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Abstract 
This work proposes three novel approaches to speed up the solution of the Security Constrained 
Unit Commitment problem: an improvement of an active-set iterative approach taken from 
literature, an approach using solver callback functions for the evaluation of system and security 
constraints in the branch-and-bound tree, and one based on a shrinking horizon decomposition 
integrated with the use of callback functions. The three approaches were tested over five different 
case studies and compared against an approach taken from literature to assess scalability and 
performance. Results show that the modified iterative approach is always faster than the original 
one reported in the literature (between -58% and -93% run time), while the callback-based method 
does not reduce the computational time of large-scale instances. Finally, the shrinking-horizon-
based approach was proved to be the fastest (up to -98% less time) despite not guaranteeing 
optimality (about 1% suboptimal). 
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Nomenclature 
Abbreviations  

AC 
DC 
ED 

Alternating Current 
Direct Current 
Economic Dispatch 

ISF Injection Shifting Factor 
LODF Line Outage Distribution Factor 
LSF Linear Sensitivity Factor 
O&M Operation and Maintenance 
PTDF Power Transfer Distribution Factor 
QP Quadratic Programming 
SCUC Security Constrained Unit Commitment 
SSNC System and Security Network Constraint 
TSO Transmission System Operator 

Sets  
𝛤!, 𝛤!!  Sets of the active system and security network constraints 



𝐵  Set of the buses in the network 
𝐺  Set of the available generators 
𝐺"#  𝐺"# 	⊆ 𝐺, set of the must-run generators 
𝐺"$$  𝐺"$$ 	⊆ 𝐺, set of generators currently not available 
𝐺%&   𝐺%& 	⊆ 𝐺, set of the generators belonging to reserve area 𝑟 
𝐺'(  𝐺'( 	⊆ 𝐺, set of the generators connected directly to bus 𝑏 
𝐿  Set of the transmission lines 

𝐿')#, 𝐿'"*+  
𝐿'( 	⊆ 𝐿, set of the transmission lines connected to bus 𝑏 (in- and 
out-going) 

𝐿"$$  𝐿"$$ 	⊆ 𝐿, set of the transmission lines currently not available 
𝑅  Network reserve areas 
𝑇  Set of the timesteps within the horizon considered 

Binary Variables  

δ),+"#, δ),+
"$$  Start-up/shut-down flagger for unit 𝑖 at time 𝑡. 1 if unit i started-

up/shut-down at 𝑡, 0 otherwise 
𝑧),+  On\off status of unit 𝑖 at time 𝑡. 1 if unit i is on at time t, 0 otherwise. 

Continuous Variables  

𝑑',+-./0  Demand shed at bus 𝑏 at time 𝑡 [MWh] 
𝑓1,+  Pre-outage power flowing through line 𝑐 at time 𝑡 [MW] 

𝑓1,+0   Post-outage power flowing through line 𝑐 at time 𝑡 resulting from 
outage of line 𝑑 [MW] 

𝑓1,+
0,23  Post-outage power flowing through line 𝑐 at time 𝑡 resulting from 

outage of line 𝑑 in the QP subproblem [MW] 

𝑓1,+
23  Pre-outage power flowing through line 𝑐 at time 𝑡  in the QP 

subproblem [MW] 
𝑝),+  Energy generated by unit 𝑖 at time 𝑡 [MWh] 

𝑝),+
23  Generation that unit 𝑖 at time 𝑡 should have to meet the considered 

SSNCs in the QP subproblem [MWh] 

𝑟),+
*4, 𝑟),+0"5#  Upward and downward reserve quantities made available by unit 𝑖 at 

time 𝑡 [MWh] 

Parameters  

#𝑅𝑈) , #𝑅𝐷)   
Minimum number of timesteps of length 𝑑𝑡 required by unit 𝑖 to go 
from minimum/maximum to maximum/minimum generation 
according to the ramping limit 𝑅𝑈)/𝑅𝐷) 

#𝑆𝑈) , #𝑆𝐷)   
Minimum number of timesteps needed by unit 𝑖 to ramp up from 𝑆𝑈) 
to the maximum generation / to ramp down from maximum 
generation to 𝑆𝐷) 

∆𝑡607  Time advancement of the shrinking horizon algorithm (equal to the 
number of discrete timesteps considered in each shrunk horizon) 

𝑐),+ , 𝑐)"#, 𝑐)-*, 𝑐)-0  Variable [$/MWh], fixed hourly [$/h], stat-up [$/start-up] and shut-
down [$/shut-down] operational costs for unit 𝑖 

𝑐-./0   Virtual cost related to shed load [$/MWh] 



𝑐',+0   Virtual revenue linked to the amount of demand of bus 𝑏 at time 𝑡 
that is met [$/MWh] 

𝐷',+  
Demand related to a timestep duration 𝑑𝑡 to meet at bus	𝑏 at time 𝑡 
[MWh] 

𝐷',+
688  Demand related to the aggregate timestep 𝑡 (of duration  𝑡̃ ∙ 𝑑𝑡) to 

meet at bus	𝑏 [MWh] 
𝑑𝑡  Timestep duration [h] 
𝐹>1   Maximum power flow allowed through line 𝑐 [MW] 

𝐻)9 , 𝐻):  Number of time periods for completing the minimum up\down time 
at the beginning of the considered time horizon, for unit 𝑖 

𝑃) , 𝑃)   Minimum and maximum allowed generation unit 𝑖 within 𝑑𝑡 [MWh] 

𝑅𝑈) , 𝑅𝐷)   
Ramp-up\down limits for unit 𝑖 between timesteps of duration 𝑑𝑡 
[MWh] 

𝑅𝑒𝑠%,+
*4, 𝑅𝑒𝑠%,+0"5#  Upward and downward reserve requirements of area 𝑟 at time 𝑡 

[MWh] 

𝑆𝑈) , 𝑆𝐷)  
Ramping limits at start-up\shutdown for unit 𝑖 for timestep duration 
𝑑𝑡  [MWh] 

𝑡̃  Number of original timesteps considered in the aggregated one. 

𝑈𝑇) , 𝐷𝑇)   
Minimum required number of timesteps of duration 𝑑𝑡 that unit 𝑖 is 
required to stay on/off before being shutdown/started-up 

𝑈𝑇C),+, 𝐷𝑇C),+, 
Minimum required number of timesteps (aggregate and/or discrete) 
that unit 𝑖 is required to stay on/off in the timesteps before 𝑡 (𝑡 
included), if on/off at 𝑡 

𝑈𝑇C)
688, 𝐷𝑇C)

688 
Minimum required number of timesteps (aggregate and/or discrete) 
that unit 𝑖 is required to stay on/off starting up/shutting down at the 
beginning of the horizon 

𝑦1   𝑦: 𝑐 → (𝑚, 𝑛), map defining the link between line 𝑐 and the 
connected buses 𝑚 and 𝑛 

 

1. Introduction 
 

In the last two decades many changes have happened to electricity markets worldwide, mainly 
due to deregulation. This opened the markets to many operators in the power sector, providing 
competition and lowering the energy costs. However, this increased participation made grid 
operation more challenging for Independent System Operators (ISOs). This is because the ISO is 
in charge of determining the optimal operational scheduling of every generator connected to the 
grid for a fixed time horizon, with the aim of minimizing the total operational cost of satisfying 
the demand at each bus (consumption point). The resulting decisions must comply with the 
generators’ operational constraints, as well as with those related to the transmission system (e.g., 
no lines overload). In addition, N-1 reliability is enforced by guaranteeing that no line will be 
overloaded under any contingency in which at most one of them is out of service. What we have 
described is known in the literature as the Security Constrained Unit Commitment (SCUC) 
problem [1] and it is characterized by high combinatorial complexity, requiring the development 
of special-purpose mathematical optimization tools for its solution. 



The mathematical optimization model involves both linear and non-linear equations describing the 
generators performance and the AC nature of the grid. This, together with the N-1 reliability 
consideration in the problem, makes the model hard to solve. One of the first works proposing a 
method to solve the AC SCUC problem is the one by Fu et al. [2]. In this work the original problem 
is split into a master and a sub-problem, that are solved iteratively. Lagrangean relaxation and 
Dynamic Programming are used for solving the master problem, while the subproblem finds the 
solution of the Optimal Power Flow (OPF) problem and checks if any of the system and security 
constraints are violated. If so, Benders cuts are added to the master problem, corresponding to the 
violations found. A more recent work proposed by Gupta et al. [3] relies on a similar concept: 
Generalized Benders Decomposition is used to solve the MINLP model the AC SCUC problem 
by formulating a MIQP master problem and an NLP subproblem. As before, the NLP subproblem 
is used for the evaluation of the violated network constraints to be added to the master problem. 
Dipan Biswas et al. [4] showed how their two-stage algorithm solving an MILP and an NLP 
problem sequentially proved to be yield solutions that are only 2% worse than the solution of the 
original problem. Another work focusing on the loss of optimality associated to model 
linearization can be found in Jiang  et al.[5], where different linearized models are considered and 
compared.  
A methodology based on Ordinal Optimization [6] was proposed by Nan et al. [7]. This iterative 
approach resembles in the sequential solution of an approximated and detailed model, with the aim 
to find a “good” solution rather than the optimal one. In the single test case considered it was 
shown that the computational time was significantly reduced compared to Benders Decomposition, 
while providing a similar solution. 
A tri-level decomposition approach was proposed by Amjady et al. [8], based on finding the unit 
commitment considering AC line constraints and wind generation worst-case scenario. The 
methodology proved to be effective in finding a robust solution for the small test case considered, 
but scalability was not assessed. 
As it can be seen, the computational burden associated with solving the original AC SCUC is 
characterized by the small test instances (e.g., 24, 118 bus systems) considered in the previously 
cited studies. This gives rise to the need of problem linearization and decomposition. Moreover, 
most of the works focused on solving the AC SCUC problem consider simple test cases, not 
providing evidence of the applicability to real world case studies. Furthermore, they are 
significantly slower than current methods. 
For this reason, today’s state of the art consists of solving the linearized version of the SCUC 
problem. The resulting DC SCUC problem is described by means of an MILP model that is easier 
to solve. The non-linear security and network constraints are substituted by linear inequalities 
described by sensitivity coefficients that are grouped in the Power Transfer Distribution Factors 
(PTDF) and Line Outage Distribution Factors (LODF) matrices. For a DC system, the PTDF 
matrix describes how the power supplies/withdrawn to/from each bus flows across each line, while 
the LODF matrix described how the power flowing on a certain line is diverted on the others in 
case of contingency. Different methods for the evaluation of these matrices can be found in the 
literature, aiming at improving the computational performance during their computation (e.g., [9], 
[10] and [11]) or at describing more complex systems comprising both AC and DC lines (see [12] 
for an example).  
Despite the reduction in the computational burden achieved by considering the DC SCUC 
problem, the model still features a large number of system and security constraints (e.g., the 
number of N-1 security constraints is equal to the number of system’s lines squared). This makes 



the problem difficult to solve due to the memory requirements associated with the model size, 
therefore highlighting the need of developing special purpose solution approaches to address the 
problem. In their work, Xavier et al. [13] proposed an iterative approach that consists of solving 
an initial MILP problem with no system and security constrains, evaluating the OPF based on the 
resulting injections, checking constraint violation and adding them to the model. In this way only 
the active network constraints are added to the model, which is a smaller subset, and therefore 
requires significantly less memory. While in this method the new active constraints are “learned” 
as new solutions are evaluated, other approaches are used to filter out in advance the active 
constraints. In a different work [14] the same authors proposed different machine learning tools 
for the prediction of the active network constraints and a starting solution based on past, optimal 
instances. This data driven approach was able to decrease the size of the problem, while speeding 
up the solution time, while still guaranteeing optimality. Other similar approaches have been 
developed with the aim of predicting the correct pool of active constraints so as to avoid any 
redundancy. More recent approaches propose other data-driven filtering methods to improve the 
overall solution time. Yang et al. [15] used stacked denoising autoencoders (deep neural network 
used for dimensionality reduction) during the training phase to evaluate the non-linear relationship 
between active constraints and the operational solutions. An expanded sequence-to-sequence (E-
Seq2Seq)-based data-driven SCUC expert system for dynamic multiple-sequence mapping 
samples is proposed by Yang et al. [16], with the aim of providing a solution to the SCUC problem 
based on trained data and avoiding the optimization process. 
Other, non-data-driven approaches can be found in the literature as well, like the cost-driven 
screening method proposed by Porras et al. [17] where valid inequalities are introduced to tighten 
the feasible region of the relaxed SCUC LP problem. The relaxed solution is then used for 
evaluating the active constraints and discard the redundant ones, thus being independent from any 
training phase (unlike the previous methods). As a general statement, many works in the literature 
show how applying these constraint filtering approaches to iterative solution methods can 
significantly reduce the computational time. 
Finally, some well-known works address the issue of solving the SCUC under uncertainty (e.g., 
due to the increased penetration of non-dispatchable renewable energy sources). For example, 
Wang et el. [18] propose an iterative approach to solve a two-stage stochastic SCUC with different 
forecast scenarios related to wind generation. The deterministic commitment solution of the master 
problem is evaluated over a set of wind generation scenarios to check violations of the network 
constraints and Benders cuts are added if they occur. Another remarkable work by Bertsimas et al. 
[19] proposes an adaptive robust optimization model for solving the SCUC problem. The two-
level method is based on a Benders decomposition type algorithm that is able to evaluate a robust 
solution for any realization of the uncertain demands at each bus within a predefined, deterministic 
uncertainty set. In another paper by Wang et al. [20] an ad-hoc decomposition algorithm is 
proposed for the parallel solution of a stochastic SCUC characterized by uncertain renewable 
energy generation. Lagrangean decomposition is applied for solving the stochastic problems where 
the uncertain parameters are the generators and lines’ reliability. In the work by Wu et al. [21], the 
authors consider line outage scenarios instead of the N-1 constraints , thus building a large scenario 
tree. 
Despite their capability of including the uncertainties of the parameters in the problem, the 
approaches above mentioned require long computational times, which is not suitable for industrial 
practice (ISOs usually need to update the generators’ schedule multiple times throughout the day, 
e.g., on an hourly basis). Given this requirement, and by considering that updating the solution 



frequently is an effective method to cope with forecast uncertainty, effort should be placed in 
solving the DC SCUC problem as quickly as possible. One way to achieve this is by adopting data-
driven network constraints filtering tools (as the ones cited before), since they have proven to be 
effective on relatively small test cases. However, they require large dataset for the training phase. 
Since for large systems this data is either not available or the evaluation of optimal solutions 
requires a long time (sometimes the problem is even intractable), this approach might become 
impractical. 
For these reasons, this work proposes three novel solution approaches aimed at improving the 
solution time of the DC SCUC problem. The first one is an improvement of the method presented 
in Xavier et al. [13], the second one consists of the use of solver callback functions for the addition 
of the network constraints as Lazy Constraints to the model (similar to what done by Liu et al. in 
[22]), and the last one is a Shrinking Horizon algorithm (similar to approaches found in stochastic 
Model Predictive Control [23] and scheduling [24] problems) featuring callback functions for 
contingency and system constraint discovery. Contrary to the previously mentioned data-driven 
methods (which largely rely on Machine Learning), the ones proposed in this work are based on 
modern optimization-based approaches that do not make them dependent on training datasets 
while guaranteeing the feasibility of the predicted solutions. The three novel features of the 
proposed methods are: (a) using a more sophisticated constraint filtering method that is able to 
reduce the computational time needed by the new iterative approach; (b) embedding the filtering 
approach within the solver’s branch-and-cut algorithm; (c) reducing the size of the problem while 
guaranteeing feasibility. 

2. Problem Statement 
As previously mentioned, the problem addressed in this paper is known in literature as Security 

Constrained Unit Commitment problem, and it consists of evaluating the operational schedule of 
each generation unit available on the considered power grid (which unit  to be turned on/off and 
its generation level) with the aim of meeting the demand at each bus of the network while avoiding 
overload on any transmission line under nominal condition, and for whichever contingency in 
which at most one line is out of service (N-1). The problem can be therefore stated as follows: 
 
Given: 

• The set of generation units and their operational parameters, 
• The network topology and transmission line limits, 
• The specified time horizon, 
• The expected energy demand at each bus, 
• The status of the units and transmission lines at the beginning of the considered time-

horizon (on/off and current power generation), 
Find the optimal commitment (schedule) of the units, which minimizes the total generation 
cost/maximizes the net operational revenue subject to the following constraints: 

• Units’ operational limits (maximum and minimum allowed load, ramping limits, minimum 
up- and down-times) 

• Energy balances at each node 
• Transmission limits on each line 
• Reserve constraints 
• N-1 contingency constraints 



3. Methodology 
The proposed methodology consists of two main steps: (1) the formulation of a tight and efficient 
MILP model for the optimal SCUC solution, (2) the design and development of ad-hoc solution 
approaches to reduce the computational expense of the optimization. The three different solution 
approaches are presented in this section: the first one is a variation of the well-known iterative 
method based on the active set-strategy and presented in [13], the second approach uses solver’s 
callback functionalities for the evaluation and addition of security and safety constraints, and the 
third one is a Shrinking Horizon algorithm inheriting the same callback functions featured in the 
third approach.  
 
3.1. Mixed Integer Linear Programming model 

The SCUC problem considers a linearized (DC) version of the original non-linear problem and 
therefore can be modelled as an MILP. The network and generation units are modelled by means 
of linear constraints, divided into the following four groups: generation units operational 
constrains, reserve constraints, energy balance constraints and network security and systems 
constraints. The model shares many of the features belonging to other works in literature. The 
duration constraints (Eqs. (2)-(7)) are taken from Morales-España et al. [25], while the ramping 
limits (Eqs. (8)-(11)) come from Constante-Flores et al. [26]. Finally, reserve constraints (Eqs. 
(14)-(23)) were formulated starting from the ones found in Tejada-Arango et al. [27]. 
In summary, the MILP model describing the SCUC problem is given by the constraints defined 
by Eqs. (1)-(32). Regarding the objective function, two are considered in this study: Eqs. (33) and 
(34) (see next). 
 
Generation units’ operational constraints 
The operational constraints related to each unit available in the considered grid are described in 
this section. At first, each unit is characterized by its maximum and minimum generation limits: 

𝑃)𝑧),+ ≤ 𝑝),+ ≤ 𝑃)𝑧),+ ∀𝑖 ∈ 𝐺, ∀𝑡 ∈ 𝑇 (1) 
where 𝑃) and 𝑃) are the minimum and maximum allowed generation levels of unit 𝑖 respectively, 
𝑝),+ the energy (MWh) generated by unit 𝑖 at time 𝑡, and 𝑧),+ the on-off status of unit 𝑖 at time 𝑡. 
The start-up and shutdown flags δ*,+"#  and δ*,+

"$$ are introduced to define when unit 𝑖 is switched on 
or off. The logical relationship between the on-off status and the already mentioned flags is defined 
by the following constraint for all timesteps except the first one: 

𝑧),+;< − 𝑧),+ + δ),+"# − δ),+
"$$ = 0 ∀𝑖 ∈ 𝐺\𝐺"#	, ∀𝑡 = 2,… , |𝑇| (2) 

Only for the first timestep of the horizon, the relationship takes the following form: 
𝑧))#) − 𝑧),< + δ),<"# − δ),<

"$$ = 0 ∀𝑖 ∈ 𝐺\𝐺"# (3) 
with 𝑧))#) a parameter being either equal to 0 or 1, defining the inherited initial on-off status of the 
considered unit. 
Other time-linking constraints are those describing the minimum up- and down-times for each unit. 
These are taken from Morales-España et al. [28] since they correspond to the tightest formulation 
found in the literature (as also stated in Knueven at al. [29]). The minimum up-time is enforced by 
the following expression: 

U δ),="#
+

=>+;9?!@<

≤ 𝑧),+ ∀𝑖 ∈ 𝐺\𝐺"#, ∀𝑡 ∈ [𝑈𝑇) , … , |𝑇|] (4) 



while the minimum down-time constraints are the following: 

U δ),=
"$$

+

=>+;:?!@<

≤ 1 − 𝑧),+ ∀𝑖 ∈ 𝐺\𝐺"#, ∀𝑡 ∈ [𝐷𝑇) , … , |𝑇|] (5) 

Given the initial on-off status of the unit 𝑧))#) (a parameter either equal to 0 or 1), the following 
inequalities are added to ensure that the unit completes the minimum up- or down-time in the 
current planning horizon if switched on or off in the previous one: 

𝑧𝑖𝑖𝑛𝑖 ≤ 𝑧𝑖," ∀𝑖 ∈ 𝐺\𝐺"#, 𝑡 = 1,… ,𝑚𝑖𝑛Y|𝑇|, 𝐻)9Z (6) 
𝑧𝑖𝑖𝑛𝑖 ≥ 𝑧𝑖," ∀𝑖 ∈ 𝐺\𝐺"#, 𝑡 = 1,… ,𝑚𝑖𝑛(|𝑇|, 𝐻):) (7) 

with 𝐻)9and 𝐻): being the number of timesteps required to complete the minimum up- and down-
time in the current horizon, respectively. 
Finally, upward and downward ramping constraints are considered in the model: 
𝑝),+ − 𝑝),+;< ≤ 𝑅𝑈)𝑧),+;< + 𝑆𝑈)𝛿),+"# 

∀𝑖 ∈ 𝐺, ∀𝑡 = 2,… , |𝑇| 
(8) 

𝑝),+;< − 𝑝),+ ≤ 𝑅𝐷)𝑧),+ + 𝑆𝐷)𝛿),+
"$$ (9) 

where 𝑅𝑈) and 𝑅𝐷) are the unit’s ramp-up and -down limits during nominal operation, 𝑆𝑈) and 
𝑆𝐷) the ramping limits during start-up and shut-down. If the unit is already in operation at the 
beginning of the considered timestep (namely 𝑧𝑖𝑖𝑛𝑖 = 1), then for 𝑡 = 1 the constraints take the 
following form: 

𝑝),< − 𝑝))#) ≤ 𝑅𝑈)𝑧))#) + 𝑆𝑈)𝛿),<"# 
∀𝑖 ∈ 𝐺 

(10) 
𝑝))#) − 𝑝),< ≤ 𝑅𝐷)𝑧),< + 𝑆𝐷)𝛿),<

"$$ (11) 
Please note that for those units that must run for all the time steps of the considered horizon (hence 
the ones belonging to the set 𝐺"#), Eqs. (8)-(11) do not consider the terms 𝑆𝑈)𝛿),+"# and 𝑆𝐷)𝛿),+

"$$. 
In addition, the following constraints hold for ensuring that must-run units are in operation for the 
entire considered horizon, and the unavailable units are kept shut down at each time period: 

𝑧),+ = 1 ∀𝑖 ∈ 𝐺"#, ∀𝑡 ∈ 𝑇 (12) 
𝑧),+ = 0 ∀𝑖 ∈ 𝐺"$$ , ∀𝑡 ∈ 𝑇 (13) 

 
Reserve constraints 
Reserve constraints are needed to ensure that whichever solution is evaluated, limited upwards and 
downwards fluctuation in the load demand at each node can be withstood. As a consequence, a 
sufficient number of generation units must make available part of their generation capacity for 
reserve purposes. This is enforced by defining variables related to the amount of generation power 
allocated as upward and downward reserve (𝑟),+

*4, 𝑟),+0"5#) for each generation unit. At first, the 
generation reserve of each unit is limited by its maximum generation capacity and ramping 
capabilities:  

0 ≤ 𝑟),+
*4 ≤ min	(𝑃) − 𝑃) , 𝑅𝑈)) ∙ (1 − 𝛿),+

"#) + (𝑆𝑈) − 𝑃))𝛿),+"# 
∀𝑖 ∈ 𝐺, ∀𝑡 ∈ 𝑇 

(14) 
0 ≤ 𝑟),+0"5# ≤ min(𝑃) − 𝑃) , 𝑅𝐷)) ∙ (1 − 𝛿),+@<

"$$ ) + (𝑆𝐷) − 𝑃))𝛿),+@<
"$$  (15) 

Then, at each timestep the maximum reserve that can be provided is limited by the quantities 
committed to serve the demand: 

𝑟),+
*4 ≤ 𝑧),+𝑃) − 𝑝),+ ∀𝑖 ∈ 𝐺, ∀𝑡 ∈ 𝑇 

(16) 
𝑟),+0"5# ≤ 𝑝),+ − 𝑧),+𝑃)  (17) 



Although Eqs. (14) and (15) consider the ramping capabilities of the unit, they do not capture the 
relationship between 𝑟),+

*4, 𝑟),+0"5# and the status of the unit among contiguous timesteps. For this 
reason, the following constraints are added: 
𝑟),+
*4 ≤ 𝑅𝑈)𝑧),+;< − (𝑝),+ − (𝑝),+;< − 𝑟),+;<0"5#)) + 𝑆𝑈)𝛿),+"# 

∀𝑖 ∈ 𝐺,	 
∀𝑡 = 2,… , |𝑇| 

(18) 
𝑟),+0"5# ≤ 𝑅𝐷)𝑧),+ − (𝑝),+;< + 𝑟),+;<

*4 − 𝑝),+) + 𝑆𝐷)𝛿),+
"$$

+ (𝑆𝐷) − 𝑃))𝛿),+@<
"$$  

(19) 

Starting from Eq. (18), it defines the upper bound of 𝑟),+
*4 depending on the operational condition. 

If the unit starts up at time t, then the upwards reserve is bounded by the ramping limit during 
startup 𝑆𝑈) (namely the available generation given by 𝑆𝑈)𝛿),+"# − 𝑝),+. On the other hand, if the unit 
was already running at 𝑡 − 1, then the maximum quantity that can be offered as reserve is 
𝑅𝑈)𝑧),+;< − (𝑝),+ − (𝑝),+;< − 𝑟),+;<0"5#)). The term 𝑝),+;< − 𝑟),+;<0"5# represents the power at the 
beginning of t (the downwards reserve is allocated to avoid any overestimate). 
Regarding Eq. (19), the reserve 𝑟),+0"5# is dependent on the generation at the previous timestep and 
the downward ramping limit 𝑅𝐷). If the unit is operating, the upper bound is defined by the term 
𝑅𝐷)𝑧),+ − (𝑝),+;< + 𝑟),+;<

*4 − 𝑝),+), with 𝑝),+;< + 𝑟),+;<
*4  the actual generation at the end of 𝑡 − 1 in 

case reserve is provided. In the timestep prior shutdown (𝛿),+@<
"$$ = 1) the unit can ramp down from 

𝑆𝐷) to 𝑃), allowing a larger value than 𝑅𝐷) depending on the unit. Therefore the (𝑆𝐷) − 𝑃))𝛿),+@<
"$$  

is added such that the binding constraints become Eq. (15) and (17). Finally, when the unit is 
shutdown the only non zeros are 𝑝),+;< and 𝑆𝐷)𝛿),+

"$$, whose difference is always positive due to 
Eq. (9). 
 
For the first timestep of the horizon, given the initial condition inherited from the previous 
horizon, the following constraints hold: 

𝑟),<
*4 ≤ 𝑝))#) − 𝑝),< + 𝑅𝑈)𝑧))#) + 𝑆𝑈)𝛿),<"# 

∀𝑖 ∈ 𝐺 
(20) 

𝑟),<0"5# ≤ 𝑝))#) − 𝑝),< + 𝑅𝐷)𝑧),< + 𝑆𝐷)𝛿),<
"$$ (21) 

Also here, must-run units share the same Eqs. (14)-(21), but the terms 𝑆𝑈)𝛿),+"# and 𝑆𝑈)𝛿),+
"$$ are 

not present. Please note that in case the computational complexity allows to update the generators 
schedule frequently (e.g., every 10 minutes), and for applications where load fluctuation is limited, 
it is unlikely that most of the units are required to share their maximum upwards and downwards 
reserve quantities among contiguous time periods (and vice-versa). Therefore, 𝑟),+;<0"5# and 𝑟),+;<

*4  
can be dropped from Eqs. (18) and (19), respectively (although resulting in a less conservative 
solution).  
Finally, the following constraints are needed to ensure that the reserve requirements per each 
area of the network are met: 

U 𝑟),+
*4 ≥

)∈D"	

𝑅𝑒𝑠%,+
*4 

∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇 
(22) 

U 𝑟),+0"5# ≥
)∈D"	

𝑅𝑒𝑠%,+0"5# (23) 

 
 
 



System and security network constraints 
Linearized system and security (N-1) constraints are considered in the MILP model in order to 
ensure feasible and reliable operation. These are needed to make sure that the generation and 
transmission schedule does not produce overload on any line both under nominal condition and in 
case the load is diverted because of a contingency in which at most one line fails. 
Given 𝑥F,#, 𝑦F,# and 𝑧F,# the reactance, admittance and impedance of the line connecting bus 𝑚 
and 𝑛, the susceptance 𝑏F,# can be evaluated. However, since the DC power flow model holds 
under the assumption of negligible line resistance with respect to its reactance [30], 𝑧F,# ≅ 𝑥F,# 
and therefore 𝑏F,# = −1/𝑥F,#.   The Injection Shift Factors (ISFs) can be defined as follows [31]: 

𝐼𝑆𝐹F,#) =
𝑥F,) − 𝑥#,)
𝑥F,#

 

𝑚, 𝑛 = 𝑦(𝑐), 
𝑚, 𝑖 = 𝑦(𝑎), 
𝑛, 𝑖 = 𝑦(𝑒), 
∀𝑐, 𝑎, 𝑒 ∈ 𝐿, 
∀𝑖 ∈ 𝐵 

(24) 

where 𝑦(𝑐), 𝑦(𝑎) and 𝑦(𝑒) are the functions mapping the buses connecting lines 𝑐, 𝑎 and 𝑒. 
These network sensitivity parameters represent the fraction of additional 1 MW injection at bus 𝑖 
that flows through the line connecting bus 𝑚 and 𝑛. Once defined , the Power Transfer Distribution 
Factors (PTDFs) and Line Outage Distribution Factors (LODFs) according to [9] can be computed 
for each bus and line as follows: 

𝑃𝑇𝐷𝐹F,#
),G = 𝐼𝑆𝐹F,#) − 𝐼𝑆𝐹F,#

G  𝑚, 𝑛 = 𝑦(𝑐), ∀𝑐 ∈ 𝐿, 
∀𝑖, 𝑗 ∈ 𝐵 (25) 

𝐿𝑂𝐷𝐹F,#
),G =

𝑃𝑇𝐷𝐹F,#
),G

1 − 𝑃𝑇𝐷𝐹),G
),G  

𝑚, 𝑛 = 𝑦(𝑐), 
𝑖, 𝑗 = 𝑦(𝑎), 
∀𝑎, 𝑐 ∈ 𝐿 

(26) 

In particular, 𝑃𝑇𝐷𝐹F,#
),G  represents the variation of the power flowing on line 𝑐 (connecting 𝑚 and 

𝑛) resulting from the power transfer of 1 MW injected in bus 𝑖 and consumed at bus 𝑗. On the other 
hand, 𝐿𝑂𝐷𝐹F,#

),G represents the fraction of pre-contingency power flowing from bus 𝑖 to 𝑗 (line 𝑎) 
that is redistributed on the line connecting 𝑚 and 𝑛 (line 𝑐) consequently the outage of the line 
linking 𝑖 and 𝑗 (line 𝑎). Please note that 𝐼𝑆𝐹F,#)  and 𝐿𝑂𝐷𝐹F,#

),G  are the elements of the 𝐼𝑆𝐹 and 𝐿𝑂𝐷𝐹 
matrices, which are needed for the definition of the following network constraints. 
Under nominal operating conditions (no contingencies) the power flowing through each line must 
always be within the rated limits. This is imposed by the following constraint: 

−𝐹>1 	≤ 𝑓1,+ ≤ 𝐹>1  ∀𝑐 ∈ 𝐿 
∀𝑡 ∈ 𝑇 (27) 

where 𝐹>1 is the maximum allowed power flowing through line 𝑐 in each direction (𝐹>1 referred to 
flow limit going from bus 𝑚 to 𝑛, −𝐹>1 for the one from 𝑛 to 𝑚). In particular, the power flow 𝑓1,+ 
is defined by the matrix 𝐼𝑆𝐹, the generated quantity 𝑝),+ and total served demand Y𝐷',+ − 𝑑',+-./0Z 
as follows:  

𝑓1,+ 	= U 𝐼𝑆𝐹F,#'

'∈(,)∈D#
$,D#

$H∅

∙
𝑝),+
𝑑𝑡 −U𝐼𝑆𝐹F,#'

'∈(

∙ f
𝐷',+ − 𝑑',+-./0

𝑑𝑡 g 𝑚, 𝑛 = 𝑦(𝑐), 
∀𝑡 ∈ 𝑇 (28) 



with ∑ 𝐼𝑆𝐹F,#''∈(,)∈D#
$,D#

$H∅
4!,&
0+

 the timestep average power flowing through line 𝑐 due to the total 

power injected by the generators, and ∑ 𝐼𝑆𝐹F,#''∈( i:#,&;0#,&
'()*

0+
j the timestep average power flowing 

on line 𝑐 due to the total power consumption. Please note that since 𝑝),+ and 𝐷',+ − 𝑑',+-./0 are 

expressed as energy, 4!,&
0+

 and :#,&;0#,&
'()*

0+
 represent the average generation and consumption power 

within a given timestep. 
Overload on any line must be avoided also under any contingency in which the outage of one line 
happens (N-1 contingency). At time 𝑡, the post-outage power 𝑓1,+0  flowing through line 𝑐 because 
of the outage of line 𝑑 is defined as follows: 

𝑓1,+0 = 𝑓1,+ + 𝐿𝑂𝐷𝐹F,#
G,J ∙ 𝑓0,+ 

𝑚, 𝑛 = 𝑦(𝑐), 
𝑗, 𝑘 = 𝑦(𝑑), 
∀𝑡 ∈ 𝑇 

(29) 

where 𝐿𝑂𝐷𝐹F,#
G,J ∙ 𝑓0,+ is the fraction of pre-outage power flowing through 𝑑 that is diverted onto 𝑐. 

To find a solution where no post-contingency flow exceeds the line limits, the following N-1 
security constraints are added: 

−𝐹>1 	≤ 𝑓1,+0 ≤ 𝐹>1  ∀𝑐, 𝑑 ∈ 𝐿, 
∀𝑡 ∈ 𝑇 (30) 

In this way the solution is robust against any line outage. 
The constraints described by Eq. (27) and (30) are the System and Security Network Constraints 
(SSNCs) of the problem. 
 
Energy balance constraints 
At each timestep of the considered horizon the energy demand at each node must be met. This is 
enforced by the following equality: 

U 𝑝),+
)∈D#

$

+ U 𝑓1,+𝑑𝑡
1∈K#

!+

− U 𝑓1,+𝑑𝑡	
1∈K#

,-&

= 𝐷',+ − 𝑑',+-./0  ∀𝑏 ∈ 𝐵, ∀𝑡 ∈ 𝑇 (31) 

where ∑ 𝑝),+)∈D#
$  is the sum of the quantities generated by the units connected to bus 𝑏, ∑ 𝑝1,+L1∈K#

!+  
and ∑ 𝑝1,+L1∈K#

,-&  the energy transmitted from bus 𝑏 to other ones connected and vice versa, 𝐷',+ and 
𝑑',+-./0 the requested and shed demand at bus 𝑏 at time 𝑡. 
For the linearized DC power flow model, the 𝐼𝑆𝐹 matrix can be used to allocate the power flowing 
on each line of the network given the generation and consumption at each node. In addition, the 
presence of system and security network constraints (Eq. (27) and (30)) ensures that the generated 
power is routed on each line so as to avoid any overload under nominal and N-1 contingency 
conditions (therefore taking care of the balance at each node). Thus, Eq. (31) can be substituted by 
the following network balance: 

U𝑝),+
)∈D

= U(𝐷',+ − 𝑑',+-./0)
'∈(

 ∀𝑡 ∈ 𝑇 (32) 

 
Objective function 
The objective function to minimize is the total operational cost over the specified time planning 
horizon, namely: 



𝑂𝐹1 =UU(𝑐),+𝑝),+ + 𝑐)"#𝑧),+ + 𝑐)-*𝛿),+"# + 𝑐)-0𝛿),+
"$$) + 𝑐-./0UU𝑑',+-./0 	

+∈?'∈(+∈?)∈D

 (33) 

where 𝑐),+𝑝),+ is the term related to the variable Operation and Maintenance (O&M) cost based on 
generation output, 𝑐)"#𝑧),+ the term related to the fixed O&M hourly cost, 𝑐)-*𝛿),+"# the start-up cost, 
𝑐)-0𝛿),+

"$$ the shut-down cost and 𝑐-./0𝑑',+-./0 the virtual cost linked to the amount of shed load 
(𝑑',+-./0 ∈ l0; 𝐷',+n∀𝑏 ∈ 𝐵, ∀𝑡 ∈ 𝑇). Note that in this case 𝑐-./0 must be large enough in order to 
minimize the unmet demand. While 𝑂𝐹1 is considered as the reference objective function for this 
study, another objective function OF2 is considered with the aim of assessing the impact on the 
computational time and solution: 
𝑂𝐹2 =UU(𝑐),+𝑝),+ + 𝑐)"#𝑧),+ + 𝑐)-*𝛿),+"# + 𝑐)-0𝛿),+

"$$) −UU𝑐',+0 Y𝐷',+ − 𝑑',+-./0Z
+∈?'∈(+∈?)∈D

 (34) 

Here the term 𝑐',+0 Y𝐷',+ − 𝑑',+-./0Z represents the virtual revenue gained by serving the demand. By 
setting the parameter 𝑐',+0  large enough the optimal solution will maximize the amount of served 
demand at the minimum cost (similarly to maximizing the social welfare). 
 
 
3.2. Solution approaches 
The solution approaches considered in this work are four: one is taken from literature and used as 
benchmark while the other three contain elements of novelty. The first method (M1) is taken from 
literature and considered as reference [13]. It consists of an iterative approach that adds security 
constraints based on the violation of the current solution. The second method (M2) is a novel 
variation of M1 which includes additional features for the prediction of new violated constraints. 
The third one (M3) is a callback-based method, which integrates the features of M1 by means of 
solver callback functions. Finally, a novel shrinking horizon approach with non-uniform time 
discretization is presented as fourth solution approach (M4). 
In all the proposed methods the initial optimization model does not consider any of the system and 
security network constraints, as these are added during the optimization algorithm. This is because 
considering all of them would make the model hard to solve, and most of the times only a small 
subset is needed (as previously mentioned in Section 1). However, the addition of network 
constraints ensures the feasibility of the optimal solution found. Finally, although all the proposed 
approaches do not consider any Umbrella Constraints Discovery algorithm (e.g., [32]), one can 
still be added for the sake of evaluating the starting set of system and contingency constraint. 
 



 
Figure 1 On the left: flowchart representing the solution approach M1. On the right: flowchart representing the solution approach 
M2. SSNCs are added to the sets of active constraints 𝛤! and 𝛤!! based on how the current solution violate them. 

 
3.2.1. Reference approach: iterative method based on constraint violation (M1) 

The method considered as reference approach can be found in Xavier at el. [13] and the 
flowchart describing the algorithm can be seen in Figure 1 (left). This solution approach is based 
on an active-set strategy that aims at fining new system and security network constraints (SSNC) 
iteratively. 
At first, a relaxed version of the SCUC model with no SSNCs is loaded (namely an MILP defined 
by Eqs. (1)-(23)). Then, 𝛤! and 𝛤!! are defined as the sets containing the active SSNCs described 
by Eqs. (27) and (30) respectively. These two sets belong to the MILP model and are both empty 
at the first iteration (no active constraints have been discovered). Once a Unit Commitment 
solution is found, the pre- and post-contingency power flows (𝑓1,+ and 𝑓1,+0 ) are evaluated. Based 
on these, it is determined whether Eqs. (27) and (30) are met and they are ranked based on the 
degree of violation. The sets 𝛤! and 𝛤!! (and thus the MILP model) are updated by adding the 
SSNCs with the highest violation on each line and time-step, as well as the other k ones with 
greatest infringement per each time-step (independently on the line). Please note that the authors 
suggested k between 5 and 15, depending on the network considered. In this study k was set equal 
to 15 for all cases for the sake of consistency (no sensitivity on this parameter was performed). 
The reason why not all violated constraints are added to the model at each iteration is because 
numerical results show how only a fraction of them are actually needed (as seen in [32] and [33]). 



Finally, the algorithm stops when it finds an optimal solution that does not result in any violation 
of the SSNCs (hence the solution of the SCUC is found).  
 
3.2.2. Iterative method based on QP filter (M2) 

The approach presented here shares many of the features seen in the previous one, such as its 
iterative nature and the progressive addition of SSNCs. The main difference lies in the way these 
constraints are added to the SCUC model. While in the previous approach the SSNCs are selected 
just by the outcome of the “master” problem, here their evaluation depends also on the results of 
an operational subproblem modelled as a Quadratic Program (QP). Solving this model aims at 
finding the closest generation schedule to the one found in the relaxed SCUC while ensuring that 
the pre- and post-contingency power flows agrees with the SSNCs already in 𝛤! and 𝛤!!. To 
achieve this, the subproblem is formulated as follows: 

 𝑚𝑖𝑛	 U Y𝑝),+
23 − 𝑝o),+Z

M

)∈D,+∈?

  (35) 

𝑠. 𝑡. U𝑝),+
23

)∈D

=U(𝐷',+ − 𝑑q',+-./0)
'∈(

 ∀𝑡 ∈ 𝑇 (36) 

 0 ≤ 𝑝),+
23 ≤ 𝑃)  ∀𝑖 ∈ 𝐺, ∀𝑡 ∈ 𝑇 (37) 

 −𝐹>1 	≤ 𝑓1,+
23 ≤ 𝐹>1  ∀𝑐, 𝑡 ∈ 𝛤! (38) 

 −𝐹>1 	≤ 𝑓1,+
0,23 ≤ 𝐹>1  ∀𝑐, 𝑑, 𝑡 ∈ 𝛤!! (39) 

with 𝑝o),+ and 𝑑q',+-./0 coming from the solution of the relaxed “master” SCUC problem at the current 
iteration and referred to the output of generation unit 𝑖 at time 𝑡 and the shed demand on bus 𝑏 at 
time 𝑡, respectively. By minimizing the squared Euclidean distance in Eq. (35), the closest “new” 
generation schedule defined by 𝑝),+

23 is found. This solution features pre- and post-contingency 
flows 𝑓1,+

23 and 𝑓1,+
0,23 that meet all the active SSNCs (Eqs. (38) and (39)), as well as the network 

balance constraint (Eq. (36)). 
The flowchart of the algorithm can be seen in Figure 1 (right). At first, the relaxed “master” 
problem is solved and SSNCs are added as for the M1 approach. Then, a further update of 𝛤! and 
𝛤!! is performed by repeatedly solving the QP subproblem (in this study 20 was considered given 
the preliminary computational outcomes). Per each time period, SSNCs are added based on their 
degree of infringement. As for M1, the algorithm is stopped once a solution that does not violate 
any SSNCs is found. 
It is important to remark some aspects of the solution approach (M2), highlighting the difference 
with respect to M1. At first, the idea that motivates the proposed approach is presented. By 
considering M1, it finds new SSNCs to add based on the solution found at each iteration. 
Therefore, the newly added constraints are used to cut the current operational solution with the 
aim of finding another one that would hopefully satisfy all network requirements.  
On the other hand, at each iteration the method M2 updates 𝛤! and 𝛤!! based on the outcome of 
the (master) SCUC MILP problem (as for M1) and the results found by solving the QP subproblem 
for a limited number of times. In particular, every solution found by the QP problem represents 
the closest feasible ones to the master problem according to the updated set 𝛤! and 𝛤!!. Therefore, 
the newly added SSNCs cut a larger set of SCUC solutions providing a prediction of potentially 
active constraints for the following iterations with the aim of limiting their number. 



There are two main drawbacks with this approach. At first, in case the SSNCs violated by the 
master SCUC MILP are sufficient to find a new feasible integer solution that is substantially 
different than the previous one, the effort spent in solving multiple times the QP subproblem may 
not be worthwhile. Then, the solution found by the QP subproblem might be infeasible when 
applied to the SCUC model since the QP model does not include any of the operational constraints 
of the original one. That is why the QP model solved for a limited number of times: to avoid adding 
useless SSNCs linked to unfeasible solutions. 
 
3.2.3. Solver callback-based method (M3) 
The third method considered and developed in this paper considers the use of solver callback 
functions [34] for the discovery and addition of SSNCs. Similarly to refs. [22] and [35], network 
constraints are added during the branch-and-bound process as new integer solutions are found, 
without the need of repeatedly solving the model, thus aiming at saving the computational time. 
To do so, a callback function implementing part of the algorithm in M1 was developed. The reason 
why M1 was chosen over M2 is because the latter requires to solve an inner QP subproblem every 
time a solution is found. However, at the time of this work no commercially-available solver had 
this capability. 
The way the callback works can be seen in Figure 1 (left). As for M1, a relaxed version of the 
SCUC model (MILP with constraints defined by Eqs. (1)-(23)) is considered with no SSNCs 
(empty sets 𝛤! and 𝛤!! - see method M1). The model is loaded by the solver, and the Branch-and-
Cut algorithm is started. Each time a new incumbent solution is found (new improved integer 
solution), the callback function is called by the solver. Thus, the numerical values of each variable 
of the incumbent solution are loaded, the pre- and post-contingency flow through each line is 
evaluated and the SSNCs are checked. The ones that are violated the most are added to 𝛤! and 𝛤!! 
as for M1. Differently from the M1 and M2, constraints are added to the MILP as “Lazy 
Constraints” (which are constraints that are dynamically added during the optimization process 
based on the violation of the current solution, e.g., [36]), with the aim of reducing the 
computational burden. 
A solution is found when the MIP gap is below the given limit and no SSNCs are violated. 
 
3.2.4. Shrinking-horizon based method with solver callback (M4) 

As previously mentioned, considering all SSNCs in the SCUC model makes it hard to solve, 
requiring a long computational time that is not in line with the requirements of most TSOs.  
Even if custom approaches are considered (as those presented in the previous sections), the total 
solution time could be longer than the desired one (e.g., 15-30 minutes). For this reason, a novel 
temporal decomposition approach inspired by the Shrinking Horizon algorithm (Balasubramanian 
and Grossmann [24]) and based on non-uniform time discretization is considered. 
These two concepts are here described separately. At first, the Shrinking Horizon is a solution 
approach based on solving the same horizon in multiple runs. Starting from the first iteration, the 
original horizon is considered and a solution if found. Then, the solution belonging to the first 
∆𝑡607 periods (advancement periods) is stored, and a new horizon shrunk by those ∆𝑡607 ones is 
considered for the next run. In addition, all variables not belonging to the ∆𝑡607 timesteps can be 
relaxed to ease calculation. 
Despite its ability to solve the “shrunk” problems faster (thanks to their reduce dimension), in the 
SCUC problem it is important to retain the integer nature of the variables due to the importance of 
time-linking constraints (e.g. duration constraints). Therefore, at the first iteration, the problem 



will feature its full horizon (same complexity as the original problem). To solve this issue, non-
uniform time discretization is introduced. The idea is to have a coarser time discretization for part 
of the horizon, reducing the number of timesteps and therefore the size of the problem (both 
variables and constraints). This approach is motivated by assuming that decisions at the beginning 
of the horizon are slightly influenced by the ones at the end of it. It is important to point out how 
the binary nature of some variables is kept in all timesteps (whether they are aggregated or not) 
such that the model does not degenerate (although some accuracy is lost). 
In this work, the non-uniform discretization was implemented in the following way. At first, the 
original timestep discretization 𝑑𝑡 is considered and the values ∆𝑡607 , 𝑡̃ ∈ ℕ are defined. At each 
iteration, the time discretization of current horizon is modified. By considering 𝑇 the number of 
timesteps of original duration 𝑑𝑡, the first ∆𝑡607 periods are kept as-is while the remaining 𝑇 −
∆𝑡607 are grouped into blocks of 𝑡̃ timesteps. Of course, 𝑇 − ∆𝑡607 must be divisible by 𝑡̃, which 
must be a multiple of ∆𝑡607. Therefore, the horizon with uniform discretization 𝑑𝑡 goes from 
having 𝑇 timesteps to ∆𝑡607 + (𝑇 − ∆𝑡607)/𝑡̃, of which ∆𝑡607 with discretization 𝑑𝑡 and 𝑇 −
∆𝑡607 with discretization 𝑡̃. This non-uniform discretization requires to modify the time series of 
the parameters by either summing or averaging (e.g., demand of 𝑡̃ timesteps is summed, fuel cost 
if averaged). 
Regarding the model, at each iteration the relaxed model with constraints defined by Eqs. (1)-(23) 
and no SSNCs is considered (as for the previous methods, 𝛤! and 𝛤!! are empty). Given the new 
time discretization, ad-hoc time-linking constraints are developed with the aim of being consistent 
with the original formulation (e.g., time duration and ramping constraints) and keeping the integer 
nature of variables (the detailed description on how operational constraints were evaluated can be 
found in Appendix A SSCNs are added by means of the same callback function presented in 
method M3: This ensure that the solution found is feasible according to system and N-1 constraints. 
A schematic representation of the implemented decomposition can be seen in Figure 2, where the 
values used for the shrinking horizon advancement and modified discretization are used in this 
study (∆𝑡607 = 4, 𝑡̃ = 4 over an original time horizon of 24 one-hour timesteps). 
At each run, the first ∆𝑡607 original timesteps are kept, while the remaining ones are reorganized 
by means of aggregation in blocks of 𝑡̃. This results in a significant reduction in the number of 
considered timesteps (and thus problem size). For example, at the first iteration only nine timesteps 
are considered (against the 24 of the original problem). In addition, given these values of ∆𝑡607 
and 𝑡̃, only six iterations are needed to evaluate the 24-timestep solution. 
Given the abovementioned description, it can be understood how combining a shrinking horizon 
approach with non-uniform time discretization can help finding a good solution in a reduced 
amount of time. Needless to say, two drawbacks are present: firstly, the solution found can be 
suboptimal; secondly, the problem reduction requires a careful model reformulation and parameter 
evaluation. 
 



 
Figure 2 Schematic representation of the Shrinking Horizon algorithm presented in this study. The horizon considered in each 
iteration is the one comprising orange and purple timesteps: the former retain the same time discretization of the original time 

series within the considered horizon, while the latter consider a more coarse resolution (aggregating block of four intervals).The 
green dashed line represent the solution saved in the previous iteration. 

 

4. Case studies 
The different solution approaches presented in this work were tested and compared on five test 
cases. These are listed in Table 1 where the number on buses, generation units and lines are shown, 
as well as the number of variables and constraints of the original MILP model (before any per-
solve operation) related to UC version of the problem (no SSNC). As previously mentioned, the 
solution approaches aim at reducing the computational time for the evaluation of an optimal and 
feasible SCUC solution. This is needed in case multiple, intra-day runs are executed during the 
day. As a consequence, the test cases consider random parameter profiles (e.g., demand at each 
node) generated from publicly available data. In addition, with the aim of simulating an intraday 
scheduling optimization, the 24-hour profiles may start from any hour of the day (e.g., from 
4:00pm to 3:00pm of the day after). 
Each test case was generated according to the methodology proposed in [37], that is based on the 
information provided by PGLIB [38] for the grid definition, and by PJM [39] for the bids, load 
data at each node and generator units parameters. Parameters include variable O&M and fuel costs, 
start-up and shutdown costs, minimum up- and down-time (hours), upwards and downwards 
ramping limits, minimum and maximum allowed load from year 2019. 
The generated test cases (and the corresponding MILP models) have a time discretization of one 
hour. Therefore, each test instance is characterized by a 24-timestep time horizon. 
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All test were run on a workstation featuring a six-core Intel® i7 processor with 16 GB of RAM. 
The solver used was Gurobi 9.5 [40], with default settings except for the MIP gap that was set to 
1% and the Time Limit to 8 hours for all cases except for “case6468rte”. This one, being the 
largest, was set to 30 hours. 
 
Table 1 Case studies considered in this study and their most representative features. 

Name First hour 
of the 
horizon 

Generators Buses Lines System demand  
• Max/Min 

[GW] 
• Average [GW] 
• Total 

(horizon) 
[GWh] 

Problem dimension 
(no SSNCs, no pre-solve) 
• Continuous/Binary 

vars. 
• Constraints 

ieee118 13 17 118  186 • 4.1/2.4 
• 3.3 
• 79.1 

• 3697/1224 
• 2928 

wp2383 13 293 2383  2896 • 14.0/11.98 
• 12.9 
• 309.1 

• 64801/21096 
• 49296 

sp3120 18 452 3120  3693 • 15.0/10.77 
• 13.46 
• 323.1 

• 87289/32544 
• 76008 

pegase2869 24 487 2869  4582 • 96.22/74.96 
• 86.94 
• 2086.48 

• 66481/35064 
• 81888 

case6468rte 20 1295 6468 9000 • 79.59/60.70 
• 71.93 
• 1726.41 

• 164665/85032 
• 198480 

5. Results 
 
In this section the results obtained on the selected test cases are shown for the four methodologies 
presented in this work: the reference iterative approach based on constraint violation (M1, section 
3.2.1), the enhanced iterative approach based on M1 with a “Quadratic Programming” filter (M2, 
section 3.2.2), a call-back based method replicating the reference method M1 (M3, section 3.2.3), 
and a Shrinking Horizon algorithm with solver callback functions (M4, section 3.2.4). The 
computational time, together with the operational costs, cost of electricity, and percentage of 
served demand are shown with the aim of providing a comprehensive and exhaustive view. 
Results are divided into two subsections: the first one showing the optimization outcomes when 
the objective function 𝑂𝐹1 (Eq. (33)) is considered in the model; the second related to 𝑂𝐹2 (Eq. 
(34)). In this way it is possible to assess the effects on the solution and computational requirements 
(e.g., time) related to considering the maximization of social welfare as objective function over the 
typical total operational costs. Please note that only the operational costs are presented so to have 
a fair comparison between the operational decisions. In this way the high cost of the shed demand 
in 𝑂𝐹1 and the revenues related to meeting the system demand in 𝑂𝐹2 are filtered out. Comparing 



the plain results from considering the two objective functions would have been meaningless (i.e., 
given the same solution, the objective functions would be with opposite signs in most cases).  
 
5.1. Model with objective function 𝑂𝐹1 
By considering Eq. (33) as the objective function, the model is the typical one found in SCUC 
problems where the energy balance constraint is relaxed by the addition of a shed demand penalty 
variable 𝑑',+-./0. The penalty cost 𝑐-./0 was set to $107 to minimize the shed amount.  
Starting from Figure 3, the total solution times for each approach are shown. Considering the two 
iterative approaches M1 and M2, a negligible solution time difference is seen for the smallest test 
case “ieee118”, while for the other ones M2 is significantly faster (between -58% and -74% 
reduction). The approach M1 was unable to find a solution for the case “sp3120” and the method 
timed out. When looking at the approach M3 (tackling the full model with callback function), the 
time required to get to the optimal solution is significantly decreased, especially for cases “sp3120” 
and “wp2383” (-33% and -66% with respect to M2), while a modest improvement was seen for 
“pegase2869”. This shows how implementing solver callback functions for embedding the 
evaluation of active network constraints in the branch and bound search is a promising option. 
When a solution approach based on the Shrinking Horizon is considered (method M4), a further 
reduction in computational time is achieved. This is very evident in the cases “sp3120” and 
“pegase2869”, where M4 was 15.5 and 55.4 times faster than M3, respectively. 
It is important to point out that for the case “case6468rte” each solution method timed out (solver 
Time Out parameter for this case was set to 30 hours of CPU time). In fact, M1, M2 and M3 were 
not able to find a solution that did not violate any SSNCs within the given time, while M4 was not 
able to find a solution covering the entire horizon (time out before finishing all iterations). Similar 
comments can be made for case “sp3120” since M1 did not find a solution within the maximum 
allowed time. 
 

 
Figure 3 Solution time for the different method tested when model considers 𝑂𝐹1 as objective function. 

 
An analysis on the impact of considering the QP subproblem in M2 with respect to the more 
traditional M1 approach can be seen in Table 2. This table shows the number of iterations needed 
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to obtain the optimal solution, as well as the total computational time spent for evaluating the 
SSNCs and how many of them are added. By looking at the numbers, it can be said that M2 requires 
fewer iterations, it spends more time in evaluating the SSNCs and it adds more of them in the 
model. The reason why M2 spends more time in evaluating SSNCs is because solving a QP 
subproblem for each timestep of the model takes significantly longer than just checking violated 
constraints and adding them to the set of active ones. At each iteration, M2 evaluates the security 
and network constraints violated by the current solution and the ones that are violated by the 
solutions of the QP subproblems. As a consequence, the number of added constraints per iteration 
is greater. This, however, reduces more the feasible region of the problem at each iteration and the 
SSNCs added by the QP subproblems prove to predict well the ones that would be added in the 
following iterations. This results in fewer iterations and an overall shorter solution time. Finally, 
it is important to note that the number of SSNCs added with M2 is almost 3 times greater than with 
M1, meaning that many of the added constraints are actually not needed for the optimal solution. 
 
Table 2 Number of iterations, total time spent in evaluating the SSNCs and how many of them are added for each case using 
method M1 and M2 and considering objective function OF1 and OF2. 

 Iterations 
 M1 (OF1) M2 (OF1) M1 (OF2) M2 (OF2) 

ieee118 16 6 14 4 
sp3120 Time out 31 42 31 
wp2383 11 8 11 7 
pegase2869 45 11 46 11 
case6468rte Time out Time out 48 10 
 Time spent in SSNCs evaluation [s] 
 M1 (OF1) M2 (OF1) M1 (OF2) M2 (OF2) 
ieee118 0.2 8.8 0.1 6.4 
sp3120 Time out 1205.3 23.5 568.9 
wp2383 4.0 60.2 4.3 46.6 
pegase2869 17.3 311.9 16.1 160.7 
case6468rte Time out Time out 72.9 1021.7 
 Total SSNCs added 
 M1 (OF1) M2 (OF1) M1 (OF2) M2 (OF2) 
ieee118 360 897 311 724 
sp3120 Time out 2713 1014 2430 
wp2383 244 630 232 532 
pegase2869 1099 2001 1085 1686 
case6468rte Time out Time out 1152 1612 

 
The operational results are presented in Table 3, where the actual total operational cost over the 
considered horizon and the percentage of the total served demand are shown. At first it can be 
noticed how all cases that did not time out meet all the system demand. Just for one case this did 
not happen: the test case “pegase2869”. Here the solution obtained with the method M4 showed a 
0.4% shed demand, corresponding to 6.47 GWh. The reason why this happens can be understood 
by looking at how the method M4 works and Figure 4. At the first iteration just the first four 
timesteps of the horizon retain the original parameters (discrete timesteps) while the other ones are 
aggregated. The optimal solution is the one that avoids any shed demand at the minimum 
operational cost both in the discrete and aggregate timesteps. Once the optimal solution for the 
first iteration is evaluated and the first four timesteps are saved, they are used to define the starting 
conditions for the subsequent shrunk horizon. However, these boundary conditions strongly reduce 



the generator’s decision space, potentially making them unable to operate to serve the demand 
when the hourly (discrete) values are unveiled (due to the time-linking constraints related to 
ramping limits and minimum up/down time). This is what actually happens in case “pegase2869”, 
where the optimal decisions of Iteration 1 force the system to shed demand in the first four hours 
of Iteration 2 and 3. 
 

 
Figure 4 Solution obtained with the shrinking horizon approach M4 for pegase2869 at each iteration. Only the solution related 

to the first four discrete timestep is saved at each subsequent run. 

 
Table 3 also shows the total operational cost of the different solutions found. By looking at the 
solutions obtained with the methods M1, M2 and M3 (which are exact methods), the difference is 
motivated by the chosen 1% MIP gap. When M4 is considered, instead, the optimal solution is 
achieved for cases “ieee118”, “sp3120” and “wp2383”, while a suboptimal solution is obtained 
for the other cases. In particular, the solution of “pegase2869” features a total operational cost 
+69% higher than the optimal one. Thus, not only the solution is not able to fully meet the demand, 
but its cost is also significantly higher. The reason why this happens is related to what was 
previously mentioned: as the horizon is shrunk and new, more precise discrete parameters are 
unveiled, the solution tries to adapt to minimize the shed demand, becoming suboptimal because 
of the previous decisions. Therefore, the commitments of Iteration 1 propagate to the next ones, 
shifting the decision process from finding the minimum operational cost to finding the solution 
that minimizes the shed demand. 
 

Table 3 Operational results for each test case and solution method considered. 

 Operational cost [k$] 
 OF1 OF2 

 M1 M2 M3 M4 M1 M2 M3 M4 
ieee118 2,486 2,406 2,413 2,423 2,243 2,223 2,255 2,230 
sp3120 Time out 6,736 5,981 6,074 5,454 5,735 5,876 5,464 
wp2383 3,332 3,361 3,415 3,344 3,386 3,800 3,395 3,324 
pegase2869 21,957 21,999 21,914 37,041 18,279 18,346 18,514 20,186 
case6468rte Time out Time out Time out Time out 11,616 11,763 12,717 11,654 
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 Demand served 
 OF1 OF2 

 M1 M2 M3 M4 M1 M2 M3 M4 
ieee118 100% 100% 100% 100% 99.96% 99.95% 99.98% 99.97% 
sp3120 Time out 100% 100% 100% 99.94% 99.95% 99.97% 99.08% 
wp2383 100% 100% 100% 100% 99.98% 99.94% 100% 99.99% 
pegase2869 100% 100% 100% 99.60% 99.98% 99.98% 100% 99.58% 
case6468rte Time out Time out Time out Time out 99.67% 99.09% 99.62% 99.65% 
 Cost of Electricity [$/MWh] 
 OF1 OF2 

 M1 M2 M3 M4 M1 M2 M3 M4 
ieee118 31.25 30.99 31.08 31.21 28.89 28.64 29.05 28.73 
sp3120 Time out 18.75 18.58 18.87 16.95 17.83 18.26 17.13 
wp2383 10.78 10.87 10.98 10.82 10.96 12.30 10.98 10.76 
pegase2869 10.51 10.53 10.50 17.81 8.76 8.79 8.87 9.70 
case6468rte Time out Time out Time out Time out 6.75 6.88 7.39 6.78 

 
5.2. Model with objective function 𝑂𝐹2 
When Eq. (34) is considered as the objective function the solution will maximize the portion of 
the expected demand that maximizes the profit. This depends on the electricity price 𝑐',+0 , which 
must be set to a value higher than the generation cost. In this study 𝑐',+0  is time dependent and equal 
to the sum of the median and the 99th percentile of the system generation cost. Then, per each 
timestep the same value of 𝑐',+0  is shared across all buses. In this way the electricity prices are set 
to reasonable values simulating what happens in different regions of the world. 
The results indicate that many things change with respect to the test cases considering 𝑂𝐹1. At 
first, the total run time for the different test cases can be seen in Figure 5. Here it is evident how 
the computational time is greatly reduced with respect to the model featuring 𝑂𝐹1. The overall 
reduction is between -11% and -93% when the same cases and methods are compared, and up to -
99.2% when the fastest method with 𝑂𝐹2 is compared with the slowest with 𝑂𝐹1. On the other 
hand, cases “ieee118” and “sp3120” showed an increase of +8.6% and +14.8% with M3, 
respectively. 
While in the 𝑂𝐹1 cases a constant decrease in computational time was shown going from method 
M1 to M4, here this trend is not as evident. Considering the iterative methods M2 does not 
guarantee a clear computational advantage in all cases. Despite being significantly faster for case 
“pegase2869” (-60%) and “case6468rte” (-93%), similar solution times are seen in cases “ieee118” 
and “sp3120”. Regarding the case “ieee118”, being a small instance, the additional time spent in 
evaluating the SSNCs does not translate in an overall solution time reduction. For what concerns 
the case “sp3120”, the absence of run time reduction could be related to the solver logics, which 
are very hard to investigate. 
Method M3 based on callback functions did not show any significant improvement over M2, 
resulting sometimes to be much slower. This is evident in cases “sp3120”, “pegase2869” and 
“case6468rte”. Finally, as for the previous cases where 𝑂𝐹1 was considered, M4 showed faster 
solution times across all test cases, with significant reductions. 
When looking at Table 2, a comparison between the results obtained with M1 and M2 is shown. 
Here similar comments to the 𝑂𝐹1 can be made: M2 requires fewer iterations, it spends more time 
in evaluating SSNCs, and adds a greater number of them to the model. In general, by adopting 
𝑂𝐹2, a very similar number of iterations is required to obtain the optimal solution. On the other 



hand, fewer SSNCs are added in both M1 and M2, despite the numbers remaining similar. The 
lower number of SSNCs also results into a reduction of the time spent in evaluating them.  

 
Figure 5 Solution time for the different method tested when model considers 𝑂𝐹2 as objective function. 

 
Finally, the operational results are presented in Table 3. The first thing that can be noted is how in 
almost all cases and methods the served demand is below 100%. However, the largest percentage 
of shed demand is 0.92% (“case6468rt3”, M2), with an average value equal to 0.19%. Therefore, 
the amount of shed demand is very small. When the total operation costs are considered, they result 
to be lower than most cases evaluated with 𝑂𝐹1, with a maximum reduction recorded of -45.5% 
(“pegase2869”, M4), and an average reduction across all cases of -11.8%. The reduction in 
operational cost also reflects in lower Costs of Electricity across most cases.  
These results suggest that by changing the objective function of the model, better solutions can be 
found in a shorter time. The reason why different solutions are found can be understood by 
analyzing 𝑂𝐹1 and 𝑂𝐹2. At first, given 𝑐',+0  large enough and a MIP gap set to 0%, solving the 
model with either 𝑂𝐹1 or 𝑂𝐹2 should bring the same solution, or at least solutions with the same 
operational cost. However, this does not occur due to three reasons. At first, solving the problem 
with 𝑂𝐹2 means that just the fraction of the demand that is most profitable is met, while 
considering not only the system constraints but also the N-1 contingency ones. As a consequence, 
it might happen that serving less demand is more profitable (thus justifying also lower operations 
cost). Then, given the high value of 𝑐-./0 (set to 107) in 𝑂𝐹1, numerical issues can occur, and thus 
affecting the final solution (e.g., a total shed demand of 10-5 MWh across the whole horizon has a 
cost of 100 k$). However, it is important to note that during the test phase, lower values of 𝑐-./0 
were considered and slower solution time were recorded (motivating therefore the choice). Finally, 
having set a MIP gap to 1% might results in finding different solutions as well. This is more evident 
when instead of analyzing the operational costs of the solutions, the expected profit is considered 
(which is what 𝑂𝐹2 evaluates). By looking at Table 4, it can be noted how the difference in profits 
between 𝑂𝐹1 and 𝑂𝐹2 are very limited. The largest differences are recorded when using method 
M4, which is expected since suboptimal decisions at the first iteration propagates across the other 
ones. 
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In conclusion, considering 𝑂𝐹2 resulted in a significant improvement in computational time, while 
showing very limited shed demand. Even for those cases where achieving zero shed demand is 
mandatory, the solution obtained with 𝑂𝐹2 can still be used as a warm start or for using heuristics. 
This could be particularly beneficial for cases where reducing the solution time is more important 
than guaranteeing optimality. 
 

Table 4 Expected profits evaluated per each test case. 
 

Profits [k$]  
OF1 OF2  

M1 M2 M3 M4 M1 M2 M3 M4 

ieee118 300271 300192 300265 300230 300312 
(+0.01%) 

300304 
(+0.04%) 

300360 
(+0.03%) 

300363 
(+0.04%) 

sp3120 Time out 857294 857574 857452 857418 
(n.c.*) 

857616 
(+0.04%) 

857456 
(-0.01%) 

850158 
(-0.85%) 

wp2383 1821952 1821981 1821898 1821945 1820466 
(-0.08%) 

1821505 
(-0.03%) 

1821916 
(+0.00%) 

1821742 
(-0.01%) 

pegase2869 10705909 10705867 10705952 10647914 10707099 
(+0.01%) 

10707125 
(+0.01%) 

10706864 
(+0.01%) 

10660145 
(+0.11%) 

case6468rte Time out Time out Time out Time out 8833581 
(n.c.*) 

8781962 
(n.c.*) 

8828043 
(n.c.*) 

8831768 
(n.c.*) 

*: non computable since timed out and no feasible solution was found. 

6. Conclusions 
This work presents three novel solution approaches for the SCUC problem. The solution 
approaches were tested over 5 test cases with two different objective functions and compared with 
a well-known iterative approach in literature.  
When total operational cost (𝑂𝐹1) is considered as objective function, the comparison between 
the methods M1-M4 shows how the fastest is the one based on the Shrinking Horizon approach 
(M4), followed by M3 and M2. For the test cases considered, a reduction in computational time 
with respect to M1 of up to -74.2%, -91.36% and -98.19% was recorded for M2, M3 and M4 
respectively. Regarding the solutions found, all methods presented similar solution with the only 
exception of M4 for case “pegase2869” (here 0.4% shed demand was present). 
When considering 𝑂𝐹2 as objective function of the model, that includes virtual revenues for 
serving the demand, the first thing that can be noted is how the computational time is significantly 
reduced. By comparing each solution approach, the reduction in time is up to -93%, -83.4%, -
57.5% and -87.44% for M1, M2, M3 and M4 respectively. Overall, M4 is still the fastest. Finally, 
it is important to point out that the solutions obtained with 𝑂𝐹2 are slightly different from the ones 
found with 𝑂𝐹1, since they aim at maximizing the overall profit (up to +0.11% higher than 𝑂𝐹1) 
at the cost of shedding part of the demand (up to 1%). 
In conclusion, this paper has proved how the use of a Shrinking Horizon approach together with 
the solver callback functions to significantly reduce the computational time while finding good 
quality solutions. In addition, by investigating the use of different objective functions, it was shown 
how similar solution can be found for a fraction of the time. Future work should focus on 
improving the computational efficiency of callback functions on different solvers, finding better 
approaches to predict SSNCs, and evaluate the impact of using the solution found with 𝑂𝐹2 as a 
warm start of the problem with 𝑂𝐹1. 
 
 



Appendix A 
 
In this section the modelling of the operational constraints valid for the “aggregate” timesteps 
introduced with method M4 are presented.  
 
Modelling of generation bounds, energy balance, system and security network constraints, and 
objective function. 
At each timestep, the amount of electrical energy that the generators can produce is limited by the 
upper and lower bounds. Since the parameters 𝑃) and 𝑃) are related to the minimum and maximum 
generation allowed for the original time step duration 𝑑𝑡 (one hour in this work), Eq. (1) holds 
∀𝑡 ∈ 𝑇0)-1. On the other hand, when dealing with aggregated timesteps, the constraint translates 
to the following: 

𝑃)𝑧),+ ≤ 𝑝),+ ≤ Y𝑡̃ ∙ 𝑃)Z𝑧),+ ∀𝑖 ∈ 𝐺, ∀𝑡 ∈ 𝑇688 (A.1) 

with 𝑡̃ being the number of original timesteps with length 𝑑𝑡 contained in an aggregate one. The 
reason 𝑃) is the lower bound in the aggregate timesteps is because the units could be switched on 
only for some of the 𝑡̃ aggregated timesteps. 
Regarding the energy balance, Eq. (32) holds ∀𝑡 ∈ 𝑇0)-1. For the aggregate timesteps, the 
constraint becomes: 

U𝑝),+
)∈D

=UY𝐷',+
688 − 𝑑',+-./0Z

'∈(

 ∀𝑡 ∈ 𝑇688 (A.2) 

where 𝐷',+
688 is the sum of the demand of the 𝑡̃ timesteps belonging to the aggregate one. 

The SSNCs described by the Eq. (27), (29) and (30) do not change for any of the discrete and 
aggregate timestep. What changes is the definition of the power flowing through line 𝑐: 
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𝑡̃ ∙ 𝑑𝑡 g 𝑚, 𝑛 = 𝑦(𝑐), 
∀𝑡 ∈ 𝑇688 (A.3) 

In this way, for 𝑡 ∈ 𝑇688 the term 𝑓1,+ refers to the average power flow in the aggregate timestep.  
The objective function keeps being either Eq. (33) and (34). The only difference is that any time-
dependent cost parameters will have to be modified such that it is referred to a discrete or aggregate 
timestep. In particular, cost parameters related to aggregate timesteps are evaluated as the average 
of the elements belonging to them. 
 
Modelling of ramping constraints. 
Time linking constraints considered in the model are the ones related to the ramping limits (Eq. 
(8) and (9)) , minimum up- and down-time (Eqs. (2)-(7)) and reserve (Eqs. (14)-(23)). 
Starting from the ramping limits, they represent the maximum increase and decrease of units’ 
generation between adjacent timesteps. By looking at Figure 2, three different couples of adjacent 
timesteps can be identified: A-A, A-B and B-B. A-A refers to a couple of discrete timesteps, A-B 
to a couple where an aggregate timestep follows a discrete one, and B-B to a couple of aggregate 
timesteps. Since the aggregate and discrete timestep are characterized by different timestep 
duration, also the maximum allowed increase/decrease in generation among adjacent time intervals 
will change. 



The general formulation of the constraints considered for the general couple of adjacent timesteps 
X and Y is the following: 
𝑝),+ − 𝑝),+;< ≤ 𝑅𝑈)N;O𝑧),+;< + 𝑆𝑈)N;O𝛿),+"# ∀𝑖 ∈ 𝐺 

∀𝑡 = 𝑇∗ 
𝑡 ∈ 𝑇∗∗, 𝑡 − 1 ∈ 𝑇∗∗∗ 

(A.4) 

𝑝),+;< − 𝑝),+ ≤ 𝑅𝐷)N;O𝑧),+ + 𝑆𝐷)N;O𝛿),+
"$$ (A.5) 

The values related to the parameters 𝑅𝑈)N;O , 𝑅𝐷)N;O , 𝑆𝑈)N;O , 𝑆𝐷)N;O and the sets 𝑇∗, 𝑇∗∗ and 𝑇∗∗∗ 
can be found in Table A.1Table A.1 per each case. 
 
Table A.1 How parameters and sets in Eq. (A.4) and (A.5) are defined depending on the timestep couples considered in the 
reduced MILP with aggregate timesteps. 

 A-A A-B B-B 
𝑅𝑈)N;O 𝑅𝑈) Eq. (A.10) Eq. (A.11)Error! 

Reference source not 
found. 

𝑅𝐷)N;O 𝑅𝐷) Eq. (A.16)  Eq. (A.17) 
𝑆𝑈)N;O 𝑆𝑈) Eq. (A.19) 
𝑆𝐷)N;O 𝑆𝐷) Eq. (A.21)  Eq. (A.22) 
𝑇∗ ∀𝑡 = 2,… , t𝑇0)-1t {	𝑚𝑖𝑛(𝑡) ∈ 𝑇688} 𝑡: 𝑡 > 𝑚𝑖𝑛(𝑡) ∈ 𝑇688 
𝑇∗∗ 𝑇0)-1 𝑇688 𝑇688 
𝑇∗∗∗ 𝑇0)-1 𝑇0)-1 𝑇688 

It is now presented how the different parameters are evaluated for each timestep couple in the 
model. 
The operational ramp-up limit is computed as the difference between the maximum generation 
achievable in an aggregate timestep starting from the minimum allowed generation in the previous 
timestep. Given 𝑅𝑈) the maximum allowed generation increase between adjacent timesteps for 
unit 𝑖, the minimum number of discrete timesteps needed to augment the unit’s output from 
minimum to maximum is defined as follows: 

#𝑅𝑈) = w
𝑃) − 𝑃)
𝑅𝑈)

x (A.6) 

The reason why #𝑅𝑈) is evaluated as the floor of Y𝑃) − 𝑃)Z/𝑅𝑈) can be seen in Figure A.1Error! 
Reference source not found. (dashed red line above the maximum generation line). Given, for 
example, Y𝑃) − 𝑃)Z/𝑅𝑈) = 2.6 and the discrete nature of the timesteps, the decimal part must be 
truncated. By rounding up, #𝑅𝑈) would be equal to 3, therefore resulting higher than the maximum 
allowed. On the contrary, by rounding down, #𝑅𝑈) is equal to 2 (within the bounds) and the 
remaining part of the ramp corresponds to a load variation of 0.6 ∙ 𝑅𝑈), which can be allocated in 
the following timestep. 
To evaluate the upward ramping limit either between a discrete and aggregate timesteps or two 
aggregate timesteps, it is necessary to calculate the difference among the minimum allowed 
generation in the previous interval and the maximum that can be achieved. For a A-B couple, the 
energy generated by the unit 𝑖 in the previous discrete timestep is equal to the minimum load: 

𝑝+;<Q = 𝑃) (A.7) 



On the other hand, the unit’s output for the previous aggregate timestep (thus related to the timestep 
couple B-B) is: 

𝑝+;<( = 𝑡̃ ∙ 𝑃) (A.8) 
The maximum generation achievable in one aggregate timestep starting from the minimum load 
condition is defined by the following expression (a graphical representation of 𝑝+ can be seen in 
Figure A.1): 

𝑝+( = 𝑃)min(𝑡̃, #𝑅𝑈)) + 𝑃)max(0, 𝑡̃ − #𝑅𝑈)) + U 𝑛 ∙ 𝑅𝑈)

RST(+V,#&9!)

#><

 (A.9) 

Therefore, the 𝑅𝑈)Q;( and 𝑅𝑈)(;( can be evaluated as follows: 

𝑅𝑈)Q;( 	 = 𝑃)(min(𝑡̃, #𝑅𝑈)) − 1) + 𝑃)max(0, 𝑡̃ − #𝑅𝑈)) + U 𝑛 ∙ 𝑅𝑈)

F)#(+V,#&9!)

#><

 (A.10) 

𝑅𝑈)(;( = 𝑃)(min(𝑡̃, #𝑅𝑈)) − 𝑡̃) + 𝑃)max(0, 𝑡̃ − #𝑅𝑈)) + U 𝑛 ∙ 𝑅𝑈)

F)#(+V,#&9!)

#><

 (A.11) 

 

 
Figure A.1 Schematic representation of the maximum allowed generation increase between adjacent timesteps (A-B and B-B 

couples). 

 
In a similar fashion, for the timestep couples A-B and B-B the ramp-down limit is evaluated as the 
difference between the generation related to ramping from maximum to minimum load, and the 
minimum allowed generation in the subsequent timestep. Given 𝑅𝐷) the maximum allowed 
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generation decrease between subsequent timesteps for unit 𝑖, the minimum number of discrete 
timesteps needed to reduce the unit’s output from maximum to minimum is defined as follows: 

#𝑅𝐷) = w
𝑃) − 𝑃)
𝑅𝐷)

x (A.12) 

Rounding down Y𝑃) − 𝑃)Z/𝑅𝐷) is motivated by the same reason presented for upwards ramping 
limits case and can be seen in Figure A.2 (red dashed line): in case #𝑅𝐷) would be rounded up, 
the resulting generation at the end of the ramp would be lower than 𝑃). 
The maximum allowed generation for the discrete timestep (related to the timestep couple A-B) is 
equal to the maximum load: 

𝑝+;<Q = 𝑃) (A.13) 
On the other hand, the unit’s output for the previous aggregate timestep (thus related to the timestep 
couple A-B) is: 

𝑝+;<( = 𝑡̃ ∙ 𝑃) (A.14) 

The minimum generation achievable in one aggregate timestep starting from the maximum load 
condition is defined by the following expression (a graphical representation of 𝑝+ can be seen in 
Figure A.2): 

𝑝+( = 𝑃)max(0, 𝑡̃ − #𝑅𝐷)) + U Y𝑃) − 𝑛 ∙ 𝑅𝐷)Z
F)#(+V,#&:!)

#><

 (A.15) 

Therefore, the 𝑅𝐷)Q;( and 𝑅𝐷)(;( can be evaluated as follows: 

𝑅𝐷)Q;( 	 = 𝑃)Y1 − min(𝑡̃, #𝑅𝐷))Z − 𝑃)max(0, 𝑡̃ − #𝑅𝐷)) + U 𝑛 ∙ 𝑅𝐷)

F)#(+V,#&:!)

#><

 (A.16) 

𝑅𝐷)(;( = 𝑃)Y𝑡̃ − min(𝑡̃, #𝑅𝐷))Z − 𝑃)max(0, 𝑡̃ − #𝑅𝐷)) + U 𝑛 ∙ 𝑅𝐷)

F)#(+V,#&:!)

#><

 (A.17) 

 



 
Figure A.2 Schematic representation of the maximum allowed generation decrease between adjacent timesteps (A-B and B-B 

couples). 

Regarding the ramping limits related to start-up and shut down, they are equal to the maximum 
generation achievable before starting up and shutting down respectively. 
Given 𝑆𝑈) the maximum allowed generation during the time-step of duration 𝑑𝑡 when the unit 𝑖 
switches on, the following term defines the minimum number of timesteps required to increase 
the output from 𝑆𝑈) to its maximum value. 

#𝑆𝑈) = w
𝑃) − 𝑆𝑈)
𝑅𝑈)

x (A.18) 

The value comes from rounding down Y𝑃) − 𝑆𝑈)Z/𝑅𝑈) for the same reasons seen above. Whatever 
the timestep prior the start-up is discrete or aggregate, the unit’s output is null. Therefore 𝑝+;<Q =
𝑝+;<( = 0. The maximum output achievable in one aggregate timestep at start up is limited by 𝑅𝑈). 
It follows this expression, which also defines 𝑆𝑈#$%& and 𝑆𝑈#&%&: 
 
𝑆𝑈!"#$ = 𝑆𝑈!$#$ = 

= 𝑆𝑈![1 + 𝑚𝑖𝑛(𝑡̃ − 1, #𝑆𝑈!)] + 2 𝑛 ∙ 𝑅𝑈!

%!&(()#*,#-.!)

&0*

+ 𝑃![𝑡̃ − 𝑚𝑖𝑛(𝑡̃ − 1, #𝑆𝑈!) − 1] 
(A.19) 

The abovementioned equation is graphically represented in Figure A.3. 
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Figure A.3 Schematic representation of the maximum allowed generation at start up (A-B and B-B couples). 

As for the start-up, also the ramping limit prior a shutdown is evaluated as the maximum allowed 
generation before turning the unit off. Given 𝑆𝐷) the maximum allowed generation in the timestep 
of duration 𝑑𝑡 prior shutdown, the following term defines the minimum number of timesteps 
required to decrease the output from its maximum value to 𝑆𝐷). 

#𝑆𝐷) = w
𝑃) − 𝑆𝐷)
𝑅𝐷)

x (A.20) 

The value comes from rounding down Y𝑃) − 𝑆𝐷)Z/𝑅𝐷) for the same reasons seen in the 
subsections above. Whatever the timestep is discrete or aggregate, the unit’s output is null if 
shutdown. Therefore 𝑝+( = 0. The maximum output allowed in one discrete timestep prior 
shutdown is the following: 

𝑆𝐷#$%& = 𝑝𝑡−1
𝐴 = 𝑆𝐷𝑖 (A.21) 

When an aggregate timestep is considered, then the following expression holds: 

𝑆𝐷#&%& = 𝑆𝐷# + 𝑃#[𝑡̃ −𝑚𝑖𝑛(𝑡̃ − 1,#𝑆𝐷𝑖)− 1] + 1 2𝑃# − 𝑛 ∙ 𝑅𝐷#6
'#(("*%+,#-.")

(0+

 

 

(A.22) 

The above-mentioned equation is graphically represented in Figure A.4. 
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Figure A.4 Schematic representation of the maximum allowed generation before shut down (A-B and B-B couples). 

 
Modelling of minimum up- and down-time constraints. 
The minimum up- and down-time constraints considered are the ones described by Eq. (4) and (5). 
As for the ramping limits, the parameters related to these constraints must be evaluated again in 
light of the presence of aggregate timesteps in the reduced problem. In fact, 𝑈𝑇) and 𝐷𝑇) are related 
to discrete timesteps with original length of 𝑑𝑡. Four new parameters are introduced: 𝑈𝑇C),+, 
𝐷𝑇C),+,𝑈𝑇C)

688 and 𝐷𝑇C)
688. They take part of constraints as follows: 

U δ),="#
+

=>+;9?] !,&@<

≤ 𝑧),+ ∀𝑖 ∈ 𝐺\𝐺"#, ∀𝑡 ∈ l𝑈𝑇C)
688, … , |𝑇|n (A.23) 

 

U δ),=
"$$

+

=>+;:?] !,&@<

≤ 1 − 𝑧),+ ∀𝑖 ∈ 𝐺\𝐺"#, ∀𝑡 ∈ l𝐷𝑇C)
688, … , |𝑇|n (A.24) 

with 𝑇 = 𝑇0)-1 ∪ 𝑇688. The parameters 𝑈𝑇C),+ and 𝐷𝑇C),+ are defined for only 𝑡 ≥ 𝑈𝑇C)
688 and 𝑡 ≥

𝐷𝑇C)
688 respectively. 

At first, 𝑈𝑇C)
688 and 𝐷𝑇C)

688 are defined as the minimum number of discrete and aggregate timesteps 
corresponding to the original 𝑈𝑇) and 𝐷𝑇). As a consequence, if 𝑈𝑇) ≤ ∆𝑡607 and 𝐷𝑇) ≤ ∆𝑡607, 
then 𝑈𝑇C)

688 = 𝑈𝑇) and 𝐷𝑇C)
688 = 𝐷𝑇). On the other hand, if 𝑈𝑇) > ∆𝑡607 and 𝐷𝑇) > ∆𝑡607 then 

the following expressions hold: 

𝑈𝑇C)
688	 = ∆𝑡607 + }

𝑈𝑇) − ∆𝑡607

𝑡̃ ~ (A.25) 
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𝐷𝑇C)
688	 = ∆𝑡607 + }

𝐷𝑇) − ∆𝑡607

𝑡̃ ~ (A.26) 

The parameter 𝑈𝑇C),+ is not defined for 𝑡 < 𝑈𝑇C)
688, 𝑈𝑇C),+ = 𝑈𝑇C)

688 for 𝑡 = 𝑈𝑇C)
688, while the 

following expression holds for 𝑡 > 𝑈𝑇C)
688: 

𝑈𝑇8#,"		 = 𝑚𝑎𝑥 =0, 𝑈𝑇# −𝑚𝑎𝑥 A0,𝑚𝑖𝑛(𝑡 − ∆𝑡123 , D
𝑈𝑇#
𝑡̃
EFG ∙ 𝑡̃

+ 𝑚𝑎𝑥 A0,𝑚𝑖𝑛(𝑡 − ∆𝑡123 , D
𝑈𝑇#
𝑡̃
EF 

(A.27) 

The same applies for 𝐷𝑇C),+	: it is not defined for 𝑡 < 𝐷𝑇C)
688, 𝐷𝑇C),+ = 𝐷𝑇C)

688 for 𝑡 = 𝐷𝑇C)
688, and 

the following expression holds for 𝑡 > 𝐷𝑇C)
688: 

𝐷𝑇8#,"		 = 𝑚𝑎𝑥 =0, 𝐷𝑇# −𝑚𝑎𝑥 A0,𝑚𝑖𝑛(𝑡 − ∆𝑡123 , D
𝐷𝑇#
𝑡̃
EFG ∙ 𝑡̃

+ 𝑚𝑎𝑥 A0,𝑚𝑖𝑛(𝑡 − ∆𝑡123 , D
𝐷𝑇#
𝑡̃
EF 

(A.28) 

The reason why the Eq. (A.25) and (A.26) rounds up the value in the ratio is to ensure that the 
minimum up- and down-time are respected (this might not happen if rounding down). However, 
this comes at the cost that decisions could potentially be suboptimal. An example of how the 
constraints are modelled can be seen in Figure A.5. 
 

 
Figure A.5 Schematic representation of how the minimum up-time constraints are modelled in the reduced MILP with aggregate 
timesteps. 

 
Modelling of reserve constraints. 
The constraints defined by Eqs. (14)-(17), and (22) and (23) remain the same in the reduced 
problem, with the exception that the parameters are multiplied by 𝑡̃ for those timesteps belonging to 
𝑇688.  
On the other hand, the constraints in Eqs. (18) and (19) become the following: 

𝑟),+
*4 ≤ (𝑝),+;< − 𝑟),+;<0"5#) − 𝑝),+ + 𝑅𝑈)N;O𝑧),+;< + 𝑆𝑈)N;O𝛿),+"# ∀𝑖 ∈ 𝐺 

∀𝑡 = 𝑇∗ 
𝑡 ∈ 𝑇∗∗ 

𝑡 − 1 ∈ 𝑇∗∗∗ 

(A.29) 

𝑟),+0"5# ≤ 𝑝),+ − (𝑝),+;< + 𝑟),+;<
*4 ) − 𝑝),+ + 𝑅𝐷)N;O𝑧),+

+ 𝑆𝐷)N;O𝛿),+
"$$ 

(A.30) 

With 𝑅𝑈)N;O, 𝑅𝐷)N;O, 𝑆𝑈)N;O, 𝑆𝐷)N;O, 𝑇∗, 𝑇∗∗ and 𝑇∗∗∗ defined as in Table A.1. 

t=6

t=7

t=8

!"! = 10, !"&"
#$$ = 6,		 !"&!,& = [−,−,−,−, −, 6, 3, 3, 3]
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