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Abstract 
This paper expands the Resource-Task Network (RTN) scheduling formulation to allow 
tasks to be interrupted when encountering a planned break period in production. The 
benefit from a more flexible mode of operation, is the improvement of overall equipment 
efficiency. This is illustrated by solving a benchmark problem from the literature. To 
address one of the major limitations of discrete-time approaches, we revisit solution 
strategies for the objective of makespan minimization, before proposing a method to 
reduce the number of iterations in the search for the optimal solution. 
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1. Introduction 
Enterprise-wide optimization (Grossmann, 2005) aims to simultaneously account for key 
performance indicators across multiple business units by looking into the integration of 
supply chain management, production control, planning and scheduling. To accomplish 
this goal, we need to be able to transfer data and information efficiently between different 
industrial production management systems. The ISA-95 standard can act as a data-
exchange platform for production scheduling (Harjunkoski and Bauer, 2014) but it needs 
to be linked to a scheduling formulation that can cope with the wide variety of features 
that may be encountered at a process plant. 

The most general scheduling formulations, based on unified frameworks for process 
representation (State-Task and Resource-Task Network), lack the possibility of 
processing tasks to be interrupted. Yet, preemption is often encountered in daily practice, 
with the ISA-95 input including planned break periods (e.g., due to preventive 
maintenance, weekends), number of stops allowed per task, minimum duration of each 
active partial task and possible penalties for interrupting a task.  

Models that allow for preemption exist in the context of project scheduling. For instance, 
van Peteghem and Vanhoucke (2010) assume that an activity with discrete duration 𝜏𝜏 can 
be interrupted up to 𝜏𝜏 times, with the time(s) of interruption being determined by a genetic 
algorithm. In this paper, we consider a more constrained for of preemption, where tasks 
can be interrupted at given points in time, provided that they continue immediately after. 
We focus on the RTN discrete-time formulation (Pantelides, 1994), which is known to be 
very tight and better than continuous-time formulations at handling discrete events 
(Harjunkoski et al. 2014). Interestingly, the required changes occur at the level of the 
structural parameters and excess resource balance constraints, with the model variables 
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remaining the same. It is straightforward to extend a STN discrete-time formulation 
(Kondili et al., 1993; Lee and Maravelias, 2017) to handle preemption in a similar way. 

2. Preemptive vs. non-preemptive scheduling 
Non-preemptive scheduling is the standard mode of operation in PSE models, see Figure 
1. Given a break period 𝑏𝑏𝑏𝑏 occurring in time window [𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿 , 𝑏𝑏𝑏𝑏𝑏𝑏𝑈𝑈 ], task 𝑖𝑖 can either be 
completely executed before the start of the break or start after the end of the break. In the 
context of a continuous-time model (Castro et al. 2014a), it can be formulated as an 
exclusive disjunction featuring starting variable 𝑇𝑇𝑇𝑇𝑖𝑖  and duration parameter 𝑝𝑝𝑖𝑖 . When 
using a discrete-time model, break periods help to reduce model size by restricting the 
domain of task extent 0-1 variables 𝑁𝑁𝑖𝑖,𝑡𝑡. In the example in Figure 2, the break lasts for 5 
time intervals, including slots {9, … ,13} (in red). Noting that durations 𝑝𝑝𝑖𝑖  in minutes or 
hours are rounded up to multiples of 𝛿𝛿 (parameter specifying the length of every slot in 
the uniform grid), 𝜏𝜏𝑖𝑖 = ⌈𝑝𝑝𝑖𝑖/𝛿𝛿⌉, since the task lasts 5 slots (in grey), it can only start 
between slots 1 (𝑁𝑁𝑖𝑖,1 = 1) and 4 (𝑁𝑁𝑖𝑖,4 = 1), if the plan is to end before the break, or at 
slot 14, if started after the break, i.e. 𝑇𝑇𝑖𝑖 ∈ {1, … ,4,14}. 

The goal of preemptive scheduling is to reduce idle times by allowing part of the task to 
be executed before the break and part after the break, see middle of Figure 3. Since the 
location of break periods is known a priori, one can easily determine the duration of a 
task 𝜏𝜏�̅�𝑖,𝑡𝑡 as a function of its starting point 𝑡𝑡. In the alternatives illustrated in Figure 3, the 
duration of the task changes between 5 (non-preemption duration), 10 (one interruption) 
and 12 (two breaks). The domain of the task is thus wider when allowing for preemption. 

 
Figure 1. In non-preemptive scheduling, a task can either end-before or start-after a break. 

 
Figure 2. In non-preemptive scheduling, break periods allow reducing domain of processing tasks. 

 
Figure 3. In preemptive scheduling, a task can be split over multiple periods. 

𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿 𝑏𝑏𝑏𝑏𝑏𝑏𝑈𝑈

Break 
period 𝑏𝑏𝑏𝑏

Task 𝑖𝑖 �
−

𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿 𝑏𝑏𝑏𝑏𝑏𝑏𝑈𝑈

Break 
period 𝑏𝑏𝑏𝑏

Task 𝑖𝑖 ∀𝑖𝑖, 𝑏𝑏𝑏𝑏

𝑇𝑇𝑇𝑇𝑖𝑖 + 𝑝𝑝𝑖𝑖 ≤ 𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿 𝑇𝑇𝑇𝑇𝑖𝑖 ≥ 𝑏𝑏𝑏𝑏𝑏𝑏𝑈𝑈

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

𝑡𝑡 ∉ 𝑇𝑇𝑖𝑖
𝑁𝑁𝑖𝑖,1 = 1

𝑁𝑁𝑖𝑖,4 = 1

Tw
o 

al
te

rn
at

iv
es

fo
r 𝜏𝜏

𝑖𝑖
=

5

𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿 𝑏𝑏𝑏𝑏𝑏𝑏𝑈𝑈

Th
re

e 
al

te
rn

at
iv

es
 fo

r 𝜏𝜏
𝑖𝑖

=
5

1 2 3 4 5 6 7 8 9 10 11 12 13 14

𝜏𝜏𝑖𝑖,1 = 5𝑁𝑁𝑖𝑖,1 = 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14

3 4 5 6 7 8 9 10 11 12 13 14 15 16

𝜏𝜏𝑖𝑖,5 = 10𝑁𝑁𝑖𝑖,5 = 1

17 18

𝜏𝜏𝑖𝑖,7 = 12𝑁𝑁𝑖𝑖,7 = 1

𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿 𝑏𝑏𝑏𝑏𝑏𝑏𝑈𝑈

𝑏𝑏𝑏𝑏𝑏𝑏+1𝐿𝐿 𝑏𝑏𝑏𝑏𝑏𝑏+1𝑈𝑈

𝑡𝑡 ∉ 𝑇𝑇𝑖𝑖



Expanding RTN discrete-time formulations  3 

3. New RTN discrete-time formulation 
The remaining changes needed to extend the RTN discrete-time model to handle 
preemptive tasks occur at the level of the structural parameters and excess resource 
balances. Representing 𝜇𝜇𝑏𝑏,𝑖𝑖,𝜃𝜃 the amount of resource 𝑏𝑏 consumed (-) or produced (+) by 
non-preemptive task 𝑖𝑖 at a time 𝜃𝜃 relative to the start of the task, its preemptive 
counterpart �̅�𝜇𝑏𝑏,𝑖𝑖,𝑡𝑡,𝜃𝜃 gains one index to identify the starting interval 𝑡𝑡. With the new 
structural parameters, resource consumption during task interruption can differ from 
normal execution. An example would be a residual energy consumption to compensate 
for heat losses during the break, which in our illustrative case study was set to 5%. 

Considering that non-preemptive tasks are a special case, we simply need to make 𝜏𝜏�̅�𝑖,𝑡𝑡 =
𝜏𝜏𝑖𝑖  ∀𝑡𝑡 ∈ 𝑇𝑇𝑖𝑖 , the excess resource balances of the new RTN formulation are given by Eq. 
(1). It features non-negative excess resource variables 𝑅𝑅𝑏𝑏,𝑡𝑡 and parameters 𝜋𝜋𝑏𝑏,𝑡𝑡, which 
account for the interaction with system boundaries (e.g. electricity purchase). Note that 
Eq. (1) is all that is needed to model preemption. 

𝑅𝑅𝑏𝑏,𝑡𝑡 = 𝑅𝑅𝑏𝑏0|𝑡𝑡=1 + 𝑅𝑅𝑏𝑏,𝑡𝑡−1 + 𝜋𝜋𝑏𝑏,𝑡𝑡 + ∑ ∑ 𝜇𝜇𝑏𝑏,𝑖𝑖,𝑡𝑡−𝜃𝜃,𝜃𝜃𝑁𝑁𝑖𝑖,𝑡𝑡−𝜃𝜃0≤𝜃𝜃≤𝜏𝜏𝑖𝑖,𝑡𝑡:𝑡𝑡−𝜃𝜃∈𝑇𝑇𝑖𝑖𝑖𝑖´ ∀𝑏𝑏, 𝑡𝑡 (1) 

4. Alternatives to minimizing makespan 
Makespan minimization is perhaps the most difficult objective function in scheduling 
because it leads to poor linear programming (LP) relaxations of the mixed-integer linear 
programming (MILP) models. This is true for both discrete- and continuous-time 
formulations but it is more noticeable in the former for two reasons: (i) discrete-time 
formulations are very tight for cost-based objective functions (integrality gap very close 
to zero); (ii) problem sizes can be orders of magnitude larger, meaning more nodes to 
explore in the branch-and-bound tree, which is often translated into a poor computational 
performance. It is thus worth to revisit the alternatives for makespan minimization and 
evaluate their performance in the new preemptive tasks environment. 

4.1. Most popular (option 1) 

Makespan (𝑀𝑀𝑀𝑀) is defined as the maximum finishing time 𝑇𝑇𝑇𝑇𝑖𝑖 over all tasks 𝑖𝑖, see Eq. (2). 
Assuming that all tasks are executed at most once during the time horizon, it can be 
expressed as a function of binary variables 𝑁𝑁𝑖𝑖,𝑡𝑡 and parameters 𝑇𝑇𝑡𝑡𝑡𝑡 that define the position 
of slot 𝑡𝑡 in minutes or hours. The standard way to minimize makespan is then to consider 
the linearization of the maximum function, Eq. (3). In cases where multiple instances of 
a task can be executed over the time horizon, one just needs to move index 𝑡𝑡 from the 
domain of the summation in Eq. (3) to the inequality domain. Note that in a sequential 
facility, it suffices to include the subset of tasks linked to the last processing stage. 

𝑀𝑀𝑀𝑀 = max
𝑖𝑖
𝑇𝑇𝑇𝑇𝑖𝑖 = max

𝑖𝑖
(𝑇𝑇𝑇𝑇𝑖𝑖 + 𝑝𝑝𝑖𝑖) = max

𝑖𝑖
(∑ 𝑁𝑁𝑖𝑖,𝑡𝑡 ∙ 𝑇𝑇𝑡𝑡𝑡𝑡+𝜏𝜏𝑖𝑖,𝑡𝑡𝑡𝑡 ) (2) 

𝑀𝑀𝑀𝑀 ≥ ∑ 𝑁𝑁𝑖𝑖,𝑡𝑡 ∙ 𝑇𝑇𝑡𝑡𝑡𝑡+𝜏𝜏𝑖𝑖,𝑡𝑡𝑡𝑡  ∀𝑖𝑖 (3) 

4.2. Defining a last task (option 2) 

The second option was used by Castro et al. (2002) for an industrial problem with a 
superstructure with a task that was to be executed exactly once and was the last in the 
production sequence. In general, we can define an instantaneous last task 𝑖𝑖∗ as one that 
consumes all given product demand. This is represented in Figure 4 for the case of a single 
batch per product (handled as unary resources). The makespan is then given by Eq. (4). 
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Figure 4. Structural parameters of the RTN associated to the definition of a last task. 

𝑀𝑀𝑀𝑀 = ∑ 𝑁𝑁𝑖𝑖∗,𝑡𝑡 ∙ 𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡  (4) 

4.3. Algorithmic search (option 3) 

Maravelias and Grossmann (2003) proposed a very efficient iterative procedure for 
makespan minimization. Starting with a short time horizon 𝐻𝐻, insufficient to meet the 
demand, the problem is solved considering an objective function that is very sensitive to 
the schedule, e.g. total electricity cost. The solver will find very quickly that the problem 
is infeasible and so the next step is to keep adding one more time slot to the discrete-time 
grid per iteration until the problem becomes feasible. The number of slots then gives 𝑀𝑀𝑀𝑀. 
The solution time per iteration will grow as we approach the optimal makespan (check 
chart in Castro et al., 2014b) and we want to start close enough. We thus propose to use 
the LP relaxation from option 2 (tighter than option 1), to set the initial number of slots. 
The drawback of option 3 is that the optimal solution is the first and lone feasible solution 
returned by the search procedure and is found only at the very end. 

5. Computational results 
We consider the demand side management problem of a steel plant with day-ahead, 
hourly electricity prices. The system and electricity price profile are taken from Castro et 
al. (2013). Note that to simplify the model, we allow idle times in the continuous caster 
units when handling heats belonging to the same group. The new RTN discrete-time 
scheduling formulation was implemented in GAMS 24.8.3 and solved with CPLEX 12.7 
running in parallel deterministic mode using up to eight threads. The termination criteria 
were either a relative optimality tolerance of 10-6 or a maximum wall time limit of 7200 
CPUs. The hardware consisted of a Windows 10, 64-bit desktop with an Intel i7-4790 
(3.6 GHz) processor and 8 GB of RAM. 

Table 1 presents the result for total cost minimization when considering breaks between 
[450, 510] and [930,990] (min). As expected, the wider domain of preemptive tasks, 
reflected in the larger number of discrete variables 𝑁𝑁𝑖𝑖,𝑡𝑡, leads to a cost reduction. The 
difference to the non-preemptive case decreases from €16,253 (344,818-328.549) for 
time grids with 𝛿𝛿=15 min slots, to a mere €147 for the more accurate 𝛿𝛿=5 min. In the 
latter case, the optimal solution in Figure 5 features five tasks in preemptive mode. The 
computational time increases as 𝛿𝛿 decreases, as expected, but interestingly, only increases 
by a factor of two when considering preemptive tasks. Notice also that the formulation is 
very tight. 

Table 2 and Table 3 present the results for makespan minimization. It can be seen that the 
standard way to minimize the makespan (option 1) is the worst since it can be as much as 
5 times slower than the others and it returned a suboptimal solution of 1300 min for 𝛿𝛿=5 
min. The optimal solution of 1290 (Table 3) features 10 tasks being split over the two 
breaks to save 20 min of production time compared to the non-preemptive case 

Last task 𝑖𝑖∗

P1

P2

P3

𝜇𝜇𝑃1,𝑖𝑖∗,0 = −1

𝜇𝜇𝑃2,𝑖𝑖∗,0 = −1

𝜇𝜇𝑃3,𝑖𝑖∗,0 = −1

…
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(makespan=1310 min, see Table 2). Option 2 was better for the non-preemptive mode, 
while option 3 prevailed otherwise. Overall, the impact of preemptive tasks in solution 
quality and computational time is similar for makespan and cost minimization. 

 

Table 1. Computational statistics for total cost minimization 

 Non-preemptive tasks Preemptive tasks 
𝛿𝛿 
(min) 

Discrete 
variables 

RMIP 
(k€) 

MIP 
(k€) 

CPUs Discrete 
variables 

RMIP 
(k€) 

MIP 
(k€) 

CPUs 

15 6012 344.817 344.818 4.96 6728 328.549 328.565 10.4 
10 9042 314.691 314.844 22.1 10156 313.853 313.865 14.2 
5 18072 310.367 310.436 3177 20400 310.271 310.289 6427 

Table 2. Computational statistics for total makespan minimization (non-preemption) 

  Option 1  Option 2  Option 3 
𝛿𝛿 
(min) 

Makespan 
(min) 

RMIP 
(min) 

CPUs RMIP 
(min) 

CPUs CPUs 

15 1440 872.15 27.4 937.81 27.0 65.0 
10 1340 818.35 245 858.77 217 151 
5 1310 808.11 2139 843.37 666 1026 

Table 3. Computational statistics for total makespan minimization (preemption) 

  Option 1  Option 2  Option 3 
𝛿𝛿 
(min) 

Makespan 
(min) 

RMIP 
(min) 

CPUs RMIP 
(min) 

CPUs CPUs 

15 1410 858.98 86.5 878.86 120 100 
10 1340 816.16 1286 832.42 562 260 
5 1290 789.44 7200 805.10 3535 2951 

 

 
Figure 5. Optimal solution when minimizing electricity cost with 𝛿𝛿=5 min time slots. 
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6. Conclusions 
Whenever there is insufficient time to complete the execution of a processing task before 
a planned break, schedulers may be able to save time by splitting the execution of the task 
over the periods before and after the break. This preemptive mode of operation has mostly 
been neglected by scheduling formulations in process systems engineering. In this work, 
we have expanded a well-known and powerful discrete-time formulation to preemptive 
tasks. It involves acting at the level of structural parameters generation for the RTN, while 
keeping the same set of model variables and constraints. The benefits of considering 
preemption to improve solution quality where illustrated using an industrial case study 
from the literature, involving the demand side management of a steel plant. The results 
have also shown that while preemption makes the problem more difficult to solve, the 
computational time is of the same order of magnitude. 
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