
Mario R. Eden, Marianthi Ierapetritou and Gavin P. Towler (Editors) Proceedings of the 13th
International Symposium on Process Systems Engineering – PSE 2018
July 1-5, 2018, San Diego, California, USA © 2018 Elsevier B.V. All rights reserved.

Expanding RTN discrete-time scheduling
formulations to preemptive tasks
Pedro M. Castroa*, Iiro Harjunkoskib, Ignacio E. Grossmannc
aCMAFCIO, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
bABB AG, Corporate Research Center, Ladenburg, Germany
cDep. Chemical Engineering, Carnegie Mellon University, Pittsburgh PA, USA
pmcastro@fc.ul.pt

Abstract
This paper expands the Resource-Task Network (RTN) scheduling formulation to allow
tasks to be interrupted when encountering a planned break period in production. The
benefit from a more flexible mode of operation, is the improvement of overall equipment
efficiency. This is illustrated by solving a benchmark problem from the literature. To
address one of the major limitations of discrete-time approaches, we revisit solution
strategies for the objective of makespan minimization, before proposing a method to
reduce the number of iterations in the search for the optimal solution.

Keywords: Optimization; Mixed-integer linear programming; Algorithms.

1. Introduction
Enterprise-wide optimization (Grossmann, 2005) aims to simultaneously account for key
performance indicators across multiple business units by looking into the integration of
supply chain management, production control, planning and scheduling. To accomplish
this goal, we need to be able to transfer data and information efficiently between different
industrial production management systems. The ISA-95 standard can act as a data-
exchange platform for production scheduling (Harjunkoski and Bauer, 2014) but it needs
to be linked to a scheduling formulation that can cope with the wide variety of features
that may be encountered at a process plant.

The most general scheduling formulations, based on unified frameworks for process
representation (State-Task and Resource-Task Network), lack the possibility of
processing tasks to be interrupted. Yet, preemption is often encountered in daily practice,
with the ISA-95 input including planned break periods (e.g., due to preventive
maintenance, weekends), number of stops allowed per task, minimum duration of each
active partial task and possible penalties for interrupting a task.

Models that allow for preemption exist in the context of project scheduling. For instance,
van Peteghem and Vanhoucke (2010) assume that an activity with discrete duration 𝜏𝜏 can
be interrupted up to 𝜏𝜏 times, with the time(s) of interruption being determined by a genetic
algorithm. In this paper, we consider a more constrained for of preemption, where tasks
can be interrupted at given points in time, provided that they continue immediately after.
We focus on the RTN discrete-time formulation (Pantelides, 1994), which is known to be
very tight and better than continuous-time formulations at handling discrete events
(Harjunkoski et al. 2014). Interestingly, the required changes occur at the level of the
structural parameters and excess resource balance constraints, with the model variables

2 P. Castro et al.

remaining the same. It is straightforward to extend a STN discrete-time formulation
(Kondili et al., 1993; Lee and Maravelias, 2017) to handle preemption in a similar way.

2. Preemptive vs. non-preemptive scheduling
Non-preemptive scheduling is the standard mode of operation in PSE models, see Figure
1. Given a break period 𝑏𝑏𝑏𝑏 occurring in time window [𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿 , 𝑏𝑏𝑏𝑏𝑏𝑏𝑈𝑈], task 𝑖𝑖 can either be
completely executed before the start of the break or start after the end of the break. In the
context of a continuous-time model (Castro et al. 2014a), it can be formulated as an
exclusive disjunction featuring starting variable 𝑇𝑇𝑇𝑇𝑖𝑖 and duration parameter 𝑝𝑝𝑖𝑖 . When
using a discrete-time model, break periods help to reduce model size by restricting the
domain of task extent 0-1 variables 𝑁𝑁𝑖𝑖,𝑡𝑡. In the example in Figure 2, the break lasts for 5
time intervals, including slots {9, … ,13} (in red). Noting that durations 𝑝𝑝𝑖𝑖 in minutes or
hours are rounded up to multiples of 𝛿𝛿 (parameter specifying the length of every slot in
the uniform grid), 𝜏𝜏𝑖𝑖 = ⌈𝑝𝑝𝑖𝑖/𝛿𝛿⌉, since the task lasts 5 slots (in grey), it can only start
between slots 1 (𝑁𝑁𝑖𝑖,1 = 1) and 4 (𝑁𝑁𝑖𝑖,4 = 1), if the plan is to end before the break, or at
slot 14, if started after the break, i.e. 𝑇𝑇𝑖𝑖 ∈ {1, … ,4,14}.

The goal of preemptive scheduling is to reduce idle times by allowing part of the task to
be executed before the break and part after the break, see middle of Figure 3. Since the
location of break periods is known a priori, one can easily determine the duration of a
task 𝜏𝜏�̅�𝑖,𝑡𝑡 as a function of its starting point 𝑡𝑡. In the alternatives illustrated in Figure 3, the
duration of the task changes between 5 (non-preemption duration), 10 (one interruption)
and 12 (two breaks). The domain of the task is thus wider when allowing for preemption.

Figure 1. In non-preemptive scheduling, a task can either end-before or start-after a break.

Figure 2. In non-preemptive scheduling, break periods allow reducing domain of processing tasks.

Figure 3. In preemptive scheduling, a task can be split over multiple periods.

𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿 𝑏𝑏𝑏𝑏𝑏𝑏𝑈𝑈

Break
period 𝑏𝑏𝑏𝑏

Task 𝑖𝑖 �
−

𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿 𝑏𝑏𝑏𝑏𝑏𝑏𝑈𝑈

Break
period 𝑏𝑏𝑏𝑏

Task 𝑖𝑖 ∀𝑖𝑖, 𝑏𝑏𝑏𝑏

𝑇𝑇𝑇𝑇𝑖𝑖 + 𝑝𝑝𝑖𝑖 ≤ 𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿 𝑇𝑇𝑇𝑇𝑖𝑖 ≥ 𝑏𝑏𝑏𝑏𝑏𝑏𝑈𝑈

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

𝑡𝑡 ∉ 𝑇𝑇𝑖𝑖
𝑁𝑁𝑖𝑖,1 = 1

𝑁𝑁𝑖𝑖,4 = 1

Tw
o

al
te

rn
at

iv
es

fo
r 𝜏𝜏

𝑖𝑖
=

5

𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿 𝑏𝑏𝑏𝑏𝑏𝑏𝑈𝑈

Th
re

e
al

te
rn

at
iv

es
 fo

r 𝜏𝜏
𝑖𝑖

=
5

1 2 3 4 5 6 7 8 9 10 11 12 13 14

𝜏𝜏𝑖𝑖,1 = 5𝑁𝑁𝑖𝑖,1 = 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14

3 4 5 6 7 8 9 10 11 12 13 14 15 16

𝜏𝜏𝑖𝑖,5 = 10𝑁𝑁𝑖𝑖,5 = 1

17 18

𝜏𝜏𝑖𝑖,7 = 12𝑁𝑁𝑖𝑖,7 = 1

𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿 𝑏𝑏𝑏𝑏𝑏𝑏𝑈𝑈

𝑏𝑏𝑏𝑏𝑏𝑏+1𝐿𝐿 𝑏𝑏𝑏𝑏𝑏𝑏+1𝑈𝑈

𝑡𝑡 ∉ 𝑇𝑇𝑖𝑖

Expanding RTN discrete-time formulations 3

3. New RTN discrete-time formulation
The remaining changes needed to extend the RTN discrete-time model to handle
preemptive tasks occur at the level of the structural parameters and excess resource
balances. Representing 𝜇𝜇𝑏𝑏,𝑖𝑖,𝜃𝜃 the amount of resource 𝑏𝑏 consumed (-) or produced (+) by
non-preemptive task 𝑖𝑖 at a time 𝜃𝜃 relative to the start of the task, its preemptive
counterpart �̅�𝜇𝑏𝑏,𝑖𝑖,𝑡𝑡,𝜃𝜃 gains one index to identify the starting interval 𝑡𝑡. With the new
structural parameters, resource consumption during task interruption can differ from
normal execution. An example would be a residual energy consumption to compensate
for heat losses during the break, which in our illustrative case study was set to 5%.

Considering that non-preemptive tasks are a special case, we simply need to make 𝜏𝜏�̅�𝑖,𝑡𝑡 =
𝜏𝜏𝑖𝑖 ∀𝑡𝑡 ∈ 𝑇𝑇𝑖𝑖 , the excess resource balances of the new RTN formulation are given by Eq.
(1). It features non-negative excess resource variables 𝑅𝑅𝑏𝑏,𝑡𝑡 and parameters 𝜋𝜋𝑏𝑏,𝑡𝑡, which
account for the interaction with system boundaries (e.g. electricity purchase). Note that
Eq. (1) is all that is needed to model preemption.

𝑅𝑅𝑏𝑏,𝑡𝑡 = 𝑅𝑅𝑏𝑏0|𝑡𝑡=1 + 𝑅𝑅𝑏𝑏,𝑡𝑡−1 + 𝜋𝜋𝑏𝑏,𝑡𝑡 + ∑ ∑ 𝜇𝜇𝑏𝑏,𝑖𝑖,𝑡𝑡−𝜃𝜃,𝜃𝜃𝑁𝑁𝑖𝑖,𝑡𝑡−𝜃𝜃0≤𝜃𝜃≤𝜏𝜏𝑖𝑖,𝑡𝑡:𝑡𝑡−𝜃𝜃∈𝑇𝑇𝑖𝑖𝑖𝑖´ ∀𝑏𝑏, 𝑡𝑡 (1)

4. Alternatives to minimizing makespan
Makespan minimization is perhaps the most difficult objective function in scheduling
because it leads to poor linear programming (LP) relaxations of the mixed-integer linear
programming (MILP) models. This is true for both discrete- and continuous-time
formulations but it is more noticeable in the former for two reasons: (i) discrete-time
formulations are very tight for cost-based objective functions (integrality gap very close
to zero); (ii) problem sizes can be orders of magnitude larger, meaning more nodes to
explore in the branch-and-bound tree, which is often translated into a poor computational
performance. It is thus worth to revisit the alternatives for makespan minimization and
evaluate their performance in the new preemptive tasks environment.

4.1. Most popular (option 1)

Makespan (𝑀𝑀𝑀𝑀) is defined as the maximum finishing time 𝑇𝑇𝑇𝑇𝑖𝑖 over all tasks 𝑖𝑖, see Eq. (2).
Assuming that all tasks are executed at most once during the time horizon, it can be
expressed as a function of binary variables 𝑁𝑁𝑖𝑖,𝑡𝑡 and parameters 𝑇𝑇𝑡𝑡𝑡𝑡 that define the position
of slot 𝑡𝑡 in minutes or hours. The standard way to minimize makespan is then to consider
the linearization of the maximum function, Eq. (3). In cases where multiple instances of
a task can be executed over the time horizon, one just needs to move index 𝑡𝑡 from the
domain of the summation in Eq. (3) to the inequality domain. Note that in a sequential
facility, it suffices to include the subset of tasks linked to the last processing stage.

𝑀𝑀𝑀𝑀 = max
𝑖𝑖
𝑇𝑇𝑇𝑇𝑖𝑖 = max

𝑖𝑖
(𝑇𝑇𝑇𝑇𝑖𝑖 + 𝑝𝑝𝑖𝑖) = max

𝑖𝑖
(∑ 𝑁𝑁𝑖𝑖,𝑡𝑡 ∙ 𝑇𝑇𝑡𝑡𝑡𝑡+𝜏𝜏𝑖𝑖,𝑡𝑡𝑡𝑡) (2)

𝑀𝑀𝑀𝑀 ≥ ∑ 𝑁𝑁𝑖𝑖,𝑡𝑡 ∙ 𝑇𝑇𝑡𝑡𝑡𝑡+𝜏𝜏𝑖𝑖,𝑡𝑡𝑡𝑡 ∀𝑖𝑖 (3)

4.2. Defining a last task (option 2)

The second option was used by Castro et al. (2002) for an industrial problem with a
superstructure with a task that was to be executed exactly once and was the last in the
production sequence. In general, we can define an instantaneous last task 𝑖𝑖∗ as one that
consumes all given product demand. This is represented in Figure 4 for the case of a single
batch per product (handled as unary resources). The makespan is then given by Eq. (4).

4 P. Castro et al.

Figure 4. Structural parameters of the RTN associated to the definition of a last task.

𝑀𝑀𝑀𝑀 = ∑ 𝑁𝑁𝑖𝑖∗,𝑡𝑡 ∙ 𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡 (4)

4.3. Algorithmic search (option 3)

Maravelias and Grossmann (2003) proposed a very efficient iterative procedure for
makespan minimization. Starting with a short time horizon 𝐻𝐻, insufficient to meet the
demand, the problem is solved considering an objective function that is very sensitive to
the schedule, e.g. total electricity cost. The solver will find very quickly that the problem
is infeasible and so the next step is to keep adding one more time slot to the discrete-time
grid per iteration until the problem becomes feasible. The number of slots then gives 𝑀𝑀𝑀𝑀.
The solution time per iteration will grow as we approach the optimal makespan (check
chart in Castro et al., 2014b) and we want to start close enough. We thus propose to use
the LP relaxation from option 2 (tighter than option 1), to set the initial number of slots.
The drawback of option 3 is that the optimal solution is the first and lone feasible solution
returned by the search procedure and is found only at the very end.

5. Computational results
We consider the demand side management problem of a steel plant with day-ahead,
hourly electricity prices. The system and electricity price profile are taken from Castro et
al. (2013). Note that to simplify the model, we allow idle times in the continuous caster
units when handling heats belonging to the same group. The new RTN discrete-time
scheduling formulation was implemented in GAMS 24.8.3 and solved with CPLEX 12.7
running in parallel deterministic mode using up to eight threads. The termination criteria
were either a relative optimality tolerance of 10-6 or a maximum wall time limit of 7200
CPUs. The hardware consisted of a Windows 10, 64-bit desktop with an Intel i7-4790
(3.6 GHz) processor and 8 GB of RAM.

Table 1 presents the result for total cost minimization when considering breaks between
[450, 510] and [930,990] (min). As expected, the wider domain of preemptive tasks,
reflected in the larger number of discrete variables 𝑁𝑁𝑖𝑖,𝑡𝑡, leads to a cost reduction. The
difference to the non-preemptive case decreases from €16,253 (344,818-328.549) for
time grids with 𝛿𝛿=15 min slots, to a mere €147 for the more accurate 𝛿𝛿=5 min. In the
latter case, the optimal solution in Figure 5 features five tasks in preemptive mode. The
computational time increases as 𝛿𝛿 decreases, as expected, but interestingly, only increases
by a factor of two when considering preemptive tasks. Notice also that the formulation is
very tight.

Table 2 and Table 3 present the results for makespan minimization. It can be seen that the
standard way to minimize the makespan (option 1) is the worst since it can be as much as
5 times slower than the others and it returned a suboptimal solution of 1300 min for 𝛿𝛿=5
min. The optimal solution of 1290 (Table 3) features 10 tasks being split over the two
breaks to save 20 min of production time compared to the non-preemptive case

Last task 𝑖𝑖∗

P1

P2

P3

𝜇𝜇𝑃1,𝑖𝑖∗,0 = −1

𝜇𝜇𝑃2,𝑖𝑖∗,0 = −1

𝜇𝜇𝑃3,𝑖𝑖∗,0 = −1

…

Expanding RTN discrete-time formulations 5

(makespan=1310 min, see Table 2). Option 2 was better for the non-preemptive mode,
while option 3 prevailed otherwise. Overall, the impact of preemptive tasks in solution
quality and computational time is similar for makespan and cost minimization.

Table 1. Computational statistics for total cost minimization

 Non-preemptive tasks Preemptive tasks
𝛿𝛿
(min)

Discrete
variables

RMIP
(k€)

MIP
(k€)

CPUs Discrete
variables

RMIP
(k€)

MIP
(k€)

CPUs

15 6012 344.817 344.818 4.96 6728 328.549 328.565 10.4
10 9042 314.691 314.844 22.1 10156 313.853 313.865 14.2
5 18072 310.367 310.436 3177 20400 310.271 310.289 6427

Table 2. Computational statistics for total makespan minimization (non-preemption)

 Option 1 Option 2 Option 3
𝛿𝛿
(min)

Makespan
(min)

RMIP
(min)

CPUs RMIP
(min)

CPUs CPUs

15 1440 872.15 27.4 937.81 27.0 65.0
10 1340 818.35 245 858.77 217 151
5 1310 808.11 2139 843.37 666 1026

Table 3. Computational statistics for total makespan minimization (preemption)

 Option 1 Option 2 Option 3
𝛿𝛿
(min)

Makespan
(min)

RMIP
(min)

CPUs RMIP
(min)

CPUs CPUs

15 1410 858.98 86.5 878.86 120 100
10 1340 816.16 1286 832.42 562 260
5 1290 789.44 7200 805.10 3535 2951

Figure 5. Optimal solution when minimizing electricity cost with 𝛿𝛿=5 min time slots.

0 200 400 600 800 1000 1200 1400

EAF1

EAF2

AOD1

AOD2

LF1

LF2

CC1

CC2

Time (min)

0

50

100

150

200

0:00 2:00 4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00

Power (MW)

6 P. Castro et al.

6. Conclusions
Whenever there is insufficient time to complete the execution of a processing task before
a planned break, schedulers may be able to save time by splitting the execution of the task
over the periods before and after the break. This preemptive mode of operation has mostly
been neglected by scheduling formulations in process systems engineering. In this work,
we have expanded a well-known and powerful discrete-time formulation to preemptive
tasks. It involves acting at the level of structural parameters generation for the RTN, while
keeping the same set of model variables and constraints. The benefits of considering
preemption to improve solution quality where illustrated using an industrial case study
from the literature, involving the demand side management of a steel plant. The results
have also shown that while preemption makes the problem more difficult to solve, the
computational time is of the same order of magnitude.

References
P.M. Castro, I.E. Grossmann, P. Veldhuizen, D. Esplin, 2014a, Optimal Maintenance Scheduling

of a Gas Engine Power Plant using Generalized Disjunctive Programming, AIChE J., 60,
2083.

P. Castro, H. Matos, A.P.F.D. Barbosa-Póvoa, 2002, Dynamic Modelling and Scheduling of an
Industrial Batch System, Comp. Chem. Eng. 26, 671.

P.M. Castro, D. Rodrigues, H.A. Matos, 2014b, Cyclic Scheduling of Pulp Digesters with
Integrated Heating Tasks, Ind. Eng. Chem. Res. 53, 17098.

P.M. Castro, L. Sun, I. Harjunkoski, 2013, Resource−Task Network Formulations for Industrial
Demand Side Management of a Steel Plant. Ind. Eng. Chem. Res. 52, 13046.

I. Grossmann, 2005, Enterprise-wide Optimization: A New Frontier in Process Systems
Engineering, AIChE J., 51, 1846-1857.

I. Harjunkoski, R. Bauer, 2014, Sharing Data for Production Scheduling using the ISA-95
Standard, Frontiers in Energy Research, doi: 10.3389/fenrg.2014.00044.

I. Harjunkoski, C. Maravelias, P. Bongers, P.M. Castro, S. Engell, I. Grossmann, J. Hooker, C.
Méndez, G. Sand, J. Wassick, Scope for Industrial Applications of Production Scheduling
Models and Solution Methods, Comp. Chem. Eng. 62, 161.

E. Kondili, C.C. Pantelides, R.W.H. Sargent, 1993, A General Algorithm for Short-term
Scheduling of Batch Operations – I. MILP Formulation. Comp. Chem. Eng. 2, 211.

H. Lee, C.T. Maravelias, 2017, Discrete-time Mixed-integer Programming Models for Short-term
Scheduling in Multipurpose Environments. Comp. Chem. Eng. 107, 171-183.

C.T. Maravelias, I.E. Grossmann, 2003, Minimization of the Makespan with a Discrete-Time
State−Task Network Formulation. Ind. Eng. Chem. Res. 42, 6252.

C.C. Pantelides, 1994, Unified Frameworks for the Optimal Process Planning and Scheduling, In
Proceedings of the Second Conferencce on Foundations on Computer Aided Operations,
Cache Publications, New York, 253.

V.V. Peteghem, M. Vanhoucke, 2010, A Genetic Algorithm for the Preemptive and Non-
Preemptive Multi-mode Resource-Constrained Project Scheduling Problem, European Journal
of Operational Research, 201,409-418.

