
1

Greedy Algorithm for Scheduling Batch Plants with

Sequence-Dependent Changeovers

Pedro M. Castro*

Unidade de Modelação e Optimização de Sistemas Energéticos, Laboratório Nacional de Energia e

Geologia, 1649-038 Lisboa, Portugal

Iiro Harjunkoski

ABB Corporate Research Center, Wallstadter Str. 59, 68526 Ladenburg, Germany

Ignacio E. Grossmann

Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213

Abstract

This paper presents a new algorithm for the near optimal scheduling of multistage batch plants

with a large number of orders and sequence-dependent changeovers. Such problems are either

intractable when solved with full-space approaches or poor solutions result. We use decomposition

on the entire set of orders and derive the complete schedule in several iterations, by inserting a

couple of orders at a time. The key idea is to allow for partial rescheduling of previously scheduled

orders without altering the unit assignment and sequencing decisions, so that the combinatorial

complexity is kept at a manageable level. The algorithm has been implemented for three alternative

continuous-time mixed integer linear programming models and tested through the solution of ten

* To whom correspondence should be addressed. Tel.: +351-210924643. Fax: +351-217167016. E-

mail: pedro.castro@ineti.pt

2

example problems for different decomposition settings. The results show that an industrial-size

scheduling problem with 50-orders, 17-units distributed over 6-stages can effectively be solved in

roughly 6 minutes of computational time.

Introduction

Modern enterprises of today are complex global networks of multiple business units and functions

operating in a very dynamic environment. Long-term survival in the global marketplace can only be

ensured if companies optimize the various functions within their supply chain, a process that has

been named1-2 as Enterprise-Wide Optimization (EWO). The optimal operation of manufacturing

plants is naturally involved and includes different levels of decisions processes such as planning,

scheduling and control3. The term scheduling is used in various contexts and can be closely

interlinked with many related optimization problems, such as maintenance planning, energy and

inventory optimization, cutting-stock problems, etc. It basically involves the allocation of production

resources to tasks over a scheduling horizon between days and a few weeks.

Despite the substantial developments in the last couple of decades in the Process Systems

Engineering (PSE) community4-5 with the appearance of unified frameworks for the systematic

modeling of industrial processes and powerful mathematical models, scheduling tools are only

slowly spreading to industry6-7. The success story reported by Wassick6 involves a waste treatment

network from Dow Chemical Company that was optimized using a discrete-time Resource-Task

Network model8, which has shown very high potential. Yet, there are cases where the required time

granularity lies within seconds and minutes, for which continuous-time models remain the only valid

approach. Scheduling problems arising in process plants with equipment units subject to sequence-

dependent changeovers between products that differ significantly from the processing times and

dealing with makespan minimization are perhaps the best-known case9-13. However, the

computational studies performed in these references clearly show that the scope of current state-of-

the-art mathematical programming formulations is limited to relatively small problems.

In order to make full-space formulations more attractive for real-world applications consisting of

hundreds of batches, dozens of equipment units and long scheduling horizons, efforts have been

3

increasingly oriented towards systematic techniques that are able to maintain the number of

simultaneous decisions at a reasonable level. The goal is no longer to guarantee optimality, but

finding near optimal solutions rapidly, typically within a few minutes of computational time.

A very effective approach has been proposed by Roslöf et al14 to solve a problem from a paper-

converting mill with a single processing unit. Starting with an initial solution, rescheduling is

achieved by releasing a subset of jobs and inserting them back into the schedule between the other

fixed jobs. A key element is that every iteration contains information of the entire system meaning

that the solution quality can either be improved or maintained. The same concept can be used to

insert a new set of jobs and extended to plants with units in parallel15, where rescheduling may

involve re-sequencing as well as reallocation of jobs to units.

The movement from full-space to decomposition methods that work with a reduced set of

decisions allows us to tackle larger problems but there comes a point where we can no longer work

with the entire set of jobs simultaneously. When switching from short-term to medium-term

scheduling, a rolling-horizon16 approach is typically employed. A small part of the time horizon is

scheduled in detail, while determining at the same time the planning decisions for the remaining part

with an approximated model. The partial schedule is then fixed with the following iteration

considering the subsequent portion in detail. The real challenge with this approach is finding an

approximate model that leads to decisions that can actually be implemented in practice when

considering the detailed model. For a multiproduct plant, the decisions involve selecting the products

to be considered on a particular sub-horizon. The approach in Lin et al.17 and Janak et al.18 approach

was successfully tested on a large-scale plant with over 80 equipment units including processing

recipes of hundreds of products. The authors also proposed a rescheduling procedure within the

same framework to provide an immediate response to unexpected events such as equipment

breakdown or the addition of orders19.

The main drawback of decomposition approaches is that there is rarely an indication of how good

the solutions really are. Optimality is naturally lost as a consequence of the reduced search space, but

one should ideally lose as little as possible. Among the different types of continuous-time

4

formulations, time grid based models are strongly dependent on the specified number of slots in the

grid, unlike their sequence variables counterparts. They have, however, a larger scope and can

handle more complex network structures so there is a strong incentive for improving them. The

difficulty is that the number of slots that guarantees optimality cannot accurately be predicted, which

becomes a serious issue since a single increase in the number of slots typically results in a one order

of magnitude increase in computational effort. Thus, a decomposition algorithm relying on a time

grid continuous-time formulation should ensure that the minimum number of slots is considered per

iteration, if good quality solutions need to be provided with few computational resources. This issue

has been neglected by Janak et al.18-19 when using the unit-specific model of Ierapetritou and

Floudas20 in their large-scale multipurpose plant study from BASF.

This article proposes a new algorithm for the short-term scheduling of multistage batch plants. It

uses essentially the same ideas of Roslöf et al.14 and Méndez and Cerdá15, which have been

recently21 implemented with a unit-specific formulation, together with a sequence based continuous-

time model. Due to the similar performance between the two approaches, we now consider the same

plant layout, but with equipment units subject to sequence-dependent changeovers between orders.

The non-trivial extension results from the existence of two alternative unit-specific models9 that

either consider changeovers implicitly, with 3-index binary variables (like previously), or explicitly,

through 4-index binaries with combined processing and changeover tasks. Interestingly, it is the

former choice that leads to major changes in the decomposition strategy. Most algorithmic features

are kept, most importantly the fact that the determination of the number of time slots is unveiled as

part of the search strategy without compromising tractability of the mathematical problem.

Furthermore, time grids associated to different units will typically grow at different rates instead of

using the same value in all grids, thus reducing solution degeneracy and problem size.

Besides the three alternative continuous-time formulations that can be employed, the scheduling

algorithm can be parameterized for the fast and efficient solution of problems of varying size. Seven

small-size benchmark examples are used to validate the algorithm by measuring the optimality gap

and differences in computational time compared to the corresponding full-space formulations for

5

three distinct solution strategies. The method is applied to three industrial size problem instances,

where the objective is to minimize the makespan. In a real scheduling environment minimizing the

makespan alone does not always make sense due to the continuity of production, distribution of end-

customer due dates and periods where the throughput does not need to be maximized. More common

is to minimize the production costs (of which the makespan can be a component) or maximize the

profit. However, from the computational point of view, makespan minimization is one of the most

complex objectives and is therefore used in this study.

Problem Definition

Given a multistage, multiproduct plant with kK processing stages, iI product orders and mM

units, the goal is to determine the assignment of orders to units and the sequence of orders at each

unit so as to minimize the makespan. Orders may be subject to release (ri) and due dates (di), which

are enforced as hard constraints. The processing times are unit dependent, pi,m, and the changeover

times, cli,i’,m, are sequence dependent. A particular equipment unit can handle all orders belonging to

set Im and belongs to a single stage, with set Mk defining the equipment at stage k. Some orders may

skip certain production stages, which is defined by set Ik (orders processed in stage k). Unlimited

intermediate storage and wait policies (UIS/UW) are assumed, and transfer times between units are

considered to be negligible.

The process representation of a generic multistage multiproduct plant is given in Figure 1 for order

I1, in the form of a Resource-Task Network8. The plant resources (circles) are the equipment units

and material states, while the processing tasks are represented as rectangles. The material state is

directly associated to the stage where it is produced. Thus, processing tasks belonging to stage k

consume material at state k-1 and produce material at state k.

6

I1_M1

Duration=p1,1

I1_MM1

Duration=p1,M1

I1,K1

M1

MM1

.

.

.

Stage 1

I1_MM1+1

Duration=p1,M1+1

I1_MM1+M2

Duration=p1,M1+M2

I1,K2

MM1+1

.

.

.

Stage 2

MM1+M2

... I1,KK-1

I1_MM-MK+1

Duration=p1,M-MK+1

I1_MM

Duration=p1,M

I1,KK

MM-MK+1

.

.

.

Stage K

MM

Figure 1. Schematic of a multistage multiproduct plant (dash arrows highlight that production is
batch).

II,M1I2,M1I1,M1

I1_I2_M1

Duration=cl1,2,1

I1_II_M1

Duration=cl1,I,1

I2_I1_M1

Duration=cl2,1,1

I2_II_M1

Duration=cl2,I,1

II_I2_M1

Duration=clI,2,1

II_I1_M1

Duration=clI,1,1

...

...

.

.

.

...

Figure 2. The possible cleaning tasks for a certain unit (M1) increase with the number of orders.

Equipment units must be at appropriate cleaning states before processing tasks can be executed.

Units must be at exactly one state at any given time, which will normally change throughout the

scheduling horizon. For unit M1, the possible states are illustrated in Figure 2. Generally speaking,

cleaning tasks (i,i’,m) changes the state from (i,m) into (i’,m) so that the processing task of order i’

can immediately follow in unit m. Note that a processing task does not change the equipment state.

Key Idea of Decomposition Approach

In large-scale scheduling problems, the number of orders greatly exceeds the number of equipment

units. Due to the high combinatorial complexity, such problems are intractable even by state-of-the-

art full-space scheduling models and alternative approaches must be sought. The decomposition

method proposed in this paper reduces the complexity by scheduling a subset of the orders at a time.

7

Finding a schedule for a multistage plant with parallel units involves two decision levels: (i)

assigning orders to units; (ii) sequencing orders on every unit. We follow this hierarchy to set

different degrees of freedom for the orders. Those being considered for the first time can be assigned

to all possible units and take any position in the sequence. In contrast, previously scheduled orders

have significantly less freedom. While the timing of events is allowed to change, orders cannot be

reassigned to other units. Furthermore, their relative position in the sequence remains mostly

unchanged.

Depending on the number of orders that are scheduled at a time (NOS), more and faster or fewer

and slower iterations (set J) will be involved, see Eq. 1. Increasing NOS widens the feasible region

up to that of the full-space model (NOS=|I|) so better solutions are likely to result if all generated

mathematical problems can still be solved to optimality. To select the sequence in which the orders

are inserted into the schedule (set Ij gives the orders being considered for the first time in iteration j)

we will be relying on the increasing slack times heuristic (MST). Orders with a smaller time window

(Eq. 2) are thus scheduled first. We have chosen the MST heuristic since it performed better than the

earliest due date heuristic in previous work21. Other heuristics can naturally be used, which will

probably lead to significant differences in both solution quality and computational effort.

 NOSIJ /||||  (1)

Iiprdspan
Kk

mi

Mm
Mm

ii
MST
i

k

i

 
 

 ,min (2)

The decomposition algorithm has been developed to rely on two alternative time-grid based

mathematical formulations that have shown similar performances in Castro et al.9 The first, CT3I,

handles changeover tasks implicitly giving rise to smaller problems due to the use of 3-index binary

variables (order, unit, event point). The second is tighter, CT4I, due to the explicit consideration of

combined processing and changeover tasks and the use of 4-index binaries (order, order, unit, event

point).

8

3-Index Binary Variables Model (CT3I)

A simple example is given to illustrate how CT3I accounts for the sequence-dependent changeover

times, see Figure 3. An indirect procedure is employed that starts by calculating the maximum

changeover times (max
,micl) and the difference to the actual changeover (

miicl ,',) through eqs 3-4.

Assigning order i to unit m brings a positive contribution to the slot duration, equal to pi,m+ max
,micl ,

which considers the worst case scenario in terms of changeovers. To get the true changeover time,

one must subtract 
miicl ,', if task i’ is to be executed at the next time interval (e.g. I1 and I4 in M1, I5

and I2 in M2). This procedure makes it more favorable for orders to be executed in consecutive

intervals. Generality is ensured by not adding the maximum changeover term to the processing time

of tasks executed in the last interval (see orders I4, I2 and I3). In order to reduce solution degeneracy

it is convenient to force orders to be assigned from the last to the first event point.

mmii
Ii

mi IiMmclcl
m




, max ,',
'

max
, (3)

mmiimimii IiiMmclclcl  ',, ,',
max
,,', (4)

M1

M2

M3

I1 I4

I5 I2

I3

T1,3 T2,3r3 d3

min ri max di<H

p3,3

p5,2 p2,2

T1,2r5 d5 T2,2 T2,2=r2 d2

p1,1 p4,1

T1,1r1 d1 T2,1r4 d4

clmax
1,1

cl1,4,1

clmax
5,2

cl5,2,2

Figure 3. In formulation CT3I, changeovers are calculated through an indirect procedure (|K|=1).

The constructive scheduling formulation using CT3I as the underlying mathematical formulation

is illustrated in Figure 4 for the case of one order firstly considered per iteration (NOS=1). We use an

example consisting of 4 units (two per stage) and rely on the concept of unit-specific time slots

meaning that events from different units are affiliated to different time grids. In particular, we can

9

assume3 that a single slot per order is enough to account for all valid alternatives within the

constrained scenario. Since we are focusing on order-unit-slot allocation and to make the diagram

compact, timing issues between slots of dissimilar units have been neglected. Thus it may seem that

an order starts to be processed in either M3 or M4 (stage two) before being completed in either M1

or M2 (stage 1) even though this cannot happen.

In the first iteration (j=1), there is a single blue order under consideration so it suffices postulating

one slot for each of the four time grids. Let us assume that the solver decides to assign the order to

M1 and M4 (indicated by the arrows). In the second iteration a red order comes along, and it is no

longer possible for the previously assigned blue order to change equipment units. As a consequence,

the time grids no longer look the same for j=2. While idle units remain with a single time slot, one

interval is added to the grids of M1 and M4 to account for the production of red before or after the

blue order. One can see the possible slot assignments, with filled rectangles showing previously

scheduled orders. In particular, they are placed from right to left in order to reduce solution

degeneracy. Now, the solver has decided to assign the red order to M2 and M4, placing it before the

blue order in the latter unit.

M1

j=1

M2

M3

M4

j=2 j=3 j=4 Final

Figure 4. Illustration of constructive scheduling algorithm for model CT3I and one order at a time
(NOS=1).

One can see that when going into a particular iteration the number of postulated slots for a given

unit is equal to the number of already assigned orders plus the chosen NOS value. In the third

10

iteration (j=3) there are three slots in M4 to accommodate the blue and red orders and eventually the

new green order. Notice that only the latter can be assigned to any slot since we want to keep the

relative position of previously assigned orders unchanged. Thus, the blue order cannot start before

the second slot so that one free slot is left for the red order (recall that the outcome of j=2 is red

before blue), neither can red be executed in the final slot. An additional order (black) is included to

end the illustration with iteration j=4.

The same concept can be applied to other values of parameter NOS as can be seen in Figure 5 for

the exact same set of orders and NOS=2. There are significantly more decisions to be made per

iteration, thus leading to more complex problems, but half the number of iterations. Notice that as

soon as two orders get assigned to a unit (e.g. j=1 for M4) the relative position of orders may change

somewhat (blue in slot #2 and red in slot #3 makes it possible having blue before red in j=2).

M1

j=1

M2

M3

M4

j=2 Final

Figure 5. Illustration of constructive scheduling algorithm for model CT3I and NOS=2.

4-Index Model (CT4I)

Formulation CT4I explicitly accounts for changeovers through the definition of changeover tasks.

In fact, they are merged with processing tasks to form combined processing and changeover tasks.

The execution of combined task (i,i’,m) comprises the processing time of order i plus the required

11

changeover from i to i’ so that unit m is ready for order i’ to immediately follow. This aspect is

illustrated in Figure 6, where it can be seen that processing in stage k+1 can start right after finishing

the processing part of the combined task in stage k (e.g. order I2 from unit M1 to M2 and also from

M2 to M3). Note that the last task to be executed typically features a single order index, i.e. (i,i,m),

to avoid spending time on changeovers (we assume cli,i,m=0). While in the full-space model certain

constraints force, for performance reasons10, one such task to be the last one executed on a given

unit, this cannot be done for the decomposition strategy, so the last task to be executed on non-

limiting units might be of type (i,i’,m) with i≠i’. Like with CT3I, postulating a single time slot per

order is enough to consider all alternatives3.

M1

M2

M3

(I1,I2) (I2,I3) (I3,I3)

(I1,I2) (I2,I3) (I3,I3)

(I2,I1) (I1,I3) (I3,I3)

max di<Hmin ri

p1,1 p2,1 p3,1

p1,2 p2,2 p3,2

p2,3 p1,3 p3,3

TD1,1 TD2,1 TD3,1

TD1,2

TD2,2

TD3,2

T1,1r1 T2,1r2 T3,1r3

cl1,2,1 cl2,3,1

T1,2 T2,2 T3,2

cl1,2,2 cl2,3,2

cl2,1,3 cl1,3,3

T1,3 T2,3 T3,3

d2 d1

d3

Figure 6. Formulation CT4I models changeovers explicitly through combined processing and
changeover tasks (|K|=3).

The first iteration (j=1) of the constructive scheduling algorithm is exactly the same as before

when tackling one order at a time (NOS=1), see Figure 7. There are still no orders assigned to the

units and so generality under the constrained scenario is ensured by postulating a single time slot per

unit, with the candidate tasks for assignment being of type (i,i,m), e.g. combined tasks (blue, blue).

The differences start to appear in the second iteration (j=2), where now the previously assigned blue

order can only be executed in a single time slot, the second. In general, and depending on the order’s

position in the sequence from the previous iteration (posi,m), it will be assigned to slot number

posi,m(NOS+1). In units M1 and M4, the red order can be either assigned before or after the blue

order, which explains the use of three time slots, as proposed in the fixed relative positions strategy

12

of Castro et al.21 The novelty here is that due to the sequence-dependent changeovers, there is more

than one suitable task for previously assigned orders. In the event the red order is executed before

the blue order, the appropriate combined task is (blue, blue), otherwise it is (blue, red). For the new

red order, there is a single appropriate task on each slot, (red, blue) in slot #1, and (red, red) in slot

#3.

Things become increasingly more complicated as we proceed through the iterations. In iteration

j=3, unit M4 requires five slots in the event the green order gets assigned to it. Again, we need to

consider NOS+1 alternative tasks for the previously assigned orders, in their fixed time slots. Since

red was assigned before blue, it is sufficient to consider (red, blue), (red, green), (blue, green) and

(blue, blue). Notice that all possible sequences are accounted for: (a) green-red-blue is achieved with

(green, red) in slot #1, (red, blue) in #2 and (blue, blue) in #4; (b) red-green-blue with (red, green) in

slot #2, (green, blue) in #3 and (blue, blue); (c) red-blue-green results from (red, blue), (blue, green)

in slot #4 and (green, green) in #5. The procedure continues until the final schedule is obtained.

Notice that contrary to Figure 4 for CT3I, there may be idle slots between orders or empty last slots.

Overall, the number of possible assignments (binary variables) for both models is the same per

iteration: 4, 10, 16, 22, ..., despite the larger number of time slots being postulated for CT4I.

M1

j=1

M2

M3

M4

j=2 j=3 j=4 Final

Figure 7. Illustration of constructive scheduling algorithm for model CT4I and NOS=1.

For two orders at a time (NOS=2), the number of possible assignments continues to be the same as

for CT3I, but contrary to NOS=1 one may already encounter tasks with different order indices, see

Figure 8. The main differences start with iteration j=2, where certain combined tasks of to-be-

scheduled orders no longer have a single appropriate time slot. Consider task (black, green) as an

13

example. In unit M1 it has to be executed in slots #1 and #4 since it is possible to have black-green

either before or after blue. In unit M4 it appears three times. Note that the black-red-blue-green

sequence can be obtained with (black, green) in slot #1, (red, blue) in #3, (blue, green) in #6 and

(green, green) in #8. Generally, if all new orders get assigned to the same machine, a certain

sequence can only be obtained with a single combination of tasks. Overall, we get 44 possible

assignments for j=2 vs. 36 for CT3I and the difference will grow with both NOS and j.

M1

j=1

M2

M3

M4

j=2 Final

Figure 8. Illustration of constructive scheduling algorithm for model CT4I and NOS=2.

Mathematical Formulations

The formal mathematical formulations are given next, together with a brief review of the most

relevant features. The reader is directed to previous papers9-10,22 for further details. The most

significant change is perhaps the introduction of additional dynamic sets to restrict the domain of

variables and constraints, whose elements will change between iterations of the scheduling

algorithm. For this reason, their exact definition is left to the following section.

CT3I

The unit-specific continuous-time formulation of Castro et al.9 uses 3-index binary variables Ni,m,t

to identify the execution of order i in unit m during time slot t (starting at event point t). Positive

continuous variables Rm,t keep track of equipment availability, timing variables Tt,m give the absolute

time of event point t in time grid m, while the transfer time to the next stage of order i after stage k is

14

TDi,k. The remaining variables are the only ones involved in the objective function Eq. 5. MS is the

makespan, while 1
,mtS and 2

iS , are slack variables that allow for the violation of due date constraints.

These are penalized in the objective function through weights  and .

Equation 6 ensures that at most one order is allocated to unit m during slot t. In order to reduce

solution degeneracy, slots are filled from right to left as previously explained, recall Figure 4. This is

the same as saying that a given unit starts idle (e.g. Rm,t-1=1) and ends in processing mode (e.g.

Rm,t=0), as given in Eq. 7. Equation 8 is the core of model CT3I and ensures that the difference in

time between two consecutive event points (of a certain time grid) must be greater than the duration

of the order being executed plus the required changeover time for the following order. This is

illustrated in Figure 3. Equations 9-10 are the release and due date constraints. In cases where the

due dates cannot be met, Eq. 10 is relaxed through slack variable 1
,mtS . Due to the form of the

constraint, the slacks are needed for all pairs (slot, unit) and not just for those belonging to last stage

units, i.e. the ones penalized in the objective function (Eq. 5). The transfer time of order i in stage k

must be greater than its finishing time in stage k and lower than its starting time in stage k+1 (Eqs.

11-12). The transfer times for orders not involved in stage k equal those in the previous stage (Eq.

13). All orders need to be executed once on every defined stage (Eq. 14).

 
 


active

K
active

m Ii
i

Mm Tt
mt SSMS 21

,

||

min  (5)

act
m

Ii
tmitm TtMmNR

tm

 


,1
,

,,, (6)

deg
mtmtm TtMmRR   ,1,, (7)

tm
act

m

Ttii
Ii

miitmimitmi
Ii

mitmimtTtTtmt

IiTtMm

clNclNpNTMST

last
m

tmtm

last
m

last
m

,

'
'

,',1,,'
max
,,,

'
,',,',,1

,,

)(
1,,












 

 (8)

act
mk

Ii
kk
Kk

mi

Mm
Mm

itmimt TtMmKkprNT
tm i

k

  



 


,,)min(

,
'

'
'

',

'
'

,,, (9)

act
mk

Ii
tmimt

Ii
kk
Kk

mi

Mm
Mm

miitmimt TtMmKkNHSppdNT
tmtm i

k

  



 


,,)1()min.(

,,
'

,,
1
,

'
'

',

'
'

,,,, (10)

15

tm
act

mk

Ii
tt

Tt
tmimitmimtki IiTtMmKkKkNHpNTTD

tm

act
m

,

'
'

',,,,,,, ,,|,|,)1(

',

 





 (11)

tm
act

mk

Ii
tt

Tt
tmimtki IiTtMmkKkNHTTD

tm

act
m

,

'
'

',,,1, ,,,1,)1(

',

 




 (12)

k
act

kiki IiIiKkTDTD   ,,1,, (13)

k
act

Mm
Ii
Tt

tmi IIiKkN
k

tm

act
m

 





,1

,

,, (14)

Although not required, just like Eq. 7, previous studies9 have found the following constraints to

significantly improve the performance of the full-space model. Equations. 15-16 act as lower and

upper bounds on the transfer times. Notice the use of slack variable 2
iS , which allows the due date of

order i to be violated. Since variables TDi,k have considerable more freedom than their Tt,m

counterparts, it is more likely for slacks 1
,mtS to be active so one should set  >>. Finally, Eqs. 17-

18 are responsible for reducing the integrality gap.

||,,

'
'

,,,,

'

,

KkKkIipNrTD act

kk
Kk Mm

Ii
Tt

mitmiiki

k

tm

act
m

   

 




 (15)

||,,

'
'

,,,
2

,

'

,

KkKkIipNSdTD act

kk
Kk Mm

Ii
Tt

mitmiiiki

k

tm

act
m

   

 




 (16)

act
mk

tt
Tt

Kk
Ii

Ttmimitmi
Ii

Ii
kk
kk

mi

Mm
Mm

mitmimt

TtMmKk

clpNppNMST
tm

last
m

tm

k

i

k



   











 



,,

])([)min(

'
'

||

'

min
,,',,

'
'

',

'
'

,,,,

',,

'

'

 (17)

||,,

'
'

,,,,

'

,

KkKkIipNMSTD act

kk
Kk Mm

Ii
T

mitmiki

k

tm

act
m

   

 



 (18)

CT4I

Formulation CT4I features 4-index binary variables tmiiN ,,', to identify the execution of order i in

unit m at time slot t followed by the required changeover time for order i’ to immediately follow.

When compared to CT3I, the additional index facilitates the writing of the timing constraints linking

two consecutive event points and makes other constraints tighter due to the consideration of the

16

actual changeover time, instead of the minimum changeover time (compare Eq. 30 to Eq. 17). On the

other hand, an extra summation is involved in the terms of most of the constraints but, more

importantly, excess resource variables for units need to be disaggregated into the possible equipment

states. As an example, positive continuous variable Ci,m,t=1 indicates that unit m is idle at slot t at a

state that enables it to process order i. Variables 0
,miC are used to determine the initial equipment

state.

The excess resource balances over the equipment states are given by Eq. 19. Notice in the third

term on the right-hand side that combined tasks with a single order index (i,i,m) do not need to

produce an equipment state since the selection of such a task assumes that no other order follows.

Unfortunately, we can no longer explore its full potential by making Ci,m,t=0 (i,m,t), like in the full-

space model10, since the decomposition approach postulates one or more time slots between already

assigned orders, which can remain idle (see Figure 7). In this respect, we have also tested the CT3I

approach with CT4I, which by using as few slots as possible per iteration makes the use of such

constraint possible. Regrettably, a worse computational performance was observed and so the results

are not shown in the paper. Eq. 20 then limits the initial states of units to a single order.

act
mi

act

Ii
Ii

tmii

ii
Ii

tmiittmitmitmi TtMmIiNNCCC

tmi

mtmi

 









,,

,',

1,, '
,,',

'
'

1,,,'11,,1

0
,,, (19)

MmC
mIi

mi 


 10
, (20)

The central timing constraint is given in Eq. 21. It features only unit and slot indices in the

constraint domain making it tighter than Eq. 8 and compensating the generation of larger

mathematical problems when compared to CT3I. Equations 22-23 are the release and due date

constraints, where the upper bound on the starting time of combined task (i,i’,m), ubi,i’m, is calculated

through Eq. 24. The two sets of timing variables Tt,m and TDi,k are related through Eqs. 25-26. Note

that processing in stage k can start immediately after the end of the processing part of the combined

task in stage k-1 as can be seen in Figure 6. Equation 27 together with Eqs. 5 and 13 (shared with

CT3I) complete the set of mandatory constraints. The performance enhancement constraints are

given in Eqs. 28-31. Note in the third term on the RHS of Eq. 30 that all processing and changeover

17

times of tasks executed at or after slot t are accounted for, when linking the timing variables of last-

stage units with the makespan.

act
m

Ii Ii
miimitmiimtTtTtmt TtMmclpNTMST

m tmi

last
m

last
m

  
 

 ,)(
'

,',,,,',,,1

,',

 (21)

act
mk

Ii Ii
kk
Kk

mi

Mm
Mm

itmiimt TtMmKkprNT
m tmi i

k

   
 


 


,,)min(

'
'
'

',

'
'

,,',,

,',
'

 (22)

act
m

Ii Ii
tmiimt

Ii Ii
miitmiimt TtMmNHSubNT

m tmim tmi

   
  

,)1(
'

,',
1
,

'
,',,,',,

,',,',

 (23)

'

',',',,

'
'

','

'
'

',

'
'

',

'
'

,',

,',

)min,minmin(
'

''

ii

iimimiimi
Kk

kk
Kk

mi

Mm
Mm

imi
Kk

kk
Kk

mi

Mm
Mm

imii

MMmIii

pclppdppdub
m i

k
m i

k








 





 

   
 (24)

tm
act

mk

tt
Tt

Ii
Ii

tmii

Ii
Ii

mitmiimtki IiTtMmKkKkNHpNTTD
active

m
tmi

m

tmi

m

,

'
' '

',,',
'

,,,',,, ,,|,|,)1(

',',,',

  









 (25)

tm
act

mk

tt
Tt

Ii
Ii

tmiimtki IiTtMmkKkNHTTD
active

m
tmi

m

,

'
' '

',,',,1, ,,,1,)1(

',',

  






 (26)

k
act

Mm Tt
Ii
Ii

tmii IIiKkN
k

act
m

tmi

m

  
 




,1

,',

'
,,', (27)

||,,

'
' '

,,,',,

'

,',

KkKkIipNrTD act

kk
Kk Mm Tt

Ii
Ii

mitmiiiki

k
act

m
tmi

m

    

  




 (28)

||,,

'
' '

,,,',
2

,

'

,',

KkKkIipNSdTD act

kk
Kk Mm Tt

Ii
Ii

mitmiiiiki

k
act

m
tmi

m

    

  




 (29)

act
mk

tt
Tt Ii

Kk
Ii

miimitmii
Ii

Kk
Ii

Ii
kk
kk

mi

Mm
Mm

mitmiimt

TtMmKk

clpNppNMST
m tmim tmi

k

i

k



    

 









 



,,

])([)min(

'
' '

||

,',,',,',
'

|| '
'

',

'
'

,,,',,

',',,',

'

'

 (30)

||,,

'
' '

,,,',,

'

,',

KkKkIipNMSTD act

kk
Kk Mm T

Ii
Ii

mitmiiki

k
act

m
tmi

m

    

 




 (31)

Sequencing Variables Model (SV)

One can use the sequencing concept instead of time grids to schedule multistage plants. In

particular, models relying on general precedence sequencing variables tend to be more efficient than

their immediate precedence counterparts. The drawback is that they are not entirely rigorous since a

18

certain combination of data may lead to the elimination of the global optimal solution from the

feasible space9. Nevertheless, this will not be observed in the large majority of problems. The

advantages of sequencing variables over time grid based models are: (i) they need to be solved only

once since there is no need to iterate over the number of time slots to prove optimality; (ii) they can

be much faster at finding good solutions and so are preferable21 for rescheduling purposes where

large amounts of computational time are seldom available.

We rely on the continuous-time model of Harjunkoski and Grossmann22 despite the addition of the

sequence-dependent changeover terms and the nomenclature change. Binary variables Xi,i’,k (with

i’>i) indicate if order i precedes order i’ in stage k, while binaries Yi,m assign the execution of order i

to unit m. Timing variables Tfi,k give the order’s ending time in stage k. The difference between the

ending times of any two orders at a particular stage can be determined through big-M constraints

(Eqs. 32-33). Notice that the sequencing variables are only relevant if both i and i’ are assigned to

the same unit. Equation 34 is used to tighten the formulation, with the makespan being greater than

the sum of the duration of all tasks executed on a particular unit plus the minimum over all active

orders of the minimum duration in units belonging to subsequent (second term on the RHS) and

previous stages (third term on the RHS), the latter being adjusted by the release date. It is important

to highlight that contrary to Eqs. 17 and 30 no changeover times are present, clearly showing that the

concept of immediate precedence, implicit in time-grid based models, allows such type of

constraints to be considerably tighter. The remaining sets of constraints are independent on whether

the problem features sequence-dependent changeovers or not and can be found in Castro et al.21

'

,',,',''
''

,',,',,',,'

,,',',

)3(max

iik
act

mimikiii
Ii

miikiimikiki

MMMmKkiiIii

YYXdclXpTfTf
act




 (32)

'

,',,',''
''

,',,,',,',

,,',',

)2(max)1(

iik
act

mimikiii
Ii

kiimiimikiki

MMMmKkiiIii

YYXdXclpTfTf
active




 (33)























 i
Ii

k

Ii
kk
Kk

mi
Mm

i

Mm
Ii

Ii
kk
Kk

mi
Mm

Mm
Ii

Mm
Ii

mimi MMmKkprpMSpY
act

k

k

i

act

k

k

i

act

i

act

,,)min(min)min(min

'

'

'

'

'
'

',
'

'
'

',
'

,, (34)

19

Scheduling Algorithm

The proposed algorithm comprises two parts21. In the first, constructive scheduling, the goal is to

find a good initial schedule by tackling the full set of orders, one or a couple of orders at a time, as

previously explained. Then, we perform a local search to improve the solution. In this so called

rescheduling step, one or a couple of orders are released from the schedule to try to find better unit

assignments or sequences. It can be viewed as repeating the last iteration of the constructive step

several times for different order candidates. The many tests conducted have shown that better

solutions from the constructive step usually lead to better solutions at the end, and that most of the

iterations of the rescheduling step are unsuccessful. For this reason, considerable more resources are

allocated to the former step.

Constructive Scheduling

The outcome of the constructive part of the algorithm is primarily influenced by three user

decisions: (i) extent of the decomposition process, i.e. number of iterations, controlled by parameter

NOS that gives the number of orders per iteration that are scheduled with the full degree of freedom;

(ii) distribution of orders over iterations, following a pre-ordering heuristic, or a random choice and

given by set Ij; (iii) underlying mathematical formulation, either a time grid or sequence based

approach. Other settings that can affect the output schedule and that are not explicit in Figure 9 are

those coming from the MILP solver. Examples are the optimality tolerance and maximum resource

limit. We have also observed that different versions of the solver generated solutions with a different

value of the objective function, even in cases where all iterations were solved to zero optimality. It

can be explained by the high degree of degeneracy of the partial schedules and by the many

iterations involved. Note that a different choice at an early iteration may steer the search into diverse

regions of the entire solution space.

The mathematical formulations have been presented in a general form, with the domain of

variables and constraints defined using dynamic sets. The algorithm will simply change the elements

of such sets according to the value of some model variables from the preceding iteration and

problem data. To distinguish the variable from its value, suffix (.l) is used for the latter.

20

Every iteration j starts with the selection of orders that: (a) are being considered for the first time,

Icur; (b) have previously been considered, Iprv; (c) are under consideration, Iact. The next step in

Figure 9 is to determine the position in the sequence of previously scheduled orders. Parameter posi,m

can be easily calculated based on the value of the binary variables (see Castro et al.21 for CT3I). If

positive, unit m can handle order i (mMi). Current orders with nonzero processing times are also

elements of the set. The remainder of the algorithm depends on the mathematical formulation being

used. Figure 9 provides all the necessary information for CT3I and CT4I while the code for SV can

be found in Castro et al.21.

Tmact={tT:tnpm(NOS+1)+NOS} mM
Tmlast={tTmact:t=npm(NOS+1)+NOS} mM
Im,t={iIact:(Iprvt=posi,m(NOS+1))

(iIcurmMitTfix)} mM,tTmact

Ii',m,t={iIm,t:[iIprv([i'Im,t+1...i'Im,t+1+NOS]posi,m<npm)
([i'Im,ti'Im,t+1]posi,m=npm)][iIcur([i'Im,t+1ii']
[i'Im,ti=i'tTmlast])]} i'Icur, mM,tTmact

Im={iIact:mMi}mM
Tmact={tT:t|Im|}mM
Tmlast={tTmact:t=|Im| } mM
Im,t={iIm:iIcur(iIprvposi,mtposi,m+NOS)}

mM,tTmact

Tmdeg={tTmact:t1} mM

Icur=Ij
Iprv=Iact

Iact=IactIcur

npm=tIprvNi,m,t.l mMModel?

Determine
posi,m

CT3I

j=1

Solve
MILP Model

j=|J|? j=j+1
Output

Fullschedule

NOYES

Initialization

Ni,m,t.l=0 iI,mM,tT
Ni,i',m,t.l=0 i,i'I,mM,tT

Iact=Tmact=

Given:
Ij, NOS,pi,m

T fix={tT:t=(NOS+1)t/(NOS+1)}
Ik={iI:mMkpi,m>0) kK

npm=tIprvi'Ni,i',m,t.l mM
CT4I

Mi={mM:(iIprvposi,m1)(iIcurpi,m0)}Iact

Figure 9. Constructive scheduling algorithm for time grid based formulations.

For CT4I, on the left, the number of active time slots for unit m, act
mT , depends on the number of

previously assigned orders, npm, and on NOS. As illustrated in Figure 7 and Figure 8, any previous

order can be assigned to a single fixed slot tTfix, determined by its position in the sequence (see

definition of set Im,t, which gives the orders that in unit m can be executed in slot t) for a total of npm

21

slots. Current orders can be assigned to any other slot, either before previous orders, or after the last

one for a total of npmNOS+NOS slots. The last slot is the sole element of set last
mT . Finally, set Ii’,m,t

gives the orders that can be assigned to slot t of unit m and be followed by order i’. It requires a

significant number of conditions that achieve similar outputs to those illustrated in Figure 7 and

Figure 8, which were described earlier.

For CT3I it is more straightforward to update the elements of the dynamic sets. The number of

active slots is equal to the number of orders that have been or can be allocated to the unit. Current

orders can then be assigned to any slot, while previously assigned orders can be assigned to just

NOS+1 slots, from posi,m forward, as can be seen in Figure 4 and Figure 5. Finally, the solution

degeneracy reduction constraint (Eq. 7) is to be written for all active slots but the first.

Once all sets have been updated, the optimal schedule for the active set of orders is found through

the solution of the corresponding MILP model. We then proceed to the next iteration until all orders

have been scheduled. At that point, the constructive scheduling algorithm terminates by reporting the

final solution, which will be the starting point of the rescheduling algorithm.

Rescheduling

While solutions resulting from the constructive scheduling algorithm can be considered suitable

for most practical purposes, there are cases where we can do much better by performing

rescheduling with few additional computational resources. The most relevant situation occurs when

the returned solution is unable to meet all due date constraints merely because of the decomposition

process. Previous test studies on similar problems without sequence-dependent changeovers have

shown21 a successful elimination of all due date violations, following a local search around the best

schedule. The reader is once more directed to Castro et al.21 for details concerning the rescheduling

algorithm, which is based on the original ideas of Roslöf et al.14 and Méndez and Cerdá15. It relies on

the general precedence sequencing variables model SV and not on any of the alternative time grid

formulations, essentially because the former is faster at finding the optimal solution. Note that

multiple trials and limited computational resources per iteration are involved.

22

Besides the underlying model, the rescheduling algorithm was run with the exact same primary

settings NOS and Ij of the constructive part. Recall that increasing the NOS value can potentially lead

to better solutions. Keeping Ij unchanged means starting with those orders that were scheduled first,

whose unit assignments were chosen without any knowledge of their competitors processing data

and thus have a higher improvement potential. We have nevertheless tried to change the order-

iteration assignments using other heuristics but did not observe consistently better results and so they

are not reported in the paper.

Computational Results

The performance of the scheduling algorithm is now illustrated through the solution of ten

example problems. Problems P7-P13 have been addressed before9-10 and can be solved to global

optimality by the full-space continuous-time scheduling formulations considered in this paper, as

well as by a constraint programming model. Their main purpose is to evaluate the quality of the

solution returned by the algorithm. The challenging problem is P16, which represents a

pharmaceutical batch plant and consists of 50 orders, 17 units and 6 stages. It does neither involve

release nor due dates. For the former problem set, we have set =10 and =1 (Eq. 5) to prioritize

schedules that meet the due date constraints. Problems P14-P15 consider the first 30 and 40 orders of

P16, to measure and illustrate the effect of problem size on computational effort.

The algorithm and underlying models were implemented in the GAMS 23.2 with CPLEX 12.1

(default options) as the MILP solver. The termination criteria were a relative optimality tolerance

equal to 10-6 and a maximum computational time equal to: (i) 60,000 CPUs for the full-space

models; (ii) 3,600 CPUs per iteration on the constructive part; (iii) 60 CPUs per iteration on the

rescheduling part. The hardware consisted of a laptop with an Intel Core2 Duo T9300 2.5 GHz

processor, with 4 GB of RAM running Windows Vista Enterprise.

Full-Space Models

We start by analyzing the performance of the full-space models. As can be seen in Table 1, time

grid model CT3I emerges as the best performer followed by CT4I and SV, the latter being unable to

23

find the optimal solution for P13 up to the maximum resource limit. It is important to highlight the

solver and hardware developments that have occurred in roughly 3 years, which have led to orders of

magnitude savings in computational time. For instance, SV ran out of memory at 23408 CPUs with

CPLEX 9.19 while now P11 can be solved in just 153 CPUs. For CT3I/4I the results are for time

grids with the number of slots listed in column 4, the minimum values for which the optimal solution

can be found. Note that the unit-specific grids use the same number of slots, whereas in the

decomposition algorithm they will typically grow at different rates. The solution dependency on the

number of slots, which can only be roughly estimated a priori, makes SV a more suitable candidate

for large-scale problems. Particularly, one may always expect a feasible outcome, even though

solution quality will degrade with the increase in problem size. This is apparent from the results of

P14 and P15. While for the former, SV was able to find a solution with a makespan equal to 36.121

before running out of memory at 51900 CPUs, a value 16% higher than the best solution found by

the decomposition algorithm in considerably less time (see Table 2), for P15, the returned makespan

after 16 hours of computational time (55.220) is 30% higher than the best.

Table 1. Computational Performance of Full-Space Models (CPUs)

Problem Features (|I|,|M|,|K|) Optimum Time Slots (|T|) CT3I CT4I SV
P7 (8,6,2) 542 3 4.84 5.37 4.81
P8 (8,6,2) 584 3 1.54 0.68 27.0
P9 (8,6,3) 915 4 10.5 20.0 19.7
P10 (8,6,3) 914 4 1.26 5.25 147
P11 (12,6,2) 233 5 227 1816 153
P12 (8,8,4) 265 4 30.6 73.1 50.5
P13 (15,4,2) 273 8 7871 25142 24105*

*Out of memory termination, suboptimal solution found=275, best possible=259.

Algorithm Validation

The solutions obtained by the scheduling algorithm are listed in Table 2 for a total of 90 trials

resulting from different choices in terms of number of orders scheduled at a time, and underlying

model in the constructive part. The smaller instances (P7-P13) can be used for validating the

effectiveness of the scheduling algorithm. Since all generated subproblems were solved to

optimality, failure to find the global optimal solution is entirely due to the decomposition strategy.

Interestingly, there was a single successful run with respect to finding the global optimal solution

24

(CT3I for P12 with NOS=2), in the 63 tests, which leaves room for future improvements. Note

however that the final result often changes between models (see Table 2) due to different choices of

intermediate degenerate solutions that direct the algorithm to other parts of the feasible region,

suggesting that the best option is perhaps using different settings in parallel and then selecting the

best solution of the lot. It is beyond the scope of the paper to further explore this aspect.

While the influence of the model in the solution quality can be considered stochastic, it is clearly

better to consider as many orders as possible (higher NOS value) and thus, work as close as possible

to full-space mode (NOS=|I|). In terms of relative optimality gap, the solutions listed in Table 2 lead

to average values equal to 20.0, 10.8 and 9.2% for NOS=1, 2 and 3, respectively. Note that such

values are somewhat distorted by the 17 % of schedules that exhibit violation of the due date

constraints, which recall, are severely penalized in the objective function. This is a relatively high

frequency when compared to outcomes with no due date violations obtained in problems of similar

size but without changeovers21. In that study, the optimal solution was also found in 33% of the

cases, clearly reflecting the added complexity of bringing sequence-dependent changeovers into

play.

Table 2. Solution from Scheduling Algorithm for Different Model Choices and NOS Values
(Best solution in Bold, Solution with Violation of Due Dates in Italic)

 NOS=1 NOS=2 NOS=3
Problem CT3I CT4I SV CT3I CT4I SV CT3I CT4I SV

P7 591 582 595 567 558 569
P8 657 664 609 584 611 584 611 587 595
P9 1355 1355 1374 981 1166
P10 970 937 938 937 938
P11 270 261 254 248 245 249 261
P12 374 265 507 305 275
P13 314 295 295 328 306 307 309 304
P14 31.494 33.424 32.389 31.300 31.018 32.725 33.100 31.934 31.157
P15 42.298 42.056 43.989 43.159 40.766 43.400 42.698 42.151 40.299
P16 50.600 52.849 52.093 51.005 48.929 49.342 53.948 51.444 47.722

Model Choice

We now focus on the large-scale problems P14-P16, which are the primary targets of the

scheduling algorithm. If one of the goals is to obtain near optimal solutions, the other is obtaining

them in small computational times. From the total computational efforts listed in Table 3, one can

25

see that reasonably good solutions can be obtained up to roughly 6 minutes of computational time

when using CT4I or SV with NOS=1. The resulting models from CT3I are clearly more difficult to

solve, which contradicts the behavior of the full-space version. The point to make is that the best

conceptual alternative for a given scenario may no longer be appropriate in another, highlighting

once more the importance of having a set of competitive models rather than a single one. In this

respect, the resulting solutions were now all different, despite solving to optimality all subproblems

in the constructive part.

In terms of the comparison between CT4I and SV there is no clear winner. On the one hand, CT4I

is the best performer for NOS=2 both in solution quality and total computational effort, being able to

still solve P14-P15 in less than 1 hour. The solutions then degrade for NOS=3, primarily because we

can no longer solve all subproblems to optimality up to the 1-hour maximum resource limit. This

effect is not noticeable for SV, probably due to its better ability to find very good solutions in the

early nodes of the search tree, even though it may be very hard to close the optimality gap down to

nearly zero. As a consequence, the best solutions for SV were found for NOS=3, using computational

times of the same order of magnitude as those for NOS=2, since the increased difficulty per problem

is somewhat compensated by the need to solve fewer of them (see Eq. 1).

Table 3. Scheduling Algorithm Computational Time (CPUs) for Different Model Choices and
NOS Values

 NOS=1 NOS=2 NOS=3
Problem CT3I CT4I SV CT3I CT4I SV CT3I CT4I SV

P7 3.79 3.89 2.14 2.34 2.26 2.46 2.08 4.10 1.34
P8 3.97 3.78 2.14 2.25 2.38 1.14 2.13 2.27 1.10
P9 3.74 3.93 2.16 3.78 2.34 1.31 7.09 13.0 1.77
P10 4.01 3.79 2.10 5.20 3.22 1.26 2.75 4.91 1.34
P11 6.05 5.86 3.14 4.05 4.01 1.92 8.36 12.9 2.37
P12 4.27 4.12 2.18 10.7 7.42 1.96 26.8 27.2 1.82
P13 7.62 7.54 4.25 7.69 5.50 2.82 15.4 21.1 4.35
P14 235 40.9 47.7 26872 1607 10958 25664 20540 9468
P15 796 99.7 344.8 39047 3251 8580 34046 30409 19687
P16 2958 371 196.7 61940 12690 18571 52197 29413 30173

Remarks

The major strength of the proposed algorithm is its ability to address problems systematically for a

wide variety of settings. The results have shown that we should look beyond the traditional measures

26

of solution quality and total computational times. Nevertheless, finding a better solution than the best

published is always a big motivation for researchers, and therefore should not be neglected. We

previously23 found solutions with a makespan equal to 30.480 and 50.721 h for P14 and P16,

respectively. More recently, Kopanos and Puigjaner24 have shown a 29.91 h schedule in the poster

session of ESCAPE-19. We did slightly better with CT4I, NOS=2, and a different ordering heuristic

for rescheduling, before upgrading from CPLEX 11.1, 29.871 h. However, we prefer to show in

Figure 10 the best schedule for P16, the most challenging problem (50 orders), which has seen a

larger improvement. With the data supplied as Supplementary Material, the reader can possibly find

better solutions.

0 5 10 15 20 25 30 35 40 45

M1

M2

M3

M4

M5

M6

M7

M8

M9

M10

M11

M12

M13

M14

M15

M16

M17

Time (h)

44 4 38 19 1729 21 49 33 42 43 41 39 28 27 7 46 1147 34 20 5 15 31 45 1 24

18 30 16 2623 9 37 40 14 6 28 3 3622 13 12 10 50 3248 25 35

30 38 26 9 8 42 28 13 11 27 41 34 15 45 20 7 35

18 4 19 29 33 14 40 3 22 46 10 47 1 36 31

44 16 17 21 37 43 39 49 6 12 5 25 50 32 24 48 23 2

38 21 46 47 13 50 20

16 8 17 49 12 1 24 23 35

44 33 26 27 32

44 29 14 42 3 6 15 36 48 17

30 38 21 8 40 43 26 5 47 25 34 13 50 12 35

18 4
19 16 9

37 39
33 28 22

11
46 10 41 49 45

31
32 7 24 20

2 1
23

27

18 444
16 29

14 37
28

11
10 47 41

45
26

31
7 24 17 2 1 35

27

30 21 40 43 8 6 22 15 36 3 13 32 50 23

19
38

9 42 39
33

46 5 49 25
34

48 20 12

19 16 14 28 37 11 47
5

49 34 17
20

50 1

18 9 21 43 33 46 10 25 36 13 3 48 41 23

4 30
29 44 38 40 8 22 42 15 45 26 24 7 32 12 35 27

39 316 2

Figure 10. Best found solution for P16 (makespan=47.722 h).

Conclusions

This article has addressed the scheduling of large-scale multistage batch plants with sequence-

dependent changeovers. A new decomposition algorithm has been proposed to construct the full

schedule in several iterations. It is divided into two parts. In the first, the full set of orders is handled

sequentially according to some heuristic. Newly considered orders are given full degrees of freedom

27

in terms of unit assignments and sequencing, while those handled in previous iterations are allowed

to change their starting times provided that their unit assignments and relative positions in the

sequence are kept fixed. After generating an initial schedule, a similar process is used in the second

part of the algorithm. One, two or three orders are picked per iteration with the aim of finding a

better solution through rescheduling.

By changing the number of orders tackled per iteration, the algorithm can effectively handle

problems of different size in an efficient way, and hence, exploit at a maximum the available

computational resources. In the core of the algorithm are well-established continuous-time mixed-

integer linear programming formulations, with three conceptually different options being available to

the user. While a 3-index binary variable unit-specific formulation has been shown to be the best

full-space performer, the corresponding decomposition strategy generates harder subproblems than

their counterparts, which is translated into longer computational times and worse solutions. Better

results have been achieved with a 4-index unit-specific formulation and with a sequencing variables

model, which have complementary strengths. Whereas the latter typically finds the optimal solution

faster, the former is superior at closing the integrality gap, and hence at proving optimality.

Overall, the proposed algorithm has successfully tackled a real-life problem in a few minutes of

computational time and thus has the potential to support the decision-making for industrial scale

problems.

28

References

(1) Grossmann IE. Enterprise-wide Optimization: A New Frontier in Process Systems

Engineering. AIChE J. 2005, 51, 1846.

(2) Varma VA, Reklaitis GV, Blau GE, Pekny JF. Enterprise-wide Modeling and Optimization-An

Overview of Emerging Research Challenges and Opportunities. Comput. Chem. Eng. 2007, 31, 692.

(3) Harjunkoski I, Nyström R, Horch A. Integration of Scheduling and Control- Theory of

Practice? Comput. Chem. Eng. 2009, doi:10.1016/j.compchemeng.2009.06.016.

(4) Floudas CA, Lin X. Continuous-time versus Discrete-time Approaches for Scheduling of

Chemical Processes: A Review. Comput. Chem. Eng. 2004, 28, 2109.

(5) Méndez CA, Cerdá J, Grossmann IE, Harjunkoski I, Fahl M. State-of-the-art Review of

Optimization Methods for Short-Term Scheduling of Batch Processes. Comput. Chem. Eng. 2006;

30: 913.

(6) Wassick J. Enterprise-wide Optimization in an Integrated Chemical Complex. Comput. Chem.

Eng. 2009, 33, 1950.

(7) Henning G. Production Scheduling in the Process Industries: Current Trends, Emerging

Challenges and Opportunities. In Computer Aided Chemical Engineering, Vol 27. Editors: Rita

Alves, Claudio Nascimento and Evaristo Biscaia Jr., Elsevier, 23.

(8) Pantelides CC. Unified Frameworks for the Optimal Process Planning and Scheduling. In

Proceedings of the Second Conference on Foundations of Computer Aided Operations; New York:

Cache Publications, 1994: 253.

(9) Castro PM, Grossmann IE, Novais AQ. Two New Continuous-time models for the scheduling

of multistage batch plants with sequence dependent changeovers. Ind. Eng. Chem. Res. 2006, 45,

6210.

29

(10) Castro PM, Novais AQ. Scheduling Multistage Batch Plants with Sequence-Dependent

Changeovers. AIChE J. 2009, 55, 2122.

(11) Castro PM, Erdirik-Dogan M., Grossmann IE. Simultaneous batching and scheduling of

single stage batch plants with parallel units. AIChE J. 2008; 54: 183-193.

(12) Sundaramoorthy A, Maravelias CT. Simultaneous batching and scheduling in multistage

multiproduct processes. Ind. Eng. Chem. Res. 2008; 47: 1546-1555.

(13) Erdirik-Dogan M, Grossmann IE. Slot-based formulation for the short-term scheduling of

multistage batch plants with sequence-dependent changeovers. Ind. Eng. Chem. Res. 2008; 47: 1159-

1183.

(14) Roslöf J, Harjunkoski I, Björkqvist J, Karlsson S, Westerlund T. An MILP-based reordering

algorithm for complex industrial scheduling and rescheduling. Comp. Chem. Eng. 2001, 25, 821.

(15) Méndez C, Cerdá J. Dynamic scheduling in multiproduct batch plants. Comp. Chem. Eng.

2003, 27, 1247.

(16) Dimitriadis AD, Shah N, Pantelides CC. RTN-Based Rolling Horizon Algorithms for

Medium Term Scheduling of Multipurpose Plants. Comput. Chem. Eng. 1997, 21, S1061.

(17) Lin X, Floudas CA, Modi S, Juhasz NM. Continuous-Time Optimization Approach for

Medium-Range Production Scheduling of a Multiproduct Batch Plant. Ind. Eng. Chem. Res. 2002,

41, 3884.

(18) Janak SL, Floudas CA, Kallrath J, Vormbrock N. Production Scheduling of a Large-Scale

Industrial Batch Plant. I. Short-Term and Medium-Term Scheduling. Ind. Eng. Chem. Res. 2006, 45,

8234.

(19) Janak SL, Floudas CA, Kallrath J, Vormbrock N. Production Scheduling of a Large-Scale

Industrial Batch Plant. II. Reactive Scheduling. Ind. Eng. Chem. Res. 2006, 45, 8253.

30

(20) Ierapetritou MG, Floudas CA. Effective Continuous-Time Formulation for Short-Term

Scheduling. 1. Multipurpose Batch Processes. Ind. Eng. Chem. Res. 1998, 37, 4341.

(21) Castro PM, Harjunkoski I, Grossmann IE. Optimal Short-Term Scheduling of Large-Scale

Multistage Batch Plants. Ind. Eng. Chem. Res. In press.

(22) Harjunkoski I, Grossmann IE. Decomposition Techniques for Multistage Scheduling

Problems using Mixed-integer and Constraint Programming Methods. Comput. Chem. Eng. 2002;

26: 1533-1552.

(23) Castro P, Méndez C, Grossmann I, Harjunkoski I, Fahl M. Efficient MILP-based Solution

Strategies for Large-Scale Industrial Batch Scheduling Problems. In Computer Aided Chemical

Engineering, Vol 21. Editors: Wolfgang Marquardt and Costas Pantelides, Elsevier, 2231.

(24) Kopanos G, Puigjaner L. A MILP Scheduling Model for Multi-Stage Batch Plants. In

Computer Aided Chemical Engineering, Vol 26. Editors: Jacek Jezowski and Jan Thullie, Elsevier,

369.

