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Abstract 

We propose two mixed-integer linear programming based approaches for the 2-D orthogonal strip 

packing problem. Using knowledge from the alternative forms of time representation in scheduling 

formulations, we show how to efficiently combine three different concepts into the x- and y-

dimensions. One model features a discrete representation on the x-axis (strip width) and a continuous 

representation with general precedence variables on the y-axis (strip height). The other features a full 

continuous-space representation with the same approach for the y-axis and a single non-uniform grid 

made up of slots for the x-axis. Through the solution of a set of twenty nine instances from the 

literature, we show that the former is a better approach, even when compared to three alternative 

MILP models ranging from a pure discrete-space to a pure continuous-space with precedence 

variables in both dimensions. All models are available in www.minlp.org. 
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1. Introduction 

Time representation is perhaps the most important classification criterion for scheduling models. 

Mathematical formulations can either be classified as discrete- or continuous-time and several 

different alternatives have been proposed. Overall, there are essentially four main concepts being 

used, which are illustrated in Figure 1.  

 

Figure 1. Time representation alternatives in scheduling formulations. 

Table 1. Classification of scheduling approaches according to time representation 

 Continuous-time 
Discrete-time Single grid Multiple grids Precedence 
Kondili et al. (1993) Zhang & Sargent 

(1996) 
Pinto & Grossmann 
(1995) 

Méndez et al. (2000) 

Shah et al. (1993) Schilling & Pantelides 
(1996) 

Iearapetritou & 
Floudas (1998) 

Méndez et al. (2001) 

Pantelides (1994) Castro et al. (2001) Giannelos & 
Georgiadis (2002) 

Harjunkoski & 
Grossmann (2002) 

Glismann & Gruhn 
(2001) 

Maravelias & 
Grossmann (2003b) 

Castro & 
Grossmann (2005) 

Gupta & Karimi (2003) 

Maravelias & 
Grossmann (2003a) 

Castro et al. (2004) Liu & Karimi 
(2007) 

Prasad & Maravelias 
(2008) 

Castro et al. (2008) Sundaramoorthy & 
Karimi (2005) 

Castro & Novais 
(2008) 

Sundaramoorthy & 
Maravelias (2008) 

Sundaramoorthy & 
Maravelias (2011a) 

Giménez et al. (2009) Shaik & Floudas 
(2009) 

Ferrer-Nadal et al. 
(2008) 

Wassick & Ferrio (2011) Castro et al. (2009) Susarla & Karimi 
(2010)

Capón-Garcia et al. 
(2009) 

 

Table 1 provides a list of some of the most important scheduling references in the Process Systems 

Engineering literature in the last 20 years, classified according to the time representation concept 
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used. It is apparent that no particular option is becoming more common, clearly reflecting that the 

best option for a problem is very much dependent on its features. While predicting the best 

performer is often difficult, some guidelines can be given. 

The discrete-time approach is perhaps the most powerful and has been shown capable of handling 

problems of industrial relevance (Wassick, 2009; Wassick & Ferrio, 2011). The time horizon of 

interest is divided into a fixed number of time slots of predetermined duration, with one knowing a 

priori the location of all time points. This makes it straightforward to handle holding and backlog 

costs (Sundaramoorthy & Maravelias, 2011b), thus allowing for easy integration with the higher 

level planning model (Maravelias & Sung, 2009),  intermediate events such as release/due dates, 

equipment maintenance as well as time-dependent utility pricing and availability (Castro et al., 2009, 

2011). On the downside, fixed processing times need to be assumed and approximated to a multiple 

of the interval length. 

Continuous-time models, on the other hand, are more accurate and sensitive to small changes in 

the duration of processing and changeover tasks, which can be of a different order of magnitude. 

They are thus more appropriate for integration with the lower level control layer (Capón-Garcia et al. 

2011). Deciding for a continuous-time model needs to be followed by the choice of the concept used 

to keep track of events taking place. 

Precedence based models (Méndez et al. 2000, 2001) were the first to appear and are known for 

their ability to provide high quality solutions with limited computational resources, even though it 

may be difficult to prove optimality. The concept of general precedence is used more frequently 

when compared to immediate precedence since it gives rise to smaller models that typically perform 

better. Precedence based models tend to be less general than their time grid counterparts and are thus 

more commonly found for multistage plants, where they are more efficient. 

In facilities with a network structure involving resource constraints other than equipment and unit 

availability, i.e. multipurpose plants, time grid based models become the only option. Due to process 

complexity they are linked to unified frameworks for process representation, the State-Task (Kondili 

et al. 1993) and Resource-Task (Pantelides, 1994) Networks. When compared to the discrete-time 

representation, the time horizon is also divided into a fixed number of slots but now the grid(s) is/are 
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non-uniform with the duration of the slots being determined through a set of continuous variables. 

Fewer slots are required to represent the solution, more so if multiple time grids are employed. 

However, the number of prespecified slots has also a stronger influence on both solution quality and 

computational effort, with one typically requiring an iterative search procedure to find the global 

optimal solution (Méndez et al., 2006). While it is easier to rely on a single grid, such option forces 

allowing batch tasks to spread across multiple slots, which severely compromises their performance. 

With multiple time grids, more efficient unit-specific models can be used even though there is still 

no general model of such type that can handle all different types of resources and storage policies. 

1.1. Going multidimensional 

In the context of N-dimensional allocation problems (Westerlund, 2005), scheduling problems can 

be viewed as one dimensional, with the relevant dimension being time. Strip packing problems are a 

class of 2-dimensional allocation problems (Amossen & Pisinger, 2010) that are open dimensional 

(Wascher et al. 2007), meaning that all items need to be packed into a strip of a given width so as to 

minimize its height. In the paper industry for example, one goal is cutting jumbo reels of paper into 

smaller reels so as to minimize trim losses. Being a simple to define, albeit challenging problem of 

industrial relevance, is probably the reason it has been widely studied by the research community 

and several solution approaches have been proposed. Depending mostly on problem size and the 

time available to generate a solution, one may rely on heuristics (Wei et al. 2009; Ortmann et al. 

2010), exact algorithms (Kenmochi et al. 2009; Martello et al. 2003; Bekrar et al. 2007; Alvarez-

Valdes et al. 2009; Grancolas & Pinto, 2010) or mathematical programming models (Castro & 

Oliveira, 2011). The latter two have the advantage of establishing if the best found solution is indeed 

optimal while informing of the maximum possible distance to such optimum, which can be quite 

relevant. The drawback is their sharp decrease in performance with respect to problem size. 

Mathematical programming approaches are more adaptable to changes in the problem constraints or 

objective function, an essential feature considering that industrial problems rarely fall within the 

exact boundaries of a standard problem definition. For instance, Dow Chemical has recently reported 

(Wassick & Ferrio, 2011) the solution of a non-classical packing problem consisting on loading a 
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semi-trailer with packages of different sizes and weights so that the trailer payload weight and also 

the rear axle weight are kept below highway allowable limits. The solution method was a mixed-

integer linear programming (MILP) model that extended a discrete-time scheduling model (Wassick, 

2009) from one to two dimensions. 

The recently proposed MILP-based approaches by Castro and Oliveira (2011) for 2-D packing 

problems were also inspired by scheduling models. The main novelty has been the combination of 

two different concepts, a discrete-space representation with respect to the x-axis and a continuous-

space representation for the y-axis. Combining discrete with continuous representations is known to 

be an effective approach for planning and scheduling with a rolling-horizon strategy (Dimitriadis et 

al. 1997; Castro et al. 2011). Like in scheduling, continuous-space representations for 2-D packing 

are more accurate since the rectangles widths and heights do not need to be multiples of the 

characteristic dimensions of the mesh used to discretize the strip, see Figure 2 on the left. Classical 

MILP models for 2-D packing problems feature continuous variables to determine the (x,y) 

coordinates of a given rectangle point in the strip (see Figure 2 on the right), a concept that can 

naturally be extended to three (Wu et al. 2010) and higher dimensional allocation problems 

(Westerlund et al. 2007). They can be derived from a Generalized Disjunctive Programming 

formulation featuring four sets of Boolean variables to identify the location of a rectangle with 

respect to another, followed by either a convex-hull or big-M reformulation (Sawaya & Grossmann, 

2005). A closely related model using the centroid coordinate instead of the upper-left corner as the 

reference point was proposed by Castillo et al. (2005) and reported to have a better computational 

performance so it is the one considered in this article for comparative purposes.  

 

Figure 2. Classical representation alternatives for 2-D allocation problems. 
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The binary positioning variables in the continuous-space models are the N-dimensional 

equivalents to the general precedence sequencing variables in scheduling. Models relying on this 

concept can be used as standalone procedures whereas the solution from those relying on one or 

multiple spatial grids is dependent on the number of slots specified, and thus requires an iterative 

search procedure to find the global optimal solution, which might terminate with a suboptimal 

solution due to a temporary plateau in the value of the objective function. To overcome this 

limitation, we now propose a new hybrid discrete/continuous-space model featuring sequencing 

variables in the y-axis, which can not only guarantee global optimality but is also able to improve the 

performance of the recent hybrid model of Castro & Oliveira (2011). We also present a full 

continuous-space model that relies on the same set of variables for the y-axis and on a single grid for 

the x-axis. We have therefore combined all four major concepts for spatial representation given in 

Figure 1, and efficiently as will be shown later on. 

The rest of the paper is structured as follows. Given the problem definition in section 2, we discuss 

the new 2-D representation alternatives in section 3. The continuous-space model of Castillo et al. 

(2005) that is part of the computational studies is briefly described in section 4, while the new MILP 

models are presented next. Section 5 concerns the new hybrid discrete/continuous-space approach 

with section 6 dealing with the new continuous-space approach. The computational results are then 

the subject of section 7. In section 8, we summarize the advantages and limitations of the different 

spatial representation concepts studied with the conclusions being left for section 9. 

2. Problem Definition 

We consider the two-dimensional orthogonal strip packing problem. Given are a set of rectangles 

iI with width wi and height hi. The objective is to place the rectangles without overlap into a strip 

of a given width W so as to minimize the height H. The focus is set on the solution of problems with 

integer data and no rotations are allowed. Nevertheless, the continuous-space models that are 

presented next, naturally handle real values for the widths and heights. 
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3. Previous and Newly Proposed Spatial Representation Alternatives 

In the hybrid model of Castro & Oliveira (2011), the strip is divided along its width W (x-axis) into 

vertical strips of unitary width. Each elementary strip has its own vertical grid made of allocation 

points that can be linked to the left-bottom corner of a particular rectangle. All W grids have the 

same number of allocation points but their y-coordinate will typically be different unless adjacent 

elementary strips share the same rectangle. This is illustrated on the left of Figure 3. 

 

Figure 3. New representation alternatives for 2-D packing problems. 

The newly proposed hybrid discrete/continuous-space model uses sequencing variables instead of 

spatial grids to properly place rectangles with respect to the y-axis. Continuous variables give the y-

coordinate of the bottom-edge of the different rectangles with the possibility of the same coordinate 

being shared by two rectangles provided there is enough horizontal space among them. Figure 3 on 

the middle illustrates this aspect showing a direct correspondence to the placement of the allocation 

points from the other hybrid model (Castro & Oliveira, 2011) that are shown on the left (horizontal 

segments). This novel approach is not cursed by the uncertainty in the number of allocation points 

meaning that the solution of a single MILP will give the global optimal solution to the problem. 

We also propose a somewhat related hybrid continuous-space model that keeps the positioning 

variables in the y-axis, but uses a single horizontal continuous grid instead of a discrete spatial grid. 

We thus return to the use of allocation points and the need for an iterative search procedure to find 

the global optimal solution. This alternative is illustrated on the right of Figure 3. Note that 
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rectangles can span over multiple slots so the vertical lines do not necessarily correspond to 

guillotine cuts. 

4. A Continuous-Space Model with Positioning Variables (CS) 

Two-dimensional continuous-space models typically employ (xi, yi) variables to define the 

rectangle coordinates on the x and y-axis. In order to provide a comparison with the newly proposed 

models, we consider the adaptation of the BLDP1 block layout design model by Castillo et al. 

(2005) for the strip packing problem. The big-M formulation by Sawaya and Grossmann (2005) is 

similar but involves four sets of binary variables in the no-overlap constraints, where at most one can 

be active. 

The objective is the minimization of the strip height, eq. (1). Continuous variables (xi, yi) denote 

the coordinates of the center of rectangle i, while binary variables Pi,i’ and Qi,i’ are sets of binary 

variables (Westerlund et al. 2007) used in the overlap prevention constraints, eqs. (2-5). Specifically, 

(2) and (3) are concerned with valid placement of rectangle i to the right and left of rectangle i’, 

while (4) and (5) ensure valid placement of rectangle i on top or below rectangle i’. Eqs. (6-9) ensure 

that the edges of every rectangle are within the boundaries of the strip, while the domain of the 

model variables is given by (10-13). 

min H (1) 
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1
',',''  (3) 

iiIiIiQPMyyhh iiiiiiii  ',',)1()(
2

1
',',''  (4) 

iiIiIiQPMyyhh iiiiiiii  ',',)2()(
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Iihy ii 
2

1
 (8) 

IihHy ii 
2

1
 (9) 

Pi,i’ {0,1} iI, i’I, i’>i (10) 

Qi,i’ {0,1} iI, i’I, i’>i (11) 

xi0 iI (12) 

yi0 iI (13) 

5. New Hybrid Discrete-Space Approach (NDCS) 

We now propose a new model that is discrete in the x-axis domain and continuous in the y-axis. 

The y dimension is preferred for continuous representation to avoid the iterative procedure involved 

in the efficient determination of the strip height (Castro & Oliveira, 2011), which can now be 

defined as a continuous variable, H. Let X={1,…,W} be the set of vertical slots in the x-axis. Two 

sets of binary variables are used: Ni,x to identify the assignment of the left-edge of rectangle i to the 

start of slot x; Zi,i’ to specify if the top-edge of rectangle i is below the bottom-edge of rectangle i’ 

(i’>i), provided that one box is at least partly above the other, see Figure 4 and Figure 5. The y-

coordinate of the bottom-edge of rectangle i is given by variable Yi. 

 

Figure 4. Value of y-axis sequencing variables Zi,i’ for different arrangements. 
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Figure 5. Values of the variables for the new mixed discrete-space approach (NDCS). 

Consider the example in Figure 5 that identifies which variables Zi,i’ need to be fixed for the 

arrangement shown. Rectangle I1 is beneath the others and so ZI1,I2= ZI1,I3= ZI1,I4=1. Rectangle I4 is 

below I2, which is the same as saying that I2 is above I4, i.e. ZI2,I4=0. With respect to the interaction 

between (I2,I3) and (I3,I4), they do not occupy the same horizontal slots and so the values of the 

corresponding variables are irrelevant. This is apparent from big-M constraints (14-15), which are 

written for every pair of rectangles and every slot x. If the left edge assignments of rectangles i and i’ 

make them occupy slot x, then both summations inside the brackets on the right-hand side will be 

equal to 1. Then, there are two possibilities: Zi,i’=1 or 0. With the former, the big-M term in eq. (14) 

disappears and the constraint Yi’Yi+hi is enforced, i.e. the bottom-edge of rectangle i’ is above the 

top-edge of rectangle i, as intended by the definition of the binary variables. For the latter option, it 

is the big-M term in eq. (15) that is equal to zero leading to YiYi’+hi’, i.e. rectangle i is above i’. For 

all other cases the constraints are relaxed. 
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Eq. (16) ensures that the top edge of every rectangle is below the strip height. The same applies to 

the sum of the heights of all rectangles occupying a given slot x, eq. (17). Then, any given rectangle 

can be assigned to a single slot, eq. (18). Eqs. (19-22) give the domain of the model variables, while 

the objective function in eq. (1) also applies. 
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IiHhY ii   (16) 
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IiN

xIi
Xx
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


1,  (18) 

Ix={iI:x+wiW+1} xX (19) 

Ni,x {0,1} xX, iIx (20) 

Zi,i’ {0,1} iI, i’I, i’>i (21) 

Yi0 iI (22) 

6. New Continuous-Space Approach (NCS) 

Using the same set of sequencing variables Zi,i’, we now propose a new continuous-space model 

that uses a single spatial grid in the x-axis. Let E={e1,…,e|E|} be the set of allocation points in the x-

axis that implicitly fixes the maximum number of rectangles that can be placed on a given horizontal 

slice of the strip to |E|-1, see Figure 6. Rectangles will occupy one or more slots, with binary 

variables ',, eeiN  identifying the assignment of the left-edge of rectangle i to allocation point e and the 

right-edge to point e’ (e’>e). The x-coordinate of allocation point e will be given by continuous 

variables Xe. 

Using the same simple example, we illustrate the value of the model variables in Figure 7. Notice 

that rectangle I2 occupies a single slot, starting at allocation point e3 and ending at allocation point 

e4, thus 14,3,2I N . The same goes for I3 while I4 occupies 2 slots and rectangle I1, 4. It is important 

to highlight that the right edge of the rectangle may not coincide with the x-coordinate of the ending 

allocation point (e.g. e5). This avoids the need for further allocation points in cases where the empty 

space cannot be occupied and is reflected in eqs. (23-24). It states that the difference in the x-

coordinates of allocation points e’ (replaced by the strip width W if e’=|E|, eq. 24) and e must be 

greater than the width of the rectangle i, provided that its left and right edges are assigned to such 

points. Notice that the coordinate of the first allocation point is equal to zero, eq (25). 
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Figure 6. Single non-uniform spatial grid in the x-axis used by new continuous-space approach 

 

Figure 7. Values of the variables for the new continuous-space approach (NCS). 
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The other sets of constraints are conceptually similar to those of the hybrid discrete/continuous-

space model considering that index x has been replaced by index e. In Eq. (26), the big-M term is 

equal to zero whenever the top-edge of rectangle i is below the bottom-edge of rectangle i’ and both 

i and i’ occupy slot e of the x-domain grid, meaning that their left-edges are allocated to some 

allocation point e’ matching or located to the left of allocation point e and that their right-edges are 

assigned to some point e’’ that is located to the right of both allocation points e and e’. If, on the 

other-hand, rectangle i is above i’ then it is eq. (27) that is enforced. 

iiIiIiEeEeNNZMhYY

ee
Ee

ee
ee
Ee

eeieeiiiiii  







',',|,|,])(3[

'
'

'''
''
''

'',',''',',','  (26) 

iiIiIiEeEeNNZMhYY

ee
Ee

ee
ee
Ee

eeieeiiiiii  







',',|,|,])(2[

'
'

'''
''
''

'',',''',',',''  (27) 

1
2 3 |E|‐2

|E|

slot1 slot 2 slot |E|‐2 slot |E|‐1

x

allocation 
points

|E|‐1

X1 X2 X3 X|E|‐2 X|E|‐1 W

H

I2

YI2=7 NI2,3,4=1

ZI2,I4=0

I3

I4

YI4=3 NI4,2,4=1

YI3=2 ZI1,I4=1 NI3,4,5=1

I1 ZI1,I2=1

YI1=0 NI1,1,5=1 ZI1,I3=1

e1 e2 e3 e4 e5

X1=0 X3=2 X4=4 W  

X2=1



13 

 

Eqs. (1), (16), (21-22) are shared with NDCS, while eq. (28) states that the total height of all 

rectangles occupying a given slot e must be lower than the strip height. Eq. (29) states that the left 

and right edges of every rectangle i must be assigned to exactly one pair of allocation points (e,e’) 

with e’>e. The domain of the new set of binary variables is given by eq. (30). Notice that contrary to 

NDCS, there can be no domain reduction for the left-edge allocation point. 
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6.1. Heuristic search for the global optimal solution 

The new continuous-space model can find the optimal solution for a given number of allocation 

points. With a minimum of two points, i.e. one slot, a feasible solution with  i ihH  can be 

obtained by packing all rectangles on top of each other, provided that the big-M value in eqs. (26-27) 

is greater than H. In contrast, the hybrid discrete/continuous-space model in (Castro & Oliveira, 

2011) normally requires a few allocation points to ensure feasibility. 

In general however, two allocation points will be insufficient to find the real optimal solution to 

the problem and a higher value will need to be specified. The difficulty is that there is no exact 

method to predict the value to use, even for one-dimensional scheduling problems and despite recent 

efforts (Li & Floudas, 2010). This is a serious issue considering that one typically gets a one order of 

magnitude increase in computational effort following a single increase in the number of allocation 

points, i.e. events (see Castro & co-workers 2004, 2008, 2011). Since global optimality can only be 

ensured in the limit of |E|=|I|+1, which will almost certainly compromise tractability, a proper search 

procedure is needed. 

We adapt the iterative search procedure from (Castro & Oliveira, 2011) that is in turn borrowed 

from event-based scheduling models (Méndez et al. 2006). Starting with |E|=2, we keep increasing 

the number of allocation points and solving the optimization problem until the objective function 
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stops improving. Since the solution space for |E|+1 points includes the feasible space for |E|, and to 

enhance computational performance, we remove the current best solution from the feasible space 

through the use of a cutoff value, see eq. (31). With the purpose of solely searching for a better 

solution, we make the problem infeasible if the global optimal solution has already been found. One 

can also specify an absolute optimality tolerance for the MILP solver, ε, which is particularly useful 

in the case of integer data for the rectangles dimensions like in the problems considered in this 

article, i.e. ε=0.999. The detailed search algorithm for the continuous-space model NCS is given in 

Figure 8. 

Hcutoff (31) 

 

Figure 8. Search algorithm for new slot-based continuous-space approach (NCS). 

6.2. The Temporary Plateau Limitation 

Although the iterative search procedure works quite well in practice (the first iterations can be 

solved rather rapidly), it is important to highlight that the plateau in the objective function may only 

be temporary, meaning that there is no guarantee that the global optimal solution will result even if 

all iterations are solved to optimality. In fact, this phenomenon was observed in 2 out of the 29 test 

problems solved, contrary to what happened with the hybrid discrete/continuous-space model from 

(Castro & Oliveira, 2011), where a simple example had to be used for illustrative purposes. 

Initialization

|E|=2

absolute optimality tolerance=ε

|E|=|E|+1

Solve MILP

min  H (1)
s.t.  eqs. (3, 21‐31)

Output

Strip height H
Placements into strip

problem 
infeasible?

YES

store solution
cutoff=H‐ε

NO
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Taking the well-known ngcut08 problem as an example, the search for the optimal strip height 

starts with H=149 for 2 allocation points. For a single increment in the number of allocation points, 

there is a substantial decrease in height, H=75. The solution continues to improve for 4 and 5 points, 

with the optimal arrangements given in Figure 9. Notice that the solution for |E|=4 still generates a 

considerable amount of waste and that the location of e2 and e3 define guillotine cuts. The same can 

be said for e2 and e3 concerning the solution on the right but not for e4, since rectangle I2 is located 

between e3 and e5. 

The search continues for |E|=6 that features an optimal strip height equal to 36. The same optimal 

solution is returned for |E|=7 leading to the termination of the search with a best solution that is in 

fact suboptimal. More specifically, if model NCS is solved for |E|=8, the global optimal solution can 

be found (H=33). These two solutions are shown in Figure 10. In the one on the right, there are 

already seven rectangles (I2-I4, I7, I8, I10, I12) for which the active binary variable ',, eeiN  features 

e’>e+1. In particular, rectangle I8 spreads across three slots, with the left-edge assigned to allocation 

point e5 and the right-edge to point e8. 
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Figure 9. Influence on the number of allocation points on the optimal solution for Ex16, part 1. On 
the left, |E|=4 and H=50. On the right |E|=5 and H=40. 
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Figure 10. Influence on the number of allocation points on the optimal solution for Ex16, part 2. On 
the left, |E|=6 and H=36. On the right |E|=8 and H=33, which is a global optimal solution. 

7. Computational Results 

The performance of the given solution approaches (NDCS, NCS and CS) is now illustrated 

through the solution of 29 strip packing problems and compared to that of two recent solution 

strategies (DS and DCS, see Castro & Oliveira, 2011) that have been evaluated under the same 

software and hardware. More specifically, the models and search algorithms were implemented in 

GAMS 23.2 using CPLEX 12.1 as the MILP solver with a single thread, an absolute optimality 

tolerance equal to 0.999 (recall that all data are integer) and a maximum computational time per run 

equal to 7200 CPU s. In the case of the search algorithms, a new iteration started only if the 

accumulated computational time was below 7200 CPU s, making it possible for the total 

computational time to go up to 4 hours. In eqs. (4-5, 14-15, 26-27) we have used M=300 except for 
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an Intel Core2 Duo T9300 2.5 GHz processor with 4 GB of RAM running Windows Vista 

Enterprise. 

The GAMS input files of all five mathematical programming models and associated search 

algorithms are available through the CMU-IBM CyberInfrastructure for MINLP collaborative site 

www.minlp.org in the MINLP library of problems under the title: 2-D Orthogonal Strip Packing. 

7.1. Key performance Indicators 

The ultimate goal of any optimization approach is to determine the global optimal solution, which 

first involves finding such solution and then proving it cannot be improved further. For two of the 

approaches under evaluation (CS and NDCS) this involves solving a simple MILP problem per 

example, while for the others a few iterations may be involved. In particular, it is possible for DCS 

and NCS to terminate with a suboptimal solution since the search strategy for the global optimal 

solution is not rigorous but heuristic. In fact, ngcut08 and ht02 led to temporary plateaus for NCS 

(see section 6.2), while the phenomena was not observed for DCS. When failing to find the optimal 

solution, most methods are capable of finding near optimal solutions, the exception being DS for 

which the first feasible solution is also optimal. Table 2 provides the values for a comparative 

analysis of these 4 performance indicators. 

Table 2. Key performance indicators on the solution of 29 test problems 

  Optimal 
solutions

Suboptimal 
solutions

No 
solutions 

Best 
performer

Approach Reference Found Proven    
Discrete-space (DS) (Castro & 

Oliveira, 
2011) 

19 19 - 10 8 

Hybrid 
discrete/continuous 
(DCS) 

(Castro & 
Oliveira, 
2011) 

21 13 8 - 7 

Continuous-space (CS) (Castillo et 
al. 2005) 

16 6 13 - 5 

New hybrid 
discrete/continuous 
(NDCS) 

This work 21 19 8 - 7 

New continuous-space 
(NCS) 

This work 17 15 12 - 2 

     Total 29 
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Table 3. Best solution found and total computational effort for different approaches (best performer 
in bold, suboptimal solutions in italic) 

   Previous work New work Previous work New work 
Approach   DS DCS CS NDCS NCS DS DCS CS NDCS NCS 
Problem |I| W H     CPU s     

Ex1 9 18 18 18 18 18 18 4.86 3.21 0.39 2.10 4.23 
Ex2 9 18 18 18 18 18 18 3.45 2.99 0.39 0.75 4.31 
Ex3 10 20 23 23 23 23 23 6.21 9578a 7200a 244 117 
Ex4 11 20 - 22 22 22 22 7205a 10762a 7200a 340 3230 
Ex5 21 10 24 24 24 24 24 4.61 2.93 46.9 41.2 50.1

SCP16 14 6 33 33 33 33 33 5.30 2.87 4335b 2.87 505 
cgcut01 16 10 23 23 23 23 23 2.37 4.75 7200a 57.2 8027a 
cgcut02 23 70 - 67 68 72 74 7463a 7201a 7200a 7200a 8720a 
ngcut01 10 10 23 23 23 23 23 81.6 461 293 2.71 3.46 
ngcut02 17 10 - 30 30 30 30 7202a 12368a 5182b 26.2 329
ngcut03 21 10 28 28 29 29 29 12.6 2.87 7200a 7200a 13682a 
ngcut04 7 10 20 20 20 20 20 1.22 5.90 0.96 0.56 9.93 
ngcut05 14 10 36 36 36 36 36 3.18 0.62 7200a 0.81 2036 
ngcut06 15 10 - 31 31 31 31 3742c 8194a 6235b 87.5 159 
ngcut07 8 20 20 20 20 20 20 0.98 3.37 0.23 0.4 1.24
ngcut08 13 20 33 33 34 33 36 29.5 7363a 7200a 118 1280 
ngcut09 18 20 - 53 51 53 52 7210a 7200a 7200a 7200a 10616a 
ngcut10 13 30 - 80 80 80 80 8760a 7200a 4198c 5118b 3665 
ngcut11 15 30 - 52 52 52 54 7215a 10028a 7200a 7200a 12153a 
ngcut12 22 30 - 87 87 87 87 10339a 7202a 5235b 987 449

ht01 16 20 20 20 21 20 20 2.08 2.01 7200a 26.6 9128a 
ht02 17 20 20 21 21 20 21 5.28 7200a 7200a 6952 4093 
ht03 16 20 20 20 21 20 20 2.51 9.34 7200a 20.4 1226 
ht04 25 40 15 16 17 17 17 91.8 7202a 7200a 7200a 7203a 
ht05 25 40 15 16 17 17 17 20.4 7200a 7200a 7200a 12737a

ht06 25 40 15 15 16 15 16 18.3 11.5 7200a 773 13428a 
ht07 28 60 30 31 34 38 35 3771 7201a 7200a 7200a 7203a 
ht08 29 60 - 31 33 35 37 7200a 7201a 7200a 7204a 7200a 
ht09 28 60 - 33 32 39 34 7200a 7201a 7200a 7204a 12752a 

a Maximum computational time termination. b Out of memory termination. c Abnormal 
termination with suboptimal solution. 

The new hybrid discrete/continuous-space model (NDCS) is the best overall performer. It is able 

to find the same 21 optimal solutions as its DCS counterpart and was able to prove optimality in 6 

more cases. When added to the fact that no iterative procedure for the global optimal solution is 

needed, it shows that it is preferable to use sequencing variables than multiple spatial grids for the y-

axis. The same number of proven optimal solutions (19) was obtained by the discrete-space 

approach, whose main drawback is either finding an optimum or no solution at all. It thus has to be 

considered the third best performer. Further down the line come the two continuous-space 

approaches that exhibited a lower success rate in terms of finding and proving optimality, with the 
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new one having the edge due to the higher number of proven optimal solutions (15 vs. 6). It is thus 

better to employ a single time grid on the x-axis than positioning variables despite the disadvantage 

of the heuristic search procedure. 

The last column in Table 2 gives the number of problems in which a given formulation was the 

best performer. To make the decision, we first considered solution quality and then computational 

time (see Table 3). Whenever two approaches had the same time (e.g. DCS and NDCS in SCP16) we 

chose the one not requiring an iterative search procedure (NDCS). In ngcut11, we broke the tie 

between CS and NDCS by picking the one with the highest relaxation (best possible solution) at the 

time of termination (43.0 vs. 50.8). 

The most interesting result is that a particular formulation is the best performer in at least two 

problems meaning that they all can be potentially useful. In the days of parallel computing where 

even a relative inexpensive computer features a few threads, it is already possible to rely on multiple 

approaches for decision-making. Nevertheless, a few recommendations can be made that are the 

subject of section 8. But first, let us discuss the computational statistics related to problem size. 

7.2. Computational Statistics 

In Table 4, we show the number of entities related to problem size together with the root node 

relaxation for the models that do not require an iterative search procedure, CS and NDCS (note that 

the discrete-space model DS uses a different objective function and that the relaxation for the slot 

based models DCS and NCS changes with |E|). The values in columns 2 and 3 show that the new 

hybrid discrete/continuous-space MILP model is considerably tighter than the continuous-space 

model of Castillo et al. (2005). In fact, the relaxation of the former is equal to the well-known 

continuous lower bound (Martello et al. 2003) given by eq. (32). The same applies to hybrid model 

DCS, while the relaxation of the new continuous-space approach (NCS) lies somewhere in between 

CS and NDCS. As an example, the largest integrality gap was for ngcut12, with an optimal solution 

H=87 and a root node relaxation equal to 24 (CS), 41.6 (NCS) and 83.5 (DCS and NDCS). 

iIwihi/W (32) 
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With respect to problem size, the option of discretizing both dimensions leads to the largest 

number of binary and total variables, which can easily go past the tens of thousands listed in Table 4. 

This was hardly unexpected considering the use of three-index binary variables (i,x,y) in DS, where 

|X|=W and |Y|=H. DCS also features three-index binaries (i,x,e) but now the number of allocation 

points in the y-axis required to find the optimal solution is considerably lower than the strip height. 

In terms of the models given in this paper, NCS also features three indices (i,e,e’) but two of them 

are event based, resulting in typically fewer binary variables than the two-index (i,x) model NCS. 

The lowest number of binaries often results from the two-index (i,i’) model CS. 

A similar trend is observed in terms of total variables while for total constraints the results are not 

as conclusive with DS, DCS and CS sharing top spot. The number of constraints for the new hybrid 

model (NDCS) is typically one order of magnitude larger, with NCS lying in fourth place. Notice 

that the large majority of the constraints for NDCS arise from the y-axis no overlap constraints, 

which feature three-indices (x,i,i’), whereas in the corresponding NCS constraints, the first is an 

allocation point index (e,i,i’). The other three approaches have just two indices in the no overlap 

constraints: one set of (x,y) equations in DS; 3 sets of (x,e) constraints in DCS; and 2 sets of (i,i’) 

equations in CS. With respect to the comparison between the two hybrid discrete/continuous-space 

models, moving from DCS to NDCS can be viewed as switching the complexity from the binary 

variables to the constraints side. Overall, it is clear that an analysis based solely on problem size is 

hardly suitable to predict the best performer. 
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Table 4. Statistics for last problem solved (RMIP=root node relaxation, DV=discrete variables, TV=total variables, SE=single equations) 

Approach CS NDCS DS DCS CS NDCS NCS DS DCS CS NDCS NCS DS DCS CS NDCS NCS 
Problem RMIP  DV     TV     SE     

Ex1 15 15.4 1342 580 72 152 225 1667 671 91 162 241 334 359 180 1332 645 
Ex2 15 15.4 1323 585 72 153 225 1648 676 91 163 241 334 359 180 1332 645 
Ex3 11 20 2485 652 90 208 255 2946 733 111 219 272 471 322 220 1840 776 
Ex4 13 20 2428 720 110 235 363 2849 801 133 247 382 432 323 264 2242 1107 
Ex5 9 22.5 3729 1336 420 377 525 3970 1417 463 399 552 262 325 924 4252 2462 

SCP16 11 31.8 1829 441 182 154 301 2028 484 211 169 321 213 168 420 1126 1153 
cgcut01 8 22.5 2409 868 240 244 456 2640 939 273 261 479 247 282 544 2442 1814 
cgcut02 31 62.1 63438 6425 506 1538 598 67849 6776 553 1562 627 4434 1413 1104 35536 2926 
ngcut01 10 20 1069 420 90 105 145 1300 491 111 116 160 241 276 220 930 484 
ngcut02 9 29 2582 1080 272 244 391 2873 1181 307 262 414 308 397 612 2764 1654 
ngcut03 9 27.7 3820 1296 420 372 651 4101 1377 463 394 679 302 325 924 4252 3009 
ngcut04 15 16.2 606 186 42 83 168 807 217 57 91 182 208 121 112 444 419 
ngcut05 12 35.3 2954 560 182 205 385 3315 621 211 220 406 375 204 420 1858 1420 
ngcut06 11 29 2391 792 210 204 330 2692 873 241 220 351 316 319 480 2140 1310 
ngcut07 20 20 1603 393 56 159 148 2004 454 73 168 162 409 242 144 1156 421 
ngcut08 18 31.7 4780 856 156 292 351 5441 937 183 306 371 674 325 364 3166 1241 
ngcut09 20 48.7 10428 1578 306 416 532 11409 1699 343 435 556 999 486 684 6176 2256 
ngcut10 30 57.5 12285 1512 156 330 351 14536 1693 183 344 371 2264 721 364 4736 1241 
ngcut11 29 49.4 11076 1920 210 425 525 12577 2101 241 441 548 1516 723 480 6360 1927 
ngcut12 24 83.5 23813 4277 462 560 561 26334 4668 507 583 589 2543 1556 1012 13934 2689 

ht01 12 20 3907 1305 240 381 568 4308 1406 273 398 592 417 406 544 4852 2167 
ht02 13 20 4222 1305 272 397 493 4623 1406 307 415 517 418 407 612 5494 2029 
ht03 14 20 4054 1488 204 368 456 4455 1609 273 385 479 417 484 544 4852 1814 
ht04 5 15 10691 4140 600 1128 675 11292 4341 651 1154 706 626 815 1300 24090 3430 
ht05 7 15 10938 4230 600 1146 825 11539 4431 651 1172 857 626 815 1300 24090 4181 
ht06 7 15 11131 5010 600 1135 825 11732 5251 651 1161 857 626 973 1300 24090 4181 
ht07 13 30 35531 8394 756 1777 798 37332 8755 813 1806 832 1829 1456 1624 45476 4261 
ht08 11 30 37249 7400 812 1886 841 39050 7701 871 1916 876 1830 1219 1740 48838 4558 
ht09 14 30 35415 7055 756 1789 966 37216 7356 813 1819 1001 1829 1218 1624 45476 5186 
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Table 5. Main Characteristics of Tested Approaches for 2-D Strip Packing Problems 

Spatial Approach Full Discrete Hybrid discrete/continuous Full Continuous 

Name DS DCS NDCS CS NCS 

x-axis Single uniform grid Single uniform grid Single uniform grid General precedence Single slot-based grid 

y-axis Single uniform grid Multiple slot-based grid General precedence General precedence General precedence 

A priori 

decisions that 

can affect 

solution 

Size of squares (rectangles) in the mesh Width of uniform time slots 

(x-axis); number of 

allocation points of different 

grids (y-axis) 

Width of uniform time 

slots (x-axis) 

None Number of allocation 

points and number of 

slots a rectangle can span 

(x-axis) 

Need for iterative 

search procedure 

Yes Yes No No Yes 

Strengths Perfect packing problems; possibility of using a 

courser grid to keep problem tractable (data rounded 

to multiples of slot width and height). 

Tightest formulation (same 

relaxation as NDCS) 

Best overall performer; 

tightest formulation 

(same relaxation as 

DCS) 

Ability to find good 

solutions fast; leads to 

the smallest problem 

sizes 

Problem size independent 

of strip dimensions. 

Drawbacks Optimal solution is the first feasible solution from 

search procedure; can lead to prohibitively large 

problem sizes when considering large strip areas and 

accurate data; solution dependence on mesh size 

Solution dependence on 

number of allocation points; 

Strip width affects problem 

size 

Strip width affects 

problem size 

Not particularly tight 

meaning that global 

optimality may be 

difficult to prove 

Iterative search procedure 

may end with suboptimal 

solution 
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8. Overview of the Main Features of Alternative Approaches 

The characteristics, strengths and drawbacks of the five alternative approaches tested are 

summarized in Table 5. The first aspect to highlight is related to the motivation behind this paper 

and concerns the type of spatial representation employed. The ideal formulation should be fully 

continuous-space to be independent of problem data and allow considering real and not just integer 

data for the rectangles widths and heights. If not, we may need to employ the finest discretization 

possible (e.g. strip divided in 1x1 squares) to consider the real accurate problem, which may lead to 

grids with too many slots, in other words, to an intractable problem. This property can also be 

considered an advantage since it gives an obvious way to reduce the problem size and hence 

complexity. By increasing the slot size (coarser grid) and rounding up problem data, an 

approximation version of the problem can still be solved. While it is beyond the scope of this paper 

to evaluate this option, it is relevant to highlight that this strategy is frequently employed for the 

effective solution of industrial sized scheduling problems (Méndez et al. 2006). 

A full discrete-space approach (DS) has been shown particularly efficient in zero-waste, perfect 

packing problems, where adding the constraint of no empty elementary squares has had a major 

impact on efficiency (Castro & Oliveira, 2011). Discrete approaches are known to be considerably 

tighter than their continuous counterparts thus compensating the larger size of their resulting 

mathematical programming problems. By keeping one of the dimensions discrete (x-axis), we have 

kept the relaxation as tight as possible, equal to the continuous lower bound. This is somewhat 

related to a higher likelihood of finding and proving optimality as can be seen in Table 2. The 

advantage of using general precedence sequencing variables instead of multiple grids in the y-axis is 

that it avoids the heuristic search procedure for the global optimal solution, which can in theory lead 

to termination with a suboptimal solution (Castro & Oliveira, 2011). 

Such a drawback was indeed observed for the new continuous-space formulation (NCS), 

suggesting that it may be more frequent when using single rather than multiple grids. Nevertheless, 

NCS was tighter than its general precedence counterpart (CS), which can explain why more 

problems were solved to global optimality. However, both are considerably less tight than DCS and 
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NDCS. The worst performance of CS in terms of proving optimality is compensated by the 

generation of the smallest MILPs of the lot, which is translated into the ability of finding very good 

solutions in the early nodes of the search tree. 

9. Conclusions 

This paper has presented two new mixed-integer linear programming approaches for the 2-

dimensional strip packing problem, the NDCS and NCS models. Contrary to the approach of relying 

on two sets of binary positioning variables to locate a particular rectangle with respect to another, we 

keep the set of positioning variables for the y-axis but use a different approach for the x-axis. While 

in one model (NDCS) the x-axis is discretized through the use of a uniform spatial grid consisting of 

a few slots, in the other (NCS), a non-uniform continuous time grid with fewer slots is employed. 

Both can be viewed as hybrid models in the sense that different concepts for spatial representation 

are being combined. 

The performance of the new models has been tested in several problems taken from the literature 

and compared to three other MILP-based approaches both quantitatively, by using the same 

hardware and software, and qualitatively, by highlighting the main advantages and limitations of 

each particular approach. The new hybrid discrete/continuous-space model was shown to be the best 

performer in key performance indicators like number of optimal solutions found and proven, while 

the new continuous-space approach more than doubled the number of problems solved to optimality 

with respect to a previously published continuous-space model with two sets of positioning 

variables. Overall, it was interesting to find out that all tested methods can be potentially useful since 

each approach was the best performer in at least 2 out of 29 problems. 
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