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Abstract
Energy management can play a significant role in energy savings and temperature 
control of buildings, which consume a major share of energy resources worldwide. 
Model predictive control (MPC) has become a popular technique for energy man-
agement, arguably for its ability to cope with complex dynamics and system con-
straints. The MPC algorithms found in the literature are mostly centralized, with 
a single controller collecting signals and performing the computations. However, 
buildings are dynamic systems obtained by the interconnection of subsystems, 
with a distributed structure which is not necessarily explored by standard MPC. To 
this end, this work proposes hierarchical decompositions to split the computations 
between a master problem (centralized component) and a set of decoupled subprob-
lems (distributed components) which brings about organizational flexibility and dis-
tributed computation. Three general methods are considered for hierarchical control 
and optimization, namely bilevel optimization, Benders and Lagrangean decompo-
sition. Results are reported from a numerical analysis of the decompositions and a 
simulated application to the energy management of a building, in which a limited 
source of chilled water is distributed among HVAC units.

Keywords Bilevel optimization · Benders decomposition · Lagrangean 
decomposition · Predictive control · Linear systems · HVAC

1 Introduction

Studies show that energy consumption in buildings accounts for roughly 40% of 
the worldwide energy demand, and more than half can be attributed to Heating, 
Ventilation, and Air Conditioning (HVAC) systems (D&R International Ltd 2009; 
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Pérez-Lombard et  al. 2008). Such a share of the energy market is driving invest-
ments towards energy efficient buildings, including materials with better insula-
tion, use of renewable energy, and control and optimization technology to manage 
the energy resources (Escrivá-Escrivá et al. 2010). For the latter, Model Predictive 
Control (MPC) has become a popular technique, arguably for its ability to handle 
complex dynamics and constraints, but also for optimizing objective functions that 
account for thermal comfort and energy savings.

Álvarez et al. (2013) presented a predictive controller to manage the energy con-
sumption rate in a building while maximizing user comfort. Their predictive con-
troller promoted thermal comfort by operating HVAC units smartly, achieved by 
optimizing a suitable cost function with a Lagrangean dual method. Moroşan et al. 
(2010) designed a distributed MPC algorithm to reduce energy consumption of mul-
tizone buildings, but without compromising the thermal comfort of users. Despite 
halting iterations before convergence to keep computational cost low, the distributed 
algorithm achieved satisfactory performance. Scherer et al. (2013, 2015) developed 
a distributed interior-point algorithm for MPC to manage a limited energy source, 
while regulating temperature in a building to optimize user comfort. The distributed 
algorithm takes advantage of the energy resource constraint to allow a high degree 
of concurrency in the computations. Castilla et al. (2014) brought about a two-layer 
control system for HVAC units, whereby the bottom layer consists of PID control-
lers and the upper layer is a non-linear MPC. The control strategy maintains thermal 
comfort conditions in a bioclimatic building, considering the effects on users pro-
ductivity and energy consumption.

More recently, renewed interest in the dynamic control of buildings has emerged. 
Maasoumy et al. (2014) brought forth methodologies to handle model uncertainty in 
MPC for optimizing building energy consumption. The MPC methodologies were 
compared against a nominal controller, indicating that performance gains can be 
achieved by the robust controllers for a significant degree of uncertainty on state 
estimation and model parameters. Salakij et al. (2016) presented a prediction model 
for the heat and moisture transfer in buildings, which was validated and then com-
bined with a model-based predictive controller. A simulation analysis showed that 
the MPC control of HVAC units can achieve better performance than traditional 
control methods, in terms of energy consumption and building comfort conditions 
for users. Yu et al. (2017) validated the MPC approach of Salakij et al. (2016) by 
physical experiments in a climate-controlled chamber, showing that MPC can be 
effective and reduce the number of sensors required.

The literature on building energy management is mostly on centralized MPC, 
with a single controller collecting measurements and handling the computations. 
However, modern buildings are dynamic systems obtained by interconnecting dis-
tributed dynamic systems, each representing a room and the associated thermal con-
trol equipment. Moroşan et al. (2010) and Scherer et al. (2015) proposed distributed 
MPC to take advantage of this distributed structure. Nevertheless, a fully distributed 
approach is somewhat complex to implement due to the need of strong coordination.

In this paper, we propose hierarchical decompositions to split the computations 
between a master problem (centralized component) and a set of subproblems (dis-
tributed components), which for being fully or highly decoupled, could be solved 
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with multi-core and parallel hardware. Despite this potential of parallel computa-
tion, hierarchical and distributed algorithms are often slower than their centralized 
counter-parts. Thus, the main benefit of a hierarchical decomposition is not com-
putational, but rather organizational as it facilitates the expansion and reconfigura-
tion of the control system, a feature that stems from the simple coordination scheme 
and reduced information communication. Herein, hierarchical decompositions are 
developed for MPC of dynamically decoupled systems that share resources, such 
as electric power or chilled/hot water, being a suitable framework for energy build-
ing management. Three general methods are considered for hierarchical control and 
optimization, namely bilevel optimization, Benders and Lagrangean decomposition.

1.1  Contribution

To better relate this work with models and algorithms from the literature, we state 
below the contributions of this paper: 

1. A distributed reformulation of resource constraints that enables the decomposition 
of the augmented Lagrangean (of the resource-constrained MPC problem) into a 
set of loosely coupled subproblems for distributed computation.

2. A Lagrangean decomposition for solving the MPC problem with convergence 
guarantee, assuming problem convexity, and the use of the nonlinear Gauss–Sei-
del algorithm to solve the dual function in a decoupled manner.

3. A numerical analysis and qualitative comparison of three hierarchical decomposi-
tions, namely Bilevel, Benders, and Lagrangean.

4. A simulated study of MPC with hierachical decomposition for energy manage-
ment and temperature control in a building.

1.2  Organization

The paper is organized as follows. Section 2 presents the MPC problem for resource 
constrained dynamic systems, along with reformulations that are suitable for the 
decompositions. Section  3 discusses the implementation and reports numerical 
results of the decompositions for the control of dynamic systems. Section  4 pre-
sents simulation results of an application to the energy management of a building, in 
which a limited source of chilled water is distributed to HVAC units.

2  MPC formulation

We start by stating an MPC problem for the control of independent dynamic subsys-
tems that share limited resources—the baseline problem. Compact reformulations 
are proposed for the solution with bilevel optimization, Benders and Lagrangean 
decomposition. For the latter, we present a distributed representation of the resource 
constraints.
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2.1  Baseline problem

MPC uses a process model to convert a dynamic control problem into a series of static 
optimization problems, which are solved over time overlapping prediction horizons 
(Camacho and Bordons 2004). At the current time k, feedback is obtained by measur-
ing the system state x(k) and then an optimization problem is solved over the prediction 
horizon, but only the control signal u(k) for the current time is applied to the process. 
At the next sample time, k + 1 , the system state x(k + 1) is sampled and the process 
repeated.

It is worth mentioning that an incremental model in the state space was used for 
the MPC formulation. A regular state-space formulation in MPC strategy can lead 
to steady-state errors due to modeling errors or plant model mismatches. With an 
incremental formulation, the MPC problem achieves offset-free tracking of con-
stant references for systems without a zero at the origin (Ruscio 2013; Camacho 
and Bordons 2004). From a practical point of view, it is convenient to think about 
reducing the control effort to avoid excessive operations of the manipulators, and 
consequently, equipment wear. This formulation also brings the control increment 
decision variable, �um , given by the relation �um(k) = um(k) − um(k − 1) , and a pen-
alty for control signal variation in the cost function.

Let M = {1,… ,M} be the set of subsystems, R = {1,… ,R} be the set of 
resources, Nu define the control horizon, and Nx establish the prediction horizon for 
the outputs. Adjustable prediction and control horizons offer flexibility for control 
design. For instance, the control horizon can be shorter than the prediction horizon 
to simplify computations, and also because the controls are updated every time the 
horizon is rolled forward.

The MPC problem is given by: 

while, for each subsystem m ∈ M , being subject to:

(1a)

P ∶ min J =

M�
m=1

Nx�
j=1

‖ym(k + j�k) − wm(k + j)‖2
Qm

+

M�
m=1

Nu−1�
j=0

‖�um(k + j�k)‖2
Wm

(1b)xm(k + j|k) = Aj
m
xm(k) +

j∑
l=1

Aj−l
m
Bm�um(k + l − 1|k), j = 1,… ,Nx

(1c)ym(k + j|k) = Cmxm(k + j|k), j = 1,… ,Nx

(1d)um(k + j|k) =
{

um(k + j − 1|k) + �um(k + j|k), j = 0,… ,Nu − 1

um(k + j − 1|k), j = Nu,… ,Nx − 1

(1e)um(k − 1|k) = um(k − 1)
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and with limited availability of resource r = 1,… ,R, at time step j = 0,… ,Nx − 1:

in which, for each subsystem m ∈ M:

• xm(k) is the system state at time k, and xm(k + j|k) is the state prediction for time 
k + j calculated with the information available until time k.

• ym(k + j|k) is the predicted output for time k + j.
• wm(k + j) defines the desired output trajectory.
• um(k + j|k) is the future control input and �um(k + j|k) is the future control incre-

ment.
• Qm = Q�

m and Wm = W �
m
 are positive definite matrices that penalize the errors on 

trajectory tracking and control variation, respectively.
• xm(k) and um(k − 1) are known values with the initial conditions.
• Am , Bm , and Cm are system matrices of conformable dimensions.
• ‖x‖Q =

√
x�Qx is the vector norm induced by a positive definite matrix Q.

• ymin
m  , ymax

m
 , umin

m
 , umax

m
 , �umin

m
 , and �umax

m
 impose bounds on outputs, control sig-

nals, and control increments, respectively.
• smax

r
(k) is the resource r available at time k, and sr,m defines the rate of consump-

tion by subsystem m.

Notice that the MPC problem is of cooperative nature (Scattolini 2009), meaning 
that it seeks a Pareto solution induced by a weighted sum of the subsystem objec-
tives, with relative subsystem costs given by the matrices Qm and Wm.

Without the resource constraints (1i), the subsystems would be fully decoupled 
and could be controlled independently. A strategy for distributed optimization con-
sists in obtaining an approximation problem to render the subsystems decoupled, 
which can then be optimized with strategies such as coordinate descent. Approxi-
mations can be obtained with the augmented Lagrangean and the barrier function: 
the first leads to a dual method whose outer loop updates the Lagrange multipliers 
and penalty factor (Bertsekas 1995), whereas the second is a primal method with an 
outer loop that updates the centralization parameter (Boyd and Vandenberghe 2004; 
Camponogara and Scherer 2011). Such methods decouple the constraints; however, 
the subsystems become coupled in the objective through the quadratic penalty of the 
augmented Lagrangean or the barrier function.

Our work investigates other means to decompose the MPC problem into a fam-
ily of subproblems and to enable a high degree of decoupling. We consider bilevel 

(1f)ymin
m

≤ ym(k + j|k) ≤ ymax
m

, j = 1,… ,Nx

(1g)umin
m

≤ um(k + j|k) ≤ umax
m

, j = 0,… ,Nu − 1

(1h)�umin
m

≤ �um(k + j|k) ≤ �umax
m

, j = 0,… ,Nu − 1

(1i)
M∑

m=1

s�
r,m

um(k + j|k) ≤ smax
r

(k + j)
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optimization (Colson et al. 2007), Benders (Benders 1962) and Lagrangean decom-
position (Guignard and Kim 1987; Terrazas-Moreno et al. 2011). Hereafter the con-
dition “|k” will be omitted for the sake of simplicity.

2.2  Compact formulation

Problem P is recast in a compact, more convenient form as follows: 

in which zm = (xm(k + j), ym(k + j), um(k + j),�um(k + j) ∶ ∀j) is a vector with all 
the variables of subsystem m, s = (smax

r
(k + j) ∶ ∀r, j) is a vector with the resources 

available over time, and z = (zm ∶ m ∈ M) collects all the subsystem variables. 
Further, the vector functions hm , gm , and g represent respectively the equalities 
(1b)–(1e), inequalities (1f)–(1h), and the resource inequalities (1i).

2.3  Bilevel formulation

Let ss = (ssr,m(k + j) ∶ ∀r, j,m) be a vector of resource allocations, where ssr,m(k + j) 
is the resource r allocated to subsystem m, at time k + j . Then, P can be framed as a 
bilevel optimization problem (Colson et al. 2007; Chen et al. 2014), with the master 
problem given by 

(2a)min
z

f =

M∑
m=1

fm(zm)

(2b)s.t. for m = 1,… ,M ∶

(2c)hm(zm) = 0

(2d)gm(zm) ≤ 0

(2e)g(z) ≤ s

(3a)U ∶ min
ss

f (ss) =

M∑
m=1

fm(zm(ssm))

(3b)

s.t. for r = 1,… ,R, j = 0,… ,Nx − 1 ∶

M∑
m=1

ssr,m(k + j) ≤ smax
r

(k + j)

(3c)ssr,m(k + j) ≥ 0, ∀m ∈ M
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in which ssm = (ssr,m(k + j) ∶ ∀r, j) are the resources allocated to subsystem m, such 
that ss = (ss1,… , ssM) . The lower-level problem L consists of solving a set of sub-
problems {Lm} , one for each m ∈ M , being defined by 

Remark 1 The objective function f(ss) of the upper-level problem (3) is 
nonincreasing.

If the resource allocation increases from ss to ŝs = ss + �ss , �ss ≥ 0 , then the 
feasible set of the constraint (4d) may expand, while the other constraints of (4) are 
unaffected. Thus, fm cannot increase and so does not f(ss) increase.

2.4  Benders decomposition

Here, we begin by introducing the subproblems rather than the master problem for 
the Generalized Benders decomposition (Geoffrion 1972). For a feasible resource 
allocation ss, the optimality subproblem is given by 

in which Rm and Sm are suitable matrices1 that define the constraints (5d). Notice 
that bo(ss) induces an upper bound for a feasible resource allocation ss, meaning 

(4a)Lm(ssm) ∶ zm(ssm) = argmin
zm

fm(zm)

(4b)s.t. ∶ hm(zm) = 0

(4c)gm(zm) ≤ 0

(4d)
For all r = 1,… ,R, j = 0,… ,Nx − 1 ∶

s�
r,m

um(k + j|k) ≤ ssr,m(k + j).

(5a)BO(ss) ∶ bo(ss) = min
z

M∑
m=1

fm(zm)

(5b)
s.t. ∶ for m = 1,… ,M ∶

hm(zm) = 0

(5c)gm(zm) ≤ 0

(5d)Rmzm − Smssm ≤ 0

1 In the particular problem of concern, Sm is the identity matrix and Rmzm is effectively R̃mum for a suit-
able matrix R̃m , since only the terms s�

r,m
um(k + j) are needed.
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a vector ss that satisfies constraints (3b)–(3c) and also renders BO(ss) feasible. 
Clearly, bo(ss) can be computed in parallel as follows,

for which 

At iteration p of the Benders algorithm, let ss(p) be the resource allocation vector 
and assume that BO(ss(p)) is feasible. Let �(p)

m  be the Lagrange multipliers associated 
with the resource constraint (7d), at the optimal solution z(p)m  . Then, the following 
optimality cut can be added to the Benders master problem:

with �B being the lower bound for the overall objective of P. Due to the complemen-
tary conditions, the local constraints (7b) and (7c) do not play a part in the Benders 
cut. The decision space of the Benders master problem consists of the allocation 
vector ss and the lower bound �B.

For an infeasible resource allocation, the feasibility subproblem is solved: 

with em = (1, 1,… , 1) being a vector of suitable dimension and � a nonnegative 
scalar. The optimal � is obtained by solving an auxiliary subproblem only for the 
infeasible BOm’s. Let Minfeas = {m ∈ M ∶ BOm(ssm) is infeasible} . Then, BF(ss) is 
solved as follows:

(6)bo(ss) =

M∑
m=1

bom(ssm)

(7a)BOm(ssm) ∶ bom(ssm) = min
zm

fm(zm)

(7b)s.t. ∶ hm(zm) = 0

(7c)gm(zm) ≤ 0

(7d)Rmzm − Smssm ≤ 0

(8)�B ≥

∑
m∈M

fm(z
(p)
m
) +

∑
m∈M

�(p)
m

�[
Rmz

(p)
m

− Smssm
]

(9a)BF(ss) ∶ bf (ss) = min
�≥0,z

�

(9b)
s.t. ∶ for m = 1,… ,M ∶

hm(zm) ≤ � ⋅ em

(9c)− hm(zm) ≤ � ⋅ em

(9d)gm(zm) ≤ � ⋅ em

(9e)Rmzm − Smssm ≤ � ⋅ em
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with the following subproblem solved for all m ∈ Minfeas : 

Notice that if ssm is feasible for BOm , then the corresponding BFm will have an opti-
mal value bf (ssm) = 0 and the feasibility subproblem is implicitly solved. Assume 
that ss(p) is an infeasible allocation at iteration p. Let M(p) ⊂ M be the subset of 
subproblems such that bfm(ss

(p)
m ) = bf (ss(p)) . Then, the infeasibility cut is obtained as 

follows:

where z(p)m  is the solution to BFm(ss
(p)
m ) and �(p)

m,t is the respective Lagrange multipliers.
At iteration p an optimality cut is obtained by solving BO(ss(p)) , or else a feasi-

bility cut by solving BF(ss(p)) . Let O(p) and F(p) be the indices of the iterations for 
which an optimality and feasibility cut was respectively produced. Then, the Bend-
ers master problem at iteration p can be stated as follows: 

while being subject to:

(10)bf (ss) = max{bfm(ssm) ∶ m ∈ Minfeas}

(11a)BFm(ssm) ∶ bfm(ssm) = min
�m≥0,zm

�m

(11b)s.t. ∶ hm(zm) ≤ �m ⋅ em

(11c)− hm(zm) ≤ �m ⋅ em

(11d)gm(zm) ≤ �m ⋅ em

(11e)Rmzm − Smssm ≤ �m ⋅ em

(12)

∑
m∈M(p)

{
�(p)

m,b

�
hm(z

(p)
m
) − �(p)

m,c

�
hm(z

(p)
m
)

+�(p)

m,d

�
gm(z

(p)
m
) + �(p)

m,e

�[
Rmz

(p)
m

− Smssm
]}

≤ 0

(13a)BM(p) ∶ min
ss≥0,�B

�B

(13b)R ⋅ ss ≤ s

(13c)�B ≥

∑
m∈M

fm(z
(i)
m
) +

∑
m∈M

�(i)
m

�[
Rmz

(i)
m
− Smssm

]
, i ∈ O

(p)

(13d)

∑
m∈M(i)

{
�(i)

m,b

�
hm(z

(i)
m
) − �(i)

m,c

�
hm(z

(i)
m
)

+�(i)

m,d

�
gm(z

(i)
m
) + �(i)

m,e

�[
Rmz

(i)
m
− Smssm

]}
≤ 0, i ∈ F

(p)
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with R being a suitable matrix that expresses the resource constraint (3b). BM(p) is 
clearly a linear program.

2.5  Distributed constraint representation

In general, the augmented Lagrangean has some advantages in relation to the clas-
sical Lagrangean; the latter may have a dual gap and require a procedure to recover 
primal feasibility. Also the augmented Lagrangean enables the computation of a 
sequence of Lagrangean multipliers converging to the optimum of convex differenti-
able problems. However, the induced coupling from the relaxed constraint prevents 
the solution of the relaxed problem in a decomposed way, which in the case at hand 
are the resource constraints.

Fortunately, the resource constraints (1i) can be represented in a distributed man-
ner. Let ŝr,1(k) = smax

r
(k) be the available amount of resource r at time k. Now con-

sider the following family of constraints for m = 1,… ,M : 

in which ŝr,m(k) is the resource received by subsystem m, which is partly used by 
itself and partially transferred to the next subsystem in ŝr,m+1(k) . By adding up the 
constraints (14a), we obtain,

as ŝr,M+1(k) ≥ 0 , which shows that the distributed constraint family (14) is equiva-
lent to the original resource constraint (1i).

(14a)s�
r,m

um(k) + ŝr,m+1(k) = ŝr,m(k)

(14b)ŝr,m+1(k) ≥ 0

(15)

M∑
m=1

s�
r,m

um(k) +

M∑
m=1

ŝr,m+1(k) =

M∑
m=1

ŝr,m(k)

⟺

M∑
m=1

s�
r,m

um(k) +

[
M∑

m=2

ŝr,m(k) + ŝr,M+1(k)

]
= ŝr,1(k) +

M∑
m=2

ŝr,m(k)

⟺

M∑
m=1

s�
r,m

um(k) + ŝr,M+1(k) = ŝr,1(k)

⟺

M∑
m=1

s�
r,m

um(k) ≤ smax
r

(k)
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2.6  Lagrangean decomposition formulation

The distributed structure of the constraint family (14) enables the application of a 
Lagrangean decomposition, which consists in duplicating the variables that couple the 
subsystems and introducing consistency constraints (Guignard and Kim 1987). These 
variables are also known as consensus variables, as their values must agree to ensure a 
consistent solution for the entire system, a condition that can be imposed by constraints.

Let ŝr,m(k) be modeled by two variables (Boyd et al. 2011), namely ŝin
r,m

(k) to repre-
sent the resource available from the perspective of subsystem m, and ŝout

r,m−1
(k) to repre-

sent the residual resource made available to subsystem m by subsystem m − 1 , if m ≥ 2 , 
whose values should agree for consistency. For subsystem m = 1 , ŝin

r,m
(k) is the total 

resource smax
r

(k) available. Then, a compact formulation of P is obtained, 

with ẑm = (zm, ŝ
in
r,m

(k + j), ŝout
r,m

(k + j) ∶ ∀r, j) , ẑ = (̂zm ∶ m ∈ M) , and the constraints 
ĥ and ĝ given by: 

(16a)min
ẑ

f =

M∑
m=1

fm(zm)

(16b)
s.t. for m = 1,… ,M ∶

hm(zm) = 0

(16c)gm(zm) ≤ 0

(16d)ĝ(̂z) ≤ 0

(16e)ĥ(̂z) = 0

(17a)
For all m ∈ M, r ∈ R, j ∈ N ∶

s�
r,m

um(k + j) + ŝout
r,m

(k + j) = ŝin
r,m

(k + j)

(17b)ŝin
r,m

(k + j), ŝout
r,m

(k + j) ≥ 0

(17c)
For all r ∈ R, j ∈ N ∶

ŝin
r,1
(k + j) = smax

r
(k + j)
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in which R = {1,… ,R} and N = {0,… ,Nx − 1}.
The reformulation (16) and (17) of P enables a parallel implementation of the aug-

mented Lagrangean algorithm, which is developed in the following section.

3  Solution methods

Three hierarchical methods are presented for dynamic optimization of the resource 
constrained systems. All methods allow parallel and distributed computation, 
whereby a master problem coordinates the solution of subproblems that can be 
solved concurrently or simultaneously.

3.1  Bilevel optimization

The bilevel formulation (3) and (4) for the MPC problem can be solved in two ways: 

1. The first strategy makes explicit the first-order KKT conditions of the lower-level 
problems in the master problem. The resulting problem is a nonconvex NLP 
though, due to the complementary conditions involved in the inequality con-
straints and their respective Lagrange multipliers. Such a problem is a special case 
of Mathematical Programming with Equilibrium Constraints (MPEC) (Colson 
et al. 2007).

2. The second approach stems from the optimization of the master in the space 
of resource allocations ss, followed by the optimization of the lower-level sub-
problems and the computation of sensitivities �fm∕�ss to guide the upper level 
algorithm.

The MPEC approach is not desirable for being more complex than the original prob-
lem (a quadratic problem, QP). Instead, we adopt the two-level approach in which 
the master optimizes the resource allocations with the aid of the subproblem sensi-
tivities. Besides enabling the parallel solution of the subproblems, the sensitivities 
can be easily calculated because the objective function of the master is a weighted 
sum of the objectives of the subproblems. Therefore, the master problem U given 
by Eq. (3) can be solved by any gradient-based method, here solved by the interior-
point method (IP) of Wächter and Biegler (2006).

For the application of the bilevel optimization approach, the computation of the 
derivatives remains to be explained. The sensitives can be conveniently computed 
from the solution of the following variation of the lower-level subproblem, 

(17d)
For all m ∈ M ⧵ {M}, r ∈ R, j ∈ N ∶

ŝout
r,m

(k + j) = ŝin
r,m+1

(k + j)
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such that 𝜕f (ssm)∕𝜕ssr,m(k + j)|ss=ss⋆ = 𝜆r,m(k + j) in which �r,m(k + j) is the 
Lagrange multiplier associated with constraint (18e) for the KKT conditions at the 
solution zm(ss⋆m) . Notice that the allocation vector ss⋆

m
 is informed by the master 

problem, which is then taken as fixed in (18), whereas ssm are local variables.
The bilevel approach, just described, assumes that the initial allocation ss ren-

ders the subproblems {Lm(ssm)} feasible, otherwise the sensitivities would not be 
defined. However, infeasibility could be handled with an �1 penalty based on a con-
straint relaxation, akin to the phase I strategy used in convex optimization (Boyd and 
Vandenberghe 2004). The phase I strategy defines the subproblem Lm much like the 
feasible subproblem of the Benders decomposition, whereby the slack variable �m is 
minimized and the constraints are like in BFm . The objective function of the master 
would be the sum of the �m variables. If a solution ss is found to drive the master’s 
objective to zero, then ss is a feasible allocation which can be used as a starting 
point.

3.2  Benders decomposition

The hierarchical approach derived from Generalized Benders decomposition (Geof-
frion 1972; Benders 1962) consists of solving the master problem, updating the 
lower bound, and solving the subproblems. If the latter are all feasible, and solutions 
are obtained, then the upper bound is updated and an optimality cut is produced. 
Otherwise, the upper bound is not updated and the feasibility subproblems must 
be solved to generate a feasibility cut. The process is repeated until convergence is 
achieved.

Algorithm  1 formalizes the Benders decomposition. The algorithm does not 
require a feasible starting point, since it can produce a feasible solution if one exists 
with the aid of the feasibility cuts.

(18a)Lm(ss
⋆
m
) ∶ zm(ss

⋆
m
) = arg

zm

min fm(zm)

(18b)s.t. ∶ hm(zm) = 0

(18c)gm(zm) ≤ 0

(18d)
For all r ∈ R, j ∈ N ∶

s�
r,m

um(k + j|k) ≤ sr,m(k + j)

(18e)sr,m(k + j) − ss⋆
r,m

(k + j) = 0
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Algorithm 1: Benders Decomposition Algorithm
input: initial lower bound lb(0) := −∞ and upper bound ub(0) := ∞, and tolerance

τ > 0;
O(0) := ∅, F(0) := ∅ ;
p := 0;
repeat

Solve the master problem BM(p) given in (13) to obtain a solution ss(p) and
objective α

(p)
B ;

Update lower bound: lb(p+1) := max{lb(p), α(p)
B };

Solve {BOm(ss(p)m )}m∈M and obtain a solution z(p) for BO(ss(p));
if z(p) is feasible for BO(ss(p)) then

Update upper bound: ub(p+1) := min{ub(p), f(z(p))};
Add an optimality cut (8) to O(p) and obtain O(p+1);
Let F(p+1) := F(p);

else
Keep upper bound: ub(p+1) := ub(p);

Solve {BFm(ss(p)m )}m∈M and obtain a solution (ss(p), γ(p)) for BF (ss(p));
Add a feasibility cut (12) to F(p) and obtain F(p+1);
Let O(p+1) := O(p);

p := p+ 1;
until (ub(p) − lb(p)) ≤ τ ;
output: z(p), lb(p), ub(p)

3.3  Lagrangean decomposition

The reformulation (16) and (17) of the MPC problem couples the subsystems 
only through the consistency constraint (17d). The idea here is to dualize (17d) 
to obtain an approximation problem and solve it with the augmented Lagrangean 
algorithm. The augmented Lagrangean of (16) and (17), obtained by dualizing 
(17d), leads to the Lagrangean function l(�,�) computed as follows

while being subject to constraints (16b)–(16d) and (17a)–(17c), in which 
� = (�r,m(k + j) ∶ m ∈ M ⧵ {M}, r ∈ R, j ∈ N) is the vector of Lagrange multipli-
ers associated with (17d) and � is the penalty factor.

Remark 2 The augmented Lagrangean problem L(�,�) is convex, since its objective 
is a convex function and the constraints are all affine or linear.

Let us reformulate L in an equivalent form that brings about a distributed 
structure. The dual function (19) can be recast as 

(19)

L(�,�) ∶ l(�,�) = min
ẑ

l(̂z) =

M∑
m=1

fm(zm)

−
∑

m∈M⧵{M}

∑
r∈R

∑
j∈N

�r,m(k + j)
[
ŝout
r,m

(k + j) − ŝin
r,m+1

(k + j)
]

+
�

2

∑
m∈M⧵{M}

∑
r∈R

∑
j∈N

‖‖‖ŝ
out
r,m

(k + j) − ŝin
r,m+1

(k + j)
‖‖‖
2
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in which

which shows that subsystem m is only coupled to subsystem m − 1 (if m > 1 ) and 
to m + 1 (if m < M ), as they are not coupled by constraints. We can harness the dis-
tributed structure with the Nonlinear Gauss–Seidel (GS) algorithm (Bertsekas and 
Tsitsiklis 1997) to yield a high degree of parallelism. Clearly L can be framed as the 
problem

where 𝛺 ⊆ ℜn is the feasible set, such that � = �1 ×⋯ ×�M and �m is the feasi-
ble set for subproblem m. The GS algorithm updates the decision vector ẑ  , at itera-
tion p, coordinate by coordinate:

Notice that when a subsystem m is being updated, the most recent information about 
the other variables is used. The GS iterative process converges under the following 
conditions (Bertsekas and Tsitsiklis 1997):

Theorem 1 Assume that:

• �1,�2,… ,�M are nonempty closed convex subsets of ℜn1 ,ℜn2 ,… ,ℜnM 
respectively, in which nm is the dimension of ẑm and n = n1 + n2 +⋯ + nM.

• l ∶ ℜn
→ ℜ is continuously differentiable and convex on the set 

� = �1 ×�2 ×⋯ ×�M.
• for each m, l is a strictly convex function of ẑm , when the values of the other com-

ponents of ẑ  are held constant.

(20a)l(̂z) =

M−1∑
m=1

[
fm(̂zm) − fm,m+1(̂zm, ẑm+1)

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

lm (̂zm ,̂zm+1)

+fM (̂zM)

(20b)

fm,m+1 =
∑
r∈R

∑
j∈N

{
�r,m(k + j)

[
ŝout
r,m

(k + j) − ŝin
r,m+1

(k + j)
]

−(�∕2)
‖‖‖ŝ

out
r,m

(k + j) − ŝin
r,m+1

(k + j)
‖‖‖
2
}

(21)min
ẑ∈�

l(̂z) =
∑

m∈M⧵{M}

lm(̂zm, ẑm+1) + lM (̂zM)

(22)

�z(p+1)
m

= arg min
�zm ∈ 𝛺m

l(�z(p+1)
1

,… ,�z(p+1)
m−1

,�zm,�z
(p)

m+1
,… ,�z(p)

M
)

= arg min
�zm ∈ 𝛺m

−
{
fm−1,m(�z

(p+1)

m−1
,�zm) ∶ m > 1

}

+ fm(�zm) −
{
fm,m+1(�zm,�z

(p)

m+1
) ∶ m < M

}
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Let {̂z(p)}p be the sequence generated by the nonlinear Gauss–Seidel algorithm, 
assumed to be well defined. Then, every limit point of {̂z(p)}p minimizes l over �.

It can be noticed in the iterative process (22) that the update of 
the variables ẑm only affects, or otherwise are affected by, the vari-
ables ẑm−1 and ẑm+1 . This structure allows the set M of subsystems to 
be partitioned in two sets, Modd = {m ∈ M ∶ m is an odd number} and 
Meven = {m ∈ M ∶ m is an even number} , which can be optimized in parallel by 
the GS algorithm. Thus, the GS iterative process can be carried out, according to the 
iteration number p, as follows: 

• if the iteration p is an odd number: 

• if the iteration p is even: 

Algorithm 2 formalizes the augmented Lagrangean method. Being a dual method, 
a feasible starting point is readily obtained and a primal lower bound is predicted at 
each iteration.

Algorithm 2: Augmented Lagrangean Algorithm
input: initial Lagrange multipliers λ(0), penalty µ(0), and update factor β > 1;
q := −1;
repeat

q := q + 1;
Solve L(λ(q), µ(q)) with the GS algorithm (23) to obtain a solution ẑ(q) with
objective l(q);

for m ∈ M do
for r ∈ R do

for j ∈ N do

λ
(q+1)
r,m (k+ j) := λ

(q)
r,m(k+ j)−µ(q) ·

[
ŝ
out,(q)
r,m (k + j)− ŝ

in,(q)
r,m+1(k + j)

]
;

µ(q+1) := β · µ(q);
until convergence of {z(q)};
output: z(q), l(q)

(23a)

⎧
⎪⎨⎪⎩

ẑ
(p+1)
m = arg

ẑm∈�m

min l(̂z
(p)

1
,… , ẑ

(p)

m−1
, ẑm, ẑ

(p)

m+1
,… , ẑ

(p)

M
), ∀m ∈ Modd

ẑ
(p+1)
m = ẑ

(p)
m , ∀m ∈ Meven

(23b)

⎧⎪⎨⎪⎩

ẑ
(p+1)
m = ẑ

(p)
m , ∀m ∈ Modd

ẑ
(p+1)
m = arg

ẑm∈�m

min l(̂z
(p)

1
,… , ẑ

(p)

m−1
, ẑm, ẑ

(p)

m+1
,… , ẑ

(p)

M
), ∀m ∈ Meven
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3.4  Numerical experiments
The experiments aim to validate the hierarchical approaches and obtain insights into 
their performance.

Instances of the MPC problem were obtained in a random fashion by sampling 
the parameters from uniform distributions. Specifically, the dynamic matrices 
were sampled from a uniform distribution in the range [0, 1], with all subsystems 
having the following dimensions: xm ∈ ℝ

2 , ym ∈ ℝ , and um,�um ∈ ℝ
2 . The error 

cost matrix Qm was the identity I, while the control variation cost matrix Wm was 
0.1I. The number of subsystems were chosen from the set {20, 40, 80, 120} . The 
control and prediction horizons had the same length, being chosen from the set 
{4, 6, 8, 10, 12} . Bounds for the variables were set as follows: ymin = −4 , ymax = 4 , 
umin = 0 , umax = 3 , �umin = −3 , and �umax = 3 . One resource was shared by the sub-
systems with availability smax = 2 for all sample times.

The algorithms were implemented in the Julia language (Bezanson et al. 2017) 
using the solvers IPOPT and Gurobi, which offer a high level interface for solving 
optimization problems. The implementations were based on a single processor, with 
parallel iterations emulated serially. A maximum computation time of 600 s was set 
for all algorithms. Details are given below:

• Bilevel The bilevel approach was relatively simple to implement because the 
subproblems Lm(ss⋆m) are QPs derived from the MPC problem, as defined in 
Eq.  (18). The subproblems were solved with Gurobi. The master problem was 
solved with IPOPT, for which we provided the objective derivatives from the 
Lagrange multipliers of the subproblems. The tolerance was set at 10−4 for both 
solvers.

• Benders The Benders approach was arguably the most complex to implement. 
Besides keeping track of Lagrange multipliers for the constraints, two types 
of subproblems were implemented: one for the optimality cut which produces 
an upper bound when feasible, and the other for the feasibility cut. The master 
and subproblems were solved by Gurobi with a tolerance of 10−4 . The duality 
gap tolerance was set at � = 10−4.

• Lagrangean Taking advantage of the problem structure, the Lagrangean dual 
(21) was solved with the Gauss–Seidel method (23) implemented in the Julia 
language. The subproblems in (23) were solved with IPOPT for each subsys-
tem m, while holding the neighboring variables fixed. The parameters for the 
algorithm were: �(0) = 0 , � = 1.02 , �(0) = 0.1 , and a tolerance for infeasibility 
of 10−5 . The Lagrangean approach was relatively simple to implement.

The results of the numerical experiments appear in Table 1 regarding the objec-
tive value, and in Table 2 the results regarding the computational time. The col-
umn labeled f⋆ gives the optimal objective, which was obtained by solving the 
MPC problem in a centralized manner using Gurobi.

To illustrate the performance of the approaches, we present the trajectory of 
their iterations for the problem instances with M = 40 subsystems. For the bilevel 
approach, Fig. 1 shows the percent deviation of the solution with respect to the 
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optimum as a function of CPU time (in seconds). For the Benders decomposition, 
Fig.  2 provides the percent deviation of the primal and dual solutions. For the 
Lagrangean decomposition, Fig. 3 shows the relative deviation of the dual solu-
tion to the optimum and its infeasibility measure, being defined as the �1 norm of 
the consistency constraints (17d).

3.5  Discussion

The implementations and the numerical experiments elicit some remarks:

• The bilevel optimization was the simplest to implement, since the solution of 
the subproblems and sensitivity computations were transparent for the master 
solver. The approach consistently converged to the optimum with the given 
tolerance, as illustrated in Fig. 1. The bilevel approach was somewhat slower 
than the Lagrangean decomposition, but much faster than Benders.

• The Benders decomposition was the most complex strategy for implementation, 
as it requires to solve the optimality and feasibility problems. This approach was 

Table 1  Computational analysis 
of hierarchical decompositions: 
objective function

M Nx f⋆ Decompositions

Bilevel Lagrange Benders

20 4 0.1328 0.1328 0.1328 0.1856
6 0.5196 0.5196 0.5196 0.5939
8 4.3114 4.3114 4.3114 4.4041

10 32.7168 32.7168 32.7168 32.8272
12 226.7523 226.7523 226.7523 226.8803

40 4 0.6702 0.6702 0.6702 0.8087
6 2.7449 2.7450 2.7450 3.2688
8 21.1918 21.1918 21.1918 21.9595

10 161.0574 161.0574 161.0574 162.0576
12 1171.3187 1171.3187 1171.3187 1172.5401

80 4 1.2777 1.2777 1.2777 1.7551
6 5.4551 5.4551 5.4551 6.3938
8 42.3531 42.3531 42.3531 43.7159

10 321.3196 321.3196 321.3196 323.1018
12 2333.7309 2333.7310 2333.7310 2335.9122

120 4 2.8080 2.8080 2.8080 3.6255
6 9.1553 9.1554 9.1553 10.9149
8 64.4063 64.4067 64.4063 67.1715

10 482.7852 482.8046 482.8047 486.5243
12 3501.3631 3501.3631 3501.3838 3506.0097
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the least efficient, reaching the maximum CPU limit without reaching the toler-
ance for the primal-dual gap, and often not reaching the optimum. A possibility 
to reduce computational time would be to solve the dual of the master, which 
could be warm started since cuts render suboptimal the incumbent dual solution, 
rather than primal infeasible. Figure 2 illustrates the slow convergence, specially 
regarding the lower bound.

Table 2  Computational analysis 
of hierarchical decompositions: 
CPU time (in seconds)

M Nx Centralized Decompositions

Bilevel Lagrange Benders

20 4 0.0699 1.89 0.0155 600
6 0.0142 1.92 0.0245 600
8 0.0202 2.49 0.0340 600

10 0.0273 3.41 0.0457 600
12 0.0342 3.10 0.0579 600

40 4 0.0145 45.28 7.05 600
6 0.0394 66.02 13.79 600
8 0.0547 49.80 22.70 600

10 0.0544 197.85 37.96 600
12 0.0654 199.10 72.68 600

80 4 0.0280 119.62 14.42 600
6 0.0518 115.65 28.09 600
8 0.0924 184.68 55.06 600

10 0.1193 335.89 158.28 600
12 0.1424 248.19 207.26 600

120 4 0.0600 138.66 21.87 600
6 0.0913 118.01 41.17 600
8 0.1260 189.86 80.62 600

10 0.2037 600.00 256.60 600
12 0.2476 442.79 367.49 600

Fig. 1  Solution trajectories obtained by the bilevel approach for the system with M = 40 subsystems, 
considering a varying length Nx for the prediction horizon
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        The generation of multiple Benders cuts as proposed by You and Gross-
mann (2013), one for each subsystem, was applied but its performance proved to 
be inferior to the standard optimality and feasibility cuts.

Fig. 2  Solution trajectories obtained by Benders decomposition for the system with M = 40 subsystems, 
considering a varying length Nx for the prediction horizon

Fig. 3  Solution trajectories obtained by Lagrangean decomposition for the system with M = 40 subsys-
tems, considering a varying length Nx for the prediction horizon
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• The Lagrangean decomposition was relatively simple to implement. It converged 
to the optimum at a faster pace than the other approaches, with further iterations 
needed to drive the consistency constraint towards feasbility. This behavior is 
showcased in Fig. 3.

• Not surprisingly, the solution time of the centralized problem is considerably 
lower than the decomposition approaches as shown in Table 2. The overhead on 
communications and the solution of multiple problems imposes additional com-
putational costs.

             The benefit of the hierarchical decompositions is organizational, as they 
enable the control system to be reconfigured locally and expanded with reduced 
coordination. Notice that the signals communicated between the master prob-
lem and subproblems are relatively simple, consisting of resource allocations 
or Lagrange multipliers (from master to subsystems), and sensitivities, cuts or 
resource usage (from subsystems to master). The master problem does not need 
to have detailed information on the subproblems.

4  Application to HVAC systems

This section reports on results yielded by the hierarchical approach applied to a rep-
resentative case study of energy management. The problem concerns the distribution 
of chilled water to HVAC units of a building in order to promote thermal comfort.

4.1  CIESOL case study

For the purpose of evaluation and illustration of the methods developed, a practical 
study was carried out in the system represented in Fig. 4. This system is a model 
of the solar plant located at the Campus of the University of Almería, in the South 
East of Spain, being part of Centro de Investigación de Energía Solar (CIESOL), as 
described by Pasamontes et al. (2009).

This system involves the operation of the air-conditioning plant in an efficient 
building, for which the energy is generated by a solar plant and which should be 
distributed to a series of HVAC systems (each room of the building). In a simplified 
way, water fluid is used to transfer heat between the supply and consumers.

The circuit consists of a pipe that connects the absorption machine to the HVAC 
subsystems of the CIESOL building. Near the absorption machine there is a pump 
which delivers hot or chilled water, and in each room there is a heat exchanger, here 
considered a HVAC unit, that has a controlled valve which is used to regulate the 
flow in the HVAC unit. It should be mentioned that the cycle of the fluid energy is 
closed, that is, the fluid returns to the pump after passing through the HVAC sys-
tems. Physical and operational details of this air-conditioning system are found in 
Pasamontes et al. (2009) and Castilla et al. (2011).

Considering only the set of rooms of the building, the flow of water is divided by 
the control system to promote thermal comfort to the users. In each room, there is a 
heat exchanger (fancoil) governed by the following dynamics (Álvarez et al. 2007): 
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These equations show that the fancoil rate of chilled water ( q̇w ) and fan speed ( va ) 
can be manipulated to induce thermal comfort inside the room. Figure 5 illustrates 
the fancoil. More specifically, the HVAC is modeled as a parallel-flow of water and 
air, which both enter the exchanger at the same time and travel through the fancoil 

(24a)
dTw,o

dt
= −q̇w

(Tw,o − Tw,i)

Vw

+
1

𝜏w
(Ta,imp − Tw,o)

(24b)
dTa,imp

dt
= −va

(Ta,imp − Ta,ret)

L
−

1

�a
(Ta,imp − Tw,o)

Fig. 4  Solar cooling/heating installation scheme. (Extracted from Scherer et al. 2013)

Fig. 5  Schematic of HVAC fancoil. (Extracted from Scherer et al. 2013)
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in parallel. The subscript w refers to the variables associated with water and a with 
air, and the subscripts i, o, imp, and ret mean input, output, impulse, and return, 
respectively.

In this case, the rooms are connected in series and the available resource may 
be depleted, reducing cooling efficiency in the environments located farther away 
from the pump. For the controller development, the linearized model of this system 
was adopted, considering the ratio given by the input water flow ( q̇w ) and output air 
temperature ( Ta,imp ). For this specific case, the linearization considered constant the 
input variables q̇w = 2.5 m 3/s, Tw,i = 8 ◦C , Ts = 3 s (sample time), and Vimp = 0.4 
m 3/s. The system is linearized using these constant values and an operating point 
within 100 s after the start of operation, allowing for a steady state. After the state-
space matrices are obtained, an expansion is carried out to accommodate the system 
outputs at the state vector, leaving the model in the desired shape for the application 
framed in the MPC model of Eq. (1).

4.2  Simulation experiments

The objective function adopted seeks to minimize the error of reference temperature 
tracking, while minimizing the flow use of the plant. The set of constraints must 
encompass maximum and minimum limits of output, control, and control variation. 
For the experimental set-up, the resource consists of the available rate of chilled 
water, modeled as smax

r
(k) , which vary over time depending on the prevailing condi-

tions of the solar plant. Putting together the dynamic models for each HVAC unit, 
the constraints on outputs and control signals, and the resource constraints, we 
arrive at the MPC formulation given by Eq. (1).

The MPC problem was solved using the bilevel decomposition, for being rela-
tively simple to implement and its good performance in the numerical experiments. 
The Lagrange decomposition could be selected as well, since it consistently reached 
a nearly optimal solution after a few iterations. Actually, because these approaches 
produce optimal solutions, their control performance should approach the perfor-
mance obtained by solving the MPC problem in a centralized fashion. The bilevel 
decomposition was implemented in Matlab using the YALMIP toolbox (Löfberg 
2004), and fmincon and quadprog to solve the master and subproblems. The 
algorithm was sufficiently fast to reach a nearly-optimal solution within the sam-
pling time. Given this characteristic of fast convergence, it was possible to consider 
that the computational delay is not an issue in this case (Wang 2009). Thereby, the 
MPC was implemented using an ideal formulation, without taking into account this 
kind of delay in the system model.

For the simulations, the following parameters were adopted: Nu = 10 , Nx = 30 , 
Qm = I and Wm = 5I , where I is an identity matrix of suitable dimension. To sim-
plify the problem and facilitate the visualization of the results, the references in all 
the subsystems will be 18 ◦C . However, any other configuration is admissible. With 
respect to the simulation environment, a simulator of the CIESOL plant that adheres 
to the aforementioned nonlinear dynamics was employed. Implemented in Matlab 
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with Simulink, this simulator receives real data from the operation of the solar plant 
and generates the signals at any point of interest.

For the case study, the temperature and flow signals are obtained from the simula-
tor. The control algorithm is executed and the current control value is fed back into 
the simulator to be implemented in each subsystem. No control signal was applied 
during the first 3 min of the simulation, which explains the initial behavior observed 
in the simulation analysis that follows. This policy was followed because the varia-
bles were not in a steady mode, which could generate distorted values for the control 
algorithm and the state observers.

4.3  Simulation and comparison of results

For the purpose of comparison, simulations were performed in three scenarios:

• The first one uses a PID controller in each HVAC system,
• the second uses isolated MPC controllers in each environment, not taking into 

account aspects of cooperation between them, and
• the last scenario uses the proposed hierarchical decomposition to solve the MPC 

problem given by Eq. (1).

The simulation results illustrated in Figs. 6, 7, and 8 provide three subplots, present-
ing the plant behavior obtained for a 30-min simulation run. Even for a small time 
window, remarkable characteristics of the operations can be noticed.

The top most plot depicts the output temperatures in each subsystem, along with 
the output temperature of the water coming from the solar plant. The middle plot 
shows the control actions (water flows) which begin after 3 min of operation. The 

Fig. 6  System behavior under PID control
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bottom most plot presents the available water flow over time (smax ) and the sum of 
the control actions. A discussion on the results of the three scenarios follows: 

1. In the first test, the system behavior was obtained by PID controllers. Their use is 
justified by the simplicity of implementation, however the analyses demonstrate 
that the problem is not so simple, given the effects of the coupling constraint. 
A digital PID was implemented and tuned with the IMC method (Åström and 
Wittenmark 1997; Skogestad 2003), with post manual adjustment to obtain a 
good balance between reference tracking and input disturbance rejection. The 
parameters used were Kc = −2.50 , Ti = 50.0 , and Td = −0.3125.

Fig. 7  System behavior under non-cooperative distributed MPC

Fig. 8  System behavior induced by the hierarchical decomposition
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        Figure 6 shows the behavior for the tested settings under PID control. Notice 
that when enough resources are available, like at minute 6, all environments 
reach their reference. However, when the resources are not sufficient, the obtained 
results are not satisfactory due to the non-cooperative control, which causes the 
environments at the end of the water pipeline to suffer from the depletion of 
resources. At some points in time it is possible to observe that even output y3 is 
affected by the lack of resources. As shown in Fig. 6, the temperature at HVAC 
environment 4 deviates significantly from the 18 ◦C reference, indicating that the 
PID approach is not satisfactory.

2. For the second test case, predictive controllers were used in each environment, but 
without taking into account the behavior of their neighbors, a strategy regarded as 
non-cooperative distributed MPC (Scherer et al. 2015). Such a control structure is 
relatively simple to implement, which would be ideal if there was no shortage of 
resources. The top plot of Fig. 7 gives the output temperatures of each subsystem 
and the solar plant. The middle plot presents the water flows (control actions) for 
the environments. The bottom plot depicts the total water rate output by the solar 
plant, and the total rate consumed by the HVAC units.

        As in the case of PID controllers, the strategy proved to be inadequate for 
this type of problem. The solution presented is far from an optimal solution to 
the problem. One can easily notice that subsystem 4 can not keep track for the 
reference at 18 ◦C , which causes even subsystem 3 to raise its temperature. This 
behavior is verified in the middle plot of the figure, where control actions are 
reduced to zero because there is no available resource for HVAC units 3 and 4 
during certain periods of time.

3. Finally, the bilevel decomposition was applied for the solution of the MPC prob-
lem, whose results are shown in Fig. 8.

  The simulation results demonstrate that a significant improvement in perfor-
mance is obtained by the hierarchical decomposition, which managed to track the 
room temperatures equally around the reference at 18 ◦C.

The simulation analysis showed that hierarchical decompositions can be effective 
for MPC of resource-constrained dynamic systems. Specifically, the hierarchical 
decomposition implemented with bilevel optimization consistently converged to the 
solution of the MPC problem (1), inducing thermal comfort for all environments of 
the building. Besides that, the examples showed that the problem in question is not 
trivial, requiring a controller that oversees the whole plant, or which uses problem 
decomposition strategies to achieve an optimal result.

5  Final remarks

The thermal control system in a building is a dynamic system that arises from the 
interconnection of dynamic HVAC subsystems, one for each room, which share 
limited energy resources. In this work, such a distributed structure was harnessed 
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by hierarchical approaches that split the computations between a master problem, 
responsible for coordination, and a set of subproblems that can be solved concur-
rently or in parallel. To that end, hierarchical approaches were derived from bilevel 
optimization, Benders and Lagrangean decompositions for the energy management 
and thermal regulation in buildings. The performance of these decompositions were 
assessed in numerical experiments, which consisted in solving the MPC problem for 
a host of dynamic systems. Among these approaches, bilevel decompositions was 
applied for the energy management and temperature regulation of the simulation 
model of the CIESOL building in Almeria, Spain.

A number of extensions and applications can be considered for future work:

• The system model may have the energy resource as a variable, rather than a 
given constant, in which case the objective would account for the energy cost. In 
such a situation, the objective of the master may be in conflict with the goals of 
the subsystems, a situation that would be suitable for bilevel decomposition.

• An extension arises from the application to continuous time systems, with the 
dynamics modeled by algebraic differential equations.

• The performance of Benders decomposition could be improved with regulariza-
tion techniques, such as level regularization and local branching (Rei et al. 2009).
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