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Abstract 
This paper presents a novel MILP formulation that addresses the simultaneous optimization of the 

short-term scheduling and blending problem in oil-refinery applications. Depending on the problem 

characteristics as well as the required flexibility in the solution, the model can be based on either a discrete 

or a continuous-time domain representation. In order to preserve the model’s linearity, an iterative 

procedure is proposed to effectively deal with non-linear gasoline properties and variable recipes for 

different product grades. Thus, the solution of a large MINLP formulation is replaced by a sequential 

MILP approximation. Instead of predefining fixed component concentrations for products, preferred blend 

recipes can be forced to apply whenever it is possible. The proposed optimization approach is oriented 

towards providing an effective and integrated solution for both the scheduling and the blending problem. In 

order to provide convenient solutions for all circumstances, different alternatives to cope with infeasible 

problems are presented in detail. The new method is illustrated by solving several real world problems with 

very low computational requirements.  

 

1. INTRODUCTION 
The gasoline short-term scheduling and blending are critical aspects in oil refinery operations. The 

economic and operability benefits associated with obtaining better-quality and less expensive gasoline 

blends, and at the same time making a more effective use of the available resources, are numerous and 
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significant. The main objective in oil refining is to convert a wide variety of crude oils into valuable final 

products such as gasoline, jet fuel and diesel. The major challenge lies on generating profits for a large 

process with high volumes and small margins. Figure 1 shows a diagram of a standard refinery system. The 

general structure of this particular process comprises three major sections: (1) crude oil unloading and 

blending, (2) production unit scheduling and (3) product blending and delivery of final products. The first 

sub-problem involves the crude oil unloading from vessels, its transfer to storage tanks and the charging 

schedule for each crude oil mixture to the distillation units. The second sub-problem consists of the 

production unit scheduling, which includes both fractionation and reaction processes. Reactions sections 

alter the molecular structure of hydrocarbons, in general to improve octane number, whereas fractionation 

sections separate the reactor effluent into streams of different properties and values. Lastly, the third sub-

problem is related to the scheduling, blending, storage and delivery of final products, which is generally 

agreed as being the most important and complex sub-problem. Its importance comes from the fact that 

gasoline can yield 60-70% of total refinery’s profit. On the other hand, the complexity mainly arises from 

the large number of product demands and quality specifications for each final product, as well as the 

limited number of available resources that can be used to reach the production goals. This paper is focused 

on the gasoline blending and the short-term scheduling problem of oil refinery operations. 

Mathematical programming techniques have been extensively used for long-term planning as well as 

the short-term scheduling of refinery operations. For planning problems, most of the computational tools 

have been based on successive linear programming models, such as RPMS from Honeywell, Hi-Spec 

Solutions (Bonner and Moore, 1979) and PIMS from Aspen Technology (Betchel Corp., 1993). On the 

other hand, scheduling problems have been addressed through linear and non-linear mathematical 

approaches that make use of binary variables (MILP and MINLP codes) to explicitly model the discrete 

decisions to be made (Grossmann et al., 2002 ; Shah, 1998). Short-term scheduling problems have been 

mainly studied for batch plants. Extensive reviews can be found in Reklaitis (1992), Pinto and Grossmann 

(1998) and Ierapetritou and Floudas (1998). Much less work has been devoted to continuous plants. Lee et 

al. (1996) addressed the short-term scheduling problem for the crude-oil inventory management problem. 

Nonlinearities of mixing tasks were reformulated into linear inequalities with which the original MINLP 

model was converted to a MILP formulation that can be solved to global optimality. This exact linear 

reformulation was possible because only mixing operations were considered (see Quesada and Grossmann, 

1995). The objective function was the minimization of the total operating cost, which comprises waiting 

time cost of each vessel in the sea, unloading cost for crude vessels, inventory cost and changeover cost. 
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Several examples were solved to highlight the computational performance of the proposed model. Moro et 

al. (1998) developed a mixed-integer nonlinear programming planning model for refinery production. The 

model assumes that a general refinery is composed of a number of processing units producing a variety of 

input/output streams with different properties, which can be blended to satisfy different specifications of 

diesel oil demands. Each unit belonging to the refinery is defined as a continuous processing element that 

transforms the input streams into several products. The general model of a typical unit is represented by a 

set of variables such as feed flowrates, feed properties, operating variables, product flowrates and product 

properties. The main objective is to maximize the total profit of the refinery, taking into consideration sales 

revenue, feed costs and the total operating cost.  Kelly and Mann (2002) highlight the importance of 

optimizing the scheduling of an oil-refinery’s crude-oil feedstock from the receipt to the charging of the 

pipestills. The use of successive linear programming (SLP) was proposed for solving the quality issue in 

this problem. More recently, Kelly (2004) analyzed the underlying mathematical modeling of complex 

nonlinear formulations for planning models of semi-continuous facilities, where the optimal operation of 

petroleum refineries and petrochemical plants was mainly addressed. 

The gasoline blending problem has also been addressed with several optimization tools. The main 

objective is to find the best way of mixing different intermediates products from the refinery and some 

additives in order to minimize blending cost subject to meeting the quality and demand requirements of 

different final products. The term quality refers to meeting given product specifications. Rigby et al. (1995) 

discussed successful implementation of decision support systems for offline multi-period blending 

problems at Texaco. Since these software packages are restricted to solving the blending problem, resource 

and temporal decisions must be made a priori either manually or by using a special method. To solve both 

sub-problems simultaneously, Glismann and Gruhn (2001) proposed a two-level optimization approach 

where a mixed-integer linear model (MILP) is utilized for the scheduling problem whereas a nonlinear 

model is run for the recipe optimization. The proposed decomposition technique for the entire optimization 

problem is based on solving first the nonlinear model aiming at generating the optimal solution of the 

blending problem, which is then incorporated into the MILP scheduling model as fixed decisions for 

optimizing only resource and temporal aspects. In this way, the solution of a large MINLP model is 

replaced by sequential NLP and MILP models. Jia and Ierapetritou (2003) proposed a solution strategy 

based on decomposing the overall refinery problem in three subsystems: (a) the crude-oil unloading and 

blending, (b) the production unit operations, and (c) the product blending and delivery. In order to solve 

each one of these sub-problems in the most efficient way, a set of mixed-integer linear models (MILPs) 
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were developed, which take into account the main features and difficulties of each case. In particular, fixed 

product recipes were assumed in the third sub-problem, which means that blending decisions were not 

incorporated into this model. The MILP formulation was based on a continuous time representation and the 

notion of event points. The mathematical formulation proposed to solve each sub-problem involves 

material balance constraints, capacity constraints, sequence constraints, allocation constraints, demand 

constraints, and a specific objective function. Continuous variables are defined to represent flowrates as 

well as starting and ending times of processing tasks. Binary variables are principally related to allocation 

decisions of tasks to event points, or to some specific aspect of each sub-problem.  

To conclude, it is worth to mention that a variety of mathematical programming approaches are 

currently available to the short-term scheduling and blending problem. However, in order to reduce the 

inherent problem difficulty, most of them rely on special assumptions that generally make the solution 

inefficient or unrealistic for real world cases. Some of the common assumptions are: (a) fixed recipes for 

different product grades are predefined, (b) component and product flow-rates are known and constant and 

(c) all product properties are assumed to be linear. On the other hand, more general Mixed-Integer Non-

Linear Programming (MINLP) formulations consider the majority of the problem features, but the 

complexity and the size of the model are greatly increased, making the problem intractable for large or 

even medium size problems. The major issue here is related to non-linear and non-convex constraints with 

which the computational performance strongly depends on the initial values and bounds assigned to the 

variables. Taking into account the principal weaknesses of the available mathematical approaches, the 

major goal of this work is to develop a novel mixed-integer linear programming (MILP) formulation for 

the simultaneous gasoline short-term scheduling and blending problem of oil refinery operations. Non-

linear property specifications based on variable and preferred product recipes can be effectively handled 

through the proposed iterative linear procedure, which allows the model to generate near-optimal solutions 

with modest computational effort.  

 



5 

 
Figure 1.  Illustration of a standard refinery system  

 

2. MODELING ISSUES  
The gasoline blending and short-term scheduling problem takes into account two major issues. The first 

one is related to aspects of production logistics, which mainly involves multiple production demands with 

different due dates, inventory pumping constraints for products and components as well as different logistic 

and operating rules. Most of these features are part of typical scheduling problems and are usually modeled 

as discrete and continuous decisions in an optimization framework. On the other hand, the second issue is 

the production quality, which represents an additional difficulty for standard scheduling problems. This 

second issue is also known as the blending problem and takes into account variable product recipes and 

property specifications such as minimum octane number, maximum sulfur and aromatic content, etc. Its 

main objective is to produce on-spec blends at minimum cost, where product specifications are stringent 

and constantly changing in most of the markets. Product qualities are usually predicted through complex 

correlations that depend on the concentration and the properties of the components used in the blend. 

Depending on the product property, non-linear correlations may include linear, bilinear, trilinear and 

exponential terms.    
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To deal with this challenging problem, different optimization techniques have been developed, which 

are based on different assumptions and mathematical methods. For instance, several approaches try to 

solve the entire problem in one step. However these approaches usually introduce several simplifications to 

the real problem, such as considering fixed recipes instead of variable product recipes (Jia and Ierapetritou, 

2003). While these approaches can be computationally effective, their solutions may be unrealistic for real 

industrial problems. Other approaches have used the idea of decomposing the problem into different sub-

problems. The best example of this strategy is to solve the logistics aspect first, then fix the temporal and 

resource decisions to solve for the quality part by adjusting the flows appropriately to meet all product 

specifications. Although this method is currently used in several industrial optimization tools, it has the 

disadvantage that it may generate infeasible solutions, particularly when hard constrains are imposed.  

Non-linear optimization models have been developed to circumvent the problem of infeasibilities by 

explicitly modeling non-linear properties for final products. However, as pointed out by several authors 

solving logistics and quality aspects for large-scale problems is not possible in a reasonable time with 

current mixed integer non-linear programming (MINLP) codes and global optimization techniques (Kelly 

et al. 2002 ; Jia et al., 2003). For this reason linear approximations are commonly used for handling the 

nonlinear properties of final products. As a result, near-optimal solutions for industrial problems can be 

generated with modest computational requirements. 

On the other hand, a major aspect of any scheduling model is related to timing decisions. Mathematical 

formulations are based on either a discrete or continuous time domain representation. The discrete time 

representation only allows events to occur at certain time points, which correspond to the boundaries of a 

set predefined time intervals. The main advantage of using a discrete time grid is that mass balance and 

inventory constraints become easier to handle but at the same time the solution loses flexibility, unless 

smaller time intervals are used, which may significantly decrease the computational performance of the 

method. In contrast, continuous time representations are capable of generating more flexible solutions, 

although with higher CPU time requirements. Also, inventory and mass balance constraints generally 

become more difficult to model since they have to be checked at any time during the scheduling horizon in 

order to ensure that a feasible solution will be generated. Based on the above issues we will state more 

precisely the problem addressed in this paper.  
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3. PROBLEM STATEMENT  
The general topology for the short-term scheduling and blending problem of oil refinery operations 

corresponds to a multistage system composed of component storage tanks, blend headers and product 

storage tanks. Specifically, we assume that we are given the following items:  

 

1. A predefined scheduling horizon, typically 7 to 10 days 

2. A set of intermediate products from the refinery (components) 

3. A set of dedicated storage tanks for each component with minimum and maximum capacity 

restrictions 

4. Initial stocks for components 

5. Component supplies with known flowrates   

6. Properties or qualities for components 

7. Minimum and maximum flowrates between component tanks and blend headers  

8. A set of final products with predefined minimum and maximum quality specifications  

9. A set of equivalent blend headers working in parallel that can be allocated to each final product  

10. A set of correlations, mostly non-linear, for predicting the values of properties of each blend. 

11. Minimum and maximum component concentrations in final products 

12. Preferred product recipes  

 

The main goal is to determine: 

 

a) The allocation of blenders to final products  

b) The inventory levels of components and products in storage tanks 

c) The volume fraction of components included in each product  

d) The total volume of each product  

e) The pumping rates for components and products 

f) The optimal timing decisions for production and storage tasks  

 

The objective is to maximize the production profit while satisfying the process constraints, final 

product demands and quality specifications. The objective function includes the total product value, the 

raw material cost and penalties for deviation from preferred recipes. Additional terms involving slack 
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variables for handling infeasible solutions can also be incorporated into the objective function to provide 

effective solutions for all circumstances.  

 

4. PROPOSED OPTIMIZATION APPROACH  
The main features of the proposed approach can be summarized in the following points:  

 

• A multiperiod optimization method that is able to deal with multiple product demands with 

different due dates and quality specifications.  

• Discrete or continuous time domain representations can be used, depending on the problem 

characteristics.  

• Linear approximations are used together with an iterative procedure to get better predictions of all 

product properties, even those naturally non-linear such as the octane number.  

• Simultaneous solution of the production logistics and quality specifications.  

• Fixed or variable product recipes as well as minimum and maximum limits on component 

concentration.  

• Binary variables are used to represent allocation decisions as well as any other logistic or 

production rule found in the problem. 

 

In order to describe the main model variables, Figure 2 illustrates a simple example of a gasoline 

scheduling and blending problem, which has traditionally been treated as two separate problems. The 

solution of the scheduling problem defines the way in which the products are processed with respect to 

time and available equipment. On the other hand, the solution of the blending problem defines how the 

available components are blended or mixed together to produce on-spec products with minimum cost.  

The key decision variables involved in a standard problem are the following: The continuous variable 

FI
i,p,t defines the volumetric flow of component i being transferred to product p during the time interval t 

whereas FP
p,t denotes the volumetric flow of product p being blended during each time interval t.  The 

continuous variables VI
i,t and VP

p,t define the amount of component and product being stored at each time 

point t, respectively. Finally, the discrete variable Ap,t defines which products are allocated to blenders in 

each time interval t. Additional continuous and discrete variables can be included into the mathematical 

model to tackle particular problem characteristics and operating constraints.  
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Figure 2. Illustration of the meaning of the principal model variables 

 

5. PRODUCT PROPERTY PREDICTION 
 

Before describing the proposed models, we present in this section an iterative scheme for predicting the 

properties of the products.  

A significant number of gasoline properties can be directly predicted by using a volumetric average as 

shown in equation (a):   
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where vI
i,p,t is the volume fraction of component i in product p at time t, prp,k,t defines the value of the 

property k for product p in time t and pri,k is the value of the property k for component i.  

 

The volume fraction variable vI is linked to the volumetric flow variables FI
i,p,t and FP

p,t through the 

following equality (b), 
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Taking into account that volumetric flowrate variables are required to control inventory levels in tanks 

and volume fraction variables are needed to predict product properties, the general mathematical model for 

the scheduling and blending problem is bilinear, even if only linear product properties are considered. 

However, in order to preserve the linearity of the model, the original equality (a) can be expressed in an 

alternative way by multiplying it by FP
p,t 
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Then equality (b) can be incorporated into equation (c), yielding the linear equation (d)  
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Taking advantage of minimum and maximum property specification constraints for products, constraint 

(d) can then be replaced by constraint (e), in which the variable prp,k is substituted by their respective 

minimum and maximum property values, which are problem data.  
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In this way, the variable vI
i,p,t is no longer required and the model remains linear. This linearization is 

valid only if volumetrically computed properties are considered in the blending problem. However, other 

gasoline properties can be approximated by adding minor changes to the previous equation. For instance, if 

the correlation for predicting a particular product property is based on a linear volumetric average plus 

additional non-linear terms, such as the case of the octane number, the non-linear part of the equation can 

be removed and replaced by a correction factor biasp,k,t , as shown in equation (f), 
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Thus, nonlinear product properties can be approximated through the linear equation (f), which is 

composed of a volumetric average followed by a correction factor ‘bias’. This correction factor depends on 

the product, property and time slot, and it is iteratively calculated by using the proposed procedure 

described in the following section.  

It should be noted that product properties such as oxygen and sulfur content are blended 

gravimetrically, which means that component and product specific gravities are also taking into account for 

the prediction, as shown in equation (g). In this case, ρi and ρp define the specific gravity of component i 

and product p, respectively. Given that ρp is a variable that is not directly computed through the proposed 

linear approach and with the intention of maintaining the model’s linearity, ρp can be substituted by an 

approximated value gravp , which can be easily computed through the iterative procedure described in the 

following section.  

 

  tkp
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Therefore, the proposed linear approximation for gravimetric blending is as follows, 
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To begin illustrating the iterative procedure and the proposed linear approximation, Fig. 3 shows a 

comparison between the values of the linear volumetric average, the nonlinear original correlation and the 

proposed linear approximation for a real nonlinear product property such as the motor octane number. In 

this example, the blend of two components A and B is only considered. The final product property is a 

nonlinear function of component concentrations. As shown in Fig. 3, if 40% of component A is blended 

with 60% of component B, the values of the volumetric average and the real nonlinear correlation are 88.5 

and 88.74, respectively. This difference arises because all non-linear terms involved in the exact motor 

octane correlation are not included in the linear volumetric average. In order to correct this discrepancy, the 

correction factor bias is calculated and used to yield a better property prediction in the next iteration. For 

this specific mixture of components the correction factor bias is equal to 0.24. The linear approximation 
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comprising the volumetric average together with the correction factor bias will always predict the exact 

value of the property if the same component concentration is utilized the next iteration. Furthermore, it was 

observed that the proposed linear approximation tends to predict a very close value of the real property if 

component concentrations are not significantly changed in next iteration, as shown in Figure 3.  
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Figure 3. A non-linear property and the proposed linear approximation 

 

The proposed iterative procedure to solve simultaneously the scheduling and blending problem using 

only linear equations can be summarized as seeing in Fig. 4.  The first step is to find an initial recipe for all 

products. If preferred product recipes are known they can be proposed as initial product recipes. Preferred 

recipes are the best alternative for the blending issue because they satisfy all product specifications with 

minimum cost. However, the use of them strongly depends on the scheduling decisions, component 
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inventories and product demands and for this reason, they should not be treated as fixed mixtures in any 

blending tool. On the other hand, if preferred recipes are not defined, one possibility for generating initial 

recipes is to solve the MILP model including only linear product properties. When initial recipes were 

generated, they will provide the component volume fractions used in each blend, which can then been 

employed as fixed parameters in more realistic non-linear correlations. The value predicted by the non-

linear correlation and the linear volumetric average are both used to calculate the correction factor ‘bias’ 

(see Fig. 3). Given that we are dealing with a multiperiod optimization problem, the correction factor will 

be calculated for all non-linear properties, products and time slots as the difference between the value 

predicted by the original non-linear equation and the linear volumetric average. The specific gravity of 

each product and time slot is also computed. After that, the MILP model including linear approximation 

with the parameter bias for volumetric properties and the parameter grav for gravimetric properties is 

solved. Subsequently, the solution of this problem is revised and the product recipes for those products 

meeting all specifications in a specific time slot are fixed. If different recipes are used for the same product 

in different time slots, only those that are feasible will be fixed. This process is repeated until all product 

recipes are fixed or a predefined iteration limit is reached. The main objective of this iterative procedure is 

to progressively find feasible recipes for all products while optimizing all temporal and resource 

constraints. As will be shown later in the paper only few iterations are needed to get a very good solution 

for both sub-problems. This has also been confirmed with our experience in solving real world problems. It 

should be noted that the parameter bias will be equal to zero for all linear properties that can be computed 

volumetrically. Figure 4 depicts a diagram illustrating the iterative approach proposed as basis of the 

linearization technique for non-linear properties.   
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Figure 4. Proposed iterative approach 
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6. SCHEDULING MODEL  
Before presenting the proposed mathematical models the nomenclature is as follows, 

 

Nomenclature  

 

Indices  

d  due dates of product demands 

i  intermediates or components 

p  final products or gasoline grades  

k  properties or qualities 

t  time slots 

Sets 

D set of product due dates  

I  set of intermediates to be blended  

P set of demanded final products 

K set of properties for intermediates and products 

T set of time slots 

Td  set of time slots postulated for the sub-interval ending at due date d (continuous time) 

Parameters 
h  time horizon 
nB

t  maximum number of blenders that can be working in parallel in time slot t 
st  predefined starting time of time slot t  (discrete time representation) 
et  predefined ending time of time slot t  (discrete time representation) 
ci  cost of component i 
spi  penalty for inventory of component i  
spp  penalty for inventory of product p  
pltyR+

ip  penalty for excess of component i in product p  
pltyR-

ip  penalty for shortage of component i in product p 
pltyS+

kp  penalty for a deviation from the minimum specification for property k 
pltyS-

kp  penalty for a deviation from the maximum specification for property k 
pltySH

i  penalty for purchasing component i from third-party 
d  demand due date  
ddpd  demand of product p to be satisfied at due date d 
lmin

p  minimum time slot duration when it is allocated to product p 
pp  price of product p 
invi   initial inventory of component i 
invp   initial inventory of product p 
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Vmin
i  minimum storage capacity of component i  

Vmax
i  maximum storage capacity of component i  

Vmin
p  minimum storage capacity of product p  

Vmax
p  maximum storage capacity of product p  

rcpmin
ip  minimum concentration of component i in product p 

rcpmax
ip  maximum concentration of component i in product p 

ratemin
p  minimum flow rate of product p 

ratemax
p maximum flow rate of product p 

rcpip  preferred concentration of component i in product p according to product recipe 
prik  value of property k for component i 
prmin

pk  minimum value of property k for product p 
prmax

pk  maximum value of property k for product p 
fi  constant flowrate of component i  
biasp,k,t  correction factor of the value of property k of product p in time slot t 
 
Variables  
FI

i,p,t  amount of component i being transferred to product p during time slot t 
FP

p,t  amount of product p being blended during time slot t 
VI

i,t   amount of component i stored at the end of time slot t 
VP

p,t  amount of product p stored at the end of time slot t 
vI

i,p,t   volume fraction of component i in product p at time t 
prp,k,t   value of the property k for product p in time t 
St  starting time of time slot t (continuous time representation) 
Et  ending time of time slot t (continuous time representation) 
Ap,t  binary variable denoting that product p is blended in time slot t 
DR-

i,p,t shortage of component i that is used for product p in time slot t according to the preferred 
product recipe 

DR+
i,p,t  excess of component i that is used for product p in time slot t according to the preferred 

product recipe 
DS-

k,p,t  deviation from the minimum specification of property k for product p 
DS+

k,p,t   deviation from the maximum specification of property k for product p 
Si,t  amount of component i to be purchased in time slot t  
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7. DISCRETE TIME REPRESENTATION 

 

In this section we present a MILP model that assumes that the entire scheduling horizon is divided into 

a finite number of consecutive time slots that are common for all units and can be allocated to different 

products, i.e. blending tasks. The proposed model has the following features: 

 

1. A discrete time domain representation is used where the scheduling horizon is divided into a set 

of consecutive time slots.  

2. Equivalent blenders working in parallel are available for different product grades 

3. A particular product demand can be satisfied by one or more time slots whenever they are 

allocated to this product and finished before product due date. 

4. Variable product recipes are considered and product properties are predicted by linear 

approximations. 

5. Constant flow rate of components is assumed during the entire scheduling horizon 

6. Constant flow rate of products is assumed during the allocated time slot.   

 

MILP Formulation  

 

Allocation constraint 

Constraint (1) defines with the binary variables Ap,t the number of final products allocated to time slot t. 

Given that a set of equivalent blenders are available to produce different gasoline grades simultaneously, 

nB
t specifies the maximum number of units that can be working in parallel during time interval t. 

 

t n A B
t

p
tp ∀≤∑                              ,                       (1) 

 

Product composition constraint 

Every final product or gasoline grade p is a blend of different components i, as expressed by constraint 

(2) 

 

tp F F P
tp

i

I
tpi ,                             ,,, ∀=∑                               (2) 
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Note that a significant reduction in the number of continuous variables can be obtained if equation (2) 

is deleted from the model and FP
p,t is replaced by  ∑iFI

i,p,t.  However, in order to make the model easier to 

understand, FP
p,t has been included in all model equations.  

 

Minimum/maximum component concentration 

In order to satisfy product qualities and/or market conditions, upper and lower bounds can be forced on 

the component concentration for specific gasoline grades. Then, constraint (3) ensures that product 

composition will always satisfy the predefined component specifications. Parameters rcpi,p
min and rcpi,p

max 

define the minimum/maximum concentration of component i for product p, respectively 

 

tpiFrcpFFrcp P
tppi

I
tpi

P
tppi ,,                             ,

max
,,,,

min
, ∀≤≤                             (3) 

 

It should be noted that a fixed recipe for a particular product p can also be taken into consideration by 

fixing the values of rcpip
min and rcpip

max to the predefined concentration of component i for product p. 

However, the use of fixed recipes should be avoided unless they were the only possibility to produce a 

particular product. As a better option, preferred recipes can be proposed as an initial solution of the 

proposed iterative procedure. In this way the generation of infeasible solutions will be avoided.   

 

Minimum/maximum volumetric flowrates for products 

Constraint (4) specifies that minimum and maximum volumetric flow rates must be satisfied when 

product p is blended during time slot t. Due to the fact that a constant product flow rate is assumed in this 

work, the volumetric flow rate can be computed by multiplying the upper and lower flowrates by the time 

slot duration whenever product p is allocated to a particular time slot t (Ap,t =1). Moreover, since a discrete 

time representation is used, the time slot duration is a known parameter computed through the predefined 

starting st and ending times et of each time slot t. It should be noted that if product p is not processed during 

time interval t, (Ap,t =0), the volumetric flow rate will be also equal to zero.  
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Material balance equation for components 

Given that a discrete time representation allows the blending tasks to start and finish at the same that 

the time slot allocated, inventory limits have only to be checked at the end of each time slot. Then, as 

expressed by constraint (5), the amount of component i being stored in tank at the end of time slot t is equal 

to the initial inventory of component i plus the component produced up to the end of time slot t  minus the 

component transferred to blenders up to the end of time slot t, 
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                            (5) 

where the parameter fi specifies the constant production rate of component i and et  defines the ending time 

of time slot t. Given that a discrete time representation is used, both parameters are known in advance.  

 

Component storage capacity  

Constraint (6) imposes lower/upper bounds Vi
min and Vi

max on the total amount of component i being 

stored in a storage tank during the scheduling horizon. Given that constant component flowrates are 

assumed, a perfect coordination between the production of components and final products is required to 

satisfy the storage constraints through the entire scheduling horizon. 

 

tiVVV i
I
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Material balance equation for products 

Constraint (7) computes the amount of product p being stored in tank at the end of time slot t taking 

into account the initial inventory, production and demands of product p  
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Product storage capacity  

A minimum safety stock and a finite storage capacity is assumed for final products  
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Minimum/maximum product qualities 

Assuming that properties are volumetrically computed, constraint (9) guarantees that the value of 

property k for product p in time interval t will always satisfy minimum and maximum product 

specifications. To maintain the model’s linearity, property k is not directly computed and bounds are only 

imposed on each property. Otherwise, non-convex bilinear equations would be generated in the model, 

which would then become non-linear. Although this linearization is only valid for properties volumetrically 

computed, the original equation (9) can be slightly modified as equation (9’) to account for real-word 

product properties, as described previously in the paper with the used of the parameter biask,p. The best 

value of this parameter can be obtained through the proposed iterative procedure. In this way, the proposed 

mathematical model is able to effectively deal with the quality issue, including variable recipes and non-

linear properties.  
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In turn, Equation (9’’) defines the proposed linear approximation for those product properties 

gravimetrically predicted.  
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Note that constraints (9), (9’) and (9’’) are only required for those gasoline grades that can be produced 

using variable recipes. If a fixed recipe is enforced, product properties must be satisfied in advance through 

the predefined component concentrations. 

 

Multiple product demands 
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Refinery operations typically require that multiple demands for the same gasoline grade be satisfied 

during the entire scheduling horizon. Constraint (10) denotes that the total amount of product p available at 

the end of time slot t must be enough to satisfy all demands of this particular product.  
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                 (10) 

 

Objective function (Maximize net profit) 

 

While satisfying all quality and logistic issues, the main objective of the scheduling problem is to 

maximize the net profit defined as the total product value minus the total component cost.  
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The formulation can also accommodate alternative objective functions. An example is equation (12), 

where penalties related to component and product inventories has been included in order to also reduce 

storage costs.  
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8. CONTINUOUS TIME REPRESENTATION 

 

The model in the previous section is based on a discrete time domain representation. To generate more 

flexible schedules capable of maximizing the plant performance without significantly increasing the model 

size, a continuous time representation will be utilized for the model. However, special attention must be 

paid to the limited storage capacity since continuous time representation tends to make the inventory 

constraints much more difficult. The main idea here is first to partition the entire time horizon into a 

predefined number of sub-intervals. The size of each sub-interval will depend on the product due dates. For 

instance, the first sub-interval will start at the beginning of the scheduling horizon and finish at the first 

product due date. The second one will be extended from the first up to the second product due date. A 

similar idea is applied to the next sub-intervals. Then, the number of sub-intervals will be equal to the 

number of product due dates. In this way, the starting and ending time of each sub-interval is known in 

advance.  

Once the sub-intervals are defined, a set of time slots with unknown duration are postulated for each 

one. The number of time slots for each sub-interval will depend on the sub-interval length as well as the 

grade of flexibility desired for the solution. Time slot starting and ending times will be new model 

variables, allowing the production events to happen at any time during the scheduling horizon. Figure 5 

shows a diagram illustrating the main features of the proposed continuous time domain representation. In 

this case, four product demands with different due dates are to be satisfied, which means that 4 sub-

intervals are predefined. Then, nine time slots can be postulated for the entire scheduling horizon, where 

two time-slots are defined for each one of the first three sub-intervals whereas three are allocated to the last 

one.  
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Figure 5. Proposed continuous time representation  

 

The proposed model has the following features: 

 

1. A continuous time domain representation is used where the scheduling horizon is divided into a 

sub-intervals and a set of time slots with unknown duration are postulated for each one.  

2. Equivalent blenders working in parallel are available for different product grades 

3. A particular product demand can be satisfied by one or more time slots whenever they are 

allocated to this product and finished before product due date. 

4. Final product properties are based on a volumetric average and a correction factor computed 

through the proposed iterative process. 

5. A constant flow rate of components is assumed during the entire scheduling horizon 

6. A constant flow rate of product is assumed during the allocated time slot.   

 

MILP Formulation  

 

When the mathematical model is based on a continuous time domain representation, starting and 

ending times for the time slots are new continuous decisions variables. For that reason, part of the original 

constraints used for discrete time representation must be updated in order to maintain model’s linearity as 

well as to account new problem features. In this section we describe the set of constraints that must be 

modified as well as the new ones to be added. Constraints that are not required to change must be included 

into the model in the same way they were presented in the previous section, such as equations (1), (2), (3), 

(6), (7), (8), (9), (9’), (9’’), (10), (11).  

 

Product 
Due Dates D1 D2 D3 D4

time 

T1 T2 T3 T4 T5 T6 T7 T8 T9

SLOTS Formatted: Font: Bold
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Minimum/maximum volumetric flowrates for products 

Constraints (4’) and (4’’) replace constraint (4) when a continuous time representation is used. When 

product p is not allocated to time slot t, the binary variable Apt is equal to zero and constraint (4’’) enforces 

the variable FPp,t to be equal to zero as well. On the other hand, Apt will be equal to one whenever product 

p is processed during time slot t. In this case, constraint (4’’) becomes redundant and constraint (4’) 

imposes minimum and maximum volumetric flow rates depending on the time slot duration.  
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Material balance equation for components 

To ensure that only feasible solutions are generated, the amount of component stored in tank has to be 

checked not only at the end but also at the beginning of each time slot. To make this possible, a new 

variable V’I
i,t is included into the model and the original equation (5) is replaced by constraints (5’) and 

(5’’).  The same idea for computing the inventory of components is applied to these new constraints.  
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Note that despite the fact that Et and St are model variables, both constraints remain linear because a 

constant production rate fi is assumed for components.   

 

Component storage capacity  

An additional constraint (6.1) is required to impose lower/upper bounds Vi
min and Vi

max on the total 

amount of component i being stored in tank at the beginning of time slot t. 
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Material balance equation for products 
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Constraint (7.1) computes the inventory of product p at the moment of satisfying the production 

demand dp. In this way, a minimum safety stock is guaranteed at any time during the scheduling horizon, 

even after a product delivery is carried out. 
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Constraint (8.1) explicitly defines the lower bound on the new inventory variable.  
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Set of time slot timing constraints  

Instead of defining time slot starting and ending times as fixed parameters, a continuous time 

representation models these decisions as additional continuous variables to be optimized. In order to allow 

more flexible solutions and avoid overlapping time slots, a correct order and sequence between postulated 

time slots must be established through the next set of constraints.  

 

Time slot duration 

Constraint (13) defines a minimum time slot duration when product p is allocated to time slot t. It is 

generally used to model an existing operating condition, but at the same time permits eliminating schedules 

using very short time slots, which are usually inefficient in practice.  

  

tpAlSE tpptt ,                                           ,
min ∀≥−                            (13) 

To ensure that duration of a slot is zero if it is not used, equation (14) is included into the model.  
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Time slot sequencing 

Constraint (15) establishes a sequence between consecutives time slots t and t+1.  
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tSE tt ∀≤ +                                            1                             (15) 

 

Sub-interval bounds 

The set Td comprises all time slots that are postulated for a sub-interval related to a particular due date 

d.  This sub-interval begins at the previous due date d-1 and finishes at due date d. Constraint (16) defines 

that time slots pre-allocated to this sub-interval must start after due date d-1 whereas constraints (17) 

imposes that them must end before due date d. The main goal of this assumption is that neither additional 

variables nor new constraints are required to establish which time slots can satisfy a specific product 

demand. As a result, more flexible schedules can be obtained without increasing the complexity of 

inventory constraints. 
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dt TtdE ∈∀≤                                                                            (17) 

 

Time slot allocation 

Constraint (18) imposes an order for using the set of predefined time slots. In other words, a time slot 

t+1 can be only allocated to a product p whenever the previous time slot has been used.  
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9. TREATMENT OF INFEASIBLE SOLUTIONS 
 

The short-term scheduling and blending of oil refinery operations is a very complex and highly-

constrained problem, where even feasible solutions are difficult to find in most of the cases. For that 

reason, in this section we present an additional set of variables and equations that can be used together with 

the proposed model, which are mainly oriented towards relaxing some hard problem constraints that can 

generate infeasible solutions when real world problems are addressed.  

 

Penalty for preferred recipe deviation 
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 If a preferred combination of components is defined for a particular product through the parameter 

rcpip, the following constraints can be included in the model to try using the desired recipe whenever it is 

possible.   
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Where DR+
i,p,t and where DR-

i,p,t define the excess and the shortage of component i that is used in product p 

in time slot t, according to the preferred product recipe. Constraint (21) penalizes the slack variables DR+
i,p,t 

and DR-
i,p,t  in the objective to ensure that deviations from the preferred recipe are minimized  
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Penalty for minimum/maximum specification deviation  

If desired product qualities can not be fully achieved and, at the same time, they can partially be 

violated for certain products, the following constraints can be used in order to minimize the deviation.   
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where the continuous variables DS+
k,p,t and DS-

k,p,t define a value that, in some way, represents the deviation 

from the minimum and maximum specification for property k, respectively. If property k for product p is 

between minimum and maximum specification values, both variables will be equal to zero. The 

corresponding objective penalty terms are shown in Eq. (24) 
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Penalty for intermediate shortage 

A common source of infeasible solutions is the lack of the minimum amount of intermediate required to 

satisfy either predefined component concentrations or certain market specifications. In this case, 

intermediate products can be purchased at higher cost from third-party. The continuous variable Si,t defines 

the amount of intermediate i needed in time slot t, which  allows to relax minimum inventory constraints.  
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The penalty term (26) includes is directly proportional to the component purchase cost.  
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10.   NUMERICAL RESULTS 
 

The performance of the proposed MILP-based approach for the scheduling and blending problem was 

tested with several real-world examples. The data are shown in Table 2 and 3. The basis of the example 

comprises nine intermediate product or components from the refinery which can be blended in different 

ways to satisfy multiple demands of three gasoline grades with different specifications over a 8-day 

scheduling horizon. Twelve key component and product properties are taken into consideration for solving 

the blending issue, where eight of them can be predicted by a linear volumetric average whereas the 

remainder is based on non-linear correlations. All the information about components such as cost, constant 

production rate, initial, minimum and maximum stocks and properties is shown in Table 2. Product data 

including price, requirements, inventory constraints, rate, recipe limits and specifications are given in Table 

3. Dedicated storage tanks with limited capacities for components and products and three equivalent blend 

headers working in parallel are available in the refinery. The main goal is to maximize the total profit, 

considering component cost, product values and different penalties for component shortages and out-spec 

products.  

Four different examples were solved with the purpose of analyzing the strong interaction between 

scheduling and blending decisions. In order to guarantee finding feasible solutions, slack variables for 

property deviations and intermediate shortages were included in all cases, which were null for all solutions 

generated. Example 1 is only focused on the blending problem and its solution is used as initial product 

recipes for next cases. Examples 2, 3 and 4 are solved using the proposed model based on both a discrete 

and a continuous time domain representation. When the discrete time representation is used, the scheduling 

horizon is divided into six consecutive time intervals, where intervals 1, 3, 4 and 6 have 1-day duration 

whereas intervals 2 and 6 have 2-day duration. For the continuous time representation, one time slot with 

unknown duration is postulated for each one of the six subintervals defined by the product due dates.  
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Table 2. Component data 
 Component 
 C1 C2 C3 C4 C5 C6 C7 C8 C9 

Cost ($/bbL) 24.00 20.00 26.00 23.00 24.00 50.00 50.00 50.00 50.00 
Prod. rate (Mbbl/day) 15.00 33.00 20.00 14.00 18.00 10.00 0.00 0.00 0.00 
Initial stock (Mbbl) 48.00 20.00 75.00 22.00 30.00 54.00 12.00 20.00 15.00 
Min. stock (Mbbl) 5.0 5.0 5.0 5.0 5.0 5.0 0.0 0.0 0.0 
Max. stock (Mbbl) 100.00 250.00 250.00 100.00 100.00 100.00 100.00 100.00 100.00 
Property          
P1 93.00 104.00 104.90 94.80 87.40 118.00 87.30 95.20 93.30 
P2 92.10 91.90 91.90 81.50 86.10 100.00 79.50 85.80 81.90 
P3 0.7069 0.8692 0.6167 0.6731 0.6540 0.7460 0.7460 0.8187 0.7339 
P4 3.60 1.00 100.00 94.90 91.50 15.00 0.00 1.30 34.30 
P5 16.30 4.50 100.00 97.10 95.50 100.00 0.00 6.00 57.10 
P6 94.30 93.50 100.00 100.00 100.00 100.00 0.00 93.90 95.90 
P7 35.00 22.70 351.10 117.10 93.00 31.30 63.30 16.00 52.40 
P8 0.007 0.00 0.00 0.009 0.0002 0.05 0.0063 0.1805 0.057 
P9 0.00 88.60 0.00 2.30 0.20 0.00 43.98 65.30 21.30 
P10 0.00 0.1 61.30 48.90 36.00 0.00 1.04 0.60 33.30 
P11 0.00 3.30 0.00 1.10 0.10 0.00 3.33 0.90 0.80 
P12 0.00 0.00 0.00 0.00 0.00 15.40 0.00 0.00 0.00 

 

Table 3. Product data  
 Product  
  G1   G2   G3  

Price ($/bbL) 31.00 31.00 31.00 
Requirement(Mbbl) MIN MAX LIFT MIN MAX LIFT MIN MAX LIFT 
Day 1 (Mbbl) 5.00 45.00 10.00 5.00 50.00 12.00 5.00 50.00 10.00 
Day 3 (Mbbl)    5.00 50.00 25.00    
Day 4 (Mbbl) 5.00 45.00 25.00 5.00 50.00 23.00    
Day 5 (Mbbl)          
Day 7 (Mbbl) 5.00 45.00 30.00       
Day 8 (Mbbl) 5.00 45.00 10.00    5.00 50.00 22.00 
Inventory (Mbbl) 5.00 150.00  5.00 150.00  5.00 150.00  
Rate (Mbbl/day) 5.00 45.00  5.00 50.00  5.00 50.00  
Recipe (%) MIN  MAX  MIN MAX MIN MAX 
C1 0.00 22.00 0.00 25.00 0.00 25.00 
C2 0.00 20.00 0.00 24.00 0.00 24.00 
C3 2.00 10.00 0.00 10.00 0.00 10.00 
C4 0.00 6.00 0.00 23.00 0.00 23.00 
C5 0.00 25.00 0.00 25.00 0.00 25.00 
C6 0.00 10.00 0.00 10.00 0.00 10.00 
C7 0.00 100.00 0.00 0.00 0.00 0.00 
C8 0.00 100.00 0.00 0.00 0.00 0.00 
C9 0.00 100.00 0.00 0.00 0.00 0.00 
Specifications MIN  MAX  MIN MAX MIN MAX 
P1 95.00  98.00  98.00  
P2 85.00  88.00  88.00  
P3 0.72 0.775 0.72 0.775 0.72 0.775 
P4 20.00 50.00 20.00 48.00 22.00 50.00 
P5 46.00 71.00 46.00 71.00 46.00 71.00 
P6 85.00  85.00  85.00  
P7 45.00 60.00 45.00 60.00 60.00 90.00 
P8  0.015  0.015  0.008 
P9  42.00  42.00  42.00 
P10  18.00  18.00  18.00 
P11  1.00  1.00  1.00 
P12  2.70  2.70  2.70 
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10.1.  Example 1 (Blending Problem) 

 

Example 1 is focused on a single-period blending problem of three products (G1, G2, G3). Its main 

goal is to find the best or ‘preferred’ recipe for each product that minimizes blend cost and simultaneously 

satisfies all quality specifications. Preferred recipes are used as initial solutions for subsequent examples. 

For this particular problem, temporal, inventory and resource constraints coming from the scheduling 

problem are disregarded by assuming that enough resources, component stocks and time are available as 

needed to produce 1 Mbbl of each product once. In this way only the blending problem is taking into 

consideration. Component cost and properties, variable recipe limits and stringent product specifications 

are the central features to be considered for solving example 1. The proposed MILP-based iterative 

procedure was used to find preferred recipes for all required products. In this case, initial product recipes 

were generated taking into account only linear product properties. Then, the iterative procedure was 

performed to update the initial recipes with the purpose of satisfying all product specifications. Preferred 

recipes for products G2 and G3 were found by executing just one iteration of the proposed procedure, 

whereas an additional iteration was needed to satisfy all specifications for product G1, since the maximum 

sulfur content was violated both in the initial recipe as in the first iteration. In order to generate feasible 

recipes, component concentrations for each product were updated by the MILP model in each iteration, 

which gradually increased the blend cost. The recipe evolution for product G1 in terms of component 

concentration is presented in detail in Figure 5. Blend cost and product properties associated to each recipe 

are shown in Table 4. In addition to the exact values for each property predicted by nonlinear correlations, 

the approximations predicted by the proposed linear functions are also presented in Table 4. It should be 

noted that predictions of nonlinear properties tend to improve when the number of iterations is increased. 

Finally, best product recipes and ‘bias’ factors for all products are reported in Table 5.  
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Figure 5. Convergence to preferred recipe for product G1 (iterative procedure) 

 

 

 

Table 4. Iterative blending problem for product G1 
 Min. 

Spec. 
Initial recipe Iteration 1 Iteration 2 Max 

Spec. 
Blend cost ($/bbL)  29.30 29.97 29.99  
Quality  Value Value approx.  Value Approx.  
P1 95.00 97.891 97.898 97.7737 97.893 97.8928  
P2 85.00 88.417 88.470 88.0493 88.438 88.4335  
P3 0.72 0.7418 0.7325  0.7324  0.775 
P4 20.00 34.455 35.418  35.409  50.00 
P5 46.00 46.00 50.80  50.833  71.00 
P6 85.00 96.460 91.797  91.780   
P7 45.00 60.00 60.00  60.00  60.00 
P8  0.0378 0.0152 0.0150 0.0150 0.0150 0.015 
P9  28.458 22.974  22.923  42.00 
P10  14.256 15.974  16.005  18.00 
P11  0.8964 1.00  1.00  1.00 
P12  1.1223 1.5684 1.5488 1.5687 1.5684 2.70 
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Table 5. Preferred product recipes  
 Product 
  G1   G2   G3  

Blend cost ($/bbL) 29.99 25.28 24.98 
Recipe (%)    
C1 22.00 25.00 25.00 
C2 20.00 23.947 24.00 
C3 2.00 16.794 1.372 
C4 4.847 25.00 16.636 
C5 25.00 9.259 25.00 
C6 10.00  7.992 
C7 5.198   
C8 0.958   
C9 9.997   
Quality    
P1 97.893 (bias =1.527) 98.4122 (bias = 1.5611) 98.2214 (bias=1.5208) 
P2 88.438 (bias = -0.659) 88.4594 (bias = -1.0439) 88.3310 (bias=-1.0861) 
P3 0.7324 0.7305 0.7289 
P4 35.409 41.3410 42.3734 
P5 50.833 54.5932 54.5475 
P6 91.780 97.0184 97.0150 
P7 60.00 60.00 64.2465 
P8 0.0150  0.0079 0.0072 
P9 22.923 21.6536 21.6966 
P10 16.005 17.2363 18.00 
P11 1.00 1.00 1.00 
P12 1.5687 1.4561 1.2597 

 

 

10.2. Example 2  

 

Example 2 addresses the original scheduling and blending example provided by ABB. Preferred 

product recipes found in example 1 were used as the initial solution for the proposed iterative procedure. 

Despite using linear approximations, the proposed MILP model was capable of finding in just one iteration 

the same solution generated by nonlinear optimization tools. However, although the discrete and 

continuous time representations obtained the same profit in terms of component cost and product value 

(1,611.21 $), the continuous time representation is able to find a schedule that operates the blenders at full 

capacity for 2.67 days less than the discrete time representation, which can significantly reduce the total 

operating cost. Product schedules based on a discrete and continuous time representation are reported in 

Tables 6 and 7, respectively. The inventory evolution of components through the scheduling horizon is 

shown in Figure  
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Table 6. Product schedule (Example 2 - discrete time representation) 
Product Period Start End Prod Lift Inventory 

G1 T1 0.00 1.00 15.02 10.00 5.02 
 T2 1.00 3.00 0.00 0.00 5.02 
 T3 3.00 4.00 45.00 25.00 25.02 
 T4 4.00 5.00 0.00 0.00 25.02 
 T5 5.00 7.00 45.00 30.00 40.02 
 T6 7.00 8.00 45.00 10.00 75.02 

G2 T1 0.00 1.00 50.00 12.00 38.00 
 T2 1.00 3.00 50.00 25.00 63.00 
 T3 3.00 4.00 50.00 23.00 90.00 
 T4 4.00 5.00 0.00 0.00 90.00 
 T5 5.00 7.00 0.00 0.00 90.00 
 T6 7.00 8.00 0.00 0.00 90.00 

G3 T1 0.00 1.00 50.00 10.00 40.00 
 T2 1.00 3.00 0.00 0.00 40.00 
 T3 3.00 4.00 0.00 0.00 40.00 
 T4 4.00 5.00 0.00 0.00 40.00 
 T5 5.00 7.00 0.00 0.00 40.00 
 T6 7.00 8.00 50.00 22.00 68.00 

 

Table 7. Product schedule (Example 2 - continuous time representation) 
Product Period Start End Prod Lift Inventory 

G1         T1       0.00       1.00      45.00      10.00      35.00 
         T2       1.00       2.00       0.00       0.00      35.00 
         T3       3.00       4.00      45.00      25.00      55.00 
         T4       4.00       5.00       0.00      25.00      55.00 
         T5       5.00       5.33      15.02       0.00      40.02 
         T6       7.00       8.00      45.00      10.00      75.02 

G2         T1       0.00       1.00      50.00      12.00      38.00 
         T2       1.00       2.00      50.00       0.00      63.00 
         T3       3.00       4.00      50.00      23.00      90.00 
         T4       4.00       5.00       0.00      23.00      90.00 
         T5       5.00       5.33       0.00       0.00      90.00 
         T6       7.00       8.00       0.00       0.00      90.00 

G3         T1       0.00       1.00      50.00      10.00      40.00 
         T2       1.00       2.00       0.00       0.00      40.00 
         T3       3.00       4.00       0.00       0.00      40.00 
         T4       4.00       5.00       0.00       0.00      40.00 
         T5       5.00       5.33       0.00       0.00      40.00 
         T6       7.00       8.00      50.00      22.00      68.00 
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10.3. Example 3  

 

This example introduces a small change into example 2 in order to evaluate the effect of predefining 

minimum and maximum requirements for each time interval. In this way the amount to be produced in 

each time interval becomes a model variable only restricted by minimum and maximum production rates. 

The amount of product to be lifted at specific due dates is still a hard constraint to be satisfied. This 

modification allows the model to increase the total production by almost 36%, i.e. from 400.02 Mbbl to 

542.02 Mbbl, which represents increasing the total profit to 2,448.05 ($), which is almost 52% increase 

(see Table 13). Preferred product recipes are used for all products and one iteration is only executed. 

Product schedules based on a discrete and continuous time representation are shown in Tables 8 and 9, 

respectively. In this example we note that the continuous time representation needs 2.60 days less of total 

operating time to reach the same production level as the discrete time model. Figure 7 shows Gantt-charts 

corresponding to examples 2 and 3.   

 

 

Table 8. Product schedule (Example 3 - discrete time representation) 
Product Period Start End Prod Lift Inventory 

G1         T1       0.00       1.00      45.00      10.00      35.00 
         T2       1.00       3.00      60.02       0.00      95.02 
         T3       3.00       4.00       0.00      25.00      70.02 
         T4       4.00       5.00       0.00       0.00      70.02 
         T5       5.00       7.00       0.00      30.00      40.02 
         T6       7.00       8.00      45.00      10.00      75.02 

G2         T1       0.00       1.00      50.00      12.00      38.00 
         T2       1.00       3.00       0.00      25.00      13.00 
         T3       3.00       4.00      50.00      23.00      40.00 
         T4       4.00       5.00       0.00       0.00      40.00 
         T5       5.00       7.00      60.00       0.00     100.00 
         T6       7.00       8.00      50.00       0.00     150.00 

G3         T1       0.00       1.00      50.00      10.00      40.00 
         T2       1.00       3.00      72.00       0.00     112.00 
         T3       3.00       4.00       0.00       0.00     112.00 
         T4       4.00       5.00       0.00       0.00     112.00 
         T5       5.00       7.00      10.00       0.00     122.00 
         T6       7.00       8.00      50.00      22.00     150.00 
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Table 9. Product schedule (Example 3 - continuous time representation) 
Product Period Start End Prod Lift Inventory 

G1         T1       0.00       1.00      45.00      10.00      35.00 
         T2       2.80       3.00       9.00      10.00      44.00 
         T3       3.00       4.00      45.00      35.00      64.00 
         T4       4.00       4.80       4.00      35.00      68.00 
         T5       6.80       7.00       9.00      65.00      47.00 
         T6       7.00       8.00      38.02      75.00      75.02 

G2         T1       0.00       1.00      50.00      12.00      38.00 
         T2       2.80       3.00      10.00      37.00      23.00 
         T3       3.00       4.00      50.00      60.00      50.00 
         T4       4.00       4.80      40.00      60.00      90.00 
         T5       6.80       7.00      10.00      60.00     100.00 
         T6       7.00       8.00      50.00      60.00     150.00 

G3         T1       0.00       1.00      50.00      10.00      40.00 
         T2       2.80       3.00       0.00      10.00      40.00 
         T3       3.00       4.00      50.00      10.00      90.00 
         T4       4.00       4.80      40.00      10.00     130.00 
         T5       6.80       7.00      10.00      10.00     140.00 
         T6       7.00       8.00      32.00      32.00     150.00 
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Figure 6. Evolution of component stocks (Examples 2 and 3) 
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                     a) Example 2 (discrete time)                           b) Example 2 (continuous time)  

 

                    
  c) Example 3 (discrete time)       d) Example 3 (continuous time) 

 

Figure 7. Gantt charts (examples 2 and 3) 

 

10.4.  Example  4 

 

Finally, this example deals with a modified version of the original example where the following 

changes are introduced: (1) Properties P1 and P2 are decreased by 1 for components C1, C2, C3 and C6, 

(2) the price of G3 is increased to 31.05 $/bbl, (3) component cost is increased to 27 $/bbl and 23 $/bbl for 

C1 and C2 and (4) production rates for C1 and C2 are reduced to 13 Mbbl/day and 31 Mbbl/day 

respectively.  All other data remain as in the original example. The main goal here is to analyze the effect 

of these changes in the blending and scheduling decisions. Detailed product schedules for discrete and 
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continuous time representations for Example 4 are shown in Tables 10 and 11, respectively. Regarding the 

blending decisions, preferred recipes found in example 1 are proposed as the initial solution. However, 

they have to be updated because changes in the component properties make some preferred recipes 

infeasible. Only one iteration is required to modify the infeasible recipes related to products G2 and G3. 

Preferred and updated recipes for these products are compared in Table 12. As shown, the new recipes 

satisfy all product specifications but at the same time, updated component concentrations increase the 

blend cost with which the profit is reduced to 1,234.49 ($). This difference mainly arises because 

component costs were increased and octane numbers were reduced. It should be noted that key properties 

such RON and MON are satisfied with a very small margin, which means that quality giveaway is 

minimized by using the proposed method.  

 

 

 

Table 10. Product schedule (Example 4 - discrete time representation) 
Product Period Start End Prod Lift Inventory 

G1         T1       0.00       1.00      45.00      10.00      35.00 
         T2       1.00       3.00       0.00       0.00      35.00 
         T3       3.00       4.00       5.00      25.00      15.00 
         T4       4.00       5.00       0.00       0.00      15.00 
         T5       5.00       7.00      20.00      30.00       5.00 
         T6       7.00       8.00      10.00      10.00       5.00 

G2         T1       0.00       1.00      50.00      12.00      38.00 
         T2       1.00       3.00     100.00      25.00     113.00 
         T3       3.00       4.00      50.00      23.00     140.00 
         T4       4.00       5.00       0.00       0.00     140.00 
         T5       5.00       7.00       0.00       0.00     140.00 
         T6       7.00       8.00       0.00       0.00     140.00 

G3         T1       0.00       1.00      50.00      10.00      40.00 
         T2       1.00       3.00       0.00       0.00      40.00 
         T3       3.00       4.00       0.00       0.00      40.00 
         T4       4.00       5.00       0.00       0.00      40.00 
         T5       5.00       7.00       0.00       0.00      40.00 
         T6       7.00       8.00      50.00      22.00      68.00 
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Table 11. Product schedule (Example 4 - continuous time representation) 
Product Period Start End Prod Lift Inventory 

G1         T1       0.00       1.00      16.00      10.00       6.00 
         T2       1.00       3.00       0.00      10.00       6.00 
         T3       3.00       4.00      45.00      35.00      26.00 
         T4       4.00       5.00       0.00      35.00      26.00 
         T5       5.00       5.20       9.00      35.00       5.00 
         T6       7.00       8.00      10.00      75.00       5.00 

G2         T1       0.00       1.00      50.00      12.00      38.00 
         T2       1.00       3.00     100.00      37.00     113.00 
         T3       3.00       4.00      50.00      60.00     140.00 
         T4       4.00       5.00       0.00      60.00     140.00 
         T5       5.00       5.20       0.00      60.00     140.00 
         T6       7.00       8.00       0.00      60.00     140.00 

G3         T1       0.00       1.00      50.00      10.00      40.00 
         T2       1.00       3.00       0.00      10.00      40.00 
         T3       3.00       4.00       0.00      10.00      40.00 
         T4       4.00       5.00       0.00      10.00      40.00 
         T5       5.00       5.20       0.00      10.00      40.00 
         T6       7.00       8.00      50.00      32.00      68.00 

 

 

 

 

Table 12. Updated product recipes (Example 4) 
 Product 
  G2  G3  

  Preferred Updated Preferred Updated 
Blend cost ($/bbL)  25.28 26.92 24.98 26.67 
Recipe (%)      
C1  25.00 25.00 25.00 25.00 
C2  23.947 24.00 24.00 24.00 
C3  16.794 0.223 1.372 3.195 
C4  25.00 16.09 16.636 14.869 
C5  9.259 24.831 25.00 24.269 
C6   9.856 7.992 8.640 
Quality    
P1  97.8204 98.0235 97.6283 98.052 
P2  87.8588 88.0133 87.7294 88.0455 
P3  0.7305 0.7309 0.7289 0.7285 
P4  41.3408 40.831 42.3734 41.9724 
P5  54.5936 54.571 54.5476 54.6305 
P6  97.0184 97.015 97.015 97.015 
P7  60.00 60.00 64.2473 68.1274 
P8  0.0079 0.0081 0.0072 0.0074 
P9  21.6533 21.6837 21.6966 21.6546 
P10  17.2362 16.968 18.00 18.00 
P11  1.00 0.9938 1.00 0.9799 
P12  1.4562 1.5491 1.2597 1.3626 

 

 

Table 1. Comparison of results 
Example  Blend value Comp. stock 

production 
Comp. inventory 

build 
Total 
Profit 

Profit / BBL 

2 12,400.61 22,352.00 11,562.60 1,611.21 4.03 
3 16,802.61 22,352.00 7,997.44 2,448.05 4.52 
4  11,785.00 23,504.00 12,953.49 1,234.49 3.25 

Unit: M$ 
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Table 2. Model size and computational requirements 
Example Binary vars, cont. vars, constraints Objective 

function 
CPU timea  

1 - , 127,81 12 0.13 
2.a (NLP model*) -, 919 ,772 1,611.21 1.25 

2.a 9 , 757, 679 1,611.21 0.26 
2.b 9 , 841, 832 1,611.21 0.26 
3.a 18 , 757, 679 2,448.05 0.23 
3.b 18 , 841, 832 2,448.05 0.26 
4.a 9 , 757, 679 1,234.49 0.23 
4.b  9 , 841, 832 1,234.49 0.26 

a Seconds on Pentium IV PC with GAMS 21.2/CPLEX 8.1 - * All scheduling decisions are predefined 

 

11. COMPUTATIONAL RESULTS 

Different scheduling and blending problems were solved in the previous section in order to evaluate the 

efficiency of the proposed method. Example 1 dealt with a pure blending problem whereas examples 2, 3 

and 4 also accounted scheduling decisions. Examples 3 and 4 correspond to modified versions of the 

original Example 2 where minimum and maximum requirements were relaxed (Example 3) and certain 

changes in component properties and cost and product prices were incorporated (Example 4). Table 13 

summarizes the results for examples 2, 3 and 4, while Table 14 provides the computational statistics on the 

four examples. As can be seen, the size of the MILP problems is not very large and involves a modest 

number of 0-1 variables. For this reason every single problem needs no more than 1 sec at CPU time with 

CPLEX 8.1, thus showing that the proposed models and the iterative MILP procedure are very efficient. 

The method found more economic solutions to a combined scheduling and blending optimization problem 

almost an order of magnitude faster than it took to solve only the blending NLP problem with a 

predetermined schedule. 

 

12.  CONCLUSIONS 

A new MILP approach to simultaneously solve gasoline short-term scheduling and blending problems 

has been proposed. Although the method is able to deal with non-linear product properties and variable 

recipes, the use of non-linear constraints was avoided through an iterative procedure that can be based on a 

discrete or a continuous time mathematical formulation. As shown in the examples, the proposed model 

can generate very good solutions in terms of profit with very low CPU time requirements.   
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