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1 Introduction

Uncertainty is a crucial aspect in process systems engineering as there are often uncertainties
present in parameters such as product demands and raw material prices (Grossmann et al., 2016).
Optimizing for a given nominal or expected condition can lead to decisions that are suboptimal
or deficient in robustness. Stochastic programming is an optimization framework that deals with
decision making under uncertainty (Birge and Louveaux, 2011). In stochastic programming, it is
assumed that the probability distributions of the uncertain parameters are known a priori. The
uncertainties are typically approximated as some discrete realizations of the uncertain parameters
as an approximation to the real continuous probability distribution. For example, the realizations
of the demand of a product can have three different values which represent high, medium, and
low demand, respectively. Each realization is defined as a scenario with a given probability. The
objective of stochastic programming is to optimize the expected value of an objective function
(e.g., the expected cost) over all the scenarios.

A special case of stochastic programming is two-stage stochastic programming. Specifically,
stage 1 decisions are made ‘here and now’ at the beginning of the period, and are then followed by
the resolution of uncertainty. Stage 2 decisions, ‘wait and see’ or recourse decisions, are taken as
corrective action at the end of the period. One common type of two-stage stochastic program is 0-1
mixed-integer linear program with continuous recourse in the second stage presented in (1). Ω is
the set of scenarios. τω is the probability of scenario ω and

∑
ω∈Ω τω = 1. x represent the first stage

decisions. Let I = {1, · · · , n} be the index set of all the first stage variables. I1 ⊆ I is the subset
for indices of the binary first stage variables. yω represents the second stage decisions in scenario ω.
The uncertainties are reflected in the matrices (vectors), Wω, hω, Tω. (1) is often referred to as the
deterministic equivalent or the extensive form of the two-stage stochastic program. Throughout
this paper, we assume that the two-stage stochastic programs have relatively complete recourse,
i.e., any solution x that satisfies the first stage constraints has feasible recourse decisions in the
second stage. However, solving (1) directly can be prohibitive when the number of scenarios is
large because the computational time generally grows exponentially with the number of scenarios.

min z = cTx+
∑
ω∈Ω

τωd
T
ωyω

s.t. Ax ≤ b

Wωyω ≤ hω − Tωx ∀ω ∈ Ω

x ∈
{
x : xi ∈ {0, 1},∀i ∈ I1, 0 ≤ x ≤ xub

}
yω ∈

{
y : y ≥ 0

}
(1)

Due to the difficulties in solving the deterministic equivalent problem, decomposition algorithms
such as Lagrangean decomposition (Guignard, 2003; Oliveira et al., 2013), progressive hedging
(Rockafellar and Wets, 1991), and Benders decomposition (Laporte and Louveaux, 1993; Van Slyke
and Wets, 1969) can be applied to solve problem (1) more effectively. Lagrangean decomposition
makes a copy of the first stage decisions for each scenario and adds non-anticipativity constraints
(NACs) to ensure that the first stage decisions made for all the scenarios are the same. The NACs
are then dualized so that the deterministic equivalent problem is decomposed into scenarios which
can be solved in parallel. The Lagrangean multipliers can be updated using the subgradient method
or the cutting plane method (Oliveira et al., 2013; Kim and Zavala, 2015). A lower bound can be
obtained at each iteration of Lagrangean decomposition, which is the summation of the optimal
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value of the the Lagrangean subproblems. However, the upper bounding procedure of Lagrangean
decomposition is in general a heuristic. For algorithmic advances and software implementation of
the Lagrangean decomposition, we refer to the work of Kim and Zavala (2015).

Progressive hedging (Rockafellar and Wets, 1991) (PH) is a scenario decomposition method that
is motivated by the augmented Lagrangean method (AL) and the alternating direction method of
multipliers (ADMM) (Boyd et al., 2011). The NACs are also dualized and quadratic terms are
added to the objective function of each subproblem to penalize the deviation from the solution
that satisfies the NACs. At each iteration of PH, a heuristic algorithm can be applied to obtain
an upper bound. Gade et al. (2016) prove that a lower bound can be obtained from PH, which
is similar to solving the Lagrangean subproblems. However, PH is only guaranteed to converge
for problems that are continuous and convex (Rockafellar and Wets, 1991). Watson and Woodruff
(2011) propose several heuristics to accelerate the convergence of PH for stochastic mixed-integer
programs (SMIP). But PH is in general a heuristic algorithm for SMIP.

Benders decomposition (Laporte and Louveaux, 1993; Van Slyke and Wets, 1969), also referred
to as L-shaped method in stochastic programming literature, starts by defining a master problem
with only the first stage decisions. After the master problem is solved, the first stage decisions are
fixed at the optimal solution of the master problem. Then the deterministic equivalent problem
can be decomposed into |Ω| subproblems. The subproblems can be solved in parallel and valid
inequalities of x can be derived and added to the Benders master problem. The master problem
is solved again and the algorithm iterates until the upper bound and the lower bound converge.
The lower bound is the optimal value of the Benders master problem. The upper bound is set to
the best feasible solution. Benders decomposition is able to converge in a finite number of steps
when the second stage decisions are all continuous and the second stage constraints are linear. An
example is investment planning of process networks (Iyer and Grossmann, 1998) where the 0-1
variables are first stage decisions.

However, there are problems including 0-1 variables in the second stage decisions such as supply
chain problems with fixed cost for transportation (Brunaud et al., 2017). For two-stage stochastic
programs with integer or mix-integer recourse, Benders decomposition cannot be applied directly.
Some work has been done to deal with two-stage mixed-integer linear stochastic programs with
integer or mixed-integer recourse. In the pioneering work of Laporte and Louveaux (1993), a
Benders-like algorithm with optimality cuts is proposed to solve a two-stage stochastic program
with pure binary first stage variables.CarøE and Schultz (1999) propose a dual decomposition
algorithm with branch and bound that is able to close the duality gap of Lagrangean relaxation.
Others propose Benders-like decomposition algorithm with disjunctive cuts (Sen and Sherali, 2006;
Ntaimo, 2010; Qi and Sen, 2017), or Gomory cuts (Gade et al., 2014). We refer to the survey of
Küçükyavuz and Sen (2017) for recent advances.

For two-stage nonlinear mixed-integer stochastic programs, relatively little work has been done.
Mijangos (2015) proposes an algorithm based on Branch-and-Fix Coordination method for convex
problems with 0-1 mixed-integer variables in the first stage and only continuous variables in the
second stage. Li et al. (2011) propose a nonconvex generalized Benders decomposition (NGBD)
algorithm for mixed-integer nonlinear stochastic programs with pure binary first stage variables.
Ogbe (2016) propose a joint decomposition method for mixed-integer nonlinear nonconvex pro-
grams. While the advantage of this algorithm is that it can globally optimize nonconvex two-stage
stochastic programming problems, they do not handle mixed-integer recourse directly by fixing
both the first stage variables and the nonconvex second stage variables when solving the Benders
subproblems. The Benders master problem contains all the first stage variables and the nonconvex
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second stage variables. Therefore, this algorithm may not scale well with the number of scenar-
ios. Atakan and Sen (2017) propose a progressive hedging based branch-and-bound algorithm for
two-stage convex 0-1 mixed integer stochastic programs with pure binary first stage variables.

To the best of our knowledge, there is no effective decomposition algorithm that can solve
two-stage 0-1 mixed-integer convex nonlinear stochastic programs with mixed-integer variables in
both first and second stage decisions. In this paper, we propose an improved L-shaped algorithm
that has different types of valid inequalities in the Benders master problem. First of all, inspired
by the work of Mitra et al. (2016) and Ogbe (2016), Lagrangean cuts are added to the Benders
master problem to tighten the Benders master problem. Second, rank-one lift-and-project cuts are
used to convexify the subproblems with mixed-integer variables and strengthened Benders cuts can
be derived by solving the Benders subproblems with lift-and-project cuts. The paper is organized
as follows: In section 2, we propose the improved L-shaped method. In section 3, two process
systems engineering examples in this category are proposed as motivating examples. In section 4,
computational experiments are performed to evaluate the performance of the algorithm.

2 The improved L-shaped algorithm

In problem (1), only linear constraints are included and the second stage variables are contin-
uous. In this paper, we extend (1) by considering convex nonlinear constraints and mixed-integer
variables in both first and second stage. The deterministic equivalent of the two-stage stochastic
program we address in this paper is defined as (P ) and shown in (2)-(7).

(P ) : min z = cTx+
∑
ω∈Ω

τωd
T
ωyω (2)

s.t. A0x ≥ b0, g0(x) ≤ 0 (3)

A1,ωx+ g1,ω(yω) ≤ b1,ω ∀ω ∈ Ω (4)

g2,ω(yω) ≤ b2,ω ∀ω ∈ Ω (5)

x ∈ X, X =
{
x : xi ∈ {0, 1},∀i ∈ I1, 0 ≤ x ≤ xub

}
(6)

yω ∈ Y ∀ω ∈ Ω, Y =
{
y : yj ∈ {0, 1},∀j ∈ J1, 0 ≤ y ≤ yub

}
(7)

Here, x represents the first stage decisions. yω represents the second stage decisions in scenario
ω. g0, g1,ω, g2,ω, are convex functions. Both the first and the second stage decisions are mixed-
integer. Let I = {1, · · · , n} be the index set of all the first stage variables. I1 ⊆ I is the subset for
indices of the binary first stage variables. Let J = {1, · · · ,m} be the index set of all the second
stage variables. J1 ⊆ J is the subset for the indices of the binary second stage variables. xub

is a vector that represents the upper bound of all the first stage variables. yub is a vector that
represents the upper bound of all the second stage variables. In this paper, we assume problem
(P ) has relatively complete recourse. Solving (P ) with a large number of scenarios directly using
mixed-integer nonlinear programming (MINLP) solvers is prohibitive since the computational time
grows exponentially with the number of scenarios. In order to solve problem (P ) more efficiently,
we propose an improved L-shaped method that is based on Benders decomposition (Van Slyke and
Wets, 1969). As discussed in the introduction section, the basic idea of Benders decomposition
is to decompose (P ) into a Benders master problem which only contains first stage decisions and
Benders subproblems each of which only contains second stage decisions for a given scenario. In
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this paper, we add both (strengtened) Benders cuts and Lagrangean cuts to the Benders master
problem to tighten the relaxation.

We first define the Benders master problem (MBk), with both Lagrangean cuts (10), Benders
cuts (11), and strengthened Benders cuts (12) for a given set of iterations k ∈ K. zkMB is the
objective of the Benders master problem at iteration k. z∗kSL,ω is the optimal value of the Lagrangean

subproblem (SLkω). z∗kSB,ω and z∗k+
SSB,ω are the optimal values of the Benders subproblem (SBk

ω) and

strengthened Benders subproblem (SSBk+
ω ). All the subproblems are defined next. Note that (12)

and (11) are the same type of cuts, i.e., (12) is a strengthened version of (11). Only one of (12)
and (11) are included in the Benders master problem. x̃k represents the optimal solution to the
Bender master problem in iteration k.

(MBk) : min zkMB =
∑
ω

ηω (8)

s.t. A0x ≥ b0, g0(x) ≤ 0 (9)

ηω ≥ z∗kSL,ω − µkωx ∀ω ∈ Ω, k ∈ K (10)

ηω ≥ z∗kSB,ω + (λkω)T (x− x̃k) + τωc
Tx ∀ω ∈ Ω, k ∈ K (11)

ηω ≥ z∗k+
SSB,ω + (λkω)T (x− x̃k) + τωc

Tx ∀ω ∈ Ω, k ∈ K (12)

x ∈ X (13)

Next, we show how the valid inequalities (10), (11) and (12) can be derived.
Lagrangean cuts. The deterministic equivalent problem (P ) can be reformulated by du-

plicating the first stage decisions x for each scenario ω and adding nonanticipativity constraints
(NACs), xω1 = xω2, xω1 = xω3, · · · , xω1 = xω|Ω|, to guarantee that all the first stage decisions
made for all the scenarios are the same. The NACs can be dualized by multiplying πω to the
constraints, xω1 = xω+1, ω = ω1, ω2, · · · , ω|Ω|−1. Then the deterministic equivalent problem can be
decomposed into |Ω| scenarios. Each subproblem is defined as a Lagrangean subproblem (SLkω)
for iteration k:

(SLkω) : min zkSL,ω = τω(cTxω + dTωyω) + µkωxω (14)

s.t. A0xω ≥ b0, g0(xω) ≤ 0 (15)

A1,ωxω + g1,ω(yω) ≤ b1,ω (16)

g2,ω(yω) ≤ b2,ω (17)

xω ∈ X (18)

yω ∈ Y (19)

where µkω1 =
ω|Ω|−1∑
ω=ω1

πkω, µkω+1 = −πkω, ω = ω1, ω2, · · · , ω|Ω|−1. Each Lagrangean subproblem (SLkω)

is solved to optimality. The optimal value of the subproblem ω at iteration k is defined as z∗kSL,ω.
ηω ≥ z∗kSL,ω−µkωx is a valid inequality for the Benders master problem defined as a Lagrangean cut.
The proof of the validity of the Lagrangean cuts is shown in proposition 1 in Appendix A. A similar
proof can be found in Ogbe (2016). After solving the Lagrangean subproblems at each iteration
k, the multipliers of the Lagrangean subproblems can be updated using the subgradient method
(Oliveira et al., 2013), which is described in Appendix B. After adding the Lagrangean cuts to the
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Benders master problem, the lower bound obtained by solving the Benders master problem is at
least as tight as the lower bound that can be obtained by using Lagrangean decomposition. The
proof is shown in proposition 2 in Appendix A.

Benders cuts. Assume the solution to the Benders master problem at iteration k is x̃k,
x is fixed at x̃k for the relaxation of the deterministic equivalent problem (RP ). (RP ) can be
decomposed into |Ω| subproblems. Each subproblem is defined as the Benders subproblem (SBk

ω):

(SBk
ω) : min zkSB,ω = τωd

T
ωyω (20)

s.t. x = x̃k (21)

A1,ωx+ g1,ω(yω) ≤ 0 (22)

g2,ω(yω) ≤ b2,ω (23)

0 ≤ yω ≤ yub (24)

According to Geoffrion (1972), a Benders cut can be generated at iteration k:

ηω ≥ τωd
T
ω ỹ

k
ω + (λkω)T (x− x̃k) + (χkω)T (g1,ω(ỹkω)− b1,ω + A1,ωx̃

k)

+ (νkω)T (g2,ω(ỹkω)− b2,ω) + ψkωl(0− ỹkω) + ψkωu(ỹ
k
ω − yub) + τωc

Tx

= z∗kSB,ω + (λkω)T (x− x̃k) + τωc
Tx

(25)

where λkω, χ
k
ω, ν

k
ω, ψ

k
ωl, ψ

k
ωu, are the optimal dual multipliers for constraints (21)-(24) at iteration k.

z∗kSB,ω is the optimal value of (SBk
ω). ỹkω is the optimal solution of (SBk

ω).
Strengthened Benders cuts. The strengthened Benders subproblem is defined as follows:

(SSBk−
ω ) : min zkSSB,ω = τωd

T
ωyω (26)

s.t. x = x̃k (27)

A1,ωx+ g1,ω(yω) ≤ 0 (28)

g2,ω(yω) ≤ b2,ω (29)

0 ≤ yω ≤ yub (30)

(αjk
′

1ω )Tx+ (αjk
′

2ω )Tyω ≤ βjk
′

ω ∀j ∈ Jk′1ω, k
′ ≤ k − 1 (31)

where (31) are the valid inequalities that have been derived before the kth iteration. In the first
iteration, (SSBk−

ω ) reduces to SBk
ω. The minus sign in the notation of (SSBk−

ω ) means that the
valid inequalities for iteration k have not been derived. Later on, we will denote the strengthened
Benders subproblem in iteration k that includes the valid inequalities of iteration k as (SSBk+

ω ).
As (SSBk−

ω ) is a relaxation of the convex MINLP, some (ỹkω)j, j ∈ J1, may be fractional. However,
the second stage variables (yω)j, j ∈ J1 have to satisfy the binary constraints. Therefore, the
following disjunctions hold for each j ∈ J1, which means that the binary second stage variables
can be either 0 or 1.

A0x ≥ b0, g0(x) ≤ 0
A1,ωx+ g1,ω(yω) ≤ b1,ω

g2,ω(yω) ≤ b2,ω

0 ≤ yω ≤ yub

(yω)j = 1

 ∨

A0x ≥ b0, g0(x) ≤ 0
A1,ωx+ g1,ω(yω) ≤ b1,ω

g2,ω(yω) ≤ b2,ω

0 ≤ yω ≤ yub

(yω)j = 0

 ∀j ∈ J1 (32)
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From the disjunctions, valid inequalities called lift-and-project cuts can be derived, which were
first proposed by Balas et al. (1993) in the MILP setting and extended to convex MINLP by
Stubbs and Mehrotra (1999). In order to derive the lift-and-project cuts, in each iteration k for
each scenario ω, the minimum distance problem (MDjk

ω ) is solved for all j ∈ Jk1ω where Jk1ω is
the index set that includes the indices of all the fractional (ỹkω)j, j ∈ J1. The objective function
is any norm of the difference between (x, yω) and the fractional solution (x̃k, ỹkω). (ud, vdω) is the
disaggregated variable for disjunct d. γd, d = 1, 2, are variables between 0 and 1 that represent
the weight of each disjunct. According to Ceria and Soares (1999), (34)-(41) is the convex hull
representation of the disjunction that enforces that the binary variable (yω)j should be either 0 or
1.

(MDjk
ω ) : min ||(x, yω)− (x̃k, ỹkω)|| (33)

s.t. x =
∑
d=1,2

ud, yω =
∑
d=1,2

vdω (34)

γ1 + γ2 = 1, γ1, γ2 ≥ 0 (35)

0 ≤ vdω ≤ yubγd, 0 ≤ ud ≤ xubγd d = 1, 2 (36)

A0u
d ≥ b0γd, γdg0(ud/γd) ≤ 0 d = 1, 2 (37)

A1,ωu
d + γdg1,ω(vdω/γd) ≤ b1,ωγd d = 1, 2 (38)

γdg2,ω(vdω/γd) ≤ 0 d = 1, 2 (39)

(v1
ω)j = 0 (40)

(v2
ω)j = γ2 (41)

Let (x̄jk∗ω , ȳjk∗ω ) be the optimal solution of (MDjk
ω ). Stubbs and Mehrotra (1999) proved that

(ξjkω )T
(
x− x̄jk∗ω
yω − ȳjk∗ω

)
≥ 0 is a valid inequality for the fullspace problem (P ) where ξjkω is one subgra-

dient of the objective function evaluated at the optimal solution of (MDjk
ω ). The cut is able to

cut off the fractional solution (x̃k, ỹkω), if the optimal distance is strictly greater than 0.

For 2-norm, ξjkω = 2

(
x̄jk∗ω − x̃k
ȳjk∗ω − ỹkω

)
. The appropriate subgradient for 1-norm and ∞−norm can

be found in the work of Stubbs and Mehrotra (1999).
The nonlinear lift-and-project cuts can be expensive since they require to solve an NLP for

each fractional binary variable for each scenario in each iteration k. Inspired by the work of Zhu
and Kuno (2006) and Kılınç et al. (2017) who outer-approximate the convex nonlinear functions
to avoid solving the NLPs, we outer-approximate the nonlinear constraints and solve the cut
generating linear program (CGLP jk

ω ) instead of (MDjk
ω ).

(CGLP jk
ω ) : min ||(x, yω)− (x̃k, ỹkω)|| (42)

s.t. x =
∑
d=1,2

ud, yω =
∑
d=1,2

vdω (43)

γ1 + γ2 = 1 (44)

0 ≤ vdω ≤ yubγd, 0 ≤ ud ≤ xubγd d = 1, 2 (45)

A0u
d ≥ b0γd, γdg0(xl) +∇g0(xl)T

(
ud − xlγd

)
≤ 0 d = 1, 2, l ∈ L (46)
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A1,ωu
d + γdg1,ω(ylω) +∇g1,ω(ylω)T

(
vdω − ylωγd

)
≤ b1,ωγd d = 1, 2, l ∈ L (47)

γdg2,ω(ylω) +∇g2,ω(ylω)T
(
vdω − ylωγd

)
≤ 0 d = 1, 2, l ∈ L (48)

(v1
ω)j = 0 (49)

(v2
ω)j = γ2 (50)

where (xl, ylω) are the points that we choose to outer-approximate the nonlinear constraints. L is
the index set of such points. Note that in order to solve an LP instead of an NLP for the cut
generating process, we can only use 1-norm or ∞-norm in the objective of (CGLP jk

ω ). The lift-
and-project cuts derived by solving (CGLP jk

ω ) are weaker than that derived by solving (MDjk
ω ),

since the feasible region of (CGLP jk
ω ) is a relaxation of the feasible region of (MDjk

ω ). So there is
a tradeoff between computational efficiency and the tightness of the cuts that are derived. For the
problems that we investigate, the (CGLP jk

ω ) is able to provide good computational results, which
will be discussed in section 4. For the derivation of the lift-and-project cuts based the solution of
(CGLP jk

ω ), we refer to the work of Kılınç et al. (2017). Here, we simply denote the lift-and-project
cut derived from (CGLP jk

ω ) as:

(αjk1ω)Tx+ (αjk2ω)Tyω ≤ βjkω (51)

The lift-and-project cuts that are obtained by solving (MDjk
ω ) or (CGLP jk

ω ) are added to the
Benders subproblem (SBk

ω). The strengthened Benders subproblem with the lift-and-project cuts
that are derived in iteration k is defined as (SSBk+

ω ) where the plus sign simply means that the
newly derived cuts are included:

(SSBk+
ω ) : min zkSSB,ω = τωd

T
ωyω (52)

s.t. x = x̃k (53)

A1,ωx+ g1,ω(yω) ≤ 0 (54)

g2,ω(yω) ≤ b2,ω (55)

0 ≤ yω ≤ yub (56)

(αjk
′

1ω )Tx+ (αjk
′

2ω )Tyω ≤ βjk
′

ω ∀j ∈ Jk′1ω, k
′ ≤ k (57)

where (57) are the lift-and-project cuts that are derived until iteration k for scenario ω. A strength-
ened Benders cut can be derived by solving the strengthened Benders subproblem in the same way
that we derive the Benders cuts:

ηω ≥ z∗k+
SSB,ω + (λkω)T (x− x̃k) + τωc

Tx (58)

Note that we slightly abuse notation here: λkω is used to represent the optimal dual variable
for both the Benders subproblem (SBk

ω) and the strengthened Benders subproblem (SSBk+
ω ).

Upper bounding procedure. After the Benders master problem is solved at iteration k, x
in problem (P ) is fixed at x̃k. The rest of the problem can be decomposed into |Ω| scenarios.
A feasible solution to the deterministic equivalent problem can be obtained by solving the upper
bound subproblems (UBk

ω) defined by (59)-(62). Let z∗kUB,ω be the optimal value of (UBk
ω). An

upper bound of (P ) can be obtained by calculating cT x̃k +
∑

ω∈Ω z
∗k
UB,ω.
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(UBk
ω) : min zkUB,ω = τωd

T
ωyω (59)

s.t. g1,ω(yω) ≤ b1,ω − A1,ωx̃
k (60)

g2,ω(yω) ≤ b2,ω (61)

yω ∈ Y (62)

The steps of the improved L-shaped method are outlined in Figure 1. The lower bound is
initialized to −∞. The upper bound is initialized with the optimal value obtained by solving
the stochastic program with the first stage decisions fixed at the optimal solution of the expected
value problem (EEV ) (Birge and Louveaux, 2011). The Lagrangean multipliers are initialized to
0. At each iteration, the Lagrangean subproblems, the Benders master problems, the strengthened
Benders subproblems, the cut generating linear program, the strengthened Benders subproblem
with the newly generated cuts, and the upper bound subproblems are solved sequentially. The
optimal solution of the Benders master problem is used to initialize the strengthened Benders
subproblems, the cut generating linear programs, the strengthened Benders subproblems with
the newly generated cuts and the upper bound subproblems. Valid inequalities for the Benders
master problem can be derived by solving the Lagrangean subproblems, the strengthened Benders
subproblems with the newly generated cuts. The algorithm iterates until the relative optimality
gap is within a given value ε.

However, for problems with good NLP relaxations, since the Benders cuts are already tight
enough, we can just solve the Benders subproblems without generating the lift-and-project cuts.
Note that in each iteration, we can add either Benders cuts or strengthened Benders cuts to
the Benders master problem, but not both, because the strengthened Benders cuts are derived
from strengthened Benders subproblems (SSBk+

ω ) which have tighter relaxations than the Benders
subproblems SBk

ω. Therefore, the strengthened Benders cuts dominate the Benders cuts.
The proposed algorithm
The steps of the improved L-shaped method are outlined below:
1. Initialization
Set µ0

ω = 0 for all ω ∈ Ω, k = 0, LB = −∞, UB = EEV (expected result of using the expected
value problem solution).
Go to Step 2.
2. Lagrangean subproblem
For fixed µkω, solve each Lagrangean subproblem SLkω in parallel. The optimal solution is x̂kω, ŷ

k
ω, z

∗k
SL,ω.

Add the Lagrangean cuts, ηω ≥ z∗kSL,ω − µkωx, to the Benders master problem.
If
∑

ω∈Ω z
∗k
SL,ω ≥ LB, set LB =

∑
ω∈Ω z

∗k
SL,ω.

Update µkω → µk+1
ω using the subgradient method shown in Appendix B.

Go to Step 3.
3. Benders master problem
Solve the Benders master problem. Obtain optimal solution x̃k and z∗kMB.
If z∗kMB ≥ LB, set LB = z∗kMB.
Go to Step 4.
4. Strengthened Benders subproblem
Fix x = x̃k. Solve each strengthened Benders subproblem SSBk−

ω in parallel. Obtain optimal
primal solution ỹkω, z

∗k−
SSB,ω and optimal dual variable λkω.

If there is any fractional variable (ỹkω)j, j ∈ J1, denote the index set of fractional variables as Jk1ω
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for all ω ∈ Ω and go to Step 5.
Otherwise, add the strengthened Benders cuts, ηω ≥ z∗k−SSB,ω+(λkω)T (x− x̃k)+τωc

Tx, to the Benders
master problem and go to Step 7.
5. Cut generating linear program
Solve the cut generating linear programs (CGLP jk

ω ) for all ω ∈ Ω, j ∈ Jk1ω, in parallel. Obtain

the lift-and-project cuts, (αjk
′

1ω )Tx + (αjk
′

2ω )Tyω ≤ βjk
′

ω , and add them to the strengthened Benders
subproblem (SSBk−

ω ). The subproblem with the newly generated lift-and-project cuts is defined
as (SSBk+

ω ).
Go to Step 6.
6. Strengthened Benders subproblem
Solve the strengthened Benders subproblem (SSBk+

ω ) in parallel. Obtain optimal primal objective
value z∗k+

SSB,ω and optimal dual variable λkω.

Add the strengthened Benders cuts, ηω ≥ z∗k+
SSB,ω + (λkω)T (x− x̃k) + τωc

Tx, to the Benders master
problem and go to Step 7.
7. Upper bound subproblem
Fix x = x̃k in each upper bound subproblem and solve them in parallel. Obtain optimal solution
to the upper bound subproblem ȳkω, z

∗k
UB,ω.

If cT x̃k +
∑

ω∈Ω z
∗k
UB,ω ≤ UB, set UB = cT x̃k +

∑
ω∈Ω z

∗k
UB,ω.

8. Optimality check
If UB ≤ (1 + ε)LB, stop.
Else set k = k + 1 and include in K; go back to Step 2.

Although the algorithm can always yield a lower bound that is at least as tight as using La-
grangean decomposition, it still does not have theoretical guarantee of convergence. An intuitive
explanation would be that there is a duality gap if Lagrangean cuts alone are added to the Ben-
ders master problem. While the strengthened Benders cuts are tighter than the Benders cuts as
rank-one lift-and-project cuts are added to convexify the MINLP subproblems, the strengthened
Benders subproblems are rank-one lift-and-project closure but not the convex hull of the original
convex MINLP subproblems. The rank-one lift-and-project cuts can close a significant portion
of the integrality gap for the original convex MINLP subproblems but it does not have theoret-
ical guarantee to close all the integrality gap. Therefore, while combining Lagrangean cuts and
strengthened Benders cuts can make the relative optimality gap smaller than both the duality gap
and the integrality gap, the proposed algorithm does not have guarantee to close the optimality
gap.
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1. Initialization
k = 0, LB = −∞, UB = EEV, µ0

ω = 0

2. Lagrangean subproblem
Solve SLkω; update LB.

Update µkω → µk+1
ω

3. Benders master problem
Solve MBk; update LB

4. Strengthened Benders subproblem
Solve SSBk−

ω in parallel

5. Cut generating linear program
Solve CGLP jk

ω in parallel

6. Strengthened Benders subproblem
Solve SSBk+

ω in parallel

k = k + 1

No
Stop

Yes

z∗kSL, µ
k
ω

z∗k−SSB, λ
k
ω

7. Upper bound subproblem
Solve UBk

ω in parallel; update UB

8. Optimality check
UB ≤ (1 + ε)LB?

αjkω , β
jk
ω

ỹkω

z∗k+
SSB, λ

k
ω

x̃k

x̃k

x̃k

x̃k

Figure 1. Algorithmic flow(solid line) and information flow(dotted line) of the improved L-shaped
method

3 Motivating examples

3.1 Planning under demand uncertainty

Indices
i = process
j = chemical
s = production scheme
r = supplier
p = plant

10



c = customer
ω = scenario
Sets
I(j) = index set of processes that consume chemical j
O(j) = index set of processes that produce chemical j
R(j) = index set of suppliers that provide chemical j
PS(i) = index set of production schemes for process i
JM(i, s) = index set of main products for production scheme s of process i
L(i, s) = index set of chemicals involved in production scheme s of process i that are not main
product for which the input-output relationship with the main product is linear
L̄(i, s) = index set of chemicals involved in production scheme s of process i that are not main
product for which the input-output relationship with the main product is logarithmic
Parameters
QU
pi = maximum capacity of process i in plant p

µijs = material balance coefficients for chemical j for production scheme s for process i
ρijs = relative maximum production rate of main product j, j ∈ JM(i, s), for production scheme
s for continuous flexible process i referenced to a base scheme s̄
Hi = maximum time for which process i is available for production
Dcjω = demand of chemical j from customer c in scenario ω
αCi = fixed cost for installation of process i
βCi = variable cost for installation of process i
βSrj = price for purchase of chemical j from supplier r
βRPrp = variable cost for transporting chemical from supplier r to plant p
αRPrp = fixed cost for transporting chemical from supplier r to plant p
αPCpc = fixed cost for transporting chemical from plant p to customer c
βPCpc = variable cost for transporting chemical from plant p to customer c
δis = unit operating cost for production scheme s for process i
φcjω = penalty cost for not satisfying demand from customer c for chemical j in scenario ω
PUU

rpj = maximum amount of chemical j transported between supplier r and plant j
FU
pcj = maximum amount of chemical j transported between plant j and customer c
τω = probability of scenario ω
First stage decisions
xpi = binary variable (1 if process i is installed in plant p)
Qpi = capacity of process i in plant p
Second stage decisions
PUrpjω = purchase amount of chemical j of plant p from supplier r in scenario ω
yRrpω = binary variable (1 if any chemical is transported between supplier r and plant p in scenario
ω)
Fpcjω = amount of chemical j transported between plant p and customer c in scenario ω
yCpcω = binary variable (1 if any chemical is transported between plant p and customer c in scenario
ω)
Tpijsω = amount of time assigned to the production of main product j for production scheme s of
process i in plant p in scenario ω
θpijsω = amount of main product j, j ∈ JM(i, s), produced from production scheme s of process
i in plant p in scenario ω. The mathematical definition is shown in constraint (67)
Wpijsω = amount of chemical j produced from production scheme s of process i in plant p in
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scenario ω
Scjω = slack variable for not satisfying the demand of chemical j from customer c in scenario ω

3.1.1 Problem statement

We study a supply chain where raw materials are purchased from suppliers to manufacture
products and deliver them to customers, see Figure 2. Each plant consists of a processing network
with several processes interconnected in a finite number of ways. The processes can be dedicated or
flexible (Norton and Grossmann, 1994). A flexible process can have multiple production schemes
where these schemes can be different in raw materials, products or combination of both. A ded-
icated process has fixed recipe of raw materials and products, i.e., only one scheme. We assume
all the processes considered in this paper are continuous. Therefore, process capacity can be ex-
pressed as production rate. There is a fixed and a variable cost associated with the installation
of each process. The demands of customers are regarded as uncertain parameters, which will be
realized after the investment decisions are made. If the manufacturer fails to satisfy the customer
demands, extra products can be purchased from other manufacturers and there will be a penalty
cost for the extra products purchased. The penalty cost can be regarded as the market prices of
the products. In this problem, we assume that the prices of the products are another source of
uncertainty, which will be realized after the first stage decisions are made. The second stage deci-
sions include the purchase and transport of raw materials, the production amount in each scheme
of each process in each plant, the delivery of products to customers and the purchase of products
from other manufacturers. Note that there is a fixed cost for the transportation link between a
supplier and a plant or a plant and a customer. Therefore, both the first stage and second stage
variables are mixed-integer.

Figure 2. Suppliers, Plants, and Customers in Supply Chain
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3.1.2 Mathematical formulation

The constraints for the investment decisions for each process i in each plant p are as follows:

Qpi ≤ QU
pixpi ∀p, i (63)

xpi are binary variables to denote whether process i in plant p is installed. Constraint (63) will
force the capacity to zero if xpi is zero.

Constraint (64) represents the mass balance for each chemical j in a given plant p. The sum
of purchases of raw materials from all suppliers plus the the sum of output of chemical j from all
processes should be equal to the sum of delivery of j to all potential customers plus the sum of
consumption of j from all processes.∑

r∈R(j)

PUrpjω +
∑
i∈O(j)

∑
s∈PS(i)

Wpijsω =
∑
c

Fpcjω +
∑
i∈I(j)

∑
s∈PS(i)

Wpijsω ∀p, j, ω (64)

The maximum production rate of a main product j for production scheme s is proportional
to the capacity of the plant for a reference scheme s̄. For s̄, ρijs̄, j ∈ JM(i, s̄) equals to 1. The
amount produced can be calculated by the production rate times the production time.

Wpijsω = ρijsQpiTpijsω ∀p, i, s ∈ PS(i), j ∈ JM(i, s), ω (65)

For each process i, the total production time has to be less than the available time of that
process. ∑

s∈PS(i)

∑
j∈JM(i,s)

Tpijsω ≤ Hi ∀p, i, ω (66)

Note that constraint (65) is nonlinear since it includes the bilinear term QpiTpijsω. To linearize
it, we define new variable θpijsω in (67) and rewrite (65)-(66) as (68)-(69).

θpijsω = QpiTpijsω ∀p, i, j ∈ JM(i, s), s ∈ PS(i), ω (67)∑
s∈PS(i)

∑
j∈JM(i,s)

θpijsω ≤ HiQpi ∀p, i, ω (68)

Wpijsω = ρijsθpijsω ∀p, i, s, s ∈ PS(i), j ∈ JM(i, s), ω (69)

Constraint (70) and (71) specifies the input-output relationship between the main product and
other chemicals involved in scheme s of process i. Note that for some of the processing schemes,
the input-output relationship is linear while others can be logarithmic. The physical meaning of
the logarithmic relationship is that in some of the processes, the larger the input material flowrate,
the less efficient those schemes become to produce products.

Wpijsω = µijsWpij′sω ∀p, i, j ∈ L(i, s), j′ ∈ JM(i, s), s ∈ PS(i), ω (70)

ln(1 +Wpijsω) = µijsWpij′sω ∀p, i, j ∈ L̄(i, s), j′ ∈ JM(i, s), s ∈ PS(i), ω (71)

Note that constraint (71) is a nonlinear equality which is nonconvex. This equality is relaxed
to constraint (72) which is convex as pointed out by Kocis and Grossmann (1987). In the optimal
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solution of the problem, constraint (72) is always active because the optimal solution will always
tend to make as much product as possible.

ln(1 +Wpijsω) ≥ µijsWpij′sω ∀p, i, j ∈ L̄(i, s), j′ ∈ JM(i, s), s ∈ PS(i), ω (72)

Binary variable yRrpω denote whether a transportation link is established between supplier r and
plant p, which will force the corresponding purchase amount to zero if the link is not established.
Constraint (74) serves the same purpose for transportation between plants and customers.

PUrpjω ≤ PUU
rpjy

R
rpω ∀j, r, r ∈ R(j), p, ω (73)

Fpcjω ≤ FU
pcjy

C
pcω ∀j, p, c, ω (74)

The demand of customer c for chemical j, Dcjω, must be satisfied by the total flow from all the
plants to customer c plus the slack variable, Scjω, which represents extra purchase of j from other
companies if we fail to produce enough to satisfy the demand.∑

p

Fpcjω + Scjω = Dcjω ∀c, j, ω (75)

The objective is to minimize the expected cost, which includes the investment cost, transporta-
tion cost, production cost, cost of purchasing raw materials, and penalty cost for not satisfying
the demand.

min Cost =
∑
p

∑
i

(βCi Qpi + αCi xpi) +
∑
ω

τω

(∑
p

∑
i

∑
s∈PS(i)

δis
∑

j∈JM(i,s)

ρijsθpijsω

+
∑
p

∑
j

∑
r∈R(j)

(βSrj + βRPrp )PUrpjω +
∑
r

∑
p

αRPrp y
R
rpω

+
∑
p

∑
c

αPCpc y
C
pcω +

∑
p

∑
c

∑
j

βPCpc Fpcjω

+
∑
c

∑
j

φcjωScjω

)
s.t. (63)− (64), (68)− (70), (72)− (75)

(76)
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3.1.3 Case study

To illustrate the problem, we study a supply chain where we have 4 suppliers, 3 plants, 4
customers as in Figure 2. Each plant has the same process network superstructure as shown in
Figure 3, which is from Norton and Grossmann (1994). As an example, process I1 is a dedicated
continuous process producing chemical J3 from chemicals J1 and J6. As an example, process I2 is a
flexible continuous process with two production schemes demonstrating product flexibility. Scheme
S1 for process I2 produces chemical J3 from chemical J1, while scheme S2 produces chemical J4
from chemicals J1 and J6. The input-output relationship for process I1, I2, I3 is linear. The
input-output relationship between chemical J3 and J5 for scheme S1 and between chemical J4 and
chemical J5 for scheme S2 in process I4 is logarithmic. There are no processes initially installed.

Figure 3. Process network for case study

We assume that there are 3 scenarios where the demand can be high, medium or low with
probability of 25%, 50%, 25%, respectively. The high and low demand are +30% and -30% away
from the medium. The convex MINLP problem is solved in deterministic equivalent form in GAMS
using DICOPT on the 12 processors of an Intel Xeon (2.67GHz) machine with 64 GB RAM. The
model has 84 binary variables, 2158 continuous variables, 2167 constraints. The optimal solution
yields a minimum cost of 1509.3(106$). The investment decisions for each of the three plants are
shown in Table 1. The transportation links in three scenarios are shown in Figure 4. It is easy to
see different recourse decisions are made in the three scenarios.

Table 1. Optimal capacity of each process in each plant

Qpi (million lb/yr) I1 I2 I3 I4

P1 150.0 0 0 4.9
P2 95.4 95.6 0 5.9
P3 57.5 36.1 0 5.5

To illustrate the capacity and material flows of process networks, the optimal configuration
and mass flows of plant 1 in scenario 1 is shown in Figure 5. In this process network, processes
I1 and I4 are installed. Raw material J1 is purchased from the suppliers and used as feedstock for
I1.S1. Chemical J3 is produced by I1.S1. Part of J3 is delivered to customers directly while the
rest is used as feedstock for I4.S1. Chemical J4 is purchased as raw material and used as feedstock
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Figure 4. Optimal solution for transportation links

for I4.S2. Chemical J5 is produced by I4.S1 and I4.S2 and delivered to customers. Chemical J6 is
produced by I4.S1 and I4.S2 and used as feedstock for I1.S1.

Figure 5. Optimal material flows for plant 1 in scenario 1

3.2 Optimal Design of Multi-product Batch Plant under Demand Un-
certainty

Indices
i = products
j = stages
k = possible integer values for number of processing units
ω = scenarios
Parameters
Qiω = Demand of product i in scenario ω (kg)
Sij = Size factor for product i in processing stage j (L/kg)
tij = Processing time for product i in processing stage j (hours)
H = Fixed production horizon time (hours)
αi = Cost coefficient for purchasing unit in processing stage j ($)
βj = Cost exponent for the volume of processing unit in stage j
λj = Fixed cost of using one unit in stage j
δ = Penalty cost for exceeding production horizon ($/hour)
pω = Probability of scenario ω
V L = minimum volume of the processing units
V U = maximum volume of the processing units
First stage decisions
Vj = Size of processing unit s for stage j
vj = Nature logarithm of Vj
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NF
j = Number of processing units purchased for stage j

nFj = Natural logarithm of NF
j

Y F
kj = Binary variable. Equals 1 if NF

j = k
Second stage decisions
Biω = Batch size of product i in scenario ω
biω = Natural logarithm of Biω

TLiω = Cycle time of product i in scenario ω
tliω = Natural logarithm of TLiω
NS
jω = Number of processing units that are operating in stage j in scenario ω

nSjω = Natural logarithm of NS
jω

Y S
kjω = Binary variable. Equals 1 if NS

jω = k

3.2.1 Problem statement

We study a multi-product multi-stage batch plant (Figure 6) under demand uncertainty, which
is an extension of the work of Grossmann and Sargent (1979). Every product has to be processed
through all the stages. It is assumed that in each stage there can be multiple processing units with
equal volume. The number and the volume of the processing units purchased have to be decided
before the demand for each product is known. After the demand of each product is realized,
operating decisions including the number of processing units actually used and the batch size of
each product have to be made. We assume the batch sizes for any given product are the same.
Not all the processing units purchased have to be used, i.e., processing units can be idle when
the demand is low. There will be a fixed cost for using one processing unit, so one should try to
use as few processing units as possible. One should also try to complete all the processing tasks
within a given time horizon and there is a penalty cost for exceeding the time horizon to meet the
demands. This problem can be formulated as a two-stage stochastic program where the first stage
decisions are the number and volume of the processing units. The second stage decisions are the
batch size of each product, the number of processing units used in each stage, and the cycle time
of each product.

Q1

Q2

Products Batches Processing units in each stage (e.g. mixing, reaction, etc.)

!"# = %&''( !"% = #)#*( !"& = #+#,( !", = %%,'( !"+ = #--#( !") = #*',(
Figure 6. A multi-product multi-stage batch plant for two products with corresponding demands
Q1 and Q2

3.2.2 Mathematical formulation

Constraints (77)-(78) determine the number of processing units purchased. Y F
kj is the binary

variable which equals to one when the number of processing units purchased at stage j, NF
j , equals
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to k. ∑
k

Y F
kj = 1 ∀j (77)

NF
j =

∑
k

kY F
kj ∀j (78)

The volume of any processing unit has to be within V L and V U .

V L ≤ Vj ≤ V U ∀j (79)

Constraint (80) enforces the batch size in any scenario times a size factor cannot exceed the
volume of the processing unit purchased in stage j.

Vj ≥ SijBiω ∀i, j, ω (80)

NS
jω denotes the number of processing units that are operating in stage j in scenario ω. The

binary variable Y S
kjω is used to guarantee the integrality of NS

jω (constraint (81) and (82)). The
number of units that is operating in any scenario ω should be less than or equal to the number of
units purchased, which is enforced by constraint (83).∑

k

Y S
kjω = 1 ∀j, ω (81)

NS
jω =

∑
k

kY S
kjω ∀j, ω (82)

NS
jω ≤ NF

j ∀j, ω (83)

The number of operating processing units times the cycle time should be greater or equal to
any processing time tij.

NS
jωTLiω ≥ tij ∀i, j, ω (84)

The demand for product i in scenario ω is given by Qiω and the batch size is Biω. Therefore, the
number of batches is given by Qiω

Biω
. The time consumed on producing product i equal the number of

batches of product i times its cycle time. The summation over the processing time of all products
should be less than or equal to the given time horizon plus slack variable Lω representing the
lateness in scenario ω. ∑

i

QiωTLiω
Biω

≤ H + Lω ∀ω (85)

The total cost includes the purchase of processing units, the fixed cost and variable cost of
operating the processing units, and the penalty of lateness. As the variable cost of operating the
processing units is always a constant which is proportional to the demand, it is not included in
the objective.

cost =
∑
j

αjN
F
j V

βj
j +

∑
ω

pω

(∑
j

λjN
S
jω + δLω

)
(86)

The formulation, which includes constraints (77)-(86), is a nonconvex MINLP. However, ac-
cording to Kocis and Grossmann (1988), this model can be reformulated as a convex MINLP
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by considering exponential transformations of variables Vj, N
F
j , Biω, TLiω and rewriting constraint

(78)-(80), (82)-(86) as (87)-(94).

nFj =
∑
k

ln(k)Y F
kj ∀j (87)

ln(V L) ≤ vj ≤ ln(V U) ∀j (88)

vj ≥ ln(Sij) + biω ∀i, j, ω (89)

nSjω =
∑
k

ln(k)Y S
kjω ∀j, ω (90)

nSjω ≤ nFj ∀j, ω (91)

nSjω + tliω ≥ ln(tij) ∀i, j, ω (92)∑
i

Qi,ω exp(tliω − biω) ≤ H + Lω ∀ω (93)

This leads to the following convex MINLP:

min cost =
∑
j

αj exp(nFj + βjvj) +
∑
ω

pω

(∑
j

λj exp(nSjω) + δLω

)
s.t. (77), (81), (87)− (93)

(94)

3.2.3 Case study

We study a batch plant with 6 stages, 5 products. Each stage can have at most 4 processing
units. We assume that there are 3 scenarios, where the demand of each product can be high,
medium, or low with probability of 25%, 50%, 25% respectively. The high and low demand are
+10% and -10% away from the medium. The problem is first solved in deterministic equivalent
form in GAMS using DICOPT on the 12 processors of an Intel Xeon (2.67GHz) machine with
64 GB RAM. The model has 96 binary variables, 64 continuous variables, 316 constraints. The
minimum cost is 423.5(103$). The NLP relaxation of this problem is 408.4(103$). The number
and volume of each processing units purchased in each stage is shown in Figure 6. The number
of processing units that are operating in each stage in each scenario is shown in Table 2, where
ω1, ω2, ω3 correspond to high, medium and low demand respectively. One can see that the recourse
decisions of each scenario are different. When the demand is low, not all the processing units are
used.

Table 2. Optimal number of processing units in each stage in each scenario

Stage j1 j2 j3 j4 j5 j6

NS
jω1 3 3 4 3 2 2

NS
jω2 3 2 4 3 2 2

NS
jω3 3 2 4 2 2 2

However, if we solve the expected value problem with the demand of all products fixed at their
mean values, the number of units purchased at each stage is 3, 2, 4, 3, 2, 2, respectively. Compared
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to the stochastic solution, the number of units at stage j2 decreases from 3 to 2. Therefore, with
the expected value solution, the high demand cannot be satisfied without an extension of the time
horizon. The expected value solution has an expected cost of 433.4(103$). The value of stochastic
solution (V SS) (Birge and Louveaux, 2011) of this problem is 9.9(103$).

4 Computational results

In order to test the proposed algorithm, the two proposed examples are solved with increasing
number of scenarios. For the batch plant design problem under demand uncertainty, the scenarios
are constructed by assuming the demands of all the products can be high, medium or low. We
also assume that some of the product demands are independent of all the other product demands
while some of the products demands vary simultaneously. For example, in the 81-scenario case,
we assume that the demands of product i1, i2, and i3 are independent of the demands of all
the other products while the demands of product i4 and i5 vary simultaneously. So there are
34 = 81 scenarios. For the planning problem under demand and price uncertainty, we have two
products C3 and C5. In the 3-scenario problem, we assume that the demands of product C3
and C5 vary simultaneously and they can be high, medium, or low. In the problems with 9, 27,
and 81 scenarios, we assume that the demands and the prices of all the products can be high,
medium, or low. The demands are always assumed to be independent of the prices. The prices
of the two products C3 and C5 vary simultaneously in the problem with 9 and 27 scenarios but
they are assumed to be independent of each other in the 81-scenario problem. The demands of
C3 and C5 are assumed to vary simultaneously in the 9-scenario problem but they are assumed
to be independent of each other in the problems with 27 and 81 scenarios. Note that in practice
the discrete probability distribution can be constructed using historical data. If the computational
resources are limited, the number of scenarios can be reduced using sample average approximation
Kleywegt et al. (2002).

First of all, the deterministic equivalent of both the batch plant design problem and the plan-
ning problem with different number of scenarios are solved using different convex MINLP solvers
including DICOPT, AlphaECP, SBB, and BARON on the 12 processors of an Intel Xeon (2.67GHz)
machine with 64 GB RAM. The size of the deterministic equivalent problems, the wall time that
the solvers require to solve the problems, the upper bound, the lower bound, the expected result
of using the expected value problem solution (EEV), and value of stochastic solution(VSS) are
shown in Table 3 and 4. It easy to see that the sizes of the problem can grow very quickly with
the number of scenarios. For the problems with the largest number of scenarios, there can be
thousands of binary variables and tens of thousands of constraints. Therefore, even the convex
MINLP solver with the best performance, in the two cases, DICOPT, fails to solve the problems
with a large number of scenarios within the 50,000 seconds time limit. The reason why DICOPT
is so slow for the problems with a large number of scenarios is that the first master problem of
the outer approximation algorithm is hard to solve to optimality. CPLEX cannot terminate the
branch and bound within the time limit. The size of the node file is in the magnitude of tens of
GB after compression at the time limit.

As the deterministic equivalent problems with a large number of scenarios are intractable, we
implement different decomposition algorithms in GAMS. For the batch plant design problem, we
have a tight NLP relaxation (see Table 3). The effects of the lift-and-project cuts are not significant
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Table 3. Computational statistics of the deterministic equivalent of the batch plant design
problem

Number of scenarios 3 27 81 243

Binary variables 96 672 1,968 5,856
Continuous variables 64 472 1,390 4,144

Constraints 316 2,158 6,424 19,222

Wall time(s) by BARON 2 210 50,000 > 50, 000
Wall time(s) by SBB 4 99 9,602 > 50, 000

Wall time(s) by Alpha-ECP 7 1,551 > 50, 000 > 50, 000
Wall time(s) by DICOPT 1 35 503 > 50, 000

NLP relaxation (103$) 408.4 394.5 391.7 391.0
Best upper bound (103$) 423.5 415.9 413.6 -
Best lower bound (103$) 423.5 415.9 413.6 -
Relative Optimality gap 0.0% 0.0% 0.0% -

EEV (103$) 433.4 421.8 418.8 418.2
VSS (103$) 9.9 5.9 5.2 -

Table 4. Computational statistics of the deterministic equivalent of the planning problem

Number of scenarios 3 9 27 81

Binary variables 84 228 660 1,956
Continuous variables 2,158 6,424 19,222 57,616

Constraints 2,167 6,451 19,303 57,859

Wall time(s) by BARON 188 50,000 50, 000 > 50, 000
Wall time(s) by SBB > 50, 000 > 50, 000 > 50, 000 > 50, 000

Wall time(s) by Alpha-ECP 462 50, 000 > 50, 000 > 50, 000
Wall time(s) by DICOPT 24 44, 150 > 50, 000 > 50, 000

NLP-relaxation (106$) 1309.4 1309.2 1297.2 1297.2
Best upper bound (106$) 1509.3 1508.8 - -
Best lower bound (106$) 1509.3 1508.8 - -
Relative optimality gap 0.0% 0.0% - -

EEV (106$) 1703.1 1702.6 1698.5 1698.5
VSS (106$) 193.8 193.8 - -

in terms of tightening the Benders subproblems. Therefore, for the batch plant design problem,
we just solve the Benders subproblem without generating the lift-and-project cuts. Lagrangean
decomposition and progressive hedging are also implemented. The multipliers of the Lagrangean
decomposition algorithm are updated by the subgradient method shown in Appendix B. The ρ
parameter in the progressive hedging algorithm is updated dynamically using the heuristic proposed
by Watson and Woodruff (2011). In the progressive hedging algorithm, the lower bounds can be
derived by neglecting the quadratic terms in the objective of the progressive hedging subproblems
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and solving subproblems similar to the Lagrangean subproblems, which are proved to be valid
lower bounds by Gade et al. (2016). The upper bounds of both the Lagrangean decomposition
and the progressive hedging algorithm are derived by the nearest scenario heuristic, i.e., at each
iteration, after the Lagrangean (progressive hedging) subproblems are solved to optimality, we take
the weighted sum average of the first stage decisions, find the scenario whose first stage decisions
are the closest to the weighted sum average, fix the first stage decisions at the first stage decisions
of this scenario, and solve the upper bound subproblems in parallel to obtain a feasible solution.

As before, all the problems are solved using the 12 processors of an Intel Xeon (2.67GHz)
machine with 64 GB RAM. All the MINLP problems are solved using DICOPT and all the NLP
problems are solved using CONOPT. All the subproblems are solved in parallel using Grid GAMS
(Bussieck et al., 2009). It is observed that the Lagrangean multipliers are close to convergence
after the first 30 iterations. A similar trend hold for the progressive hedging algorithm. Therefore,
we stop adding Lagrangean cuts after 30 iterations but keep adding Benders cuts until the lower
bounds of the problem fail to improve for 10 iterations. The computational results of the decom-
position algorithms for the batch problem are shown in Tables 5-8. L+B represents the algorithm
with both Lagrangean cuts and Benders cuts in the Benders master problem. L represents the
algorithm with only Lagrangean cuts in the Benders master problem. B represents the algorithm
with only Benders cuts in the Benders master problem. LD represents the Lagrangean decompo-
sition algorithm. PH represents the progressive hedging algorithm. The decomposition algorithms
are all able to solve the problems within the time limit. For the batch problem with different
number of scenarios, the proposed algorithm with both Lagrangean and Benders cuts can provide
solutions with the smallest optimality gap. The lower bounds of the proposed algorithm are always
tighter than the lower bounds given by LD and PH. In some cases, for example, the 3-scenario
problem, LD or PH can give better feasible solutions than the proposed algorithm. However, in
most cases (problems with 27, 81, and 243 scenarios), the best feasible solutions are given by the
proposed algorithm. This comes at the expense of longer computational times. The CPU times
of the subproblems and the master problems are also shown in Tables 5-8. Note that the CPU
times are large for the problems with large number of scenarios. This is due to the mechanism
of Grid GAMS that all the subproblems are submitted simultaneously, and thus each subproblem
uses a small percentage of CPU. The CPU times are only able to show the relative expenses of the
subproblems. For the Benders master problem, the CPU time is exactly what takes the 12 threads
to solve the problem.
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Table 5. Computational results of solving the 3-scenario batch plant design problem with
different decomposition algorithms

3 scenario L+B L B LD PH

Upper bound (103$) 423.7 433.4 423.6 423.5 423.5
Lower bound (103$) 423.3 422.7 421.6 419.5 408.4

Relative optimality gap 0.09% 2.51% 0.46% 0.96% 3.70%

Wall time (s) 53 27 26 13 42
Upper bound subproblem (s) 32 11 25 6 9
Lagrangean subproblem (s) 38 37 - 21 24

Benders subproblem (s) 1 - 1 - -
Benders master problem (s) 10 3 5 - -

Progressive hedging (s) - - - - 49

Table 6. Computational results of solving the 27-scenario batch plant design problem with
different decomposition algorithms

27 scenario L+B L B LD PH

Upper bound (103$) 415.9 421.8 415.9 416.2 416.1
Lower bound (103$) 413.7 404.7 413.6 403.6 404.2

Relative optimality gap 0.53% 4.21% 0.56% 3.12% 2.96%

Wall time (s) 228 66 110 37 56
Upper bound subproblem (s) 43 22 43 13 15
Lagrangean subproblem (s) 370 359 - 310 317

Benders subproblem (s) 7 - 7 - -
Benders master problem (s) 134 15 52 - -

Progressive hedging (s) - - - - 334

Table 7. Computational results of solving the 81-scenario batch plant design problem with
different decomposition algorithms

81 scenario L+B L B LD PH

Upper bound (103$) 413.6 418.8 413.6 413.8 413.8
Lower bound (103$) 411.4 402.9 411.3 402.6 403.2

Relative optimality gap 0.55% 3.96% 0.56% 2.78% 2.64%

Wall time (s) 574 146 352 86 129
Upper bound subproblem (s) 137 72 132 42 41
Lagrangean subproblem (s) 1015 1002 - 1018 913

Benders subproblem (s) 21 - 19 - -
Benders master problem (s) 319 32 183 - -

Progressive hedging (s) - - - - 967

The sizes of subproblems are shown in Table 9. The size of the Benders master problem
corresponds to the size of the 243-scenario problem at the last iteration (59th iteration in this case).
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Table 8. Computational results of solving the 243-scenario batch plant design problem with
different decomposition algorithms

243 scenario L+B L B LD PH

Upper bound (103$) 413.1 418.2 413.1 413.1 413.3
Lower bound (103$) 410.8 402.5 410.8 402.4 402.9

Relative optimality gap 0.55% 3.89% 0.56% 2.68% 2.58%

Wall time (s) 1962 490 609 270 376
Upper bound subproblem (s) 416 208 412 129 127
Lagrangean subproblem (s) 2557 2522 - 2657 2508

Benders subproblem (s) 64 - 56 - -
Benders master problem (s) 1132 153 1310 - -

Progressive hedging (s) - - - - 2621

Each subproblem is comparatively easier to solve than the deterministic equivalent problems.

Table 9. Size of each subproblem for the batch plant design problem

Binary variables Continuous variables Constraints

Benders master problem 24 16 21,895
Upper bound subproblem 24 54 116

Benders subproblem 0 78 116
Lagrangean subproblem 48 30 104

For the planning problem, it is shown in Table 4 that the NLP relaxation is weak. Therefore,
using the lift-and-project cuts to tighten the Benders subproblem should be effective. Different
decomposition algorithms are implemented and the computational results are shown in Tables
10-13. SB+L represents the algorithm with both strengthened Benders cuts and Lagrangean cuts
in the Benders master problem. SB represents the algorithm with only strengthened Benders cuts
in the Benders master problem. Besides that, L, L+B, LD, and PH are also implemented as in the
batch problem. All the decomposition algorithms are able to solve the planning problem within
the time limit. Among all the algorithms, SB+L gives the smallest relative optimality gap in
most cases. The algorithm with strengthened Benders cuts can give tighter optimality gap than
the algorithm use Benders cuts. It can be observed that in most cases the strengthened Benders
cuts can close the optimality gap of the algorithm that uses Benders cuts by more than one half.
The algorithms that use strengthened Benders cuts or Lagrangean cuts can always yield a tighter
lower bound than the Lagrangean decomposition or the progressive hedging algorithm. SB+L
uses less time than SB in all the cases because adding Lagrangean cuts makes the problems take
less iterations to converge. Although the computational time of SB+L is significantly higher than
L+B, the reason is due to the fact that we have to solve a large number of cut generating linear
programs in the SB+L case. It is shown in Tables 10-13 that the CPU time of the cut generating
linear programs is small compared to other subproblems. Therefore, the significant increase in wall
time is due to the data overhead of GAMS. If we can implement SB+L in languages like C++,
we could expect the wall time to be much smaller. Note that in some cases, LD is able to give
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good feasible solutions. However, the lower bound of LD is weaker than SB+L. In practice, if
the decision-maker is not limited by computational resources, our proposed algorithm, SB+L, can
provide the tightest lower bound and good feasible solutions. Otherwise, the decision-maker can
also use Lagrangean decomposition to obtain good feasible solutions.

Table 10. Computational results of solving the 3-scenario planning problem with different
decomposition algorithms

3 scenario SB+L L SB L+B B LD PH

Upper bound (106$) 1523.0 1703.1 1515.3 1537.4 1516.6 1532.8 1703.1
Lower bound (106$) 1477.7 1472.1 1470.7 1472.4 1438.4 1471.9 1452.9

Relative optimality gap 3.07% 15.69% 3.03% 4.42% 5.44% 4.14% 17.22%

Wall time (s) 404 76 408 100 68 66 1384
Upper bound subproblem (s) 65 17 87 39 66 9 8
Lagrangean subproblem (s) 175 108 - 102 - 119 103

Benders subproblem (s) - - - 6 7 - -
Benders master problem (s) 35 6 30 15 18 - -

Cut generating linear program (s) 112 - 156 - - - -
Strengthened Benders subproblem (s) 54 - 73 - - - -

Progressive Hedging (s) - - - - - - 1770

Table 11. Computational results of solving the 9-scenario planning problem with different
decomposition algorithms

9 scenario SB+L L SB L+B B LD PH

Upper bound (106$) 1514.7 1702.6 1512.4 1528.6 1517.5 1545.5 1702.6
Lower bound (106$) 1473.2 1439.3 1470.8 1456.5 1438.3 1438.0 1440.5

Relative optimality gap 2.82% 18.30% 2.83% 4.95% 5.51% 7.48% 18.19%

Wall time (s) 771 135 942 220 123 111 1695
Upper bound subproblem (s) 197 52 271 111 210 27 25
Lagrangean subproblem (s) 695 446 - 471 - 427 308

Benders subproblem (s) - - - 20 37 - -
Benders master problem (s) 62 7 96 57 51 - -

Cut generating linear program (s) 394 - 506 - - - -
Strengthened Benders subproblem (s) 174 - 243 - - - -

Progressive Hedging (s) - - - - - - 4377
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Table 12. Computational results of solving the 27-scenario planning problem with different
decomposition algorithms

27 scenario SB+L L SB L+B B LD PH

Upper bound (106$) 1504.4 1698.5 1509.7 1516.0 1557.8 1509.0 1521.7
Lower bound (106$) 1462.0 1422.2 1460.4 1441.7 1418.5 1420.7 1425.3

Relative optimality gap 2.90% 19.43% 3.38% 5.16% 9.82% 6.22% 6.76%

Wall time (s) 2115 234 2434 1448 156 209 2593
Upper bound subproblem (s) 577 5 757 27423 121 99 93
Lagrangean subproblem (s) 2114 2141 - 2123 - 2047 1384

Benders subproblem (s) - - - 67 24 - -
Benders master problem (s) 167 23 204 156 68 - -

Cut generating linear program (s) 959 - 1311 - - - -
Strengthened Benders subproblem (s) 404 - 584 - - - -

Progressive Hedging (s) - - - - - - 18827

Table 13. Computational results of solving the 81-scenario planning problem with different
decomposition algorithms

81 scenario SB+L L SB L+B B LD PH

Upper bound (106$) 1502.8 1698.5 1505.5 1512.7 1553.1 1509.3 1507.2
Lower bound (106$) 1461.2 1418.5 1460.4 1441.5 1419.0 1416.7 1423.7

Relative optimality gap 2.85% 19.74% 3.09% 4.94% 9.45% 6.53% 5.87%

Wall time (s) 5986 555 10437 1239 729 348 4912
Upper bound subproblem (s) 1155 21 1690 1476 1589 260 362
Lagrangean subproblem (s) 8835 10100 - 10476 - 8164 5227

Benders subproblem (s) - - - 222 138 - -
Benders master problem (s) 372 80 604 570 443 - -

Cut generating linear program (s) 2412 - 3506 - - - -
Strengthened Benders subproblem (s) 975 - 2597 - - - -

Progressive Hedging (s) - - - - - - 125690

The sizes of the subproblems and the master problem of the SB+L algorithm for the planning
problem are shown in Table 14. The size of the Benders master problem and the strengthened
Benders subproblem is the size of the 81-scenario problem at the last iteration (92th iteration
in this case). Note that the strengthened Benders subproblem can have as many as 2,208 more
constraints than the Benders subproblem at the last iteration. This corresponds to the rank-one
lift-and-project cuts that are generated.
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Table 14. Size of each subproblem for the planning problem

Binary variables Continuous variables Constraints

Benders master problem 12 28 9,907
Upper bound subproblem 24 748 763

Benders subproblem 0 772 763
Strengthened Benders subproblem 0 772 2,971

Cut generating linear program 0 2,387 4,639
Lagrangean subproblem 36 736 739

5 Conclusion

In this paper, we have proposed an improved L-shaped method that can solve two-stage convex
0-1 mixed-integer nonlinear stochastic programs with mixed-integer variables in both first and
second stage effectively. The proposed algorithm is a Benders-like decomposition algorithm that
includes (strengthened) Benders cuts and Lagrangean cuts in the Benders master problem. The
Benders cuts are derived by solving the Benders subproblems, which are the NLP relaxations of
the subproblems for each scenario after the first stage decisions are fixed at the optimal solution
of the Benders master problem. The strengthened Benders cut are derived by adding rank-one
lift-and-project cuts to the Benders subproblem. The Lagrangean cuts are derived by solving the
Lagrangean subproblems whose multipliers are updated by a new subgradient method.

Different decomposition algorithms including SB+L, L, SB, L+B, B, LD, PH are implemented
and tested using the planning problem under demand and price uncertainty, and the batch plant
design problem under demand uncertainty. It is shown that the combination of Lagrangean cuts
and strengthened Benders cuts is able to provide the tightest lower bound among all the decom-
position algorithms that we test although it requires more time than algorithms like LD. The
proposed algorithm can be used as an effective computational strategy to solve the problems of
the same category in PSE applications. However, more examples would be desirable to show the
performance of the algorithm. Moreover, the proposed algorithm is not guaranteed to close the
optimality gap of the problems due to the duality gap of the Lagrangean cuts and the integrality
gap of the strengthened Benders cuts. A more rigorous algorithm that has finite convergence will
be developed in the future.
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Appendix A

Proposition 1. ηω ≥ z∗kSL,ω − µkωx is valid for the Benders master problem.

Proof. We rewrite the full space problem (P ) as (P ′) by introducing variables ηω.

(P ′) : min z =
∑
ω∈Ω

ηω (A.1)

s.t. A0x ≥ b0, g0(x) ≤ 0 (A.2)

A1,ωx+ g1,ω(yω) ≤ b1,ω ∀ω ∈ Ω (A.3)

g2,ω(yω) ≤ b2,ω ∀ω ∈ Ω (A.4)

ηω ≥ τω(cTx+ dTωyω) ∀ω ∈ Ω (A.5)

x ∈ X (A.6)

yω ∈ Y ∀ω ∈ Ω (A.7)

It is easy to see (P) and (P’) are equivalent. The idea of Benders decomposition is to project
the feasible region that include (x, ηω, yω) onto the (x, ηω) space. Therefore, valid constraints
for Benders master problem can be derived from (A.2)-(A.7), which involve only variables x, ηω.
τω(cTx + dTωyω) + µkx is the objective function of Lagrangean subproblem(SLkω). This objective
function is minimized over constraints (A.2)-(A.4),(A.6),(A.7) in (SLkω). Thus, z∗kSL,ω ≤ τω(cTx +
dTωyω) + µkx, is a valid inequality if we have (A.2)-(A.4),(A.6),(A.7). By combining constraint
(A.5), we can show that ηω ≥ z∗kSL,ω − µkωx is a valid inequality for the Benders master problem.

Proposition 2. The Benders master problem with the Lagrangean cuts (10) always yields a lower
bound that is at least as tight as using Lagrangean decomposition.

Proof. In Lagrangean decomposition, the best lower bound is given by solving problem (D)

(D) : max
µω ,∀ω∈Ω

min
xω ,yω ,∀ω∈Ω

∑
ω

τω(cTxω + dTωyω) + µωxω

s.t. (15)− (19) ∀ω ∈ Ω

(A.8)

Let µ∗ω be the optimal dual multiplier to problem (D). Let x∗ω, y
∗
ω be the optimal primal solution

when µω is fixed at µ∗ω. Let zD∗ω = τω(cTx∗ω + dTωy
∗
ω) + µ∗ωx

∗
ω. In the proposed algorithm, the

Lagrangean cuts ηω ≥ zD∗ω − µ∗ωx, ∀ω ∈ Ω are added to the Benders master problem.
∑
ω∈Ω

ηω ≥∑
ω∈Ω

(zD∗ω −µ∗ωx) =
∑
ω∈Ω

zD∗ω is implied by the Lagrangean cuts. Therefore, the lower bound obtained

from the Benders master problem is at least as tight as the lower bound obtained from Lagrangean
decomposition.
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Appendix B

Here we describe the subgradient method (Oliveira et al., 2013) to update the Lagrangean
multipliers. The nonanticipativity constraint is written as

xω1 = xω2, xω1 = xω3, · · · , xω1 = xω|Ω| (B.1)

We define the multipliers associated with the NACs as πω, ω = ω1, ω2 · · · , ω|Ω|−1 The multipliers
are updated by the formula:

πk+1
ω = πkω + tk(x̂kω1 − x̂kω+1) ω = ω1, ω2, · · · , ω|Ω|−1 (B.2)

x̂kω is the optimal solution to the Lagrangean subproblem SLkω. The value of tk is calculated by
the formula:

tk =
αk(UB − LB)

ω|Ω|−1∑
ω=ω1

||x̂kω1 − x̂kω+1||22
(B.3)

αk is a scalar chosen between 0 and 2. The value of αk is divided by a constant greater than 1
when

∑
ω z
∗k
SL,ω fails to improve.
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