
1

A New Continuous-time MILP Model for the Short-

Term Scheduling of Multi Stage Batch Plants

Pedro M. Castro*,†,‡ and Ignacio E. Grossmann‡

†Departamento de Modelação e Simulação de Processos, INETI, 1649-038 Lisboa, Portugal

‡Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA

Abstract

This paper presents a new multiple time grid continuous time MILP model for the short-term

scheduling of multistage, multiproduct plants. It can handle both release and due dates and different

objective functions efficiently, such as the minimization of total cost, total earliness or makespan. This

formulation is compared to other existing mixed-integer linear programming approaches and to a

constraint programming model. The results show that the proposed formulation is much more efficient

than its uniform time grid counterpart and is comparable to a continuous-time formulation that uses

global precedence sequencing variables. Discrete-time formulations are preferred for larger scheduling

problems where a reasonable number of time points are enough to consider the exact problem data. The

results also show that the constraint programming model is the best approach for makespan

minimization.

* To whom correspondence should be addressed. Tel.: +351-217162712. Fax: +351-217167016. E-mail:

pedro.castro@ineti.pt

2

1. Introduction

The research area of batch processing scheduling has received considerable attention in the past two

decades. Traditionally, scheduling approaches have been classified according to different criteria1. The

type of network structure under consideration is one possibility and can range from the simplest single

machine problem, where the goal is to find a feasible or optimal order sequence, to more complex

multipurpose plants, where each product may go through a different series of processing steps. In

between, we have multistage, multiproduct plants, which will be the subject of this paper, where all

products follow the same sequence of operations, one per stage. Another classification criterion is the

type of method used. Well known examples are mathematical programming, generalized disjunctive

programming (GDP) (Raman and Grossmann2), which can be reformulated as mathematical

programming models, and constraint programming (CP) (Hentenryck3). The type of time representation

is yet another possibility, which can be either treated implicitly through the model constraints (Mendez

and Cerdá4, Harjunkoski and Grossmann5, Gupta and Karimi6) or explicitly through the timing

variables. In the later case, the time horizon of interest is divided into several time intervals, which may

have fixed or variable duration. The first option gives rise to discrete time formulations (Kondili et al.7,

Pantelides8), while the second option to continuous-time formulations. Continuous-time grids may

employ a uniform time grid (Maravelias and Grossmann9, and Castro et al.10) or multiple time grids, one

time grid per plant equipment (Giannelos and Giorgiadis11, Janak et al.12). Since constraint

programming models can only handle integer processing data, they can be viewed as discrete-time

models.

The size and complexity of mathematical programming models is greatly dependent on how time is

treated. Discrete-time formulations use a much larger number of time intervals and sometimes may need

to consider an approximated version of the problem to maintain problem tractability. Despite their large

size, the resulting MILPs are very tight and usually require few nodes to find the optimal solution.

Continuous-time formulations are more general but are also much more complex meaning that the size

of the problems that can be solved to optimality is usually smaller. A recent review of discrete and

3

continuous-time approaches can be found in (Floudas and Lin13). For the specific case of single stage

multiproduct plants, Castro and Grossmann14 also compared discrete and continuous-time MILP

formulations with the results generally favouring a discrete-time Resource Task Network (Pantelides8)

formulation over its continuous-time, CP and hybrid MILP/CP counterparts. Concerning the

continuous-time formulations, their proposed multiple time grid formulation was also shown to be better

than the equivalent uniform time grid formulation and the MILP model of Jain and Grossmann15, which

uses assignment and sequencing variables instead of an explicit time grid, for the objectives of total cost

minimization and total earliness minimization.

This paper extends the work of Castro and Grossmann14 for single stage multiproduct plants to the

more complex multistage case in which release and due dates are given and changeover terms are

neglected. As will be shown, the model must account not only for the adequate timing of events

occurring on a particular machine, but also for the interaction of machines processing the same order in

consecutive stages. This poses considerable difficulties when considering multiple time grids since the

machines are no longer independent. New sets of constraints are proposed to extend the multiple time

grid continuous-time formulation to the multiple stage case. The new formulation is compared to RTN-

based discrete and continuous-time formulations (uniform time grids), and to the continuous-time and

constraint programming models of Harjunkoski and Grossmann5. The comparison is performed for three

widely used objective functions: minimization of total cost, total earliness and makespan. For the latter

we propose an efficient algorithm to be used by the discrete-time formulation, based on the work of

Maravelias and Grossmann16 that can find the optimal solution in a relatively low number of iterations.

The rest of the paper is structured as follows. Section 2 describes the scheduling problem under

consideration. Section 3 presents existing Resource Task Network formulations that can be used to

solve the problem at hand. Concerning the discrete-time formulation a new algorithm is proposed to

tackle the objective of makespan minimization. The new multiple-time grid continuous-time

formulation is given in section 4. Section 5 describes two other existing approaches that can be used,

while section 6 features the computational studies. Finally, the conclusions are left for section 7.

4

2. Problem definition

DO_I1_M1
Duration=p1,1

DO_I1_M|M1|
Duration=p1,|M1|

I1,K1

M1

M|M1|

.

.

.

Stage 1

DO_I1_M(|M1|+1)
Duration=p1,|M1|+1

DO_I1_M(|M1|+|M2|)
Duration=p1,|M1|+|M2|

I1,K2

M(|M1|+1)

.

.

.

Stage 2

M(|M1|+|M2|)

... I1,K(|K|-1)

DO_I1_M(|M|-|Mk|+1)
Duration=p1,|M1|+1

DO_I1_M|M|
Duration=p1,|M|

I1,K|K|

M(|M|-|Mk|+1)

.

.

.

Stage K

M|M|

Figure 1. RTN process representation for order I1, featuring a total of |M| machines and |K| stages

In this paper, the short-term scheduling problem of multistage multiproduct batch plants is

considered. A set I of product orders must go through a sequence of processing stages, belonging to set

K, to reach the condition of final products. It is assumed that all orders go through all stages and that

there is a unique sequence of stages for all orders. A total of M units are available, where a given unit

can process all orders belonging to set Im. Each unit belongs to a single stage, with set Mk including all

units belonging to stage k. The processing times, pi,m, release, ri, and due dates, di, are assumed to be

known, the latter being enforced as hard constraints. It is assumed that sequence dependent changeovers

can be neglected. The RTN representation of the multistage, multiproduct plant is given in Figure 1 for

a given order, e.g. I1. The processing task, designated DO, consumes the material corresponding to the

order being processed, which must be at an appropriate state. The state of material is directed associated

to the stage where it is produced, i.e. stage k consumes material at state k-1 and produces material at

state k. Some of the existing mathematical formulations consider the material states explicitly as model

variables, while others consider them implicitly, in some of the model constraints. The former rely on

uniform time grids, while the latter rely on multiple time grids or no explicit time grid at all. Finally, we

assume unlimited intermediate storage (UIS).

5

3. General RTN formulations for multipurpose plants adapted to the multistage case

General Resource Task Network formulations can be used to tackle the specific type of problem

considered in this paper. These include the discrete-time formulation of Pantelides8 and the continuous-

time formulation of Castro et al.10. This section presents the two formulations, although different indices

are used on the model variables and constraints (when compared to the original works) to take

advantage of the multistage plant structure. The discrete and continuous-time formulations use a single

time grid to keep track of the events taking place and similar sets of variables and constraints, but, as

will be seen later on, give rise to Mixed Integer Linear Programs of different size and complexity.

3.1. Discrete-time formulation (F1)

The discrete-time formulation uses a uniform time grid, where all |T|-1 time intervals have the same

duration, δ (see Figure 2). Usually, δ is chosen as the greatest common factor of the processing times,

pi,m, unless this implies an exceedingly large number of intervals. In such case, to maintain problem

tractability, a higher value of δ is used and the problem data is rounded to a multiple of δ. This means

that the processing times pi,m are converted to τi,m, the duration of order i in unit m in number of time

intervals, using the following formula:)/(CEIL ,, δτ mimi p= , where CEIL is a function that rounds the

argument to the next integer. Whenever the exact problem data is not considered, no guarantee exists

that the optimal solution from the discrete-time formulation is the true optimal solution. Usually, lower

rounding errors will lead to better approximations. Rounding up the processing times ensures that the

solutions from the cost minimization and makespan minimization problems are upper bounds on the

true optimal solution and the same is generally true for the earliness minimization problem. The

approximated release dates are calculated through δδ)/(CEIL ii rr = , with the minimum value

representing the absolute time of the first time point. The same can be done to determine the

approximated due dates, id , with the maximum value representing the absolute time of the last time

point (see Figure 2).

6

1 T
2 4 T-2 T-1

Interval 1

3δ

iIi
r

∈
min iIi

d
∈

max

Interval 2 Interval 3 Interval T-2 Interval T-1

Figure 2. Uniform time grid for discrete-time formulation

The discrete-time formulation can be written in a very compact form. It uses three sets of variables

and constraints for the general case plus the objective function. The binary variables Ni,m,t, denote the

execution of task i on unit m at time t, whereas the excess resource variables denote the availability of a

resource at a given time point. To facilitate the understanding of the model, we define one set of

variables for each type of resource: Rm,t for the equipment resources (the units, m) and Si,k,t for the

material resources (state of material resulting from order i produced at stage k). These are defined as

nonnegative continuous variables, although the excess resource balances (eqs 1 and 2) ensure that they

can only take 0, 1 values. It is important to mention that not all binary variables Ni,m,t need to be

considered. Since we are dealing with multistage problems and the orders have release and due dates,

appropriate sets It,m and Mi,t can be defined to include the orders that can start at point t on machine m,

and the machines that can start processing order i at time t, respectively. This preprocessing step

significantly reduces the number of binary variables of the model.

The excess resource balances are typical multiperiod balances, where the availability of a resource at

time point t is equal to that at the previous time point, minus one if there is a task that consumes the

resource (starting at t, second term on the right hand side), plus one if there is a task ending at t (starting

at t-τi,m, third term on the right hand side). Note in eq 2 that the state of material from order i at stage k

is consumed whenever order i is processed on a unit belonging to stage k+1 (m∈Mk+1), and produced

whenever it is processed on a unit belonging to stage k, see also Figure 1. Eq 3 ensures that all orders

are processed on all stages and eq 4 avoids forbidden paths, i.e. orders processed on unit m cannot

proceed to unit m’ if that path is forbidden (m,m’) ∈FP.

7

TtMmNNRR
mmipt

mi

mt Ii
tmi

Ii
tmittmttm ∈∈∀+−+= ∑∑

−∈
−

∈
≠−= ,)1(

,,

,

,

,,,,11,1, τ (1)

TtKkIiNNSS

miti
k

mi

ti
k

Mm
Mm

tmi

Mm
Mm

tmitkitki ∈∈∈∀+−= ∑∑
−

+
∈
∈

−

∈
∈

− ,,

,,

,

,
1

,,,,1,,,,

τ

τ (2)

KkIiN
mi

k
iTt

Mm
Mm

tmi ∈∈∀=∑ ∑
∈

∈
∈

, 1
,

,, (3)

FPmmMmMmIiNN ii
Tt

tmi
Tt

tmi
mimi

∈∈∈∈∀≤+ ∑∑
∈∈

)',(,',, 1
',,

,',,, (4)

Three different objective functions are considered in this paper. The discrete-time formulation can

handle total cost minimization (eq 5) and total earliness minimization (eq 6) in a direct way, whereas a

different approach must be used for makespan minimization (described in section 3.1.1). In eq 6, the

second term on the right hand side represents the time corresponding to t=1 multiplied by the total

number of orders, while the third term represents the distance (in real time) from the ending point of all

orders in the last stage, to the beginning of the time horizon.

∑ ∑ ∑
∈ ∈ ∈mi iTt Mm Ii

mitmi cN
,

,,, min (5)

[]∑ ∑ ∑∑∑
∈

∈
∈

=
∈ ∈

∈
∈

−+⋅−⋅−=
mi

k
iTt

Mm
Mm

Kk
Kk Ii

mitmiiIiIi
i tNrId

,
||

,,,''
)1(min|| Zmin τδ (6)

3.1.1. Proposed algorithm for makespan minimization

In the discrete RTN-based formulation, the cardinality of set T (number of time points) is fixed. Since

the duration of each time interval is also fixed, the time corresponding to the last time point is known a

priori so it is not clear how to minimize the makespan. One possible solution is to define a new task that

consumes the final material states of all orders and then minimize the starting point of this new task.

Unfortunately, the resulting formulation behaves poorly and a different approach nust be used.

Maravelias and Grossmann16 have recently proposed an algorithm for minimizing makespan with

State Task Network discrete-time formulations. Starting with a relatively small number of time points,

the discrete-time STN model is solved iteratively (the number of time points is increased by one

8

between successive iterations) until a feasible solution is found. Although, this feasible solution may not

be the optimal solution for the objective function used (the authors used production maximization), it is

the optimal solution in terms of makespan, which is equal to the time corresponding to the last time

point of set T.

The algorithm used in this work is basically the same of Maravelias and Grossmann16. There are

however two differences due to the type of problem being considered, which is not a production

maximization problem. The first concerns the objective function used. Since the discrete-time

formulation has a better performance for total earliness minimization than total cost minimization (see

section 6.2), the former objective was preferred. The second concerns the estimation of the lower bound

for the cardinality of set T, i.e. the value of |T| to use in the first iteration: |T|0. This was calculated as

follows. First, we calculate the minimum number of time intervals required to complete order i, efti, by

adding up the existing number of time intervals until the release of the order (first term on the right-

hand side), to the lowest processing times of the order over all stages, eq 7. The maximum value among

the earliest finishing time can set |T|0, but usually this value is set following the calculation of the

predicted completion time in all stages. These values are calculated trough eq 8, where the numerator is

the sum over all orders of the minimum processing time in stage k and the denominator is the number of

machines in that stage. Like with efti, mctk is expressed in number of time intervals. The limiting stage,

KL, is assumed to be the stage with longest maximum completion time, eq 9. Finally, |T|0 is determined

by adding the maximum completion time, to the time that it takes to complete processing the fastest

order on the other stages, k∉KL. Since all these durations are in time interval units, we need to add 1 to

get the total number of time points in the grid (see Figure 2 and eq 10).

∑
∈ ∈

∈∈
+−=

Kk
mi

Mm
MmiIiii

k
i

rreft ,''
min/)min(τδ (7)

|)|/)min((CEIL , k
Ii

mi
Mm
Mmk Mmct

k
i

∑
∈ ∈

∈
= τ (8)

}max|{ '' kKkk mctmctkKL
∈

== (9)

9

1)minmax,maxmax(|| ,
0 ++= ∑

∉
∈

∈
∈
∈∈∈ mi

KLk
Kk

Mm
Mm
IikKLkiIi

k
i

mcteftT τ (10)

The calculated values of |T|0 are usually close enough to the value that ensures feasibility, meaning

that a relatively small number of iterations are required to find the optimal solution for makespan

minimization when compared to the total number of time points used, see section 6.3. However, special

problem features like forbidden paths tend to widen the gap between the lower bound and the optimal

value of |T|. Despite the large number of iterations required to find the optimal solution, this is a valid

approach since the infeasible problems are solved very fast, especially when the number of time points

is distant from the optimal value, and so is the first feasible problem, meaning that the total

computational time is still reasonably low, even for large MILPs. Overall, both the total computational

effort and number of iterations usually increase with a decrease in the interval length, δ. The proposed

algorithm is concluded by adding a new set of constraints to the discrete-time formulation, to ensure

that all orders end in the available time horizon. Eq 11 states that the final state of material must equal 1

at the last event point, for all orders.

IiS TKi ∈∀= 1|||,|, (11)

3.2. Continuous-time formulation (F2)

Continuous-time formulations require considerably fewer time points than their discrete-time

counterparts to find the global optimal solution to a particular problem. However, their performance is

much more dependent on the cardinality of set T meaning that this value must be selected carefully to

avoid generating intractable mathematical problems. An increase of |T| by one often has a large effect

on computational effort and because of this we need to solve a few MILPs, until the global optimal

solution is found. Like the discrete-time formulation, the continuous-time formulation uses a uniform

time grid, but now the duration of each time interval is not fixed (see Figure 3).

10

1 T
2 3 T-2 T-1

,[min i
Ii

r
∈

]max, iIi
d

∈

Interval 1 Interval 2 Interval T-2 Interval T-1

Figure 3. Uniform time grid for continuous-time formulation

The uniform-time grid continuous-time formulation10 uses sets of variables that are similar to those

used by the discrete-time formulation and the proposed multiple time grid formulation (see section 4).

The main differences are the following. First, it is required to identify both the starting and ending point

of a task, so the binary variables feature two time indices instead of one: ',,, ttmiN , where t identifies the

starting time point and t’ the ending time point. In order to decrease the complexity of the model it is

assumed that the each task can only span a limited number of time intervals, i.e. ttt ∆+≤' , where ∆t is

a parameter specified by the user, which if too small, may exclude the global optimal solution, similarly

to what happens with |T|. Second, since the time grid is common for all machines, the timing variables

only feature the time index: Tt. It is important to note that some binary variables can be eliminated from

the formulation by noting that at least one time interval is required per stage, meaning that orders

processed in units belonging to stage 2 can only begin at time point 2 and so on. Likewise, in the other

end of the time grid, orders processed in units belonging to stage |K|-1 can start at most at |T|-2 since at

least one time interval must be left to process the order in the last stage and no order can start at the last

time point. This information is used to define sets Im,t,t’ and Mt,t’, which include all orders that can be

processed on unit m starting at t and ending at t’ and all units that can be active between points t and t’,

respectively.

The model constraints are very similar to those used for the multiple time grid continuous-time

formulation. Eqs 12 to 20 form the main block of the uniform time grid continuous-time formulation.

For the minimization of total cost it is enough to add the objective function (eq 26), while for the

minimization of total earliness, eqs 21 to 23, together with the objective function (eq 27) are required.

Finally, for makespan minimization we need a new variable: MS (makespan), defined by eq 24. The

11

model is completed with eq 25 and the objective function (eq 28). Since the multiple time grid

constraints will be explained thoroughly in the next section, here we only focus on the most significant

differences. Besides the changes resulting from the use of a distinct set of binary variables, which

causes some of the terms to use one more summation, or the constraints to be defined over one more

time index, there are two important differences.

The use of a single time grid and the definition of material resources, like with the discrete-time

formulation, means that eq 13 is sufficient to ensure that any given order can only be processed at stage

k after stage k-1 has been completed. The uniform time grid formulation, however, does require the use

of a new set of variables, DDi, and a new set of constraints (eqs 21), to determine the delivery date of

order i, whenever the objective is the minimization of total earliness. Eq 21 states that the delivery date

of order i must not be greater than the absolute time of point t plus the order’s processing time in the last

stage if i starts to be processed in that stage, at time point t. It acts as an upper bound and since the

solver will try to maximize all DDi (see eq 27), no lower bounds are required. However, good lower

bounds were found to improve the performance of the formulation and these are given in eqs 22 and 23.

The former states that the delivery date of order i must not be lower than the ending time of the order in

the final stage if it starts at or after time point t, while the latter states that the delivery date must not be

lower than the absolute time of point t if the order ends at or before t.

TtMmNNRR
ttmttm Ii

tttt
Tt

ttmi
Ii

tttt
Tt

ttmittmttm ∈∈∀+−+= ∑ ∑∑ ∑
∈

<≤∆−
∈∈

∆+≤<
∈

≠−= ,)1(
',,',,

'
'

,',,

'
'

',,,11,1, (12)

TtKkIiNNSS

tt
k
i

tt
k
i

Mm
Mm
Mm

tttt
Tt

ttmi

Mm
Mm
Mm

tttt
Tt

ttmitkitki ∈∈∈∀+−= ∑ ∑∑ ∑
∈
∈
∈

<≤∆−
∈

∈
∈
∈

∆+≤<
∈

−

+

,,

',',
1 '

'
,',,

'
'

',,,1,,,, (13)

KkIiN

tt
k
i

Mm
Mm
Mm Tt

tttt
Tt

ttmi ∈∈∀=∑ ∑ ∑
∈
∈
∈ ∈

∆+≤<
∈

, 1

',

'
'

',,, (14)

ttttTttMmpNTT tt
Ii

mittmitt
ttm

∆+≤<∈∈∀≥− ∑
∈

',',, ',,',,,'
',,

 (15)

||,,)min(
',, '

'
'

'
'

'
'

',',,, TtTtMmprNT
ttm

m i
kIi

tttt
Tt

Kk
Kk

kk
Kk

Mm
Mm

miittmit ≠∈∈∀+≥ ∑ ∑ ∑ ∑
∈

∆+≤<
∈

∈
∈

<
∈

∈
∈

 (16)

12

||,,)1()min(
',,',,

'

'
'

',,,

'
'

',
'
'

'
'

',,, TtTtMmNHpdNT
ttmttm

m
i
k Ii

tttt
Tt

ttmi
Ii

Kk
Kk

kk
Kk

mi
Mm
Mmi

tttt
Tt

ttmit ≠∈∈∀−+−≤ ∑ ∑∑ ∑ ∑∑
∈

∆+≤<
∈∈

∈
∈

≥
∈ ∈

∈

∆+≤<
∈

 (17)

FPmmMmMmIiNN ii
Tt Tt

ttmi
Tt Tt

ttmi
tmitmi

∈∈∈∈∀≤+ ∑ ∑∑ ∑
∈ ∈∈ ∈

)',(,',, 1
',,'',, '

',,',
'

',,, (18)

TtrT iIit ∈∀≥
∈

 max (19)

TtdHT iIit ∈∀=≤
∈

 max (20)

||,,)1(

''',',

||
'
'

',,,
||

'
'

,',,, TtTtIiNdpNTDD

tt
k
i

tt
k
i

Mm
Mm
Mm Kk

tttt
Tt

ttmii

Mm
Mm
Mm Kk

tttt
Tt

mittmiti ≠∈∈∀−++≤ ∑ ∑ ∑∑ ∑ ∑
∈
∈
∈ =

∆+≤<
∈

∈
∈
∈ =

∆+≤<
∈

 (21)

||,,)1(

''',',

||
''''

''
'
'

'',',,
||

'
'

,',,, TtTtIiNHpNTDD

tt
k
i

tt
k
i

Mm
Mm
Mm Kk

tttt
Tt

tt
Tt

ttmi

Mm
Mm
Mm Kk

tttt
Tt

mittmiti ≠∈∈∀−−+≥ ∑ ∑ ∑ ∑∑ ∑ ∑
∈
∈
∈ =

∆+≤<
∈

≥
∈

∈
∈
∈ =

∆+≤<
∈

 (22)

1,,)1(

'','

||
''''

''
'
'

','',, ≠∈∈∀−+≥ ∑ ∑ ∑ ∑
∈
∈
∈ =

<≤∆−
∈

≤
∈

tTtIiNdTDD

tt
k
i

Mm
Mm
Mm Kk

tttt
Tt

tt
Tt

ttmiiti (23)

∑
=

=
||Tt

tTMS (24)

||,,)min(
',,

'

'
'

',
'
'

'
'

',,, TtTtMmpNMST
ttm

m
i
kIi

Kk
Kk

kk
Kk

mi
Mm
Mm

tttt
Tt

ttmit ≠∈∈∀−≤ ∑ ∑ ∑∑
∈

∈
∈

≥
∈ ∈

∈

∆+≤<
∈

 (25)

∑ ∑ ∑ ∑
∈ ∈ ∈ ∈',, '

,',,, min
tmi iTt Tt Mm Ii

mittmi cN (26)

∑
∈

−
Ii

ii DDd)(min (27)

MSmin (28)

4. New multiple time grid, continuous time formulation (F3)

The use of multiple time grids instead of a single time grid allows us to consider fewer time points,

and has been shown to be a very good option for single stage problems where the parallel units are

totally independent14. For multiple stages, the modelling task is not so easy because only units

belonging to the same stage do not interact. Equipment units belonging to consecutive stages that

process the same order, have the constraint that the machine belonging to stage k+1 can only start after

13

the one belonging to stage k has ended. The difficulty arises from the fact that unlike models that use

sequencing variables (see Harjunkoski and Grossmann5) the starting/ending time of an order on a given

stage is not known explicitly as a model variable. In the multiple time grid formulation, that information

comes from both the binary variable that identifies the execution of order i on machine m at time point t,

Ni,m,t, and the time corresponding to that event point, Tt,m. Thus, to model the transfer of material

between consecutive stages, we need to consider for each order all possible combinations between not

only pairs of units but also pairs of time points, which may lead to a very large number of constraints.

The number of constraints can be reduced if a new set of variables is added to the formulation, TDi,k,

which represent the transfer time of order i on stage k. This approach led to much better computational

performances and is the only one described next.

Figure 4 gives an overview of how the formulation works. For simplicity, it considers only one unit

per stage, three orders, three stages and four time points (the number of required time points on each

machine is equal to the number of orders assigned to that machine plus one). Note that each order only

lasts one time interval, but this does not necessarily mean that if the order starts at time point t that it

ends at point t+1. While this is true for orders I2 and I3 in the first stage (unit M1), order I1 ends at time

T1,1+p1,1, which is located before T2,1. In the first stage, the time corresponding to the start point of the

task must not be lower than the release date of the order, ri. Accordingly, in the last stage, orders must

be concluded before their due dates, di. The transfer time of materials from stage k to stage k+1 must not

be lower than the ending time of the order at stage k, and must not be greater than the starting time of

the order at stage k+1. In Figure 4, the transfer time of order I1 in stage 2 (TD1,2) can be any value

between T1,2+p1,2 and T2,3 and this is shown as a grey filled rectangle. In contrast, the transfer time of

order I2 in stage 2 (TD2,2) is exactly equal to both the ending time of the order in that stage, T2,2+p2,2,

and to the starting time of the order in the following stage, T1,3. Notice also that order sequencing can

vary from one stage to the other as seen for unit M2, which features I1-I2-I3, and unit M3, which has an

I2-I1-I3 sequence.

14

M1

M2

M3

iIi
r

∈
min HdiIi

=
∈

max

I1 I2

11,1 rT ≥ 21,2 rT ≥

1d≤

I1 I2

I2

1,1p 1,2p

2,1p 2,2p

3,2p
33,4 dT ≤

I3

1,3p
1,4T31,3 rT ≥

2,1T

1,1TD

1,22,2 TDT = 2,4T

I3

1,32,3 TDT =

2,23,1 TDT = 23,22,1 dTTD ≤≤

I1

3,1p
I3

2,33,3 TDT ≥

2,1TD 2,3TD

Figure 4. Possible solution from multiple time grid continuous-time formulation (|I|=3, |M|=3, |T|=4,

|K|=3)

It is worthwhile mentioning that the proposed multiple time grid continuous-time formulation has one

important conceptual difference from the one of Janak et al.12. In particular, there is no relation between

time points belonging to different time grids, so the problem can be solved to global optimality by using

the minimum number of time points possible. In contrast, the formulation of Janak et al.12 requires at

least one more time point per stage, due to their sequencing constraints relating different tasks in

different units and also the material balances. For instance, the schedule shown in Figure 5 requires: 2

time points for each unit by the proposed formulation, 4 time points per unit by that of Janak et al.12

(represented as n1-n4) and 7 time points total by the uniform-time grid formulation presented in section

3.2. Of course we cannot extrapolate these observations to actual computational performance because in

each case the nature of the model is different.

M1

M2

M3
2,1T

I1

n1

M4

M5

M6

I2

I3

I1

I2

I3

1,1T

4,1T

5,1T

6,1T

2,2T

3,1T 3,2T

2,1T

4,2T

5,2T

6,2T

n2

n3

n2

n3

n4

1T 2T 3T 4T 5T 6T 7T

Figure 5. Number of event points required by different approaches (|I|=3, |M|=6, |K|=2)

15

The constraints of the multiple time grid continuous-time formulation are given next, together with a

detailed explanation.

TtMmNNRR
mm Ii

tmi
Ii

tmittmttm ∈∈∀+−+= ∑∑
∈

−
∈

≠−= ,)1(1,,,,11,1, (29)

KkIiN
ki MmMm Tt

tmi ∈∈∀=∑ ∑
∈∧∈ ∈

, 1,, (30)

Eq 29 is a multiperiod balance on the unit availability, where Rm,t=1 if the machine is not used at time

interval t. Any task starting on unit m at time point t decreases the resource availability when compared

to the previous time point, while any task starting on machine m at time point t-1 increases the resource

availability at time point t. Due to the initial resource availability of one (first term on the right hand

side), only one order can be executed at a given time point. Eq 30 ensures that all orders are processed

exactly once on each stage.

||,, ,,,,,1 TtTtMmpNTT
mIi

mitmimtmt ≠∈∈∀≥− ∑
∈

+ (31)

Eq 31 states that if order i is processed on unit m at time t, then the difference in time between time

points t+1 and t on unit m must not be lower than the processing time of the task, pi,m. Note that if no

order is processed at time point t, the constraint is relaxed to Tt+1,m-Tt,m≥0.

||,,,)min(
'
'

',
'
',,,

'

TtTtMmKkprNT k
Ii

kk
Kk

mi
Mm
Mmitmimt

m i
k

≠∈∈∈∀+≥ ∑ ∑
∈

<
∈ ∈

∈
 (32)

||,,,)1()min(,,

'
'

',
'
',,,,

'

TtTtMmKkNHppdNT k
Ii

tmi
Ii

kk
Kk

mi
Mm
Mmmiitmimt

mm i
k

≠∈∈∈∀−+−−≤ ∑∑ ∑
∈∈

>
∈ ∈

∈
 (33)

Eq 32 is the release date constraint. It ensures that if a given order i is executed on unit m at time t,

then the time corresponding to time point t on unit m, Tt,m, must not be lower than the order release date,

if the unit belongs to the first stage (M1). For units belonging to subsequent stages, e.g. stage k,

appropriate lower bounds are given by adding the minimum processing times on each of the previous

stages k’|k’<k. Eq 33 is the equivalent due date constraint. It ensures that if order i starts on unit m at

time point t, then the corresponding time Tt,m does not exceed the difference between the order’s due

date (di) and its processing time on that unit (pi,m), if the machine belongs to the last stage (M|K|). For

16

units belonging to previous stages, appropriate upper bounds are given by subtracting the minimum

processing times on each of the subsequent stages. Note that if no order starts at that time point, the

constraint is relaxed to its upper bound, i.e. eq 43.

Up to this point the constraints proposed have little changes when compared to the single stage

multiple time grid continuous-time formulation given in Castro and Grossmann14. The new constraints

for the multiple stage case are given in eqs 34 to 40.

||,1,,,,)1(
'
'

',,,1, TtkTtIiMmKkNHTTD mk

tt
Tt

tmimtki ≠≠∈∈∈∈∀−+≤ ∑
≤
∈

− (34)

|||,|,,,,)1(

||'
'
'

',,,,,,, TtKkTtIiMmKkNHpNTTD mk

Tt
tt
Tt

tmimitmimtki ≠≠∈∈∈∈∀−−+≥ ∑
≠
≥
∈

 (35)

Eq 34 states that the transfer time of order i in stage k-1 cannot be higher than the time corresponding

to time point t, if order i starts to be processed on unit m (belonging to stage k) at that time point or at a

previous one. Eq 35 ensures that the transfer time of order i on stage k is not lower than the ending time

of order i on that stage. The constraint is active only if order i starts on unit m at time point t or at a

subsequent time point.

||,,
|| '

'
,,,,

'

KkKkIipNrTD
Tt
Tt

Mm
Mm

kk
Kk

mitmiiki

i
k

≠∈∈∀+≥ ∑ ∑ ∑
≠
∈

∈
∈

≤
∈

 (36)

||,,
|| '

'
,,,,

'

KkKkIipNdTD
Tt
Tt

Mm
Mm

kk
Kk

mitmiiki

i
k

≠∈∈∀−≤ ∑ ∑ ∑
≠
∈

∈
∈

>
∈

 (37)

1,,
||

,,,, =∈∈∀+≥ ∑ ∑
≠
∈

∈
∈

kKkIipNrTD
Tt

Tt
Mm
Mm

mitmiiki

i
k

 (38)

1||,,
||

,,,,
1

−=∈∈∀−≤ ∑ ∑
≠
∈

∈
∈ +

KkKkIipNdTD
Tt
Tt

Mm
Mm

mitmiiki

i
k

 (39)

||,1,,
||

,,,1,, KkkKkIipNTDTD
Tt
Tt

Mm
Mm

mitmikiki

i
k

≠≠∈∈∀−≥ ∑ ∑
≠
∈

∈
∈

− (40)

Eqs 36 and 37 are not required, but usually improve the performance of the formulation both for total

cost minimization (eq 47) and makespan minimization (eq 28). They act as lower and upper bounds on

17

the transfer times and are conceptually equivalent to eqs 32 and 33. For the objective of total earliness

minimization (eq 48) it was found that replacing eqs 36 and 37 by eqs 38-40 improved the performance.

Note that eqs 36/37 simplify to eqs 38/39 when applied to the first stage and the stage before the last,

respectively. When the plant consists of only two stages, eq 40 does not apply, otherwise it relates the

transfer times of consecutive stages.

FPmmMmMmIiNN ii

Tt
Tt

tmitmi ∈∈∈∈∀≤+∑
≠
∈

)',(,',, 1)(
||

,',,, (41)

TtMmrT iIimt ∈∈∀≥
∈

, min, (42)

TtMmdHT iIimt ∈∈∀=≤
∈

, max, (43)

Eq 41 avoids forbidden paths, while eqs 42 and 43 define the lower and upper levels of the timing

variables Tt,m. Note that these are usually weaker than constraints 32 and 33.

||

||

, K

Tt
Tt

mt MmTMS ∈∀≥ ∑
=
∈

 (44)

||,,,)min(
'
'

',
'
',,,,

'

TtTtMmKkppNMST k
Ii

kk
Kk

mi
Mm
Mmmitmimt

m i
k

≠∈∈∈∀+−≤ ∑ ∑
∈

>
∈ ∈

∈
 (45)

||,,
|| '

'
,,,,

'

KkKkIipNMSTD
Tt
Tt

Mm
Mm

kk
Kk

mitmiki

i
k

≠∈∈∀−≤ ∑ ∑ ∑
≠
∈

∈
∈

>
∈

 (46)

For the objective of makespan minimization a new variable is required. Eq 44 defines variable MS

(makespan) as the maximum ending time (absolute time of last time point) of the time grids

corresponding to machines belonging to the last stage. The performance of the mathematical

formulation can be greatly improved with the addition of two more sets of constraints, eqs 45 and 46,

which significantly lower the integrality gap. Although these are quite similar to eqs 33 and 37, they are

tighter constraints whenever the makespan is lower than the order’s due date. Note that in eq 45, the

makespan is a valid upper bound on the timing variables even when no order starts at time point t,

whereas in eq 33 the big-M term is required to account for that case.

∑ ∑ ∑
∈ ∈ ∈Tt Mm Ii

mitmi
i

cN ,,, min (47)

18

)]1|(||||[|)(min ||

||

,,,,
||

−−−+−∑ ∑ ∑∑
≠
∈ ∈ ∈∈

TMIHpNTd K

Tt
Tt Mm Ii

mitmimt
Ii

i
K m

 (48)

The objective of total cost minimization (eq 47) and makespan minimization (eq 28) are easy to

define. In contrast, the objective of total earliness minimization (eq 48) is difficult to understand unless

we note that since every task lasts only one time interval, we know a priori how many time points (of

machines belonging to the last stage) will end being equal to their upper bound, H. The last term on the

right hand side of eq 48, subtracts the starting times, which are accounted for in variables Tt,m, of such

time points.

In summary, the multiple time grid continuous-time formulation has constraints 29-35 and 41-43 as

its main block, and a few objective-specific sets of constraints. These are eqs 36-37 and 47 for total cost

minimization, eqs 38-40 and 48 for total earliness minimization and eqs 28, 36-37, 44-46 and 49 for

makespan minimization.

5. Other approaches

Harjunkoski and Grossmann5 presented MILP, CP and hybrid MILP/CP models to address the

multistage batch scheduling problem for total cost minimization. In this section, we highlight their main

features and present the changes required to efficiently address the other two objectives considered in

this paper.

5.1. MILP model with global precedence sequencing variables (F4)

The MILP model of Harjunkoski and Grossmann5 uses binary variables yi,m to assign order i to

machine m, and binary sequencing variables xi,i’,k that equal one when order i precedes (global

precedence and not just immediate precedence) order i’ in stage k. In addition, the model also uses

operational variables zm to identify the use of unit m. The objective function used was total cost

minimization plus a term that accounted for the initialization cost of units. In this paper, we are only

concerned with common scheduling objective functions so the MILP was simplified by removing

variables zm from the formulation. As a consequence, constraint 33 from their original work was

19

dropped. The other objective functions under study, total earliness minimization and makespan

minimization, can be implemented as follows, where the nomenclature of their original paper is used

except for the new makespan variable.

∑ ∑
∈

=
∈

−
Ii

Kk
Kk

ik
d

i cT)(min
||

 (49)

IicMS
Kk
Kk

ik ∈∀≥ ∑
=
∈

||

 (50)

)(,)}(min{min

)}(min{min)(

','
''ˆ)',(),'('

','
''ˆ)',(),'('

kMmKkTTT

TTMSTTy

kkKk

s
m

p
imBmikMm

r
iIi

kkKk

s
m

p
imBmikMmIi

s
m

p
im

Ii
im

∈∀∈∀++−

+−≤+

∑

∑∑

<∈ ∉∈∈

>∈ ∉∈∈
∈ (51)

Eq 49 defines the objective of total earliness as the sum over all orders of the difference between the

due date and the completion time of the order in the last stage. The makespan must not be lower than the

completion time of order i in stage |K|, eq 50. For makespan minimization, it is also convenient to

replace constraint 41 of their original work with eq 51, since a better upper bound on the time horizon is

the makespan instead of the maximum due date.

5.2. Constraint programming model (F5)

The CP model of Harjunkoski and Grossmann5, F5, is based on the OPL Studio modelling language17

and it takes advantage of special constructs designed for solving scheduling problems. The two main

components of scheduling models in OPL Studio are activities and resources. For the scheduling

problem at hand, the activities correspond to the processing tasks (order i, stage k), while each available

equipment unit is defined both as a unary resource and as an alternative resource from the full set of

machines. It is important to mention that the variables linked to a particular activity (start, duration and

end) are of type integer. Besides these special variables, the CP model uses binary variables yi,m to

assign order i to unit m, like the MILP model F4. In CP models, unlike MILPs, max functions can be

used to define the model constraints. Thus, if one uses Harjunkoski and Grossmann5 nomenclature, the

20

objective of total earliness and makespan minimization can simply be written by eqs 52 and 53,

respectively.

)|].|,[(min endKiStageT
Ii

d
i∑

∈

− (52)

[]).||,(maxmin endKiStageZ
Ii∈

= (53)

5.3. Hybrid MILP/CP model

Harjunkoski and Grossmann5 also considered a hybrid MILP/CP model, where the scheduling

problem is decomposed in two parts. The first concerns the assignment problem and is formulated as a

MILP, a simplified version of the full MILP, one without the constraints involving the sequencing

variables. Once the assignments are known, a CP optimization problem is solved to minimize the

weighted sum of the total violation of the due dates and the number of late orders. If there are no late

orders, the assignments and sequences are valid and the optimal solution has been found. Otherwise,

integer cuts are added to the MILP to avoid generating the assignments already tested. In multistage

problems, unlike in single stage problems (Jain and Grossmann15), valid cuts are rather weak and a large

number of iterations can be expected before the optimal solution is found. An alternative is to use

stronger heuristic cuts that my cut-off the true optimal solution. By doing this, the authors were able to

devise an efficient hybrid algorithm, which for virtually all problems gave the correct optimal solution.

However, since their method was devised for a case where the objective function depends solely on the

assignment variables and not on the sequencing variables (it is expected that the CP subproblems

become much more difficult to solve if the sequencing variables influence the objective function), the

hybrid model of Harjunkoski and Grossmann5 is not considered in this paper.

6. Computational results

In this section, the performance of the five different approaches is illustrated trough the solution of

thirty example problems. These are identified by a number and two additional characters where the last

identifies the objective function being considered, e.g. C for total cost minimization, E for total earliness

21

and M for makespan. Problems P1-P8 correspond to the multistage example problems 2.1-5.2 of

Harjunkoski and Grossmann (2002). The data for problems P9-P10 are given in Table 1 and Table 2.

The four MILP models were solved to optimality (1E-6 relative tolerance), unless otherwise stated, by

the commercial solver GAMS/CPLEX 9.0, whereas the CP model was solved in ILOG’s OPL Studio

3.7.1. The computer used was a Pentium-4 2.8 GHz processor running Windows XP Professional. The

computational effort required to solve the several test problems for the three different objective

functions is given in Table 3 through Table 5, while more detailed computational statistics are left for

Table 6 through Table 17.

6.1. Minimization of total cost

As can be seen from Table 3 the discrete-time formulation (F1) is a reasonable performer overall and

the best one for P10C. Its performance is greatly influenced by the number of time points that are

required to represent the exact problem data (i.e. for δ=1). Problems P1C-P8C require a very large

number of time points, while the number for P9C/P10C is more reasonable (see Table 6 to Table 9).

Fewer time points means fewer variables and constraints so even if the number of orders, units and

stages increases, it might be easier to solve the mathematical problem (e.g. P10C is a more complex

problem than P5C but it is solved much faster since it requires 283 time points while P5C needs 1001,

see Table 7 and Table 9). Despite the very large number of time points required for most of the

problems, all but P7C-P8C (δ=5 in order to maintain tractability since no solution was found for δ=2

after 10,000 CPUs) could be solved to optimality, with the exact problem data, in less than half an hour.

This is only possible because of the following. First, the resulting MILPs have very low, if not zero,

integrality gaps. Furthermore, it is very easy for CPLEX to find the optimal solution, which is often the

first feasible solution and is usually found on the root node of the branch and bound tree. Second, most

of the tasks can only start at a subset of the time points (Ti,m), which depending on the order’s release

and due dates and on the number of stages, can result in significantly fewer binary variables Ni,m,t than

22

those predicted by multiplying |I|×|M|×|T| (e.g. problem P5C requires 40341 binary variables as opposed

to 10×6×2001=120060).

The constraint programming model (F5) is related to the discrete-time model in the sense that they

both consider integer data only. However, contrary to the discrete-time formulation, CP does not divide

the time horizon into several time intervals, meaning that the number of variables and constraints is

independent on the relation between the processing times and the time span. As a consequence, the

computational effort depends solely on the complexity of the problem and is clear from Table 3 that as

the number of orders, units and stages increases so does the computational effort, with CP being unable

to find the optimal solution for problem P9C and proving optimality for P10C. In this respect, notice

that problems P7C and P8C use more variables and constraints than P9C, but take much less time to

solve (see Table 8 and Table 9). Overall, F5 is only the best performer for P1C, but has the advantage of

always finding relatively good solutions very fast. More computational time means better solutions

although it has been found that the additional computational effort for further improvements in the

objective function usually increases rapidly (e.g. the best solution for P9C, 94, was found after 936

CPUs and no further improvements were observed until the termination time of 20000 CPUs, with the

solution being still relatively distant from the optimum of 88).

Concerning the continuous-time formulations, it is clear from Table 3 that solving multistage

problems with a uniform time grid formulation (F2) is the worst option of the five considered in this

paper. Solving a particular problem implies specifying both the total number of time points, |T|, and the

number of time points allowed between the beginning and end of a particular task, ∆t. Adequate values

for both of these entities are not easy to predict and this is a very important issue since they greatly

influence the quality of the solution returned and the computational effort. There is, however, an easy

way to predict the minimum number of time points required to find a feasible solution to the problem.

Assuming the same number of units per stage (a feature shared by all test problems), the following

formula can be used: CEIL(|I|×|K|/|M|)+|K|. This formula predicts for problems P1C-P4C and P9C, 5

and 7 time points, respectively. Interestingly, the predicted minimum value is sufficient to find the

23

optimal solution for problems P3C-P4C (with ∆t=1, see Table 6), whereas problems P1C-P2C require 6

and 7 time points (with ∆t=2). A good solution (cost=91) can be found for problem P9C for |T|=7 and

∆t=1 in just 28 CPUs, but no further improvements were observed for |T|=8 and ∆t=2 after 20,000

CPUs. Clearly, the uniform time grid continuous-time formulation is only competitive for smaller

problems with lowly constrained schedules (this means that the duration of the tasks can be extended

past their processing time in order for them to end at the next limiting time point and hence reduce the

total number of time points, further details can be found in Castro et al.10). As schedules become more

constrained and the values of both |T| and ∆t required to find the optimal solution increase, so do the

number of variables and constraints, the integrality gap and the computational effort, which when added

to the uncertainty of finding adequate values for those two entities, means that not even a feasible

solution may be found in a reasonable amount of time (e.g. problems P5C-P8C, P10C).

The proposed multiple time grid continuous-time formulation (F3) is much more efficient than its

uniform time grid counterpart (F2). Recall, that using one time grid per machine ensures that all

processing tasks only last one time interval (see section 4), which is the same as saying that ∆t can be

set to one without risk of compromising the optimal solution. However, we still have to search for the

optimal solution over |T|. The predicted minimum number of time points to find a feasible solution to

the problem is calculated slightly different from the formula used for the uniform time grid since now

all processing tasks can start at the first time point and not just the ones belonging to the first stage.

Accordingly, all tasks can end at the last time point and not just the ones belonging to the last stage. The

formula to use is the following: 1))|M||I|(max(CEIL k +
∈Kk

. Usually, the value of |T| that ensures

optimality is very close to the predicted minimum number. However, special plant characteristics, like

forbidden paths may increase the gap, e.g. for problems P7C and P8C the predicted minimum number is

equal to 7, while 13 time points are required to find the global optimal solution. Overall, the proposed

formulation has very good overall performance and is the best by far for problem P7C. However, it was

unable to find the optimal solution for problem P9C (cost of 89 vs. 88) in 20,000 CPUs, even though the

24

integrality gap was reduced to zero (when comparing to the optimal solution) earlier in the search. A

different search strategy other than default may reduce dramatically the computational time, but this is

beyond the scope of this paper.

Of the three continuous-time formulations tested, the MILP model with sequencing variables of

Harjunkoski & Grossmann5, F4, has the best overall performance. When compared to the proposed

formulation, F3, it has the advantage of not being dependent on a priori model parameters (i.e.

specifying |T|) that may compromise optimality. Furthermore, it requires fewer variables and constraints

to model a particular problem. However, even though it was the best performer for P2C-P6C (see Table

3) and P8C-P9C, much better performances (by over one order of magnitude) were achieved by the

proposed formulation for P7C and by the discrete-time formulation for P10C.

The optimal solution for problem P10C, with cost=154, is given in Figure 6. The machines have

plenty of waiting periods but this was expected since the times at which the orders begin to be processed

do not influence the objective function except for the fact that order’s release and due dates must be

respected. Of the total 40 assignments only 5 are not low cost assignments. Although this solution

features the same number of orders per machine, this objective function typically leads to schedules

with more orders being assigned to the most favourable machines (e.g. P3C and P5C-P6C) if of course

enough time is available to process them.

0 50 100 150 200 250

M1

M2

M3

M4

M5

M6

M7

M8

8

3 1

10

69 2

47 5

2 18

10

5

9

3

47 6

9

38

1 52 4

7 10 6

478

10

5

329

1

6

Stage 1

Stage 2

Stage 3

Stage 4

Figure 6. Optimal solution for problem P10C

25

6.2. Minimization of total earliness

While the objective of total cost minimization is only dependent on the assignments of orders to units,

the objective of total earliness minimization also depends on the starting time of the orders on the last

stage. This means that more variables are contributing for the objective function and that the degree of

degeneracy is lower, which typically leads to a decrease in the computational effort. However, other

factors may lead to an increase in the computational effort, e.g. higher integrality gap, which may be

more important than the lower degree of degeneracy. Generally, it was found that the objective of total

earliness minimization is more difficult to handle (see Table 10 to Table 13). The exception is the

discrete-time formulation, and this is the reason why this objective is preferred in the algorithm for

makespan minimization (see section 3.1.1).

The results in Table 4 show that the discrete-time formulation is the best approach for total earliness

minimization. It was possible to use the real data for 8 of the 10 test problems and hence find the global

optimal solutions even when using a very large number of time points (e.g. problem P6E requires 2001

time points). The two exceptions were problems P7E and P8E, mainly because of the large integrality

gap (see Table 12) due to the several forbidden path constraints. Nevertheless, we can still solve P7E

rather fast with δ=2 (whereas no solution was found for P7C after 10,000 CPUs) while P8E was solved

with δ=5 (no solution was found after 20,000 CPUs for δ=2). If the problem data allows for the use of a

few hundred time intervals, it is expected that a further increase in complexity of the scheduling

problem can still be handled by the discrete-time formulation.

The constraint programming formulation (F5) has also very good performance for the P1E-P8E. For

all of these problems the optimal solution could be found in less than 30 CPUs. However, for P7E-P8E

optimality could not be proved up to 20,000 CPUs and 55,000 CPUs, which does not favour the

performance of CP. Furthermore, the best solution found for P9E in 50,000 CPUs is still very distant

from the optimal solution (547 vs. 228), while for P10E, the best solution up to 45,000 CPUs is also

non-optimal (189 vs. 184). Overall, the objective of total earliness minimization is the most difficult to

26

tackle by the constraint programming model. This is not surprising since the objective function involves

many variables (see Hooker18).

The general continuous-time formulation (F2), like for total cost minimization, can only solve the four

simplest instances and P9E, but now it does it with considerable more effort. This can be partially

explained by an increase in the number of constraints (constraints 21-23 need to be added to the

formulation, see section 3.2), but more importantly by an increase in the number of time points and the

value of ∆t that are required to find the global optimal solution. Notice for instance that while |T|=5 and

∆t=1 are enough for P4C, |T|=9 and ∆t=2 are not enough for P4E. As a consequence, the global optimal

solution could only be found for the two simplest instances P1E/P2E and for the latter, at 20,000 CPUs

the solver was still far from proving optimality. The best solutions found for P3E and P4E, 137, are very

close to the global optimal solutions of 135, whereas due to the use of the minimum number of time

points that ensures feasibility, the solution found for P9E (649) is very distant from the optimal one,

228.

While the number of time points increases for the uniform time grid formulation (F2), it usually

remains the same or even decreases for the multiple time grid formulation (F3), when switching from

total cost minimization to total earliness. Since in F3, the number of time points required is equal to the

maximum number of orders assigned to a unit plus one, this tells us that there usually is at least one unit

with more orders assigned to for total cost minimization, which is natural since the unit in question will

typically be a low cost one. On the other hand, for total earliness minimization, time also matters, so

there will be a more balanced distribution of orders through the available machines. The results show

that the minimum number of time points that ensures feasibility (see formula in section 6.1) usually also

ensures optimality (e.g. P1E-P6E, P10E). The results in Table 4 also show that the proposed

formulation is very efficient for total earliness minimization, and that it is the best performer for

problems P1E/P3E and P9E (2 stage problems). However, it is clear that its performance degrades as the

number of stages increases with no solution being found for P10E (4 stage problem) up to 20,000 CPUs,

even though 6 time points are enough to find a global optimal solution (see Figure 7). This can be

27

explained by noting that for each additional stage, more transfer times need to be determined by the

model (variables TDi,k) and that these are related to the times of the several time points by very complex

constraints (eqs 34-35, 38-40). Of the three continuous-time formulations, F3 usually has the lowest

integrality gap.

The continuous-time formulation with sequencing variables (F4) performs again very well and is the

best for problems P5E-P8E. Now, a substantially decrease in performance seems to occur with an

increase in the number of orders since the optimal solution for P9E (15-order problem) could not be

found up to 18,000 CPUs (CPLEX ran out of memory with best solution found, 244, still distant from

the optimum of 228). This can be explained by noting that F4 uses sequencing variables (xi,i’,k) with two

indices for orders, so the number of sequencing variables per stage increases significantly making the

problem much more difficult to solve even if the total number of variables and constraints remains

basically the same when compared to P7E-P8E (see Table 12 and Table 13). It is also very difficult to

prove optimality for P10E, with the solution for the relaxed MILP being still at 172 (optimum is 184)

after 20,000 CPUs. Interestingly, the optimal solution is found in few minutes and the integrality gap

remains constant after the hour.

The schedule shown in Figure 7 is an optimal solution for problem P10E (earliness=184). It can be

seen that are several waiting periods, some lasting quite a while, particularly in machines belonging to

the intermediate stages. Although some can be explained by the machine’s need to wait for the material

coming from the previous stage, it is clear that there is a lot of free time, meaning that this problem is

highly degenerate but not as much as its total cost counterpart. Of the ten orders that make the problem,

only three (I1, I5 and I6) are exactly delivered at their due dates. It is also interesting to note that the

order completion sequence (I3-I4-I2-I7-I9-I8-I1-I10-I6-I5) is the same for the last 5 orders as that given

by the earliest due date (EDD) heuristic, although the same is not true for the first 5 orders (I7-I9-I4-I2-

I3).

28

0 50 100 150 200 250

M1

M2

M3

M4

M5

M6

M7

M8

Stage 1

Stage 2

Stage 3

Stage 4

8 3 1 10 6

9 2 4 7 5

2 1 8 10 5

9 3 4 7 6

9 3 8 1 5

2 4 7 10 6

4 7 8 10 5

3 2 9 1 6

Figure 7. Optimal solution for problem P10E

6.3. Minimization of makespan

The objective of makespan minimization is the hardest of the three studied in this paper for the

discrete-time formulation (F1) and for the continuous-time formulation with sequencing variables (F4),

but is also the easiest one for the constraint programming model, F5 (see Table 5 and Table 14 to Table

17). In terms of solution degeneracy, this objective lies between that of total cost minimization and total

earliness minimization since the assignments and starting times of all processing orders belonging to the

limiting machine(s) and/or paths (transfer of material between consecutive stages) will contribute to the

makespan.

The fact that the hardest objective for the mathematical programming approaches is the easiest

objective for constraint programming is in agreement with observation by Hooker18, who has

highlighted their complementary strengths. To explain the good performance of CP for makespan

minimization there is need to recall that the optimization process is performed by gradually tightening a

bound on the objective function value. That is, the objective is treated as an additional constraint in the

search. Unlike for the other two objectives, updating the objective function in makespan minimization

leads to the tightening of the time horizon, which has a direct influence on the domain reduction of the

model variables. Since this is one of the methods (together with constraint propagation) used by CP

solvers to accelerate the search, the reason for the good performance is now clear. Generally, CP is the

29

best approach for makespan minimization although it is outperformed by the proposed formulation for

problems P6M-P8M and by the discrete-time formulation for P10M.

Despite the need of a special algorithm to tackle this objective with a discrete-time formulation, we

could still solve most of the problems (P1M-P4M, P9M-P10M) for the exact problem data (δ=1) and for

five of them (the exception is P9M, see Table 17), this was done in less than one hour of computational

time (note however that the reported CPU times do not include the generation time, which for the

largest problems, in terms of variables and constraints, may be equal to one or two minutes per

iteration). Like for the other two objectives, P7M and P8M are only tractable for larger interval lengths,

which now are higher than before (δ=10). Nevertheless, the optimal solutions are close enough to the

global optimal solutions (1470 vs. 1456 and 1660 vs. 1655, see Table 16); for P5M and P6M, δ=2, the

difference was even smaller (1442 vs. 1435 and 1398 vs. 1394, see Table 15). With the exception of

P7M and P8M, which have several forbidden paths, and P2M, the predicted lower bound for the

cardinality of |T| is within 10% of the required value that ensures feasibility in terms of earliness

minimization and hence optimality in terms of makespan minimization. This ensures that the required

number of iterations remains reasonable, thus guarantying the efficiency of the proposed approach.

More specifically, it is the best approach for P10M, despite requiring 21 iterations to find the optimal

solution.

The uniform time grid, continuous-time formulation (F2), has again the worst performance of the five.

However, it could still find the global optimal solutions for problems P1M-P4M, even though optimality

could not be proved for P4M, and a reasonable solution for P9M (makespan=271 vs. 235). The values

of |T| and ∆t that ensure global optimality were found to be greater or equal to those required for total

cost minimization and less or equal to those required for earliness minimization. Again this was

expected, since tasks performed on non-limiting machines (at a given point in time) can have their

duration extended in order to decrease the total number of time points required, while those that belong

to the limiting path cannot, since they directly affect the makespan.

30

The proposed formulation (F3) requires the exact same number of time points to find the global

optimal solution in makespan minimization as in total earliness minimization. Despite not being able to

prove optimality for P9M and finding the optimal makespan for P10M (259 vs. 252) it has a very good

overall performance being second only to the constraint programming model. The continuous-time

formulation with sequencing variables (F4) could not prove optimality for P7M up to 20,000 CPUs and

returned suboptimal solutions for problems P8M-P10M, the last one being terminated because the

solver ran out of memory.

The optimal solution for P9M (the hardest problem), with a makespan of 235, is given in Figure 8. It

is a very constrained schedule in terms of equipment utilization since there are only two waiting periods

(1 time unit in M1 between I14 and I9, and 4 time units in M6 between I11 and I9). The makespan is set

by M5 (235) although M4 and M6 end only a bit earlier, at 233. The first three orders to be processed in

stage 1 (I10, I11 and I14) are those with the lowest release dates, which is consistent with the fact that

the equipments need to start processing as soon as possible in order to minimize the makespan. After the

transfer of I10 from stage 1 to stage 2 (M3 to M5), M5 becomes the limiting equipment even though it

receives orders I15 and I12 just before the equipment becomes available (95 vs. 98 and 120 vs. 121,

respectively). Note also that all orders are delivered well before their due dates.

0 50 100 150 200

M1

M2

M3

M4

M5

M6

Stage 1

Stage 2

14 9 4 8 6

11 13 15 2 5

10 7 12 1 3

14 13 4 3

10 15 12 2 6

11 9 7 8 1 5

Figure 8. Optimal solution for problem P9M

31

7. Conclusions

This paper has presented a new continuous-time formulation for the short-term scheduling of

multistage multiproduct batch plants where product orders are subject to both release and due dates. It is

an extension of the formulation developed for the single stage case14 since the formulation also relies on

the use of multiple time grids, one for each equipment resource. While for the single stage case each

machine is independent from the other, for multiple stages this is not true since any order can only start

to be processed on a given stage after its processing has been completed in the previous stage. To model

this plant characteristic, a new set of variables (the transfer times of the orders on the several stages) and

new sets of constraints were developed. The proposed formulation was shown to be very efficient for

the three different objective functions considered in this paper, minimization of total cost, total earliness

and makespan.

The other goal of the paper has been to provide a critical review of other approaches that can also

solve this specific type of scheduling problem. These included a RTN-based discrete-time formulation8,

a RTN-based continuous-time formulation10, a continuous-time model with global precedence

sequencing variables5 and a constraint programming model5. A total of 30 examples were solved and

the results allowed us to arrive at the following conclusions.

The most important conclusion is that there is not an ideal approach for all types of problems and

objective functions. Besides the uniform-time grid continuous-time formulation, which is clearly

inferior, all other four approaches have its strengths and drawbacks. Like for the single stage case14, the

discrete-time formulation was shown to have a very good performance, particularly for total earliness

minimization, despite generating very large MILPs when considering the exact problem data. The

number of time points used to model the scheduling problem plays a role at least as important as its

complexity in terms of number of orders, machines and stages. For makespan minimization with a

discrete-time formulation, an indirect approach must be used. This paper presents an efficient algorithm

that accomplishes this goal. It is based on previous work16 but uses a different method to estimate the

lower bound on the makespan and a different objective function (earliness minimization) in the search

32

for the optimal makespan. For all test problems not featuring forbidden paths, the predicted lower bound

was within 10% of the optimal makespan.

Smaller to medium sized problems requiring a very large number of time points by the discrete-time

formulation, are more efficiently solved by continuous-time formulations. The performance of the

proposed multiple-time grid continuous-time formulation clearly shows that is better to use several time

grids instead of a uniform time grid. It should be noted, however, that in these problems the interaction

between the different units was limited to the material transfer between different stages. Other features

such as common resources and/or shared intermediate storage are probably better handled by uniform

time grid approaches. The proposed formulation outperformed the continuous-time formulation with

sequencing variables for makespan minimization, and performed similarly for the other two objectives.

In terms of problem characteristics, the results suggest that the former should be preferred as the

number of orders increases and the number of stages decreases. Finally, the constraint programming

approach has the disadvantage of considering integer data only, like the discrete-time formulation, and

also shows a rapidly decrease in performance with an increase in problem complexity. However, it was

found to be the best approach for the objective of makespan minimization.

Acknowledgments

The authors gratefully acknowledge financial support from Fundação Calouste Gulbenkian and from

the Centre for Advanced Process Decision-making at Carnegie Mellon.

Nomenclature

Sets/Indices
FP=forbidden paths, pairs of machines (m,m’) where orders processed in m cannot proceed to m’
I/i, i’= process orders
Im= orders to be processed on machine m
Im,t,t’=orders than can be processed on machine m starting at time point t and ending at t’
It,m= orders that can start at time point t on machine m
K/k=process stages
KL=predicted limiting stage for makespan minimization using discrete-time formulation
Km=stages including machine m

33

M/m= process equipments (machines)
Mi=machines that can process order i
Mi,t=machines that can start processing order i at time point t
Mk=machines belonging to stage k
Mt,t’=machines that can be active between time points t and t’
T/t, t’,t’’=Points of the time grid
Ti,m=time points where order i can start to be processed on machine m
Ti,m,t’=time points where order i can start to be processed on machine m in order to end at time point t’
Parameters
ci,m=cost of processing order i on machine m
di=due date of order i

id =normalised due date of order i (for discrete-time formulation)
efti=earliest ending time of order i (time intervals)
H=time horizon
mctk=predicted completion time in stage k (time intervals)
pi,m=processing time of order i on machine m
ri=release date of order i

ir =normalised release date of order i (for discrete-time formulation)
δ=duration of each time interval on the discrete-time grid
∆t=number of event points allowed between the beginning and end of a processing task
τi,m=processing time of order i on machine m as an integer multiple of δ
Variables
DDi=delivery date of order i
MS=makespan
Ni,m,t=binary variable that assigns the start of order i on machine m to time point t

',,, ttmiN =binary variable that assigns the end of order i, processed on machine m, which began at t, to
event point t’

Rm,t=excess amount of machine m at time point t
Si,k,t=excess amount of material resulting for order i produced at stage k at time point t
Tt=absolute time of event point t
Tt,m=absolute time of event point t on machine m

34

References

(1) Pinto, J.; Grossmann, I.E. Assignment and sequencing models for the scheduling of chemical

processes. Annals of Operations Research. 1998, 81, 433-466.

(2) Raman, R.; Grossmann, I.E. Modeling and computational techniques for logic based integer

programming. Comp. Chem. Eng. 1994, 18, 563.

(3) Hentenryck, P.V. Constraint satisfaction in logic programming. MIT Press: Cambridge, MA,

1989.

(4) Méndez, C.; Cerdá, J. An efficient MILP continuous-time formulation for short-term scheduling of

multiproduct continuous facilities. Comp. Chem. Eng. 2002, 26, 687.

(5) Harjunkoski, I.; Grossmann, I.E. Decomposition Techniques for Multistage Scheduling Problems

using Mixed-integer and Constraint Programming Methods. Comp. Chem. Eng. 2002, 26, 1533.

(6) Gupta, S.; Karimi, I.A. An Improved MILP Formulation for Scheduling Multiproduct Multistage

Batch Plants. Ind. Eng. Chem. Res. 2003, 42, 2365.

(7) Kondili, E.; Pantelides, C.C.; Sargent, R. A General Algorithm for Short-Term Scheduling of

Batch Operations I. MILP Formulation. Comp. Chem. Eng. 1993, 17, 211.

(8) Pantelides, C.C. Unified Frameworks for the Optimal Process Planning and Scheduling. In

Proceedings of the Second Conference on Foundations of Computer Aided Operations; Cache

Publications: New York, 1994; pp 253.

(9) Maravelias, C.T.; Grossmann, I.E. New General Continuous-Time State-Task Network

Formulation for Short-Term Scheduling of Multipurpose Batch Plants. Ind. Eng. Chem. Res. 2003, 42,

3056.

35

(10) Castro, P.M.; Barbosa-Póvoa, A.P.; Matos, H.A.; Novais, A.Q. Simple Continuous-Time

Formulation for Short-Term Scheduling of Batch and Continuous Processes. Ind. Eng. Chem. Res. 2004,

43, 105.

(11) Giannelos, N.F.; Georgiadis, M.C. A Simple Continuous-Time Formulation for Short-Term

Scheduling of Multipurpose Batch Processes. Ind. Eng. Chem. Res. 2002, 41, 2178.

(12) Janak, S.L.; Lin, X.; Floudas, C.A. Enhanced Continuous-Time Unit-Specific Event-Based

Formulation for Short-Term Scheduling of Multipurpose Batch Processes: Resource Constraints and

Mixed Storage Policies. Ind. Eng. Chem. Res. 2004, 43, 2516.

(13) Floudas, C.A.; Lin, X. Continuous-time versus discrete-time approaches for scheduling of

chemical processes: a review. Comp. Chem. Eng. 2004, 28, 2109.

(14) Castro, P.; Grossmann, I.E. An Efficient MILP Model for the Short-term Scheduling of Single

Stage Batch Plants. Submitted to Comp. Chem. Eng.

(15) Jain, V.; Grossmann, I.E. Algorithms for Hybrid MILP/CP Models for a Class of Optimization

Problems. INFORMS Journal on Computing. 2001, 13, 258.

(16) Maravelias, C.T.; Grossmann, I.E. Minimization of the Makespan with a Discrete-Time State-

Task Network Formulation. Ind. Eng. Chem. Res. 2003, 42, 6252.

(17) van Hentenryck, P. The OPL Optimization Programming Language. MIT Press: Cambridge, MA,

1999.

(18) Hooker, J.N. (2002). Logic, optimization and constraint programming. INFORMS Journal on

Computing. 2002, 14, 295-321

36

List of Tables

Table 1. Data for problem P9

 Dates pi,m/ci,m
Order ri di M1 M2 M3 M4 M5 M6
I1 87 377 37/4 30/5 37/4 70/3 63/4 20/8
I2 55 396 51/2 42/3 40/3 70/3 66/3 57/4
I3 112 263 48/2 51/2 32/4 32/7 25/8 63/4
I4 28 375 30/5 57/1 56/1 57/4 58/4 63/4
I5 79 281 32/4 53/2 42/3 59/4 38/6 28/7
I6 24 256 43/3 50/2 58/1 68/3 21/8 33/7
I7 15 400 48/2 38/4 44/3 65/4 70/3 50/5
I8 108 285 31/5 44/3 52/2 56/4 53/5 20/8
I9 50 300 30/5 43/3 58/1 46/5 38/6 35/6
I10 14 246 33/4 51/2 29/5 61/4 55/4 54/5
I11 4 384 56/1 28/5 40/3 46/5 67/3 44/6
I12 20 271 45/3 47/3 33/4 60/4 27/7 43/6
I13 21 384 58/1 33/4 31/5 66/3 61/4 56/4
I14 13 283 36/4 42/3 34/4 29/7 34/7 45/5
I15 58 399 46/3 30/5 52/2 62/4 23/8 44/6

Table 2. Data for problem P10

 Dates pi,m/ci,m
Order ri di M1 M2 M3 M4 M5 M6 M7 M8
I1 65 238 30/3 25/4 18/5 24/2 35/6 42/4 29/5 31/4
I2 22 227 26/4 27/4 12/7 24/2 31/8 36/6 32/4 28/5
I3 40 230 23/5 31/3 10/8 22/3 35/6 40/5 29/5 29/5
I4 71 223 40/2 25/4 18/5 16/5 45/3 33/7 28/5 32/4
I5 13 288 36/2 24/4 12/7 25/2 41/4 42/4 28/5 31/4
I6 59 279 41/2 40/2 25/2 25/2 44/3 32/7 28/5 30/5
I7 26 208 38/2 25/4 25/2 15/6 41/4 32/7 27/5 32/4
I8 15 235 21/5 21/5 20/4 23/3 35/6 44/3 27/5 29/5
I9 6 209 30/3 26/4 21/4 11/8 31/8 42/4 27/6 26/6
I10 21 265 37/2 30/3 24/2 20/4 32/7 37/6 29/5 30/5

37

Table 3. Overview of computational performance (CPU s) for total cost minimization

Type of Model Discrete-time
MILP

Continuous-time MILP CP

Problem/Model F1 F2 F3 F4 F5
P1C (6 orders, 4 machines, 2 stages) 4.62 3.18 0.09 0.08 0.06
P2C (6 orders, 4 machines, 2 stages) 10.7 0.12 0.06 0.05 0.11
P3C (8 orders, 6 machines, 2 stages) 6.82 0.07 0.19 0.07 31.3
P4C (8 orders, 6 machines, 2 stages) 3.62 0.04 0.12 0.04 61.5
P5C (10 orders, 6 machines, 3 stages) 1429 - 2.58 0.07 165
P6C (10 orders, 6 machines, 3 stages) 111 - 7.93 0.11 95.9
P7C (12 orders, 8 machines, 3 stages) 1814♦ - 104 3803 349
P8C (12 orders, 8 machines, 3 stages) 2151♦ - 12.2 7.13 224
P9C (15 orders, 6 machines, 2 stages) 1667 20000†,* 20000†,* 21.8 20000†,*

P10C (10 orders, 8 machines, 4 stages) 123 - 2262 4070 60000†
†Maximum resource limit
*Suboptimal solution returned
♦Approximated solution

Table 4. Overview of computational performance (CPU s) for total earliness minimization

Type of Model Discrete-time
MILP

Continuous-time MILP CP

Problem/Model F1 F2 F3 F4 F5
P1E (6 orders, 4 machines, 2 stages) 1.19 2488 0.1 0.74 4.71
P2E (6 orders, 4 machines, 2 stages) 1.09 20000† 0.11 22.4 7.08
P3E (8 orders, 6 machines, 2 stages) 4.61 20000†,* 4.23 4.38 8.37
P4E (8 orders, 6 machines, 2 stages) 3.32 20000†,* 4.39 3.46 8.89
P5E (10 orders, 6 machines, 3 stages) 749 - 29.9 0.27 6.94
P6E (10 orders, 6 machines, 3 stages) 15.8 - 56.5 3.83 8.59
P7E (12 orders, 8 machines, 3 stages) 78.6♦ - 24.4 1.29 20000†
P8E (12 orders, 8 machines, 3 stages) 9.86♦ - 17.5 1.68 55000†
P9E (15 orders, 6 machines, 2 stages) 25.6 20000†,* 7.52 18000†,* 50000†,*
P10E (10 orders, 8 machines, 4 stages) 234 - 20000†,‡ 20000† 45000†,*

†Maximum resource limit
‡No solution found
*Suboptimal solution returned
♦Approximated solution

38

Table 5. Overview of computational performance (CPU s) for makespan minimization

Type of Model Discrete-time
MILP

Continuous-time MILP CP

Problem/Model F1 F2 F3 F4 F5
P1M (6 orders, 4 machines, 2 stages) 12.7 46.7 0.19 0.17 0.02
P2M (6 orders, 4 machines, 2 stages) 82.3 32.5 0.14 0.22 0.04
P3M (8 orders, 6 machines, 2 stages) 165 6214 0.82 0.51 0.39
P4M (8 orders, 6 machines, 2 stages) 80.9 20000† 0.56 0.62 0.31
P5M (10 orders, 6 machines, 3 stages) 414♦ - 14.1 1417 10.3
P6M (10 orders, 6 machines, 3 stages) 1265♦ - 1.96 5.22 8.57
P7M (12 orders, 8 machines, 3 stages) 53.1♦ - 22.0 20000† 39.5
P8M (12 orders, 8 machines, 3 stages) 1474♦ - 14.6 20000†,* 61.6
P9M (15 orders, 6 machines, 2 stages) 46000 20000†,* 20000† 20000†,* 9430
P10M (10 orders, 8 machines, 4 stages) 1482 - 20000†,* 8742◊,* 16679

†Maximum resource limit
*Suboptimal solution returned
♦Approximated solution
◊Solver ran out of memory

Table 6. Computational statistics for problems P3C-P4C

Problem P3C P4C
Model F1 F2 F3 F4 F5 F1 F2 F3 F4 F5
|T| 1501 5 4 1501 5 4
Discrete variables 27383 156 165 103 22483 156 165 103
Single variables 60406 272 198 120 96 55506 272 198 120 96
Constraints 33054 208 267 384 215 33054 208 267 384 215
RMIP 16 16 16 16 1063 1063 1063 1063
Obj 16 16 16 16 16 1063 1063 1063 1063 1063
CPU 6.82 0.07 0.19 0.07 31.3 3.62 0.04 0.12 0.04 61.5
Nodes/Choice points 0 0 23 0 212386 0 0 8 0 369192

Table 7. Computational statistics for problems P5C-P6C

Problem P5C P6C
Model F1 F3 F4 F5 F1 F3 F4 F5
|T| 2001 7 2001 7
Discrete variables 40341 390 193 30428 390 193
Single variables 112378 453 224 150 102465 453 224 150
Constraints 72077 699 601 352 72077 699 601 352
RMIP 89 89 89 886 874 881
Obj 89 89 89 89 886 886 886 886
CPU 1429 2.58 0.07 165 111 7.93 0.11 95.9
Nodes/Choice points 0 339 0 327618 0 2139 0 205004

39

Table 8. Computational statistics for problems P7C-P8C

Problem P7C P8C
Model F1 F3 F4 F5 F1 F3 F4 F5
|T| 461 13 391 13
Discrete variables 11373 1232 292 13252 1232 292
Single variables 31658 1361 329 204 30457 1361 329 204
Constraints 20367 1939 1163 552 17287 1939 1163 552
RMIP 60 60 60 659.5 664 664
Obj 61† 61 61 61 664† 664 664 664
CPU 1814 104 3803 349 2151 12.2 7.13 224
Nodes/Choice
points

0 7529 3106811 1058338 0 1166 3290 594546

†Optimal solution of approximated problem (δ=5)

Table 9. Computational statistics for problems P9C-P10C

Problem P9C P10C
Model F1 F2 F3 F4 F5 F1 F3 F4 F5
|T| 397 8 7 283 6
Discrete
variables

18141 990 582 300 8034 448 260

Single
variables

32442 1287 640 331 180 21619 527 301 200

Constraints 14323 469 751 1342 375 13625 869 839 530
RMIP 88 87.03 87.09 86.74 153.5 146.56 143.87
Obj 88 91 89 88 94 154 154 154 154
CPU 1667 20000† 20000‡ 21.8 20000* 123 2262 4070 60000♦
Nodes/Choic
e points

0 1.56E6 5.56E6 10000 3266306 0 134363 2408475 22421889

†Resource limit exceeded (best possible solution= 88, total tree size= 476 MB)
‡Resource limit exceeded (best possible solution= 88, total tree size= 72 MB)
*Resource limit exceeded (solution found at 936 CPUs)
♦Resource limit exceeded (solution found at 12500 CPUs)

Table 10. Computational statistics for problems P3E-P4E

Problem P3E P4E
Model F1 F2 F3 F4 F5 F1 F2 F3 F4 F5
|T| 1501 9 4 1501 9 4
Discrete variables 27383 641 165 103 22483 641 165 103
Single variables 60406 857 198 120 96 55506 857 198 120 96
Constraints 33054 596 267 384 215 33054 596 267 384 215
RMIP 135 0 0 0 135 0 0 0
Obj 135 137 135 135 135 135 137 135 135 135
CPU 4.61 15708 4.23 4.38 8.37 3.32 20000† 4.39 3.46 8.89
Nodes/Choice
points

0 2767883 5404 9879 6622 0 5.51E6 4254 6848 5844

†Resource limit exceeded (best possible solution= 49.5, total tree size= 254 MB)

40

Table 11. Computational statistics for problems P5E-P6E

Problem P5E P6E
Model F1 F3 F4 F5 F1 F3 F4 F5
|T| 2001 6 2001 6
Discrete variables 40341 326 193 30428 326 193
Single variables 112378 383 224 150 102465 383 224 150
Constraints 72077 587 601 352 72077 587 601 352
RMIP 35 0 0 69 0 0
Obj 35 35 35 35 69 69 69 69
CPU 749 29.9 0.27 6.94 15.8 56.5 3.83 8.59
Nodes/Choice points 0 3567 60 9728 0 10681 4441 8799

Table 12. Computational statistics for problems P7E-P8E

Problem P7E P8E
Model F1 F3 F4 F5 F1 F3 F4 F5
|T| 1151 13 391 13
Discrete variables 28270 1232 292 13252 1232 292
Single variables 78915 1361 329 204 30457 1361 329 204
Constraints 50727 1927 1163 552 17287 1939 1163 552
RMIP 100 0 0 140 260 0
Obj 700† 700 700 700 1380* 1380 1380 1380
CPU 78.6 24.4 1.29 20000‡ 9.86 17.5 1.68 55000♦
Nodes/Choice
points

0 573 375 6134 0 310 458 4128

†Optimal solution of approximated problem (δ=2)
‡Resource limit exceeded (solution found at 27.6 CPUs)
*Optimal solution of approximated problem (δ=5)
♦Resource limit exceeded (solution found at 21.0 CPUs)

41

Table 13. Computational statistics for problems P9E-P10E

Problem P9E P10E
Model F1 F2 F3 F4 F5 F1 F3 F4 F5
|T| 397 7 7 283 6
Discrete
variables

18141 450 582 300 8034 448 260

Single
variables

32442 725 640 331 180 21619 527 301 200

Constraints 14323 655 751 1342 375 13625 869 839 530
RMIP 228 0 64.23 0 184 154.17 0
Obj 228 649 228 244 547 184 - 184 189
CPU 25.6 20000† 7.52 18000‡ 50000* 234 20000♦ 20000◊ 45000°
Nodes/Choic
e points

0 3.91E5 1719 6.72E6 305141795 0 2.34E5 1.28E7 16113186

†Resource limit exceeded (best possible solution= 87.25, total tree size= 123 MB)
‡Solver ran out of memory (best possible solution= 50.8, total tree size= 1.1 GB)
*Resource limit exceeded (solution found at 34000 CPUs)
♦No integer solution found (best possible solution= 184)
◊Resource limit exceeded (best possible solution= 172, total tree size= 2.6 MB)
°Resource limit exceeded (solution found at 7144 CPUs)

Table 14. Computational statistics for problems P3M-P4M

Problem P3M P4M
Model F1 F2 F3 F4 F5 F1 F2 F3 F4 F5
|T| 794 7 4 794 7 4
Discrete
variables

19296 453 165 103 14396 453 165 103

Single variables 36765 615 198 120 96 31865 615 198 120 96
Constraints 17500 348 265 391 215 17500 348 265 391 215
RMIP - 320.02 687.88 732.82 - 331.13 688.62 732.82
Obj 793 793 793 793 793 793 793 793 793 793
CPU 165 6214 0.82 0.51 0.39 80.9 20000† 0.56 0.62 0.31
Iterations/Nodes
/
Choice points

66 3098702 644 417 1570 66 7.14E6 237 581 1522

†Resource limit exceeded (best possible solution= 773, total tree size= 158 MB)

42

Table 15. Computational statistics for problems P5M-P6M

Problem P5M P6M
Model F1 F3 F4 F5 F1 F3 F4 F5
|T| 722 6 700 6
Discrete variables 16915 326 193 11557 326 193
Single variables 42908 383 224 150 36758 383 225 150
Constraints 26033 648 610 352 25241 648 610 352
RMIP - 1426.4 1324.0 - 1355 1234.4
Obj 1442† 1435 1435 1435 1398† 1394 1394 1394
CPU 414 14.1 1417 10.3 1265 1.96 5.22 8.57
Iterations/Nodes/
Choice points

11 1937 29461 35 156 7146 23619

†Optimal solution of approximated problem (δ=2)

Table 16. Computational statistics for problems P7M-P8M

Problem P7M P8M
Model F1 F3 F4 F5 F1 F3 F4 F5
|T| 148 13 162 13
Discrete
variables

4322 1232 292 6210 1232 292

Single variables 10835 1361 329 204 13339 1361 329 204
Constraints 6595 2060 1174 552 7211 2060 1174 552
RMIP - 1456 1455 - 1615 1545
Obj 1470† 1456 1456 1456 1660† 1655 1685 1655
CPU 53.1 22.0 20000‡ 39.5 1474 14.6 20000* 61.6
Iterations/Nodes/
Choice points

50 1224 1.67E7 115964 66 284 1.19E7 188230

†Optimal solution of approximated problem (δ=10)
‡Resource limit exceeded (best possible solution= 1455, total tree size= 3.4 MB)
*Resource limit exceeded (best possible solution= 1545, total tree size= 19 MB)

43

Table 17. Computational statistics for problems P9M-P10M

Problem P9M P10M
Model F1 F2 F3 F4 F5 F1 F3 F4 F5
|T| 232 8 7 247 6
Discrete
variables

9899 990 582 300 7426 448 260

Single
variables

18252 1287 640 331 180 19283 527 301 200

Constraints 8383 511 804 1356 375 11897 940 848 530
RMIP - 174.37 203.66 218.7 - - 248.10 184
Obj 235 271 235 236 235 252 259 254 252
CPU 46000 20000† 20000‡ 20000* 9430 1482 20000♦ 8742◊ 16679
Nodes/Choic
e points

22 2.09E6 1.48E6 6.26E6 24127287 21 8.94E5 4.93E6 24557874

†Resource limit exceeded (best possible solution= 205.2, total tree size= 949 MB)
‡Resource limit exceeded (best possible solution= 229.3, total tree size= 368 MB)
*Resource limit exceeded (best possible solution= 224.2, total tree size= 1.1 GB)
♦Resource limit exceeded (best possible solution= 252, total tree size= 225 MB)
◊Solver ran out of memory (best possible solution= 243, total tree size= 594 MB)

