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Abstract 

This work addresses the scheduling of continuous single stage multiproduct plants with parallel 

units and shared storage tanks. Processing tasks are energy intensive and we consider time-

dependent electricity pricing and availability together with multiple intermediate due dates, handled 

as hard constraints. A new discrete-time aggregate formulation is proposed to rapidly plan the 

production levels. It is combined with a continuous-time model for detailed scheduling as the 

essential part of a rolling horizon algorithm. Their computational performance is compared to 

traditional discrete and continuous-time full-space formulations with all models relying on the 

Resource-Task Network (RTN) process representation. The results show that new models and 

algorithm can generate global optimal schedules much more efficiently than their counterparts in 

problems involving unlimited power availability. Under restricted power, the aggregate model 
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underestimates the electricity cost, which may cause the rolling-horizon approach to converge to a 

suboptimal solution, becoming the discrete-time model a better approach. 

1. Introduction 

Modern enterprises form complex global networks of multiple business units and functions. In 

order to remain competitive in the global marketplace, companies need to optimize the various 

functions within their supply chain. One of the focuses of enterprise-wide optimization (EWO) is the 

operation of manufacturing facilities, where essential operational items include planning and 

scheduling (Grossmann, 2005). A major challenge is to discover what type of models to use to 

render effective solutions for real-life problems. 

Scheduling has been receiving considerable attention by the Process Systems Engineering (PSE) 

community, particularly for batch plants. The review paper by Méndez et al. (2006) provides a 

classification and conceptual overview of the most important approaches. In the last 15 years 

researchers have focused on continuous-time formulations. With the advent of unified modeling for 

batch and continuous processes (STN, Kondili et al., 1993, and RTN, Pantelides, 1994), work 

concerning model generality is mostly complete. Relevant recent contributions have extended the 

scope by considering: (i) variable recipe tasks with flexible rather than fixed proportion of input 

materials (Castro et al., 2009b); (ii) non zero transfer times to enforce synchronization between 

consecutive processing stages (Ferrer-Nadal et al., 2008; Giménez et al., 2009); (iii) tasks to 

continue over multiple events when using unit-specific formulations in problems with resource 

constraints other than equipment (Shaik & Floudas, 2009); (iv) time dependent utility pricing and 

availability when dealing with continuous plants (Castro et al., 2009a). However, there is still much 

work to be done concerning model efficiency and to find out the best approach for a particular type 

of problem. 

Our recently proposed continuous-time short-term scheduling formulation for continuous plants 

(Castro et al., 2009a) effectively handles energy constraints related to electricity pricing and 

availability. It is a Resource-Task Network (Pantelides, 1994) formulation evolving from the one by 

Castro et al. (2004), and takes advantage of the ability of continuous tasks to be split in as many time 
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slots as required so as to adapt to the duration of the time intervals where they take place. Such 

duration may result from a pre-specified utility cost/availability profile with binary variables being 

used to identify whether a certain interval belongs to a particular period of a given energy level. The 

other set of discrete events whose exact location is known a priori are the multiple intermediate due 

dates with binary variables identifying if a certain event point on the continuous-time grid 

corresponds to a given demand point as suggested by Maravelias & Grossmann (2003). As the 

number of different energy levels and demand points increase, so does the number of time intervals 

needed to represent a solution, which is known to have a profound effect on the complexity of the 

mathematical formulation. Thus, it was no surprise to observe that this approach could only solve 

very small problems to optimality when considering a 1-week horizon with end-of-the-day demands 

and frequent energy cost changes (6 times on week days and 4 times on Saturdays, from Duarte et 

al., 2009). 

Discrete events are handled more naturally with a discrete-time formulation (Kondili et al., 1993; 

Pantelides, 1994). Indeed, the results in Castro et al. (2009a) have shown superior performance over 

its continuous-time counterpart, with the RTN discrete-time formulation being able to tackle 

problems of industrial relevance using 1-hour time intervals to near optimality (<1%) in a few 

minutes of computational time. There are however two important issues when addressing problems 

featuring continuous tasks with discrete-time formulations. First, slightly suboptimal solutions may 

result since the task durations are approximated by a multiple of the prespecified interval length. 

Second, multiple instances will typically need to be executed to meet the daily demands, where each 

instance lasts a single interval, leading to high solution degeneracy, see Figure 1. Thus, one will only 

by chance obtain a solution with a minimum number of changeovers that can immediately be 

implemented in practice. 

0
1 32 4 5 6 7 8 9

Unacceptable

OK  

Figure 1. High solution degeneracy may lead to a solution from the discrete-time formulation with 
an unacceptable number of changeovers. 
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Clearly, discrete and continuous-time formulations have complementary strengths and the ideal 

approach should combine the advantages of both. Researchers have started looking into this problem 

by proposing mixed-time approaches (Maravelias, 2005; Westerlund et al., 2007) where the main 

idea is to allow product changeovers to occur between interval boundaries instead of only at the 

exact boundaries of a time grid. Yet, the authors acknowledge that improved solutions methods are 

required for real-world applications. Rather than going for a full-space formulation, a new rolling-

horizon algorithm is proposed in this paper. We follow the basic ideas of the original paper 

(Dimitriadis et al., 1997), where the scheduling horizon is divided into detailed and aggregate time 

blocks with the overall problem being solved in a sequence of iterations. In successive iterations, the 

previous solution of the detailed time block is fixed and part of the remaining aggregate time block 

gets to be scheduled in detail. 

In rolling-horizon algorithms, the most critical issue is finding a simplified (aggregate) model 

resulting into decisions that can actually be implemented in practice. In this paper, a novel aggregate 

model is proposed for single stage plants. In many ways, it is similar to a detailed discrete-time 

model but it uses fewer time intervals in order to reduce solution degeneracy. The reduction in the 

number of time intervals is possible since the relative position of the different cost/availability levels 

between two consecutive demand points is not important whenever instantaneous product 

withdrawals from the final storage units (at the demand points) can be assumed. In such cases, the 

inventory will steadily increase up to a maximum, occurring at the latest immediately before the later 

demand point. An illustration is given in Figure 2, where the aggregate model considers half of the 

time intervals of the discrete-time approach due to the merging of time periods with constant power 

availability belonging to the same energy cost level. The difference is that instead of applying the 

resource balances at the interval boundaries, we now do balances over the time intervals for 

processing equipment and electric power. For the former resources the new balances are rigorous 

since we ensure that the total processing time does not exceed the duration of the time interval. Note 

that we are no longer concerned with the actual timing of events so as to focus solely on the most 
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relevant information (planning level). The instantaneous power balances are approximated by energy 

balances over a given time, which give an average power consumption. 

Demand pointDemand point

Low cost energy level Medium cost High cost

Demand point Demand point

Low cost Medium cost High cost

Power availability (MW) Power availability (MW)  

Figure 2. Detailed discrete-time vs. aggregate model 

The underlying detailed model in the new rolling horizon algorithm is the continuous-time 

formulation presented in Castro et al. (2009a). It is applied to the period between two consecutive 

demand points (e.g. one day) rather than the full scheduling horizon (one week, typically) so as to 

keep complexity at a manageable level. On the one hand, within a demand period, binary variables 

linking event points with demand points are no longer needed. On the other hand, significantly fewer 

event points are required to represent the partial solution. The actual number to employ is predicted 

from the solution of the aggregate model, which will act as the starting point in the standard iterative 

search procedure for the global optimal solution (Méndez et al., 2006). The drawback of 

decomposition techniques over full-space methods is that optimality, sometimes even feasibility, 

may be compromised. In this paper, this is caused by the approximate power balances on the 

aggregate model, which may suggest production in periods of cheap electricity cost where there 

simply is not enough power available (as can be found by the rigorous detailed model). To overcome 

this issue, slack variables are added to allow exceeding the maximum power availability so that the 

product demands are met. These are severely penalized in the objective function to first generate 

feasible schedules. 

2. Problem Definition 

Consider the last processing stage of a continuous multiproduct plant, where an intermediate 

material is transformed through the use of electricity into one of a few different products. The 

products are characterized by chemical composition and sent to storage units until dispatch takes 

place. This process is illustrated in Figure 3. 
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Figure 3. Final processing stage of industrial case study 

Typical plant schedules are established over one week, so this will be the time horizon assumed 

(H=168 h). Given are a set of units M, products P and storage tanks S. Machines are characterized 

by: (i) power requirements for each product pwp,m [MW]; (ii) processing rates, ρp,m [ton/h]. Products 

may have multiple demands over the week, which can occur at any hour hr of day dy, dp,dy,hr [ton]. 

Storage units have known maximum capacities, caps [ton], and the initial amounts in storage are 

given by ims,p. We assume that all products can be stored on a given unit (shared storage) provided 

that is one at a time. 

The objective will be to minimize the total energy cost subject to constrains on resource 

availability that includes processing and storage units, materials and utilities (electricity). We assume 

an energy contract between the plant and electricity provider that specifies the time-dependent 

electricity cost, echr,dy [€/kWh], and maximum power levels, pwxhr,dy [MW], over a one-week period. 

Throughout the paper we will be using the cost values given in Duarte et al. (2009) that consist of 

three distinct energy pricing levels, E, with prices ce equal to 0.0481, 0.0945 and 0.2162 [€/kWh], 

see Figure 4. The maximum power levels are treated as soft constraints, i.e. they can be violated at a 

harsh penalty cost, cs [k€/MW], so that the product demands are always met (hard constraint). This 

is a reasonable assumption since the plant normally operates well below maximum capacity. 
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Figure 4. Electricity cost policy within a working week. 

3. RTN Process Representation 

The proposed models assume a Resource-Task Network representation of the process (Pantelides, 

1994) to make them as general as possible. In order to tackle the scheduling problem at hand, the 

first step involves describing the process as a network of resources and tasks. There are several 

possibilities for deriving the network, so some creativity may be involved. Some will naturally be 

better than others as noted by Chen & Chang (2009) when addressing a heat-integrated multipurpose 

batch plant. For the problem under consideration, the proposed network can be seen in Figure 5. The 

reader is referred to Castro et al. (2009) for further details. Here, we limit ourselves to highlight the 

most important features. 

While the concept of resource is entirely general, it is convenient to define a few subtypes that will 

be treated differently by the mathematical formulation. Equipment resources, REQ, include 

processing and storage units, with the former appearing in the timing constraints, RTC. The electricity 

is the utility, RUT, while the raw-material is the sole member of set RRM. The material output from the 

processing task is already in final product condition but we need to distinguish its location (Castro et 

al., 2005). It can either be: (i) immediately after the units, RLM; (ii) inside the storage tanks, RLS; (iii) 

inside the client’s transportation vehicle, RFP. The resources continuously produced/consumed are 

given by RCT=RRMRLMRLS, whereas the final product (RFP) is produced/consumed 

instantaneously. 
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Figure 5. Resource-Task Network representation. 
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Figure 6. Disaggregation of continuous tasks for combined aggregate/continuous-time model. 

In Figure 5 there are three types of tasks: (a) continuous processing tasks, Ic; (b) hybrid storage 

tasks consisting of a continuous send-to-storage part and a batch hold-in-storage part, Is; (c) 

instantaneous remove-from-storage tasks, It. The processing tasks need to be further disaggregated 

when solving the problem with the combined aggregate/continuous-time formulation, to distinguish 
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between energy pricing levels, c
eI  (see Castro et al., 2009a). Note also that hybrid storage tasks allow 

considering shared storage, where a particular unit can handle multiple products, one at a time. 

4. RTN Variables and Parameters 

The large majority of variables and parameters are independent of the time representation 

employed by the mathematical formulation. A brief description of such entities is the focus of this 

section. 

Normally, two sets of variables are used to characterize tasks. Binary variables Ni,t identify the 

execution of task i during interval t, while continuous variables ξi,t give the amount processed. In the 

case of hybrid tasks, an extra set of continuous variables is required to determine the amount 

continuously sent to storage, *
,ti . 

Resource availability over time is accounted for through excess resource variables Rr,t and end
trR , . 

The amount available at the beginning of the time horizon is often known for all resources and so it 

can be defined as a parameter, 0
rR . As an example, it is equal to 1 for equipment resources (REQ). 

The upper and lower bounds on resource availability are specified through the parameters max
rR , 

maxend
rR , min

rR  and minend
rR . For resource interaction with the system surrounding environment, the 

aggregate model uses parameters in
tr ,  and out

tr , , with the indices changing for the continuous-time 

model ( in
etpr ,, , out

tdr , ). Slack variables Sr,t are included to allow the balances for the utility resources 

(RUT) to be violated. 

The RTN representation is brought into the model by the structural parameters, which give the 

total resource consumption/production, or the proportion relative to the amount handled by the task. 

Furthermore, task interaction with resources can either occur discretely at the start/end of the task, or 

continuously throughout its execution. The parameters µr,i, and ir , handle discrete interactions at the 

start (end) of tasks involving a known total consumption and are linked to the binary variables Ni,t. 

They are typically used for equipment resources. On the other hand, for material resources it is 

preferable to relate resource consumption to the amount handled by the task, through parameters νr,i 
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and ir, . Continuous interactions are modeled using λr,i , which are associated to either ξi,t or *
,ti . It is 

important to highlight that there can be a large number of structural parameters but most will be 

equal to 0, and the remaining will almost always have a value of either 1 or -1. 

Ideally, the parameters should be generated systematically so that the model can handle changes in 

the number of real process entities (e.g. units, products). For special network structures, like those in 

single or multistage plants, it is straightforward to derive an algorithm that converts the real process 

entities into the virtual entities of the RTN. It can be viewed as a black box, requiring process data 

inputs, as well as information linked to the model type in terms of time representation. The 

procedure is summarized in Figure 7, with the reader being directed for Castro et al. (2009a) for 

further details. 

Real Entities

m‐ unit

p‐ product

hr‐ hour

dy‐day

s‐ storage unit

i‐ task

r‐ resource

t‐time point

td‐ demand point

tp‐time period

e‐ energy cost level

processing rate

product demands

electricity cost

constant cost/power periods

available power

storage capacity

initial amount in storage

structural parameters

p,m imax

dp,dy,hr out
r,t ,

echr,dy cet

out
r,td

pwxhr,dy in
r,t ,in

r,tp,e

lbe,tp , ube,tp

caps Rrendmax

ims,p R0r

pwp,m r,i , r,i ,r,i ,r,i ,r,i

RTN Virtual Entities
Indices Indices

 

Figure 7. RTN parameter generation algorithm 

5. New Aggregate Formulation (AG) 

The proposed aggregate formulation uses a single, non-uniform, discrete-time grid to keep track of 

the events taking place, see Figure 8. The number of time points (|T|) and their exact location on the 

grid is determined after analyzing the product demand, and the electricity cost and availability data, 

as illustrated in Figure 2. The difference with respect to a traditional discrete-time formulation 

(given in Castro et al., 2009a), is that the duration is no longer the same for all intervals. Instead, the 

width of interval t is given by t. Furthermore, since we are not concerned with the rigorous timing 
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of events in the aggregate model, time varies continuously within an interval without the need to 

specify event points, like in a typical continuous-time formulation. 

1 T
2 4 T-2 T-1

Slot1

31

Slot 2 Slot 3 Slot T-2 Slot T-1

2 3 T-2 T-1

 

Figure 8. Non-uniform, discrete time grid for aggregate model 

The model constraints follow. The objective function [k€], eq. 1, minimizes the total electricity 

cost plus a penalty to account for power violations. In the first term, cet is the electricity cost in time 

interval t [€/kWh], -r,i gives the power consumption [MW], and the quotient returns the duration of 

the electricity intensive task [h]. In the second term, the slack variables Sr,t represent the extra power 

to purchase [MW]. 
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The excess resource balances are given by eqs. 2-3. For resources interacting discretely with tasks, 

the excess amount at event point t (Rr,t) is equal to that at the previous event point (t-1) adjusted by 

the amounts produced/consumed by all tasks starting or ending at t. For those interacting 

continuously (RCT), it is the excess amount immediately before the end of the previous interval 

( end
trR 1,  ) that matters in eq. 2. This is in turn related to the amount available at the start of the interval 

through eq 3. A more thorough explanation of the two sets of constraints for the continuous-time 

formulation, which are very similar to eqs. 2-3, can be found in Castro et al. (2009a). 
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The novelty in the aggregate model is that the domain of eq. 2 does not include processing 

equipment or utilities. The purpose is to allow multiple products to be processed on a given unit on a 

certain interval. Since for every product, one unit of the corresponding equipment resource is 

consumed and their maximum (initial) availability is equal to 1, we are forced to remove processing 

equipment from the resource balances to meet our goal. These are replaced by timing constraints that 
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ensure that the total processing time in interval t does not exceed its duration, as given by eq. 4. For 

the utilities, the instantaneous balances on power are only possible through the resource balances, so 

the best that can be done is to write energy balances. Eq. 5 ensures that the total energy in interval t 

(LHS) is greater than the amount consumed (RHS), with the equality holding whenever the slack 

variables are active (recall that they are penalized in the objective function, eq. 1). 
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Finally, the last set of constraints forces the activation of the binary extent variables Ni,t whenever 

there is material being handled by the task. We have used the product of the time horizon, H, times 

the sum over all machines of the maximum processing rates, as the upper bound in eq. 6. 
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6. Rolling-Horizon Algorithm 

The aggregate model is one of the two components of the combined formulation that is used in the 

rolling-horizon algorithm. The most important property of the aggregate model is that it solves a 

relaxed version of the problem by replacing instantaneous power balances with energy balances over 

the time slots that comprise the grid (see also section 8.1). Thus, it generally provides a lower bound 

on the total electricity cost. However, in cases with unlimited power availability, it provides the 

exact minimum cost that can be achieved after detailed scheduling. The other advantage of the 

aggregate model is that its solution gives the planned production levels for the different demand 

periods, information that can be analyzed to predict the number of event points for the continuous-

time formulation. Hence, it is logical that the initial step of the rolling-horizon algorithm involves 

solving the full problem with the aggregate model. 

The main ideas of the rolling-horizon algorithm are illustrated in Figure 9. The combined 

formulation described in the next section uses a single time grid that is partly continuous and partly 

discrete, T=TcTag. The first time points will be continuous, with the last being the sole element of 
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set Tc last. It is a boundary time point that is also part of the set of aggregate time points, thus binding 

together the two parts of the grid. Both step 0 and 1 involve 13 event points, but the sets elements 

differ. In the former, Tc= and Tag={1,…,13}, while in the latter, Tc={1,…,4} and Tag={4,…,13}. In 

the illustration, the outcome of step 1 is a solution with the same value of the objective function as 

step 0. Since we cannot do better, we can fix the schedule for the first demand period and proceed to 

the next. By fixing we mean removing the time points belonging to the first demand period from the 

grid, with the exception of the one at the boundary. The aggregate model predicts 3 event points for 

the second demand period, so in step 2 we will have Tc={4,…,6} and Tag={6,…,12}. Notice that the 

set elements are changing dynamically. Other important dynamic sets that need to be defined are the 

first and last points on the grid, e.g. Tfirst={4} and Tlast={12}. 

t=5 t=7 t=8 t=9 t=10 t=11 t=12 t=13

Step0: Solve aggregate model (AG) for full time horizon. Set lower bound (LB) on cost. Predict # 
event points for continuous‐time model (CT) in first demand period.

Demand 2 Demand 3 Demand 4Demand 1

Step1:Use rolling‐horizon approach. Always solve full problem with combined formulation: CT for 
demand period under consideration, AG for remaining periods.
Objective function (OBJ)=LB? Yes. Fix schedule. Proceed to next demand period.

t=1 t=2 t=3 t=4

Step2:Objective function (OBJ)=LB? No. Increase # of event points by 1. Proceed.

t=1 t=2 t=3 t=4 t=5 t=6

Step3:Objective function (OBJ)=LB? No. OBJit=OBJit‐1? YES, not enough power!
Set LB=OBJ. Restore solution generated in step 2. Proceed.

t=1 t=2 t=3 t=4 t=5 t=6 t=7

Final step :Determine the complete schedule.

t=1 t=2 t=3 t=4 t=5 t=6 t=7 8 9 t=10 t=11 t=12 t=13 t=14

t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10 t=11 t=12 t=13

t=7 t=8 t=9 t=10 t=11 t=12

t=8 t=9 t=10 t=11 t=12 t=13

 

Figure 9. Main ideas implemented in rolling-horizon algorithm 

The continuous-time model considers the exact location of the different electricity cost levels, 

leading to the disaggregation of the time periods from the aggregate model. As a consequence, 

processing tasks that could be executed in a single time interval may need two or more intervals in 
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the continuous grid. In other words, the aggregate model may predict an insufficient number of event 

points. This is one of the two possible causes for the value of the objective function to be higher than 

the lower bound. If that is the case, then the value of the objective function will improve following a 

single increment in |T|. If no improvement is observed (step 3), then the cause is insufficient power 

to process an amount at least as much as that predicted by the aggregate model in the cheaper cost 

periods. The lower bound is reset to the new value, the added continuous-time point removed (note 

that the event point corresponding to t=6 in step 3 is not in the final solution) and the algorithm 

proceeds. Eventually, all demand periods are solved and the full detailed schedule is generated in the 

final step. 

7. New Combined Aggregate/Continuous-time Formulation (RH) 

The new combined aggregate/continuous-time model, the most important part of the rolling-

horizon algorithm, is presented next. Despite the natural complexity resulting from mixing models 

with alternative representations of time, the use of a unified framework for process representation 

(RTN) and dynamic sets, allows the generation of a relatively compact formulation. Since the 

aggregate part of the model has already been thoroughly discussed, we focus on the continuous-time 

part of the model. 

The objective function is given in eq. 7. The first term, pcost, is a parameter that accounts for the 

partial electricity cost in demand periods already scheduled. Inside the square brackets, the first term 

is the electricity cost associated to processing tasks executed in the continuous part of the grid. It is 

given by the sum over all electricity levels e, of the product of electricity cost ce, power consumption 

and duration of the task. Notice that contrary to the aggregate model, we do not know a priori the 

cost level associated to time interval t. Instead, we need a set of timing constraints to ensure that the 

correct parameter is activated, see eq. 16. Due to the disaggregation of tasks amongst energy levels 

(recall Figure 6), the number of continuous tasks to consider is larger than for the aggregate model. 

Nevertheless, not all such tasks need to be considered in time interval t, in the aggregate part of the 

combined model (only the elements of set c
tI ). 
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The complexity of the model is reflected in the number of terms present in the first set of the 

excess resource balances, eq. 8. The idea is the same as in eq. 2 but now we have to include some 

entities of the continuous-time model given in Castro et al. (2009a). The first is parameter out

tdr *,
 , 

which holds the product demands at the end of the demand period td currently being scheduled in 

detail (superscript *). In the time grid, such interaction occurs at the boundary time point. 

Concerning the utility input, there may be multiple energy pricing levels within a demand period and 

even different time periods tp within the same energy level (TPe). It is important to mention at this 

time that utility availability remains constant throughout the duration of any time period, which are 

characterized by given lower and upper bounds (lbe,tp, ube,tp). To identify during which time period 

tasks executed at interval t are processed at (see Figure 10), the binary variables Yt,tp,e are used. 

Whenever the power availability is insufficient to meet the demand, the slack variables Sr,t are 

activated. Notice in the constraint domain that the balance for utility and process equipment 

resources is only done for the continuous time points but the last.  
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Figure 10. Time interval t may include a few time periods tp but processing tasks can be executed in 
at most one. 

The last terms in eq. 8 are identical to those in eq. 2 besides the stricter domain of the variables 

associated to the processing tasks. The same can be said for the rest of the constraints of the 

aggregate part of the model, see eqs. 9-12. 
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As for the continuous part of the model, eqs. 13-17 apply. The timing variables Tt and Tst provide 

the absolute time of event point t and the earliest starting time amongst all processing tasks executed 

during interval t, respectively. Clearly, the starting time must be greater than the event point’s 

absolute time (eq. 13), which, for the first point, is given by the location of the previous demand 

point. Likewise, tasks must end before the next event point. Eq. 14 is written for all processing 

equipment resources and implicitly assumes that there can be a single task executed on such unit at a 

certain time, which is ensured by the initial resource availability and excess resource balances. It is 

crucial to understand that tasks executed during interval t must lie within a single time period of an 

energy level, see eq. 17 and also Figure 10. Hence, the starting time must also be greater than the 

time period’s lower bound (eq. 15), and there must be enough time for the tasks to end before the 

period’s upper bound, eq. 16. 
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8. Computational Results 

The performance of the new aggregate and combined formulations is illustrated through the 

solution of nine example problems. EX2-EX10 are taken from Castro et al. (2009a) and two new 

cases, EX2a and EX5a, which are slightly modified versions of EX2 and EX5, are added to illustrate 

that the aggregate formulation may underestimate the total electricity cost in cases of limited power 

availability. The models are compared to the discrete (DT) and continuous-time (CT) models from 

the same reference. Nevertheless, they have been slightly altered to incorporate the slack variables, 

which explains the small differences in computational times. In order to prioritize schedules that 

meet the maximum power constraints, we have used cs=10 [k€/MW]. 

Table 1. Computational Statistics 

Case (P,M,S) Power Model |T| DV SV EQ RMIP MIP [€] CPUs Gap (%) 
Ex2 (2,1,1) R DT 169 672 4721 3203 21575 21575 0.24 0 

    AG 17 64 431 313 21575 21575 0.12 0 
    RH 11 9 54 39 21575 21575 1.11 0 
      CT 11 490 808 347 16620 21575 25.3 0 

Ex2a (2,1,1) R DT 169 672 4721 3203 21575 21575 0.35 0 
    AG 17 64 431 313 18977 18977 0.12 0 
    RH 12 9 54 39 21575 21575 1.59 0 
      CT 11 490 808 347 16620 21575 16.8 0 

EX5 (3,2,2) U DT 169 2016 10953 6739 26738 26780 7200 0.04 
    AG 19 216 1146 736 26757 26758 0.33 0 
    RH 13 50 214 152 26758 26758 2.26 0 
      CT 11 660 1364 696 25625 26911 4241 0 

EX5a (3,2,2) R DT 169 2016 10953 6739 31351 31798 7200 0.02 
    AG 20 228 1208 776 29657 29657 0.24 0 
    RH 17 50 214 142 41124 41124 7.06 0 
      CT 10 603 1240 629 25625 94901 9829 0 

EX6 (3,2,3) U DT 169 2520 14155 8423 43250 43259 7200 0.02 
    AG 19 270 1498 920 43250 43250 0.37 0 
    RH 21 56 262 166 43250 43250 5.57 0 
      CT 9 552 1260 646 35517 Inf. 2811 - 

EX7 (3,3,4) U DT 169 3528 18534 10780 68282 68282 19.9 0 
    AG 18 357 1852 1112 68282 68282 0.7 0 
    RH 12 44 203 121 68282 68282 3.12 0 
      CT 12 880 2134 1156 48852 no sol. 7200 - 

EX8 (3,3,5) R DT 169 4032 21736 12464 101139 104622 7200 0.22 
    AG 19 432 2310 1360 104375 104375 2.05 0 
      RH 31 336 1271 777 - 151257 17330 0.16 

EX9 (4,3,4) U DT 169 4074 24092 13810 87817 87868 7200 0.06 
    AG 19 504 2566 1506 87817 87817 0.71 0 
      RH 25 53 258 151 87817 87817 917 0 

EX10 (5,3,4) U DT 169 5880 29650 16840 86505 86582 7200 0.09 
    AG 19 630 3174 1836 86505 86550 3.57 0 
      RH 23 66 317 181 86550 86550 1508 0 
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The mathematical formulations give rise to mixed-integer linear programming (MILP) problems. 

They were implemented in GAMS 22.8 together with the rolling-horizon algorithm. All problems 

were solved by CPLEX 11.1 with default options. The termination criteria were either a relative 

optimality tolerance=10-6 or a maximum computational time equal to: (i) 7,200 CPUs for the 

discrete-time model; (ii) 3,600 CPUs per iteration for the problems generated by the rolling horizon 

algorithm. The hardware consisted on a laptop with an Intel Core2 Duo T9300 processor (2.5 GHz) 

with 4 GB of RAM running Windows Vista Enterprise. 

The computational results are given in Table 1 in increasing order of problem size in terms of 

number of products, units and storage tanks (|P|,|M|,|S|). The third column indicates if the power 

availability is limited (R) or unrestricted (U). The fifth column indicates the composition of the time 

grid in terms of pre-specified (DT and CT), pre-calculated (AG) or final number of event points in 

the rolling-horizon algorithm (RH). The model statistics from GAMS come next in terms of discrete 

(DV), single/total variables (SV) and equations (EQ), while the last column gives the optimality gap. 

8.1. Uniform Discrete-time vs. Non-uniform Aggregate Approach 

The results in Table 1 clearly show that the new aggregate approach is very powerful. The use of a 

discrete-time grid with variable interval lengths, instead of a uniform time grid (DT), has a strong 

impact on problem size and leads to orders of magnitude reduction in computational effort. It adapts 

to the problem data to generate time grids with roughly 20 time points, instead of the 169, 1-hour 

intervals of DT. This considering a rather complex electricity cost/availability profile, since simpler 

profiles would generate even smaller, easier to solve problems. The aggregate planning approach is 

rigorous for unrestricted power availability and so it was no surprise to observe that it could 

accurately predict the global optimal cost (shown in bold). In EX5, EX6, EX9 and EX10, the 

discrete-time model was unable to reach the optimal solution, primarily due to its inherit limitation 

for handling continuous tasks, which allows meeting the exact product demands at the compromise 

of having partially occupied time intervals, see Figure 11. This can be verified for EX5 for which the 

best bound at the time of termination, €26768, is already above the real optimum of €26758. 
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Figure 11. Limitation of discrete-time formulation when handling continuous tasks. 
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Figure 12. Aggregate model allows production in periods with insufficient power availability. The 
solid lines give the instantaneous power availability, in black, or consumption, in blue. The dashed 
rectangles give the energy consumption. 

For restricted power availability, the solution of the aggregate model provides just a lower bound 

on the optimal cost (shown in italics in Table 1). Nevertheless, it could still find the optimal value 

for EX2 but not for EX2a. The differences in the problem data of these two cases are limited to the 

maximum power availability on the early hours of Tuesday and Thursday (0 in EX2 and 4 MW in 

EX2a). The single machine instantaneous power consumption is equal to 5 MW so either way there 

can be no production in such time periods, see Figure 12 on the left. However, while there is no 

energy available for 0 MW (top right), there is 80% of the amount required for 4 MW. Since the 

aggregate model cannot distinguish between the energy contained in a 7-hour supply at 4 MW or a 
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5.6-hour supply at 5 MW (areas within the wider and taller dashed rectangles in the bottom right of 

Figure 12) it incorrectly directs production to such low cost periods. As a consequence, the solution 

from AG (€18977) has a lower cost than the global optimal (€21575). 

Under restricted power availability the discrete-time formulation is the best approach. It is capable 

of finding very good solutions with few computational resources even though it cannot fully close 

the optimality gap. The solutions for EX5a and EX8 are at least 20% better than those resulting from 

the rolling-horizon algorithm due to the fact that the latter is unable to generate solutions that meet 

the maximum power constraints throughout the duration of the time horizon. Still some schedule 

refinement procedure may be required to generate practical solutions (recall Figure 1). 

8.2. Rolling-horizon vs. Full-space Continuous-time Approach 

The new combined aggregate/continuous-time formulation can, as a part of the rolling-horizon 

algorithm, successfully find the global optimal solution under unrestricted power availability. This is 

because it is always looking at the full time horizon with a rigorous model, even though its aggregate 

part does not provide all the required information for scheduling. Nevertheless, the planned 

production levels from the aggregate part can always be accomplished, with the problem residing on 

having enough event points on the time grid. A couple of iterations per demand period were usually 

enough. Since the lower the number of event points the fewer the changeovers, the outcome from the 

rolling-horizon algorithm are practical solutions which is not necessarily the case for the discrete-

time approach. More importantly, a few seconds of computational time were enough to solve EX5-

EX7, while the larger EX9-EX10 could be solved to optimality in half an hour. 

The full-space continuous-time model is significantly more complex overall, primarily due to the 

added variables and constraints that relate event points with demand points (see Castro et al., 2009a). 

As a consequence, the number of event points in the grid has a stronger influence on the 

computational time making the iterative search procedure more time consuming, sometimes 

prohibitively so. This is clear from the following results. For EX5, the optimal solution for |T|=11 

takes 4241 CPUs to find and is not the global optimum, which can be found by RH in just 2.26 

CPUs. For EX6 it takes 2811 CPUs for CT to find out that 9 event points are not enough to even find 



21 

 

a feasible solution to the problem, while RH finds the optimal solution in 5.57 CPUs (21 event 

points). For EX7, 12 event points suffice to find the global optimum (RH in 3.12 CPUs) but CT 

cannot find a feasible solution in 2 hours. Overall, we only get the full potential of the continuous-

time formulation when combined with the aggregate model in a rolling-horizon algorithm. 
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Figure 13. Optimal schedule and storage profiles for EX10. 

For power restricted problems the performance of the rolling-horizon approach is worse, primarily 

in terms of the quality of the solution returned as already mentioned. Due to the eventually not so 

good solution from AG, production may be delayed for future demand periods with cheaper 

electricity where there simply is not enough power to perform the processing tasks. When the 

algorithm reaches such periods, it finds out that it needs to violate the maximum power constraints 
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(by activating the slack variables, which are severely penalized in the objective function) to meet the 

hard constraints on the demands. It would have been better to produce earlier at a medium or high 

cost period. This is what happens in EX7 (1 extra MW on Thursday), which is still solved relatively 

fast, and EX8 (5 extra MW on Thursday), the hardest problem with 4 iterations of RH reaching the 

maximum resource limit for a total time short of 5 hours. Recall from the discrete-time model that it 

is possible to meet the demands with the specified maximum power profile. 

8.3. Optimal Solution for EX10 

To complete the analysis we show in Figure 13 the optimal solution for the largest problem, EX10. 

One can see that the processing tasks are never executed in the periods where the electricity cost is at 

its maximum. In fact, with the exception of the last two hours of Saturday, the units are always 

working in the low-cost periods. The drawback of generating a minimum cost schedule with such 

electricity cost profile, is that the production stops frequently. Another aspect that adds to the 

complexity of the schedule results from having one less storage tank than the number of products. 

Furthermore, they have different capacities, which make the ideal storage tank for a certain product 

to change throughout the week (Monday-Sunday). It is even possible for a certain product to occupy 

multiple units at a particular time (e.g. P2 on Monday, P4 and P5 on Sunday). Using shared instead 

of dedicated storage units increases degeneracy and it is the primary reason why it is difficult to 

close the optimality gap for the discrete-time formulation. Evidence of degeneracy can be seen for 

P1 on Thursday, which is sent for storage tank S4 when it would have been more practical to keep 

sending it to S1 (it is used in the days before and after). 

9. Conclusions 

This paper has focused on the optimal scheduling of single stage continuous multiproduct plants 

subject to energy constraints related to time dependent electricity pricing and power availability, and 

multiple intermediate due dates. A new aggregate mixed integer linear programming model has been 

developed to plan the production levels for a weekly horizon. It employs a non-uniform discrete time 

grid where interval duration is calculated following analysis of the problem data. More specifically, 
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time periods with constant electricity pricing and availability between two successive demand points 

are grouped together to form the grid’s time intervals. Within two consecutive time points, time is 

allowed to vary continuously to allow production of multiple products in a machine, provided that 

the total production time does not exceed the interval length. The advantage when compared to a 

closely related, traditional uniform discrete-time formulation featuring 1-hour intervals, is a lower 

degree of degeneracy and one tenth of the problem size, which is reflected in up to four orders of 

magnitude reduction in computational effort. The drawback is that the aggregate model is only 

accurate for unrestricted power availability. In the other cases, it underestimates the total electricity 

cost due to the replacement of the instantaneous power balances by energy balances over time, 

which are just an approximation. 

While the aggregate model can efficiently address the full problem it does not provide the actual 

timing of events, required for detailed scheduling. To overcome this limitation it has been combined 

with a single time grid continuous-time formulation and incorporated into a new rolling-horizon 

algorithm. Scheduling is performed sequentially, one demand period after the next, with the current 

period being tackled by the continuous-time part and the remaining demand periods by the aggregate 

part of the model. Besides allowing to consider the whole remaining problem simultaneously, the 

solution from the aggregate part of the model can also be used to predict the number of event points 

for the continuous part of the time grid, effectively reducing the number of iterations and 

computational time in the search for the global optimal solution. The rolling horizon algorithm has 

been shown to efficiently solve real-life problems with unlimited power availability to global 

optimality. Under limited power availability, the inaccuracy of the aggregate part of the model may 

lead to suboptimal solutions, with the unnecessary violation of the power constraints (severely 

penalized in the objective function) being particularly relevant. 
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Nomenclature 

Sets/Indices 

DY/dy=days of the week 
E/e=Electricity cost levels 
HR/hr=hours of the day 
I/i=tasks 
Ic=continuous tasks 

c
eI =continuous tasks executed during energy cost level e 

Is=storage tasks 
It=instantaneous transfer tasks 
M/m=machines 
P/p=products 
R/r=resources 
RCT=resources continuously produced/consumed 
REQ=equipment resources 
RFP=final product resources 
RLM=products at a location after the machines 
RLS=products at a location inside the storage units 
RRM=raw-material resources 
RTC=equipment resources involved in timing constraints 
RUT=utility resources 
S/s=storage units 
T/t=event points 
Tag=discrete time points of the aggregate part of the time grid 
Tfirst=first event point of the time grid 
Tc=event points of the continuous part of the time grid 
Tc last=last event point of the continuous part of the grid and first element of aggregate part 
Tlast=last event point of the time grid 
TD/td=demand points 
TPe/tp=time periods of electricity cost level e 

Parameters 

ce=electricity cost at level e [€/kWh] 
caps=capacity of storage unit s [ton] 
cet=electricity cost during time interval t [€/kWh] 
cs=penalty cost for violating the given maximum power levels [k€/MW] 
dp,dy,hr=demand of product p at the end of hour hr of day dy [ton] 
echr,dy= electricity cost during hour hr of day dy [€/kWh] 
H= time horizon [h] 
ims,p=initial amount in storage s of product p [ton] 
lbe,tp=starting time of time period tp of electricity cost level e [h] 
pcost=partial cost in demand periods already scheduled [k€] 
pwp,m=power requirement for product p in machine m [MW] 
pwxhr,dy=maximum power consumption during hour hr of day dy [MW] 

max
rR =upper bound on availability of resource r at event points 

maxend
rR = upper bound on availability of resource r during intervals 
min
rR  = lower bound on availability of resource r at event points 

minend
rR = lower bound on availability of resource r during intervals 
0
rR = initial amount of resource r 
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tfxtd=absolute time of demand point td [h] 
ube,tp=ending time of time period tp of electricity cost level e [h] 
t=duration of interval t on non-uniform discrete-time grid [h] 
λr,i=continuous interaction of resource r during execution of task i 
µr,i=discrete interaction of resource r with task i at its start, acting on binary extent variables 

ir , =discrete interaction of resource r with task i at its end, acting on binary extent variables 

νr,i= discrete interaction of resource r with task i at its start, acting on continuous extent variables 

ir , = discrete interaction of resource r with task i at its end, acting on continuous extent variables 
in

tr , =amount received by the system of resource r at event point t 
in

etpr ,, =amount received by the system of resource r at time period tp of electricity level e 
out

tr , =amount removed from the system of resource r at event point t 
out

tdr , =amount removed from the system of resource r at demand point td 
max
i =maximum processing rate of task i [ton/h] 

ρp,m=processing rate of product p in machine m [ton/h] 

Variables 

Ni,t=execution of task i during interval t (binary extent variables) 
Rr,t=excess amount of resource r at event point t 

0
rR = initial availability of resource r (can be a parameter for some resources)  
end

trR , =excess amount of resource r immediately before the end of interval t 

Sr,t= slack variable on utility resource r at event point t 
Tt=absolute time of event point t [h] 
Tst=starting time of tasks executed during interval t [h] 
Yt,tp,e=binary variable identifying if during interval t tasks are executed within period tp of level e 
ξi,t=amount handled by task i at event point/during interval t (continuous extent variables) [ton] 

*
,ti =amount continuously sent to storage by task i during interval t [ton] 
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