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Abstract 

As a major energy consumer, steel plants can help to stabilize the power grid by shifting production 

from periods with high demand. Electric arc furnaces can be operated at different power levels, 

affecting energy efficiency, duration of melting tasks and the rate of electrode degradation, which has 

previously been neglected. We thus propose a new mixed-integer linear programming (MILP) 

formulation for the optimal scheduling under time-of-use electricity pricing that captures the tradeoffs 

involved. It relies on the Resource-Task Network (RTN) for modeling processing tasks with variable 
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electrode mass depletion and replacement tasks that regenerate the mass. Through the results of an 

industrial case study, we show that the high-power mode is mostly avoided, despite allowing for more 

processing tasks in low-price periods. This is because such mode is less energy efficient and 

consumes a larger mass of electrode, indicating that electrode replacement plays an important role in 

total cost minimization. 

1. Introduction 

As electricity generation becomes more and more focused on renewables such as wind and solar, 

new methods are needed to ensure that the electricity grid remains balanced at all times. One such 

method to contribute to this stability is Demand Side Management (DSM). DSM refers to different 

methods of shaping the energy demand curve at the consumers’ side. On the one hand, this benefits 

electricity suppliers through flattened load curves, enabling a quicker reaction to mismatch in the 

grid. On the other hand, DSM provides a method for consumers to lower their operating costs by 

adapting the production to time-dependent electricity prices.  

Due to the strong time-dependence of these energy-related concerns, effective scheduling is 

essential in DSM, and it has been identified as a key challenge in industrial deployment of scheduling 

solutions, especially when a complex manufacturing process is involved1,2. Therefore, many recent 

studies have looked at various aspects of DSM applied to a variety of industries including air 

separation3-6, cement making7-9, combined heat and power plants10-11 and pulp-and-paper12. 

In general, the more energy intensive an industry is and the more flexibility the manufacturing 

process has, the more can be gained from participating in DSM schemes. As a result, the steelmaking 

industry has been identified as a key industry for DSM because EAFs, which are used to melt solid 

steel, consume large amounts of energy and offer considerable flexibility in when and how they are 

operated. The flexibility when operating the EAFs stems from the fact that they are operated in batch 

mode and can change their power consumption rates based on the setting of the on-load tap changer13. 
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This enables effective response to time-varying prices, as the timing of batches and the batch energy-

intensity can easily be changed. 

Scheduling and DSM have been studied by a wide variety of authors. Nolde and Morari14 proposed 

a continuous-time scheduling formulation for electricity load tracking of a steel plant. The problem 

they consider involves scheduling the production tasks, with fixed power consumption and duration, 

to track a predefined energy curve, with penalties for deviating from said curve. Hadera et al.15 studied 

the same problem but used a more efficient formulation than their predecessors while simultaneously 

accounting for multiple electricity purchasing contracts. Pan et al.16 proposed a mixed-integer 

nonlinear formulation (MINLP) for electrical load tracking under time-of-use (TOU) tariffs, where 

constraints are also derived for each of the six possible cases identified by Nolde and Morari14. 

Perhaps due to the increasing complexity from modeling TUO tariffs that change with load intervals, 

no attempt has been made to solve the resulting MINLPs by commercial solvers. Instead, the authors 

use an evolutionary algorithm that is shown capable of generating high-quality schedules. In the 

MINLP formulation of Xu et al.17, the continuous casting stage is modeled more accurately, with the 

optimization deciding the casting time for each charge/heat as well as the casting speed. Nonlinear 

terms appear due to the product of continuous and binary variables, which are linearized exactly, 

while the bilinear and monomial terms involving the time and speed variables are relaxed using 

McCormick envelopes18. A three-stage MILP-NLP decomposition strategy coupled with spatial 

branch-and-bound is then used to obtain good-quality solutions in reasonable times. 

Despite many authors relying on continuous-time formulations, the discrete-time representation is 

generally computationally more efficient when dealing with time-dependent utility pricing and 

availability19,20. Castro et al.21 formulated the DSM problem for steel plants using a Resource-Task 

Network (RTN) formulation. The RTN22 is a generic framework to model and optimize the 

scheduling of complex processes in a systematic way. Because of this, several other works have built 

upon the seminal RTN formulation for steel scheduling. Dalle Ave et al.23 expanded the original 
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model by accounting for more detailed electricity market concerns, including the separation between 

intraday and day-ahead markets. Zhang et al.13 added additional DSM flexibility by considering 

alternative operating modes for the EAFs. Operating modes have specific values for instantaneous 

electricity consumption as well as batch duration, and so electricity cost savings can come from both 

the timing of the batch, as well as the mode at which it is operated. However, each mode had the same 

total energy consumption, which is not accurate since energy efficiency for this system decreases as 

power consumption increases. 

Another aspect of scheduling that has been gaining attention recently is the integration of equipment 

condition and maintenance into production planning/scheduling. Castro et al.24 took seasonal 

electricity prices into account when optimizing the regular maintenance plan of a gas engine power 

plant supplying base load electricity to a chemical complex and selling excess production to the power 

grid. Maintenance of the gas engines was performed within a given time window of hours spent 

online. Zulfaki and Kopanos25 addressed the simultaneous planning, maintenance and demand 

response of integrated production and utility systems, assuming that the power consumption for utility 

units increases linearly with the cumulative operation time and the degradation rate. Full performance 

could be recovered through offline cleaning, while online cleaning retrieved part of the condition 

(20% for a compressor network). The planning horizon was one month with electricity prices 

changing every day. 

Nie et al.26 considered a representative example of mixed batch/continuous processes in the 

chemical industry, where the processing capacity of a continuous unit is consumable and needs to be 

replenished offline after reaching a threshold limit of 25%. While the condition of the unit depends 

on the cumulative amount processed, it doesn’t seem to affect the processing rate. Vieira et al.27 

studied the optimal planning of a continuous biopharmaceutical process considering decaying 

production yield. 
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Other applications can be found in the polymers industry28, where each of the products contributes 

differently to the fouling of the polymerization reactor. The level of fouling cannot cross a specific 

threshold and contributes to an increase in batch time. From a fleet management perspective, 

Spüntrup et al.29 looked at the maintenance scheduling of a compressor fleet. The authors assume that 

the compressors are always operating at full capacity, unless a maintenance activity is occurring, and 

consider two types of degradation indicators: fouling-type; and remaining useful lifetime (RUL). 

Another example comes from the work of van der Klauw et al.30, who consider an energy storage 

system to reduce the electricity production peaks. They account for degradation based on the number 

of switches between charging and discharging cycles with a goal of maximizing the total energy 

throughput. 

The integrated maintenance and production scheduling has also been studied in the context of steel 

plants. Biondi et al.31 studied the simultaneous planning and scheduling of production and long-term 

maintenance in a steel plant, using the RUL of the ceramic lining of production units as the key 

degradation indicator. The goal of their optimization was to minimize operating costs including 

inventory and maintenance costs. The authors also presented an extension of the State-Task Network, 

adding constraints to account for the reduction of residual lifetime every time a task is performed, 

which can be restored by performing maintenance. It was modified by Wiebe et al.32 to incorporate 

uncertain sensor data regarding equipment degradation using adjustable robust optimization. Failure 

probabilities were estimated with either a frequency or Markov Chain approach, while Bayesian 

optimization was used to efficiently optimize the box uncertainty set. It allowed obtaining lower cost 

solutions than random search and achieving a good compromise between preventive and corrective 

maintenance. 

In this work, we also optimize the integrated production and maintenance of steel plants but on a 

shorter timescale, within the DSM setting, which has never been done before. The degradation 

considered is that of the furnace’s electrode system, which occurs much faster than the lining of the 
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units, is greatly influenced by the operating power of the furnace and the production sequence33. The 

main merit of the paper is to integrate in one cost function, hourly-changing electricity prices, 

electrode degradation and production throughput, so as to find rigorous optimal production strategies. 

This is important because the cost of maintaining the electrodes, previously ignored, is almost as high 

as the electricity cost. 

The rest of the paper is organized as follows. We provide the problem description in section 2, 

together with the relevant data. Section 3 concerns the Resource-Task Network (RTN) representation 

of the process, with emphasis on the modeling of the alternative operating modes for the electric arc 

furnaces and the electrode replacement tasks. The discrete-time RTN formulation is the subject of 

section 4, where we consider two alternative objective functions, both including the minimization of 

electricity and electrode replacement cost. Section 5 discusses the computational results, with 

emphasis on identifying the optimal operating modes for a given electricity price profile and condition 

of the electrode system. Finally, the conclusions are given in section 6. 

2. Problem Statement 

We consider the short-term scheduling problem of the melt shop production process of a steel plant 

under hourly changing electricity pricing, known ahead of time. The process under consideration can 

be classified as a flexible flowshop with four production stages, as seen in Figure 1, each with two 

units in parallel. Minimum and maximum transfer times between consecutive stages are given in 

Table 1. 
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Figure 1. The melt shop consists of four production stages 

Table 1. Minimum !"#$%  and maximum !"#$& transfer times to stage $ (min) 

Stage '=2 '=3 '=4 
()*+

, 10 4 10 
()*+

- 240 240 120 
 

Table 2. Processing times (min) in Argon Oxygen Decarburization units, Ladle Furnaces and 
Continuous Casters (for Electric Arc Furnaces see Table 5). 

Steel heat/Unit AOD1-2 LF1-2 CC1 CC2 
H1-H4 75 35 50 50 
H5-H6 80 45 60 60 
H7-H8 80 20 55 55 
H9-H12 95 45 60 60 
H13-H14 85 25 70 70 
H15-H17 85 25 75 75 
H18 95 45 60 60 
H19 95 45 70 70 
H20 95 30 70 70 
H21-H22 80 30 50 50 
H23-H24 80 30 50 60 
 

As a case study, we assume the production of 24 specific steel heats over a 24-h time horizon. In 

the first three stages, the processing time of heat ℎ does not depend on the unit, while the duration in 

the continuous casters is slightly different for heats H23-H24, as seen in Table 2. As detailed in ref. 21, 

heats with similar grade characteristics form casting sequences that need to be processed 

uninterruptedly (check Table 3 for the correspondence between groups and steel heats). At the end of 

Argon Oxygen Decarburization:
adjusts the chemistry

Electric Arc Furnace:
melts scrap steel

Continuous Casting: 
creates steel slabs

Ladle Furnace: 
adjusts the temperature

Stage k=1 Stage k=2 Stage k=3 Stage k=4
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the casting sequence, there is a changeover time of 70 min for CC1 and 50 min for CC2. The power 

consumption in stages two to four is given in Table 4. 

The first stage is the most energy intensive and concerns melting in an electric arc furnace (EAF). 

It is assumed that the electric power consumption is constant throughout the duration of the melting 

task and that there are three alternative operating modes to choose from, M1-M3, ranging from low to 

high power intensity (check values in Table 5). One can see that increasing the power consumption 

reduces the duration of the task, giving more options to the scheduler to take advantage of periods of 

low electricity pricing, but decreases both energy efficiency and the lifetime of the electrodes. It 

should be highlighted that there is no need to consider more modes, with only slight differences in 

power consumption and duration, since we need to use slots of size / = {5,10,15} min to ensure 

tractability of the discrete-time formulation, and the alternative durations need to be dissimilar when 

rounded up to a multiple of /. 

Table 3. In the continuous casters, steel heats are processed in six groups  

Group 7 G1 G2 G3 G4 G5 G6 
89 H1-H4 H5-H8 H9-H12 H13-H17 H18-H20 H21-H24 

 

Table 4. Power consumption :;$ in Argon Oxygen Decarburization units, Ladle Furnaces and 
Continuous Casters (MW) 

Stage '=2 '=3 '=4 
<=+ 2 2 7 
 

The electrode system of the electric arc furnace consists of a pile of several electrodes. A new 

electrode has >?@@ =1180 kg and costs ABC= €20,000. As the current is run through the electrodes 

to melt the steel, they sublimate due to the high temperatures. When the mass of the bottom electrode 

is totally consumed, a new electrode must be inserted at the top of the pile for the production to 

continue, as illustrated in Figure 2. Notice that the darker electrode may already have suffered some 
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degradation from the last batch (steel heat) when the electrode replacement task of 30 min is executed. 

Based on the values in Table 5, we set such mass tolerance to ∆>=123 kg.  

Table 5. Alternative operating modes in Electric Arc Furnaces (stage $ = E) 

Operating mode > M1 M2 M3 
Power consumption <=+FG,H (MW) 40 60 75 
Duration for steel heats H1-H8, H13-H17, H21-H24 (min) 69 49 41 
Duration for steel heats H9-H12, H18-H20 (min) 76 54 45 
Electrode mass consumption >?I,H for H1-H8, H13-H17, H21-H24 (kg) 123.3 131.4 137.4 
Electrode mass consumption >?I,H for H9-H12, H18-H20 (kg) 135.7 144.5 151.2 
 

 

Figure 2. Electrode replacement in electric arc furnaces. 

The objective is to minimize the total operating cost, consisting of electricity and electrode material 

costs. It should be highlighted that despite being of the same order of magnitude, the latter cost has 

previously been neglected. 

3. Resource-Task Network representation of the system 

Castro et al.21 tackled a closely related scheduling problem from the same steel plant with a discrete-

time formulation based on the RTN process representation22. Since many features are shared with the 

RTN presented next, here we only focus on the differences resulting from considering alternative 

operating modes for the electric arc furnaces and electrode replacement tasks. 

In a discrete-time RTN formulation, equipment units can be treated as identical if their tasks have 

the same duration and involve the same consumption/production of resources. In such case, two 
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identical parallel units can be modeled as an aggregate unit of size 2, to improve computational 

performance by reducing symmetry. From the problem statement in section 2, we know that the 

processing times and power requirements for the first three production stages only depend on the steel 

heat, so the EAFs, AODs and LFs can potentially be treated as aggregate units. Unfortunately, to 

accurately model electrode degradation, we need to treat the electric arc furnaces individually. Thus, 

stages '=2 and '=3 consider aggregate equipment units of size two, information provided by the 

following initial availability parameters: JKLMNO =J,PNO =2; while stages '=1 and '=4 feature two 

individual units (JCKPQ
O =JCKPR

O =JSSQ
O =JSSR

O =1). 

In stage 1 in Figure 3, the melting tasks of a steel heat produce, at the end of execution, the 

sequential resource that locates the heat at the exit of the electric arc furnaces (e.g. H1 _E for heat 8G). 

These resources need to be consumed as soon as they are produced, meaning that the corresponding 

transfer task (Transfer_H1_E_A) needs to start immediately after the end of the melting task. Its 

duration, Duration_E_A, is set to the minimum transfer time to stage 2, ()*+FT,  (check Table 1). The 

transfer task takes the heat to the entrance of the Argon Oxygen Decarburization units, generating 

resource H1 _Ai. At this state, the steel heat can wait for ()*T- − ()*T, minutes until the start of the 

second stage of production. The same constraints are enforced for all other stages’ output (e.g. H1 

_Ao and H1 _Lo) and input location resources ) ∈ JI,+W,  (e.g. H1 _Li and H1 _C). 

The last three stages of production have a single operating mode (check processing times in Table 

2 and Table 4, respectively). Notice that the casting tasks, unlike the processing tasks of the previous 

stages, are defined for a group 7 of heats (e.g. XG = {8G, 8T, 8Y, 8Z}). Although not apparent from 

Figure 3, they need to be executed uninterruptedly, in an ordered sequence that includes a changeover 

time at the end (see details in ref. 21). The output from the final production stage are the final product 

resources, e.g. H1. 
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Figure 3. Resource-Task Network process representation showing three alternative operating modes for melting the steel heats in the electric arc 
furnaces. Note that we show fewer tasks and resources than those needed for modelling stage k=1, to emphasize that alternative operating modes 
can be handled by using one aggregate unit (named here as EAFs), when dealing with unit independent processing times (within a stage). However, 
due to the explicit modelling of the electrode system (Figure 4), we will need to use individual units for the furnaces: EAF1 and EAF2. 
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Most interactions of resources with tasks occur either at the beginning or at the end of task 

execution. They are represented in Figure 3 in the form of dashed lines, with double arrows indicating 

a temporary consumption of the resource (equipment units are regenerated at the end of the tasks). In 

contrast, the consumption of electrical power PW occurs throughout the duration of the processing 

task. To make a distinction, such continuous interaction is represented by a solid line. 

3.1. Alternative operating modes in EAFs 

In the presence of alternative operating modes for the electric arc furnaces, we need to replicate the 

melting task of a steel heat into as many copies as the number of operating modes. Note, however, 

that the copies are not exact since each has a different power consumption that is reflected into a 

shorter or longer duration. In Figure 3, we show the required tasks for the first !" and last !# steel 

heat, where $ ∈ {'",'),'*} represents the operating mode. As an example, Melt_H1_M1, with a 

duration Duration_EAFH1,M1 (see Table 5), represents the processing task of !" in mode '". All 

melting tasks temporarily use an electric arc furnace. 

3.2. Electrodes degradation in electric arc furnaces 

Electrode replacement is a relevant part of the operating cost of electric arc furnaces. Electrode 

sublimation rate is a function of power consumption, with the benefits of a shorter processing time 

resulting from a higher power consumption being counteracted by a slightly greater electrode mass 

depletion. It may force electrode replacement after a smaller number of batches, during which the 

electric arc furnace will be inoperative. We thus need to take into consideration the state of the 

electrode when generating the schedule, to accurately compute the operating cost. 

Since each electric arc furnace has its own electrode system, we cannot consider the two furnaces 

as an aggregate resource to model electrode degradation. Let resource Elect1 represent the electrode 

system of electric arc furnace EAF1. The initial condition at the beginning of the time horizon if given 

by ,-./012
3 , which can be the electrode mass when new, given by parameter $455. Melting consumes 
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a certain mass of electrode, a value that is a function of the steel heat and the operating mode (recall 

Table 5). In the context of a discrete-time RTN formulation, it can be modeled through structural 

parameters 67,8,9 that define the amount of resource : consumed/produced by task ; at a time < relative 

to the start of the task. More specifically, and being parameter $4=,> the mass required to process 

heat ℎ in mode $, making 6-./012,#2_-AB2_C2,3 = −$4#2,C2 forces the consumption at the beginning 

of the processing task of heat !" in FGH" operating in mode '", of the needed electrode mass of 

FIJKL". In other words, the task can only start if enough mass is available. 

Figure 4 shows the value of all non-zero structural parameters dealing with resources of equipment 

units, electrodes and the sequential resource (H1_E) for the first steel heat. Notice that electric arc 

furnace FGH) is consumed at the start of all tasks ; of type Melt_H1_EAF2, i.e. 6-ABM,8,3 = −1. The 

equipment resource is then produced at the end of task, which occurs at a time O#2,> relative to the 

start of the task, where $ is the operating mode. The required parameter for mode ') is thus 

6-ABM,#2_-ABM_CM,PQ2,RM = 1. Resource H1_E is also produced at the end of the task: 

6#2_-,#2_-ABM_CM,PQ2,RM = 1. 

The electrode replacement tasks in Figure 4, e.g. ReplaceElect_EAF1, have the purpose of adding 

a new electrode, which is done simply by producing the amount $455 at the end of the 30 min 

duration. The required parameter for FGH" is: 6-./012,S/T_-AB2,⌈*3 V⁄ ⌉ = $455. 

It should be highlighted that the modeling of electrode degradation resembles that of decreasing 

processing capacity in the extended RTN formulation of Nie et al.26. In both formulations: (i) the 

amount of capacity resource consumed depends on the decisions taken by the optimization, either the 

processing rates of the continuous tasks26 or the operating modes of the batch tasks; (ii) the condition 

of the unit does not affect performance, unless it is below the threshold that prevents operation. The 

most significant difference is that in Nie et al.26, the replenishment task brings the unit back to full 

capacity regardless of the initial condition, whereas in the current work, the electrode masses before 

and after maintenance are related, which is simpler to model. 
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Figure 4. Resource-Task Network process representation handling electrode degradation in the 
electric arc furnaces operating in one of three alternative modes, for steel heat H1. 

4. Mathematical Formulation 

The structural parameters of the RTN are used to transform a generic formulation into one that is 

specific to the scheduling problem at hand. In this section, we present the constraints that are needed 

to accurately model the system, ensure that all heats reach the condition of final product, and achieve 

good computational performance (based on experience). We also discuss the time representation used 

by the model and two closely related objective functions. 

Melt_H1_EAF1_M1
Duration_EAFH1,M1

Melt_H1_EAF1_M2
Duration_EAFH1,M2

Melt_H1_EAF1_M3
Duration_EAFH1,M3

EAF1

EAF2

Elect1

Elect2

R0
Elect1=mass

R0
Elect2=mass

H1 _E

!"#$%,',( = −1
R0

EAF1=1

!"#$%,,%_"#$%_.%,/0%,1%
= 1 !"#$%,,%_"#$%_.2,/0%,12

= 1

!"#$%,,%_"#$%_.3,/0%,13
= 1

! "
45
67
%,,

%_
"#
$ %
_.

%,(
=
−8

9 ,
%,.

%

!"4567%,,%_"#$%_.3,( = −89,%,.3

!"4567%,,%_"#$%_.2,( = −89,%,.2

ReplaceElect_EAF1
Duration=30 min

ReplaceElect_EAF2
Duration=30 min

!"#$%,:5;_"#$%, <( =⁄ = 1
!"4567%,:5;_"#$%, <( =⁄ =mass

!"#$3,:5;_"#$3, <( =⁄ = 1

R0
EAF2=1

!"45673,:5;_"#$3, <( =⁄ =mass

Melt_H1_EAF2_M3
Duration_EAFH1,M3

!"#$3,,%_"#$3_.2,/0%,12
= 1

Melt_H1_EAF2_M2
Duration_EAFH1,M2

!"45673,,%_"#$3_.2,( = −89,%,.2
!"#$3,,%_"#$3_.3,/0%,13

= 1
!"45673,,%_"#$3_.3,( = −89,%,.3

! "
45
67
3,,

%_
"#
$ 3
_.

%,(
=
−8

9 ,
%,.

%

Melt_H1_EAF2_M1
Duration_EAFH1,M1

!"#$3,,%_"#$3_.%,/0%,1%
= 1

!,%_",,%_"#$%_.%,/0%,1%
= 1

!,%_",,%_"#$%_.3,/0%,13
= 1

!,%_",,%_"#$%_.2,/0%,12
= 1

!,%_",,%_"#$3_.2,/0%,12
= 1

!,%_",,%_"#$3_.3,/0%,13
= 1

!,%_",,%_"#$3_.%,/0%,1%
= 1

!"#$3,',( = −1



15 

4.1. Discrete-time representation 

To keep track of scheduling events, we rely on a single, 24-h time grid that is discretized into 

uniform slots L ∈ Y of size Z (min), as seen in Figure 5. To accurately account for the electricity cost 

with prices that change every hour, we assume that 60 (min) is a multiple of Z. The mathematical 

formulation to be presented next works with time slots, so all durations [8 given in section 2, in 

minutes, need to be converted into a number-of-time-slots basis O8. To ensure feasibility of the 

schedule, durations are rounded up to a multiple of Z: O8 = ⌈[8 Z⁄ ⌉, where ⌈ ⌉ is the ceiling function. 

 

Figure 5. Underlying uniform discrete-time grid. 

4.2. Model variables 

The mathematical formulation uses a single set of binary variables, \8,1, which assign the start of 

task ; to the start of slot L. Since we are dealing with a multistage process, it is possible to reduce the 

domain for task execution after computing earliest starting and finishing times for processing and 

transfer tasks (see for instance Castro et al.34). In contrast, we consider the full time-domain for 

electrode replacement tasks, to allow for different conditions in terms of initial electrode mass. The 

slots at which task ; can start are the elements of subset Y8. 

Nonnegative continuous variables Π7,1, compute the power : ∈ ,^_ (MW) and energy : ∈ ,-` 

(MWh) that needs to be purchased from electricity markets during slot L. If processing task ; requires 

an amount ab of power, then it will consume such value in every slot where it is active, i.e. 67,8,9 =

−ab	∀: ∈ ,^_, < ∈ {0, … , O8 − 1}. However, whenever there are rounding errors in the processing 

times, the power consumption will not be constant during the last active slot. To accurately compute 
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the energy consumption (and then the cost), we use the energy resource instead, only accounting for 

the active part of the task, i.e. 67,8,9 = g
−
Th∙V

j3
				;k	< ∈ {0, … , O8 − 2}

−
Th∙(VnopqV∙Pp)

j3
	;k	< = O8 − 1

	∀: ∈ ,-`. 

While we just consider the day-ahead spot market, with hourly varying prices assumed to be known 

a few hours ahead, it is straightforward to define one energy resource per energy market. Specifically, 

the electricity purchase options in Hadera et al.15, include a long-term contract with a fixed amount 

of electricity at a fixed price, short-term time-of-use contracts with on- and off-peak prices (known 

in advance), day-ahead, and onsite generation at a constant price but with start-up costs. In Castro et 

al.21, we show how to compute deviations from a precontracted load curve, which could lead to 

interaction with the intraday or real-time markets. The interested reader in developing a framework 

to determine optimal electricity market participation strategies for individual participants may also 

find useful the work of Dowling et al.35. 

Continuous variables ,7,1 represent the excess value of resource : at the start of slot L. They assume 

nonnegative values for all non-electrode resources, i.e. ,7,1 ≥ 0	∀: ∉ ,-C, L. For electrode resources, 

the excess values can take negative values, in the range: −∆$ ≤ ,7,1 ≤ $455	∀: ∈ ,-C, L. Setting 

,7,1 = 0	∀L is mandatory for some resources. As mentioned in section 3, we do it for the outlet 

resources of stages 1-3, to ensure immediate execution of the transfer tasks, and for the energy and 

power resources (: ∈ ,^_ ∪ ,-`). 

4.3. Objective functions 

We consider two objective functions that share the total energy and electrode replacement cost 

terms. Total energy cost is computed by multiplying the electricity price a:;KJ=7, by the sum of the 

energy consumed in all slots L belonging to hour ℎ: (L ∈ Y=7; easy to compute as a function of Z). 

The electrode replacement cost is incurred by executing electrode replacement tasks ; ∈ xS-. 

However, the second term in eqs. (1)-(2) is insensitive to the number of batches left in the electrodes 
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at the end of the time horizon, which may be important. The last term in eq. (2) makes the replacement 

cost continuous by also accounting for the fraction of electrode : ∈ ,-C that has been consumed 

(positive term) or produced (negative term). It is computed by dividing the difference between the 

electrode condition at the beginning of the time horizon ,73 and the final electrode mass ,7,|z|, by the 

mass of a new electrode. 

min∑ ∑ a:;KJ=7 ∑ Π7,11∈z�Ä=77∈SÅÇ + KS- ∑ ∑ \8,11∈zp8∈ÑÖÅ  (1) 

min∑ ∑ a:;KJ=7 ∑ Π7,11∈z�Ä=77∈SÅÇ + KS- ∑ ∑ \8,11∈zp8∈ÑÖÅ +
0ÖÅ

>Üáá
∑ (,73 − ,7,|z|)7∈SÅR  (2) 

4.4. Model constraints 

The excess resource balances are the most important set of constraints for any RTN formulation 

since they collect the information of the RTN superstructure in an elegant way. In eq. (3), the excess 

of resource : at time L, ,7,1, is related to the amounts produced/consumed by all tasks ending/starting 

at L and either to its value at L-1,	,7,1q" , or to the amount purchased from outside during slot L, Π7,1. 

,7,1 = ,73|1à" + ,7,1q"|1â",7∉(Säã∪SÅÇ) + Π7,1|7∈(Säã∪SÅÇ) + ∑ ∑ 67,8,9\8,1q9
Pp
9à3:
1q9∈zp

8 ∀:, L (3) 

In eq. (3), energy and power resources (: ∈ ,^_ ∪ ,-`) are treated in a different manner from the 

others. To prevent the purchase of more low-cost energy than needed by active tasks (we have no 

means of storing energy to be used at a later time), we eliminate the connection with the resource 

values at L − 1. Coupled with ,7,1 = 0 (as stated in section 4.2), it leads to the simplification of the 

constraint to Π7,1|7∈(Säã∪SÅÇ) = −∑ ∑ 67,8,9\8,1q9
Pp
9à3:1q9∈zp8 , which reflects that all energy 

purchased from the market during slot L must be consumed by tasks starting at L (note that 67,8,3 <

0). 

For the outlet resources of stages 1-3, we fix ,7,1 = 0	∀L, and so eq. (3) becomes: 

∑ ∑ 67,8,9\8,1q9
Pp
9à3:1q9∈zp8 = 0	. Therefore, if the resource is produced by task ; at time L, meaning 

\8,1qPp=67,8,Pp=1, then, a resource consuming task ;´ must start at L, i.e. \8´,1=1 and 67,8´,3=-1. 
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With the excess resource balances in eq. (3), it is still possible for the electrode replacement task 

; ∈ x7S- of electrode :, to start while there is still some residual electrode mass left, $455S. This, 

provided that the subsequent melting task, which subtracts $4=,>, starts immediately after, and that 

$4=,> ≥ $455S. To ensure that a replacement task, which will add $455 to the value of the 

corresponding ,7,1 variable at L + O8 (check Figure 4), only starts after the electrode mass reaches 

zero or a negative value, we use eq. (4). 

,7,1 + ∑ 67,8,Pp\8,18∈ÑÄ
ÖÅ ≤ $455	∀: ∈ ,-C, L (4) 

The next two sets of constraints ensure that every steel heat ℎ is processed exactly once on stage è. 

The difference between eqs. (5)-(6), is that last-stage heats are hidden in groups ê, recall Table 3. 

Note that subset x=,ë holds the processing tasks of heat ℎ belonging to stage è, while xí identifies the 

casting tasks of group ê. 

∑ ∑ \8,11∈zp8∈Ñ�,ì = 1	∀ℎ, è = 1,… ,3 (5) 

∑ ∑ \8,11∈zp8∈Ñï = 1	∀ê, è = 4 (6) 

For the steel heats to reach the different stages, the transfer tasks must also be executed. In eq. (7), 

subset x=,ëz  holds the transfer task of heat ℎ from stage è to stage è+1. 

∑ ∑ \8,11∈zp8∈Ñ�,ì
ó = 1	∀ℎ, è ≤ 3 (7) 

Finally, we need to ensure that the maximum transfer time between stages is not exceeded. For the 

inlet location resource : ∈ ,=,ëÑò  of heat ℎ to stage è, this is done by limiting the number of slots with 

,7,1=1, to the difference between the maximum and minimum transfer times (note that we subtract 

L:kë
ò since this was set as the duration of the transfer task to stage è, as discussed in section 3). To 

make sure that the effect of the rounding errors is eliminated, we use the floor function ⌊ ⌋ in eq. (8). 

∑ ∑ ,7,117∈S�,ì
õú ≤ ù(L:kë

û − L:kë
ò)/Z†	∀ℎ, 1 < è ≤ 4 (8) 
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5. Computational Results 

The mixed-integer linear programming model was implemented in GAMS 26.1 and solved with 

CPLEX 12.8 running in parallel deterministic mode using up to eight threads. Default settings were 

used except for the maximum wall time limit of one hour. Since all optimization runs in the following 

tables ended with this criterion, we just report the optimality gap at termination. The hardware 

consisted of a Windows 10, 64-bit desktop computer with an Intel i7-4790 (3.6 GHz) processor and 

8 GB of RAM. 

We have used the electricity prices in Table 6, representative values from the EPEX day-ahead spot 

market, and assume that both electrodes have just been replaced before the beginning of the time 

horizon, i.e. ,73 = $455	∀: ∈ ,-C. Over the next couple of sections, we discuss the results for the 

two alternative objective functions given in eqs. (1) and (2). 

Table 6. Hourly Electricity prices (€/MWh) for sections 5.1 to 5.3 and 5.5. Taken from 
www.epexspot.com/en/market-data/dayaheadauction, former DE/AT market). 

Hour ℎ: 0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 
a:;KJ=7  40.84 41.15 43.77 39.97 40.81 43.04 45.37 49.49 59.92 60 60.04 57.7 
Hour 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 
a:;KJ=7  52.86 50.05 50.94 54.04 57.52 64.91 59.92 57.99 43.68 38.46 40.94 35.89 

5.1. Discrete electrode replacement cost 

The objective function in eq. (1) minimizes the total operating cost considering a discrete electrode 

replacement cost. By discrete, we mean that the objective function is insensitive to the condition of 

the electrodes at the end of the 24-h scheduling period, costing the same to end with a barely used 

electrode or a depleted one. This is not good for the linear relaxation of the model since the 

optimization solver will be able to execute the replacement tasks partially, to regenerate the minimum 

amount of mass needed to process the 24 steel heats. Listed in Table 7 are the results as a function of 

the slot size, Z={5, 10, 15} min, where it can be seen that CPLEX is unable to find a feasible solution 

for the finest grid setting and that the best solution is obtained for Z=10 min. 
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Figure 6. Two-stage procedure for reducing the integrality gap when working with a discrete 
replacement cost in the objective function. 

Table 7. Results for objective function with discrete electrode replacement cost. 

Z 
(min) 

EAF modes MILP 
(€) 

LP relaxation 
(€) 

Optimality 
gap 

15 (M1,M2,M3) 87,001 75,377 13.3% 
10 (M1,M2,M3) 86,827 73,718 15.1% 
5 (M1,M2,M3) no solution 73,671 - 

 

One way to significantly reduce the integrality gap, is to limit the number of electrode replacement 

tasks. This can be done systematically by means of the two-stage procedure illustrated in Figure 6. 

The number of replacements, °J:, can be quickly estimated by solving the linear relaxation problem 

(LP) of the basic MILP formulation with eq. (9) replacing eq. (1) as the objective, and rounding up 

the solution to the next integer. One can then go back to the MILP, adding eq. (10) and returning to 

eq. (1) as the objective. Note that we use ≥ in eq. (10) since the equality is not guaranteed to lead to 

a feasible MILP. This was observed experimentally, after fixing °J:=1 for an instance with an LP 

solution equal to 0.991. 

Solve LP model
min eq. (9)

s.t. eqs. (3)-(8)
!",$ ∈ [0,1]

Solve MILP model
min eq. (1)

s.t. eqs. (3)-(8), (10)
!",$ ∈ {0,1}

Limit number of electrode 
replacement tasks ,-.

through eq. (10)
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min∑ ∑ \8,11∈zp8∈ÑÖÅ  (9) 

∑ ∑ \8,11∈zp8∈ÑÖÅ ≥ °J: (10) 

Table 8. Results for objective function with discrete electrode replacement cost and 2-stage solution 
procedure. 

Z 
(min) 

EAF mode MILP 
(€) 

LP rel. 
(€) 

Opt. gap # heats in 
(M1,M2,M3) 

Binary 
variables 

Total 
variables 

Equations 

15 (M1,M2,M3) 86,894 86,297 0.61% (15,2,7) 19661 37122 17684 
10 (M1,M2,M3) 85,730 85,210 0.57% (11,12,1) 30067 56168 26324 
5 (M1,M2,M3) 85,774 85,153 0.71% (12,8,4) 60924 112945 52244 

 

The results in Table 8, which are not guaranteed to be the global optimum, show that we were able 

to reduce the integrality gap by roughly one order of magnitude, leading to reasonable optimality gaps 

at termination (below 1%). More importantly, we have been able to find a good feasible solution for 

Z=5 min, and to reduce the cost of the best-found solution by 1.26%, from €86,827 to €85,730. This 

is shown in Figure 7 and described next. 

The first stage of the solution procedure for Z=10 min, returns a value of 0.3729, indicating the 

need to replace one electrode, at least. Looking at the optimal solution from the second stage of the 

procedure, it starts shortly after 11:00 (black rectangle in Figure 7) and is allocated to EAF2. It occurs 

three hours later than the end of the melting task in orange (heat H20), which took the electrode mass 

to -52.9 kg. Interestingly, the two EAFs follow very different strategies during the first 8 hours of 

operation, despite starting with the same mass, 1180 kg. EAF2 selects shorter tasks, being able to 

process 9 heats vs. 7 of EAF1, in which all but two correspond to a mid-power (M2) intensity mode. 

The consequence is the sharper decrease in mass compared to EAF1, which saves 263.5 kg to later 

process heats H6 and H23 in the most energy efficient mode M1, when the cost is around 51 €/MWh, 

and H8 in M2, when electricity is cheaper (43.68 €/MWh). Note that since EAF1 ends operation around 

21:00, with the electrode in a condition of -114.5 kg, it would have made sense to execute the 

expensive replacement task immediately after, to make the furnace ready for the next scheduling 



22 

period (see recent work of Lee et al.36 on how to generate alternative schedules in the context of a 

rolling horizon approach). 

 

Figure 7. Best-found solution (€85,730) when considering discrete electrode replacement cost in the 
objective function (Z =10 min). Note that background colors are related to hourly electricity prices 
(lowest for dark green and highest for dark rose). 

The main contributor to the objective function is, however, the electricity cost and so the schedule 

should avoid production when electricity is more expensive. To facilitate the analysis of the schedule, 

the background of Figure 7 feature colors that are related to the electricity price, ranging from the 

cheapest prices in dark green to the most expensive in dark rose. It is clear that the EAFs avoid 

operation in the rose periods. Since EAFs perform by far the most energy intensive tasks, it is not 

surprising that the power and energy profiles reach values close to zero in such periods. 
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Overall, 11 steel heats are processed in low-power mode M1, 12 in M2 and 1 in high-power mode 

M3. The optimization can thus take full advantage of the flexible operating modes for the electric arc 

furnaces. 

5.2. Continuous electrode replacement cost 

The objective function in eq. (2) considers a continuous replacement cost, i.e. we account for the 

cost of purchasing new electrodes but also penalize the decrease in mass compared to the initial 

condition. Changing the objective function neither affects the feasible region of the MILP nor its LP 

relaxation but has the advantage of leading to a lower integrality gap. Therefore, the heuristic 

procedure in Figure 6 is no longer required. The total operating cost in Table 9 becomes 38% higher 

than the values in Table 8 and heats are no longer processed in high-mass consumption mode M3. 

The other result worth highlighting are the lower optimality gaps. Note that the errors from rounding 

the processing times are higher for Z =10 than for Z=5, meaning fewer options to take advantage of 

lower electricity prices. Thus, the solution from the MILP should not degrade with decreasing Z, 

unless we are unable to solve the problem to optimality (if we account for the optimality gaps, the 

best possible solution at termination is lower for Z=5). 

Table 9. Results for objective function with continuous electrode replacement cost. 

Z 
(min) 

EAF mode MILP 
(€) 

LP relaxation 
(€) 

Opt. gap  # heats in 
(M1,M2,M3) 

15 (M1,M2,M3) 119,886 119,547 0.23% (21,3,0) 
10 (M1,M2,M3) 118,143 117,888 0.18% (22,2,0) 
5 (M1,M2,M3) 118,260 117,840 0.33% (21,3,0) 

 

Figure 8 presents the best-found solution, where the most striking difference compared to Figure 7 

is that the electrode mass profiles for the two EAFs are very similar. With the continuous replacement 

cost, the impact of replacement tasks is much lower, and therefore the optimization decides to execute 

two instead of one. As a consequence, the electrodes still have capacity for a few batches at the end 

of the day, not compromising the decision-making for the next 24 hours. Another advantage of this 
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schedule is that it keeps power consumption below 100 MW, except for the first 49 min, during the 

parallel processing of heats H1 and H13 in mode M2. Afterwards, all melting tasks are performed in 

low-power mode M1. Since this is the mode with longer processing times, two melting tasks need to 

be shifted to the intermediate price periods between 11:00 and 17:00 (compared to Figure 7). Overall, 

the power and energy consumption profiles are smoother, which is better for the power grid. 

 

Figure 8. Best-found solution (€118,143) when considering continuous electrode replacement cost 
in the objective function (Z =10 min). 

We thus conclude that the objective with continuous replacement cost is more appropriate and so 

it will be the only option considered in the remaining paper. 

5.3. Alternative vs. single operating mode 

With the proposed mathematical formulation, for every melting task performed in the Electric Arc 

Furnaces we have the option to choose the operating mode from three alternatives. From the analysis 
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of Table 10, we can see that the benefit can go up 7.22%. However, operating exclusively in low-

power mode M1 leads to essentially the same solution. The observed trend is that the lower the energy 

intensity mode the better. Thus, there is a clear trend for efficiency, both in terms of energy and 

electrode consumption, over production speed. Going for a single operating mode has the advantage 

of reducing problem size (by 35 and 18% in the number of binary and total variables, respectively), 

which may speed up solution time. Indeed, for M1, the MILP problem for Z=15 min can be solved to 

optimality in 2724 CPUs (results not part of Table 10). 

Table 10. Results for continuous replacement cost when considering a single operating mode for the 
EAFs (¢=10 min). 

Mode Cost 
(€) 

Cost 
Increase 

Opt. gap Binary 
variables 

Total 
variables 

Equations 

M1 118,146 0.00% 0.10% 19342 45443 26323 
M2 122,089 3.34% 0.76% 19702 45803 26323 
M3 126,675 7.22% 0.88% 19755 45856 26323 

 

5.4. Influence of electricity price profile 

Electricity price is a major source of uncertainty for daily operation, and thus it is interesting to 

analyze the results for a different profile. After testing a few, we selected for illustration the profile 

benefiting multi-mode operation the most, which is given in Table 11. Compared to Table 6, the 

average price increased by 34% to 66.16 €/MWh, while the variance increased by almost two orders 

of magnitude. In particular, there is a steep rise from the minimum at 3:00 (35.1 €/MWh) to the 

maximum of 91.76 €/MWh at 9:00. Note that by raising the average electricity cost, we decrease the 

relative importance of the electrode cost term, increasing the likelihood of selecting modes with larger 

mass consumption. 

The best-found solution for the profile in Table 11 is given in Figure 9. Compared to Figure 8, the 

optimization decides to finish the nightly operation of the furnaces sooner, while processing eight 

heats instead of seven on each EAF. This is accomplished by processing one heat in high-power mode 
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M3 and nine more heats in medium-power mode M2. It is important to highlight that the processing 

of the 12 heats in mode M2 or M3 occurs in the cheaper green region, where it pays to be faster, so 

that we can fit more tasks, and be less energy efficient. Notice also that the continuous caster units 

CC1 and CC2, belonging to the second most energy intensive stage, also avoid the dark-rose periods. 

Table 11. Electricity price profile for section 5.4 (€/MWh). Taken from 
https://www.mercatoelettrico.org/En/Esiti/MGP, values for Italy, Monday 6/2/2017). 

Hour ℎ: 0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 
a:;KJ=7  43.31 41.4 38.27 35.1 36.3 42.49 55.98 74.95 88.93 91.76 90.98 91.46 
Hour 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 
a:;KJ=7  73.78 71.54 79.15 74.54 75.03 74.4 86.37 77.29 73.66 60.69 57.15 53.3 

 

Table 12. Results for continuous replacement cost when considering a different electricity price 
profile (Z=10 min). 

Modes Cost 
(€) 

Cost 
Increase 

Opt. gap # heats in 
(M1,M2,M3) 

(M1,M2,M3) 132,783 - 0.67% (12,11,1) 
M1 135,839 2.30% 0.11% - 
M2 136,561 2.85% 1.42% - 
M3 143,760 8.27% 3.66% - 

 

The results in Table 12 show that considering all three operating modes reduces the cost by more 

than €3000/day (2.30%). Like in Table 10, we observe the trend of the cost increasing with the power 

intensity, but this is not always valid. Results for the Tuesday, 24/01/2017, profile from the EPEX 

day-ahead spot market (average price doubled compared to Table 6), led to cost increments of 0.18% 

for medium-power mode M2 and 3.76% for low-power mode M1, despite the latter being once more 

the most selected in multimode operation (12 vs. 9 heats).  
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Figure 9. Best-found solution (€132,783) when considering continuous electrode replacement cost 
in the objective function and a different electricity price profile (Z =10 min). 

5.5. Influence of initial electrode mass 

All previous computational runs were made starting with new electrodes in the EAFs. We now 

study the influence of the initial electrode mass by considering ,73= 400 kg and 600 kg, for the : ∈

,-C resources of EAF1 and EAF2, respectively. In the bottom profiles of Figure 10, the values at 0:00 

are lower, but this is because the melting tasks start at 0:00, leading to the immediate consumption of 

131.4 kg in EAF1 (H13 in M2) and 113.4 kg in EAF2 (H1 in M2) and to excess resource values of 268.6 

and 468.6 kg, respectively. Similarly, executing an electrode replacement task increases the mass by 

1180 kg, but the maximum value in the chart is just above 1000 kg (for Elect2) due to the immediate 

execution of heat H10 in mode M1, which deducts 135.7 kg. In other words, it is not easy to identify 

the start of a new batch in the furnaces just by looking at the stepwise graph (in this case, we have 

twenty steps for twenty-four heats). 
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Figure 10. Best-found solution (€118,697) when considering continuous electrode replacement cost 
in the objective function and starting with used electrodes (Z =10 min). 

Because of the lower initial mass, the electrode replacement tasks now need to be executed in the 

low-cost period (at 4:20 and 5:30), for the EAFs to still take advantage of the low electricity prices. 

Like in Figure 8, there are just two tasks executed in the medium-power mode and so the first period 

of operation (and maintenance) of the furnaces ends later, leading to a 0.47% increase in cost, to 

€118,697. Since the replacement tasks are not executed in parallel, there are two drops in electricity 

consumption rather than one sharp drop, but overall, the schedules in Figure 8 and Figure 10 are very 

similar. 

6. Conclusions 

This paper presented a mixed-integer linear programming formulation for generating the daily 

schedule of the melt shop of a steel plant purchasing electricity from the day-ahead spot market. The 
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novelty was to consider alternative operating modes for the electric arc furnaces together with the 

maintenance of their electrode systems, in order to achieve a tradeoff between energy efficiency, 

electrode lifetime and production time. Complicating scheduling constraints were derived after first 

representing the process as a Resource-Task Network. 

We have shown the value of the new formulation for decision-making by optimally scheduling an 

order of 24 steel heats, for three different price profiles taken from day-ahead spot markets. Of the 

three specified operating modes, at least two were selected, with a preference for the low-power mode, 

which is the most energy efficient, consumes the least mass of electrode, but lasts the longest. 

Interestingly, we have seen that the low-power mode is not necessarily the best choice when 

restricting the plant to a single mode throughout the day. Overall, the benefits from multi-mode 

operation compared to just using the high-power mode, can exceed 8%. 

The computational study also involved two objective functions, differing in the calculation of the 

electrode replacement cost, which is an important component of the total operating cost. While the 

cost only incurs when inserting a new electrode in the system, this discrete option drives the 

optimization to depleted electrodes towards the end of the 24-h scheduling horizon. Since this may 

compromise the schedule for the next period, and since electricity prices tend to be at the lowest 

earlier in the day, it is better to add a continuous term that accounts for the change of electrode mass 

between the beginning and the end (the initial electrode masses are model parameters). Still, the 

solution for 24 hours is only a first step to a realistic formulation where a longer horizon is considered 

(at least two days) and only the schedule for the first day is executed. The inclusion of the second day 

serves the purpose of avoiding strong cutoff effects, which can make the results suboptimal in the 

long run. This is similar to what is done in model-predictive control. 

Alternative operating modes add flexibility to the system, but ideally one would want to change the 

mode during the melting of a steel heat and not just between heats. Furthermore, focusing exclusively 
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on the day-ahead energy market can significantly undervalue cost savings. These topics will be the 

subject of future work. 
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Nomenclature 

Sets/Indices 

ê = group of steel heats 
!í = Steel heats belonging to group ê 
ℎ = steel heat 
ℎ: = hour of the day 
;, ;´ = processing, transfer or electrode replacement task 
xí = casting tasks of group ê 
x=,ë = subset of processing tasks of heat ℎ belonging to stage è 
x=,ë
z  = subset of transfer tasks of heat ℎ from stage è 
xS- = electrode replacement tasks 
x7S- = electrode replacement task that regenerates electrode mass resource : 
è = production stage 
$ = operating mode in electric arc furnace 
: = resource 
,=,ë
Ñò  = inlet location resource of heat ℎ in stage è  

,-`= energy resource 
,-C = electrode mass resource 
,^_= power resource 
Y/L = time slots of discrete-time grid 
Y=7 = time slots belonging to hour ℎ: 
Y8 = time slots where task ; can start 
< = relative time with respect to the start of the task (ranges between 0 and O8) 

Parameters 

KS- = cost of replacing an electrode (€) 



31 

[8 = duration of task ; (min) 
$4=,> = electrode mass degradation from processing heat ℎ in operating mode $ (kg) 
$455 = electrode mass added to the system by electrode replacement task (kg) 
a:;KJ=7 = price of electricity in hour ℎ: (€/MWh) 
abë,> = power consumption in stage è operating in mode $, if relevant (MW) 
,73 = availability of resource : in the beginning of time horizon (used for equipment units and 
electrode mass resources) 
L:kë

ò/L:kë
û = minimum/maximum transfer time of every heat from stage è-1 to stage è (m3) 

Z = size of every slot in discrete-time grid (min) 
∆$ = maximum mass degradation of second from bottom electrode before replacement task (kg) 
67,8,9 = amount of resource : consumed (-) or produced (+) by task ; at relative time < 
O8 = duration of task ; in number of time intervals of size Z 

Variables 

\8,1 = binary variable indicating the start of execution of task ; in slot L 
,7,1 = excess amount of resource : at the start of slot L 
Π7,1 = amount of power or energy resource : purchased during time slot L (MW or MWh) 
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