15,069.01

Table 2
Case study 1: operating cost for t = 1 (assume a 5% increase in each period of time)
and consumption of energy

υijpt ($/ton) ηEN
ijp

Tech./Plant Neratovice Tarragona (FOET/ton)

T1 7.12 16.03 0.22

T2 19.43 43.71 0.60

T3 4.86 10.93 0.15

T4 12.30 27.68 0.38

T5 1.94 4.37 0.06

T6 12.30 27.68 0.38
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Table 3
Case study 1: price of final products for t = 1 (assume a 5% increase in each period
of time)

γFP
lpt ($/ton)

Chemical/Market Leuna Neratovice Sines Tarragona

acetaldehyde 509.26 487.43 491.07 500.17

acetone 432.87 414.32 417.41 425.14

acrylonitrile 36.40 34.84 35.10 35.75

cumene 401.23 384.04 386.90 394.07

isopropanol 401.23 384.04 386.90 394.07

phenol 709.88 679.45 684.52 697.20

Table 4
Case study 1: cost of raw materials for t = 1 (assume a 5% increase in each period
of time)

γRM
jpt ($/ton)

Chemical/Plant Neratovice Tarragona

ammonia 140.54 148.81

benzene 200.51 212.30

ethylene 233.68 247.42

hydrochloric acid 116.18 123.02

hydrogen cyanide 468.47 496.03

oxygen 29.98 31.75

propylene 159.28 168.65

sodium hidroxide 140.54 148.81

sulfuric acid 42.16 44.64
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Table 5
Case study 1: demand of products for t = 1 (assume a 5% increase in each period
of time)

DMK
lpt (kton/year)

Chemical/Market Leuna Neratovice Sines Tarragona

acetaldehyde 13.5 37.5 12.0 7.5

acetone 10.8 30.0 9.6 6.0

acrylonitrile 18.0 50.0 16.0 10.0

cumene 13.5 37.5 12.0 7.5

isopropanol 9.0 25.0 8.0 5.0

phenol 12.6 35.0 11.2 7.0

Table 6
Case study 1: matrix of distances

λWH
kl (km)

Ware./Market Leuna Neratovice Sines Tarragona

Neratovice 295.45 0 2,970.72 1,855.47

Tarragona 1,781.36 1,855.47 1,212.82 0

Table 7
Case study 1: variable and fixed investment cost and operating cost of warehouses
for t = 1 (assume a 5% increase in each period of time)

Warehouse αWH
kt ($/ton) βWH

kt (thousand $) πkt ($/ton)

Neratovice 1.06 96.31 0.10

Tarragona 2.38 216.69 0.22
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