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ABSTRACT. This work presents a continuous-time optimization model for planning multiple 

refracture treatments over the lifespan of a shale gas well. In contrast to previous continuous-time 

formulations (Cafaro, Drouven and Grossmann, AIChE J., 62(12), 4297–4307), we deal with multiple 

restimulations and account for economic criteria including natural gas sales, refracturing costs and 

discount rates, seeking to maximize the net present value of the well development and refracturing plan. 

We model the well productivity as a continuous-time, piecewise power function. Gas production also 

depends on when and how often the well has been refractured. We illustrate the effectiveness of the 

proposed representation and the impact of the time value of money in the restimulation strategy.  

INTRODUCTION 

One of the most critical challenges facing shale gas companies is the rapid decline of well production 

rates. The production rate from a typical shale gas well can decline as much as 85 % after the first year 

of operation1. As a result, most of the revenues from selling methane and heavier hydrocarbons are 

usually obtained within the first or second year after turning a well in line, leaving only marginal 

benefits for the rest of the well lifespan. However, recent studies demonstrate that the production from a 
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shale gas well can be increased by refracturing; that is, by hydraulically fracturing the well again when 

the production is too low. In essence, refracturing is an effective strategy to recover large volumes of 

untapped oil and gas reserves from mature shale wells. According to Kotov and Freitag (2015)2, roughly 

90 % of the wells’ potential production has historically been left untapped by following a single 

drilling/fracturing approach for each well. By restoring connections to original fractures and tapping 

into zones that were missed in the initial stimulation treatment, refracturing can reinvigorate the overall 

production profile of a well. Moreover, refracturing treatments are useful to improve completion and 

stimulation designs, often by increasing the amount proppant used. In this context, even the most 

productive shale gas wells have proven to be good candidates for refracturing. 

Some contributions have recently been published in the literature with the aim of deciding on the 

potential of a further stimulation, eventually determining the optimal planning of refracture treatments 

over the lifespan of a shale gas well. Sharma (2013)3 studies the redistribution of stresses around a 

fractured well using numerical simulation models. The work suggests that secondary fractures make it 

possible to access higher pressure regions, thus improving the productivity of the well. Some guidelines 

and type-curves are proposed to estimate the expected production increase and to choose the timing of 

the refracture operation. In turn, Eshkalak et al. (2014)4 address the refracturing planning problem from 

an economic perspective. By estimating the net present value and the internal rate of return for different 

assumed gas prices, they demonstrate that refracturing of shale gas wells plays an important role in the 

economic success of an unconventional asset. The effect of the time to refracture in the production 

decline after restimulation is also addressed in detail by Tavassoli et al. (2013)5. The authors develop a 

numerical simulation model that predicts the performance of a shale gas well after refracturing based on 

reservoir parameters, completions design, and the time to refracture the well over its lifespan. More 

recently, Zeng and Cremaschi (2017)6 introduce deterministic and stochastic mathematical 

programming models to solve the artificial lift infrastructure planning problem to help sustain shale gas 

well performance.  



In contrast to the previously cited works, only a few contributions have accounted for the possibility of 

multiple refracture treatments over the lifespan of the shale gas well. Cafaro et al. (2016)7 present an 

optimization framework to plan multiple shale gas well refracture treatments, assuming that the decision 

to drill and complete a prospective shale well has already been made. In a recent extension, Drouven et 

al. (2017)8 propose a moving horizon framework to determine the optimal time to develop a new shale 

gas well and refracture treatments as recourse actions against uncertainties, such as natural gas price or 

well performance.  

In order to determine if, when and how often a well should be restimulated over its lifespan, two kinds 

of optimization models can be adopted: continuous-time nonlinear programming (NLP) models and 

discrete-time (multiperiod) mixed-integer linear programming (MILP) models. To date, NLP models are 

strictly concerned with the optimal timing to refracture a single well such that its expected ultimate gas 

recovery (EUR) is maximized. Cafaro et al. (2016)7 point out that unlike continuous models, 

multiperiod MILP models are capable of planning multiple refracturing operations over the lifespan of a 

shale gas well, also allowing for a straightforward evaluation of economic objective functions, such as 

the net present value (NPV) of a well development and refracturing project. However, this work 

demonstrates that continuous-time representations can also deal with multiple restimulations over the 

lifespan of a well, and account for economic criteria including natural gas sales, refracturing costs and 

the time value of money.  

CONTINUOUS-TIME, MULTI-REFRACTURE PLANNING MODELS 

Shale Gas Production After Multiple Refracture Treatments 

We rely on a generalized production estimate function that predicts how much gas a well is expected to 

produce over time as a function of when and how often it has been restimulated. As suggested by Cafaro 

et al. (2016)7, the gas production of an unconventional well can be represented adequately by a 

decreasing power function. This power function is defined by an expected initial production peak 

parameter k and an expected initial production decline parameter a. In essence, the decreasing power 



function adopted by Cafaro et al. (2016)7 is an adaptation of the hyperbolic equation for general decline 

in a well, first proposed by Arps (1945)9. However, parameters k and a by themselves can only represent 

the production of a shale well that has not been refractured. Hence, to account for the production rate of 

a shale gas well that can be refractured once or more often, we propose Eq. (1).   

   ˆ
ˆ( ) i i ia b ta

i i ii k t r t t tp t r
          (1) 

Eq. (1) estimates the shale gas production rate at time t after the i-th refracture. It is based on the 

expected initial production peak parameter k and the expected initial production decline parameter a. 

However, this function also accounts for the number of refracture treatments (i) previously performed to 

the shale gas well up to time t. More precisely, the elements i  I constitute the ordered set of refractrure 

treatments, ît  is the time at which the i-th refracture treatment is accomplished, and irt  is the time it 

takes to recomplete the well. 

By focusing on the first term of Eq. (1), it can be observed that every time a shale well is refractured, the 

contribution of its initial fractures to the overall production changes. Depending on the effectiveness of 

the initial completion, the contribution of original fractures can either increase or decrease after 

refracturing. We introduce the parameter i  to capture this aspect. When the well has been drilled and 

fractured for the first time, this parameter equals one ( 1o  ). After every restimulation, however, the 

parameter will be set to a different value (usually, 1i   for 1i  ), which is typically forecasted by 

completions design engineers.  

Moreover, we include a second term to capture the characteristic production peak following a well 

restimulation. We introduce the refracturing production peak parameter ri, whose value changes 

depending on how many times the well has been refractured (index i). With every additional refracture 

treatment, this supplemental production peak becomes less pronounced (ri < ri+1). However, for 

simplicity, we assume that this value is independent of the time the well is refractured.  



In turn, we address the exponent ( ˆ
i i ia b t   ) in Eq. (1). Essentially, this exponent is an estimate of the 

post-refracture production decline after i restimulations. The term is made up of three criticial factors 

that are believed to determine the production decline following a refracture treatment: a) the initially 

expected production decline of the well after i restimulations ia  (which may vary depending on how 

many stages of the well are actually recompleted), b) the decline increase rate after i restimulations ib , 

and c) the timing of the i-th refracture treatment ît . This composite decline exponent is motivated by the 

work of Tavassoli et al. (2013)5 who show that the post-refracture production decline increases the 

longer one waits to refracture a shale well.  

Finally, we can express the productivity of a shale gas well before, during and after having been 

refractured i times using the function in Eq. (2). We assume that the well can be refractured up to N 

times over its lifespan of length T. 
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Maximization of the Gas Recovery 

To determine the total amount of gas recovered from a shale gas well over its lifespan, we can integrate 

function (2) from t = 1 to t =T. This indicator is usually referred to as the estimated ultimate recovery 

(EUR). Its value depends on the number of restimulations and the time when they are performed.   
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For the last refracture (i = N) we substitute 1N̂t   by T. The EUR function in Eq. (3) assumes that: (1) a 

≠ 1, and (2) ˆ
i i ia b t  ≠ 1, iI. To identify the optimal times to refracture a well such that the EUR is 

maximized, we propose a continuous-time nonlinear optimization model (NLP) as in expression (4).  
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Fig. 1. Total gas recovery vs. time of a single refracture treatment  

Fig. 1 illustrates the total gas production profile from function (4) when accounting for a single 

refracture treatment over a time horizon of 20 years. As discussed in previous publications7, this 

function yields a nonconvex, nonlinear programming model, with singularities when ˆ (1 ) /i i it a b   for 

any refracture i  I. In such cases, the denominator of the third term in Eq. (4) is null, leading to a 



division by zero. It should be noted, however, that it is very unlikely that the optimal value for ît , i.e., 

the time to refracture the well by the i-th time matches the exact value (1 ) /i ia b  at the optimum. 

Generally, (1 ) /i ia b T  , which implies that the singular value for any ît  lies outside the feasible 

region and far beyond the expected lifespan of an ordinary shale gas well. An interesting finding from 

Fig. 1 is that the largest increase in the overall production is obtained when refracturing is accomplished 

early in the lifespan of the well. However, too early interventions may rapidly deteriorate the results 

(high early-life production rates are unnecessarily interrupted), while moderate delays in the 

restimulation treatment with regards to the optimal timing have a less negative impact.   

Results for Gas Recovery Maximization 

Fig. 2 shows the results of an illustrative example with up to 4 refractures, and solved to global 

optimality using GAMS/BARON 24.6.1.10  

 

Fig. 2. Optimization results for different numbers of refractures when maximizing the gas recovery 



In this case study, k = 299.4, i = (0.8)i   i  I, a = ai = 0.664  i  I, bi = 0.0005  i  I, rti = 1  i  

I, and ri = 120, 100, 80 and 60 for i = 1, 2, 3 and 4, respectively. The latter is based on the fact that the 

production peak after the first refracturing treatment can often match up to 40-60 % of the initial 

production peak7, but the well response tends to be smaller after further restimulations. We solve the 

optimization model in (4) for different numbers of refractures over the lifespan of the shale gas well (T 

= 120 months). In all the cases, the optimal solution is found in less than 20 seconds in an Intel Xeon 

CPU (2.67 GHz, 16 GB RAM), with a relative optimality gap of 10-6.  

If the number of refractures is set to one (I = {1}), the optimization model suggests to refracture the well 

in month 30 (more precisely, at time 1̂t = 29.36), yielding a 23.1 % increase in the total amount of gas 

recovered when compared to the original production of the well, with no refractures. If the well can be 

refractured up to two times , the proposed model decides to refracture the well in months 25 and 89, i.e. 

after 2 and 7 years of production, respectively (see Table 1). The gain in the gas recovery is 31.2 % 

when compared to the no-refracture strategy, and 6.59 % with regards to the single-refracture plan.  

Table 1: Comparison of refracturing strategies yielded by the proposed continuous-time models  

Strategy 
No 

Refrac 
1-Refrac 2-Refracs 3-Refracs 4-Refracs 

Refracture # - # 1 # 1 # 2 # 1 # 2 # 3 # 1 # 2 # 3 # 4 

Max 
EUR 

t̂  - 29.36 24.60 89.38 22.21 77.39 104.02 20.90 71.24 95.81 110.65 

EUR 
109 scf 

3.524 4.337 4.623 4.739 4.760 

NPV 
106 $ 

3.341 6.221 6.994 7.213 7.110 

Max 
NPV 

t̂  - 53.43 39.20 89.39 33.46 77.07 102.96 33.46 77.07 102.96 - 

EUR 
109 scf 

3.524 4.294 4.595 4.716 4.716 

NPV 
106 $ 

3.341 6.357 7.081 7.283 7.283 

 

In turn, if the well is to be refractured three times, the model decides to do so in months 22, 77 and 104, 

with an extra gain of merely 2.51 % with regards to the previous strategy. Finally, the optimal strategy 

that maximizes the gas recovery by refracturing the well four times suggests restimulations in months 



21, 71, 96 and 111, yielding an extra 0.44 % from the plan with three refractures. It can be easily 

inferred that, based on economic criteria, refractures 3 and 4 may be not justified. In fact, the optimal 

number of refracture treatments will generally depend on the gas price and the cost of refracturing. To 

clarify this point, in the following section we present an extended version of the optimization model 

given in formulation (4) that includes an economic function to evaluate the impact of the refracturing 

strategy.    

Maximization of the Net Present Value 

Instead of focusing on the overall gas recovery from the shale gas well, we now propose a continuous-

time optimization model designed to maximize the net present value of the well development project. 

Revenues from gas sales have to be maximized, whereas expenses for well development and 

recompletions are to be minimized, taking into account the time value of money. More precisely, given 

its continuous-time nature, the economic optimization model assumes that incomes and expenditures are 

discounted back to present value continuously, as shown in the nonlinear objective function (5). Other 

approximate strategies to account for discounted cash flows within continuous time horizons can be 

found in Lin and Floudas (2003)11.  
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Similar to previous contributions, it is assumed that gas production sets in approximately one month 

after well completion. The unit gas price (gp), the discount rate (dr), and the overall cost of completion 

(cc) and recompletions (rci) are assumed to be given. For simplicity, we also assume that unit gas price 

and discount rate are time-independent. Finally, the gas production rate p(t) is derived from the 

functions presented in (2), which depend on the refracturing strategy. As a result, integrating the first 

term in (5) is not a trivial matter. In fact, it can be proven that the integral of the product of decreasing 

power and exponential functions gives rise to incomplete gamma functions, as shown in Eqs (6) and (7).    
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In order to avoid including non-elementary functions like these in our optimization model (most 

commercial solvers cannot handle these functions), we use an asymptotic expansion of the incomplete 

gamma function, as described in equation (8).  
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It can be easily observed that the asymptotic expansion rapidly converges to the actual value of the non-

elementary function. In fact, no more than ten terms (nmax = 10) are usually needed, due to the rapid 

growth of n! As a result, the optimization problem given in model (5), accounting for the production 

rates predicted in function (2), can be readily converted into a conventional NLP optimization problem, 

including only elementary functions, formulated in problem (9).  
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G0, G1, G2,i, G3,i, G4,i and G5,i are asymptotic approximations of the incomplete gamma function. We 

typically adopt nmax equal to 10 for the problem instances in the next sections. As before,  the variable

1N̂t   should be substituted by the parameter T for the last refracture (i = N).  

Results for Profit Maximization 

To evaluate the economic potential of the well development and refracturing plan, we next solve the 

illustrating example presented in the previous sections using the NLP optimization model in (9), for 

different numbers of refractures over the lifespan of the shale gas well. We assume that the drilling and 

completion costs (cc) are 3 million USD, every refracture treatment (rci) amounts to 0.8 million USD 

iI, the gas price is fixed at 3 USD/Mscf, and the monthly discount rate is 1 % (dr = 0.01). The 

optimal solution is found in less than 1 CPU second using GAMS/BARON 24.6.1 in all the problem 

instances.   

As seen in Table 1, if no refracture is implemented, the NPV of the project is 3.341 million USD. When 

a single refracture is proposed, the optimization model suggests to refracture the well in month 54 (more 

precisely, at time 1̂t = 53.43), yielding an NPV of 6.357 million USD (90.27 % NPV increase due to 

refracturing!). Note that the single-refracture strategy for product maximization suggest a much earlier 

stimulation, in month 30, which would yield an NPV of 6.221 million USD. In order to take advantage 

of early gas sales during years four and five, the model suggests to postpone the intervention about two 

years. Table 1 presents a detailed comparison of both the gas recovery maximization and the profit 

maximization results. Moreover, if there is the possibility to refracture the well twice, the proposed 

model decides to refracture the well approximately in months 39 and 89, i.e. approximately after 3 and 7 

years of production, respectively. Note that the first refracture is postponed about one year with regards 

to the gas recovery maximization strategy. The NPV increases to 7.081 million USD, 11.4 % more 

profitable than the single-refracture plan. Indeed, if the well can be refractured up to three times, the 

model plans optimal refractures in months 33, 77 and 103, with an NPV of 7.283 million USD (+ 2.85 

% with regards to the previous strategy). Finally, as expected, if the well is refractured more than three 



times over the following ten years, the results demonstrate that the strategy will be not economically 

justified.  

CONCLUSIONS 

A rigorous continuous-time optimization model for planning multiple refracture treatments over the 

lifespan of a shale gas well has been presented. We demonstrate that the nonlinear optimization model 

can also be extended to account for economic objective functions like the maximization of the NPV of 

the well development and refracturing strategy. On the one hand, the continuous time model is very 

compact, comprising only N variables (N being the number of refractures). In fact, it proves to be 

computationally efficient given that its size does not depend on the length of the planning horizon (no 

time discretization). On the other hand, the NLP model is nonconvex, thus requiring global solvers to 

guarantee global optimality. Also, the model is not able to account for natural gas price forecast trends, 

like multiperiod MILP models do8. We are currently working to address this point.     
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