
1 

Industrial Demand Side Management of a Steel Plant 

Considering Alternative Power Modes and Electrode 

Replacement 

Pedro M. Castro,a,1 Giancarlo Dalle Aveb,c ,Sebastian Engellc, 

Ignacio E. Grossmannd and Iiro Harjunkoskib 

a Centro de Matemática Aplicações Fundamentais e Investigação Operacional, Faculdade de 

Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal 
b ABB Corporate Research, Wallstadter Strasse 59, Ladenburg, 68526, Baden-Württemberg, 

Germany 
c Process Dynamics and Operations Group, Department of Biochemical and Chemical Engineering, 

Technische Universität Dortmund, Emil-Figge-Str. 70, 44221 Dortmund, Germany 

d Center for Advanced Process Decision-Making, Department of Chemical Engineering, Carnegie 

Mellon University, Pittsburgh, PA 15213, USA 

Abstract 

As a major energy consumer, steel plants can help to stabilize the power grid by shifting production 

from periods with high demand. Electric arc furnaces can be operated at different power levels, 

affecting energy efficiency, duration of melting tasks and the rate of electrode degradation, which has 

previously been neglected. We thus propose a new mixed-integer linear programming (MILP) 

formulation for the optimal scheduling under time-of-use electricity pricing that captures the tradeoffs 
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involved. It relies on the Resource-Task Network (RTN) for modeling processing tasks with variable 

electrode mass depletion and replacement tasks that regenerate the mass. Through the results of an 

industrial case study, we show that the high-power mode is mostly avoided, despite allowing for more 

processing tasks in low-price periods. This is because such mode is less energy efficient and 

consumes a larger mass of electrode, indicating that electrode replacement plays an important role in 

total cost minimization. 

1. Introduction 

As electricity generation becomes more and more focused on renewables such as wind and solar, 

new methods are needed to ensure that the electricity grid remains balanced at all times. One such 

method to contribute to this stability is Demand Side Management (DSM). DSM refers to different 

methods of shaping the energy demand curve at the consumers’ side. On the one hand, this benefits 

electricity suppliers through flattened load curves, enabling a quicker reaction to mismatch in the 

grid. On the other hand, DSM provides a method for consumers to lower their operating costs by 

adapting the production to time-dependent electricity prices.  

Due to the strong time-dependence of these energy-related concerns, effective scheduling is 

essential in DSM, and it has been identified as a key challenge in industrial deployment of scheduling 

solutions especially when a complex manufacturing process is involved (Merkert, et al., 2015; Zhang 

& Grossmann, 2016). Therefore, many recent studies have looked at various aspects of DSM applied 

to a variety of industries including air separation (Mitra et al., 2012; Zhang, et al. 2016; Basan, et al. 

2018; Tsay, et al. 2018), cement making (Castro et al., 2009; Castro et al., 2011, Zhang et al., 2017), 

combined heat and power plants (Mitra et al., 2013) and pulp-and-paper (Hadera, et al., 2019). 

In general, the more energy intensive an industry is and the more flexibility the manufacturing 

process has, the more can be gained from participating in DSM schemes. As a result, the steelmaking 

industry has been identified as a key industry for DSM because EAFs, which are used to melt solid 

steel, consume large amounts of energy and offer considerable flexibility in when and how they are 
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operated. The flexibility when operating the EAFs stems from the fact that they are operated in batch 

mode and can change their power consumption rates based on the setting of the on-load tap changer 

(Zhang et al., 2017b). This enables effective response to time-varying prices, as the timing of batches 

and the batch energy-intensity can easily be changed. 

Scheduling and DSM have been studied by a wide variety of authors. Nolde & Morari (2010) 

proposed a continuous-time scheduling formulation for electricity load tracking of a steel plant. The 

problem they consider involves scheduling the production tasks, with fixed power consumption and 

duration, to track a pre-defined energy curve, with penalties for deviating from said curve. Hadera, et 

al. (2015) studied the same problem but used a more efficient formulation than their predecessors 

while simultaneously accounting for multiple electricity purchasing contracts. Pan et al. (2019) 

proposed a mixed-integer nonlinear formulation (MINLP) for electrical load tracking under time-of-

use (TOU) tariffs, where constraints are also derived for each of the six possible cases identified by 

Nolde and Morari (2010). Perhaps due to the increasing complexity from modeling TUO tariffs that 

change with load intervals, no attempt has been made to solve the resulting MINLPs by commercial 

solvers. Instead, the authors use an evolutionary algorithm that is shown capable of generating high-

quality schedules. In the MINLP formulation of Xu et al. (2018), the continuous casting stage is 

modeled more accurately, with the optimization deciding the casting time for each charge/heat as well 

as the casting speed. Nonlinear terms appear due to the product continuous and binary variables, 

which are linearized exactly, and the bilinear and monomial terms involving the time and speed 

variables are relaxed using McCormick envelopes (McCormick, 1976). A three-stage MILP-NLP 

decomposition strategy coupled with spatial branch-and-bound is then used to obtain good-quality 

solutions in reasonable times. 

Despite many authors relying on continuous-time formulations, the discrete-time representation is 

generally computationally more efficient when dealing with time-dependent utility pricing and 

availability (Sundaramoorthy and Maravelias, 2011; Harjunkoski et al., 2014). Castro et al. (2013) 
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formulated the DSM problem for steel plants using a Resource-Task Network (RTN) formulation. 

The RTN (Pantelides, 1994), is a generic framework to model and optimize the scheduling of complex 

processes in a systematic way. Because of this, several other works have built upon the seminal RTN 

formulation for steel scheduling. Dalle Ave et al. (2019) expanded the original model by accounting 

for more detailed electricity market concerns, including the separation between intraday and day-

ahead markets. Zhang et al. (2017) added additional DSM flexibility by considering alternative 

operating modes for the EAFs. Operating modes have specific values for instantaneous electricity 

consumption as well as batch duration, and so electricity savings can come from both the timing of 

the batch, as well as the mode at which it is operated. However, each mode has the same total energy 

consumption, which is not accurate since energy efficiency decreases as power consumption 

increases. This is one of the novelties of the current work. 

Another aspect of scheduling that has been gaining attention recently is the integration of equipment 

condition and maintenance into production planning/scheduling. Castro et al. (2014) took seasonal 

electricity prices into account when optimizing the regular maintenance plan of a gas engine power 

plant supplying base load electricity to a chemical complex and selling excess production to the power 

grid. Maintenance of the gas engines was performed within a given time window of hours spent 

online. Vieira et al. (2017), studied the optimal planning of a continuous biopharmaceutical process 

considering decaying production yield. Other applications can be found in the polymers industry (Wu, 

et al., 2019), where each of the products contributes differently to the fouling of the polymerization 

reactor. The level of fouling cannot cross a specific threshold and contributes to an increase in batch 

time. From a fleet management perspective, Schulze Spüntrup et al. (2019) looked at the maintenance 

scheduling of a compressor fleet. The authors assume that the compressors are always operating at 

full capacity, unless a maintenance activity is occurring, and consider two types of degradation 

indicators: fouling-type; and remaining useful lifetime (RUL). Another example comes from the work 

of van der Klauw et al. (2016), who consider an energy storage system to reduce the electricity 
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production peaks. They account for degradation based on the number of switches between charging 

and discharging cycles with a goal of maximizing the total energy throughput. The integrated 

maintenance and production scheduling has also been studied in the context of steel plants. Biondi et 

al. (2017) studied the simultaneous planning and scheduling of production and long-term maintenance 

in a steel plant, using the RUL of the ceramic lining of production units as the key degradation 

indicator. The goal of their optimization was to minimize operating costs including inventory and 

maintenance costs. 

In this work, we also optimize the integrated production and maintenance of steel plants but on a 

shorter timescale, within the DSM setting. The degradation considered is that of the furnace’s 

electrode system, which occurs much faster than the lining of the units and is greatly influenced by 

the operating power of the furnace (Dalle Ave et al., 2019b). One major goal of this paper will be to 

highlight the important tradeoffs between time-varying electricity prices, electrode degradation and 

production throughput. 

The rest of the paper is organized as follows. We provide the problem description in section 2, 

together with the relevant data. Section 3 concerns the Resource-Task Network (RTN) representation 

of the process, with emphasis on the modeling of the alternative operating modes for the electric arc 

furnaces and the electrode replacement tasks. The discrete-time RTN formulation is the subject of 

section 4, where we consider two alternative objective functions, both including the minimization of 

electricity and electrode replacement cost. Section 5 discusses the computational results, with 

emphasis on identifying the optimal operating modes for a given electricity price profile and condition 

of the electrode system. Finally, the conclusions are given in section 6. 

2. Problem Statement 

We consider the short-term scheduling problem of the melt shop production process of a steel plant 

under hourly changing electricity pricing, known ahead of time. The process under consideration can 
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be classified as a flexible flowshop with four production stages, as seen in Fig. 1, each with two units 

in parallel. Minimum and maximum transfer times between consecutive stages are given in Table 1. 

 

Fig. 1. The melt shop consists of four production stages. 

Table 1. Minimum 𝑡𝑡𝑡𝑡𝑡𝑡𝑘𝑘𝐿𝐿 and maximum 𝑡𝑡𝑡𝑡𝑡𝑡𝑘𝑘𝑈𝑈 transfer times to stage 𝒌𝒌 (min)  

Stage 𝑘𝑘=2 𝑘𝑘=3 𝑘𝑘=4 
𝑡𝑡𝑡𝑡𝑡𝑡𝑘𝑘𝐿𝐿 10 4 10 
𝑡𝑡𝑡𝑡𝑡𝑡𝑘𝑘𝑈𝑈 240 240 120 

 

Table 2. Processing times (min) in Argon Oxygen Decarburization units, Ladle Furnaces and 
Continuous Casters (for Electric Arc Furnaces see Table 5). 

Steel heat/Unit AOD1-2 LF1-2 CC1 CC2 
H1-H4 75 35 50 50 
H5-H6 80 45 60 60 
H7-H8 80 20 55 55 
H9-H12 95 45 60 60 
H13-H14 85 25 70 70 
H15-H17 85 25 75 75 
H18 95 45 60 60 
H19 95 45 70 70 
H20 95 30 70 70 
H21-H22 80 30 50 50 
H23-H24 80 30 50 60 
 

As a case study, we assume the production of 24 specific steel heats over a 24-h time horizon. In 

the first three stages, the processing time of heat ℎ does not depend on the unit, while the duration in 

the continuous casters is slightly different for heats H23-H24, as seen in Table 2. As detailed in Castro 

et al. (2013), heats with similar grade characteristics form casting sequences that need to be processed 

Argon Oxygen Decarburization:
adjusts the chemistry

Electric Arc Furnace:
melts scrap steel

Continuous Casting: 
creates steel slabs

Ladle Furnace: 
adjusts the temperature

Stage k=1 Stage k=2 Stage k=3 Stage k=4
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uninterruptedly (check Table 3 for the correspondence between groups and steel heats). At the end of 

the casting sequence, there is a changeover time of 70 min for CC1 and 50 min for CC2. The power 

consumption in stages two to four is given in Table 4. 

The first stage is the most energy intensive and concerns melting in an electric arc furnace (EAF). 

It is assumed that the electric power consumption is constant throughout the duration of the melting 

task and that there are three alternative operating modes to choose from, M1-M3, ranging from low to 

high power intensity (check values in Table 5). One can see that increasing the power consumption 

reduces the duration of the task, giving more options to the scheduler to take advantage of periods of 

low electricity pricing, but decreases both energy efficiency and the life time of the electrodes. It 

should be highlighted that there is no need to consider more modes, with only slight differences in 

power consumption and duration, since we need to use slots of size 𝛿𝛿 = {5,10,15} min to ensure 

tractability of the discrete-time formulation, and the alternative durations need to be dissimilar when 

rounded up to a multiple of 𝛿𝛿. 

Table 3. In the continuous casters, steel heats are processed in six groups  

Group 𝑔𝑔 G1 G2 G3 G4 G5 G6 
𝐻𝐻𝑔𝑔 H1-H4 H5-H8 H9-H12 H13-H17 H18-H20 H21-H24 

 

Table 4. Power consumption 𝑝𝑝𝑝𝑝𝑘𝑘 in Argon Oxygen Decarburization units, Ladle Furnaces and 
Continuous Casters (MW) 

Stage 𝑘𝑘=2 𝑘𝑘=3 𝑘𝑘=4 
𝑝𝑝𝑝𝑝𝑘𝑘 2 2 7 
 

The electrode system of the electric arc furnace consists of a pile of several electrodes. A new 

electrode has 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =1180 kg and costs 𝑐𝑐𝑅𝑅𝑅𝑅= €20,000. As the current is run through the electrodes 

to melt the steel, they sublimate due to the high temperatures. When the mass is totally consumed, a 

new electrode must be inserted at the top of the pile for the production to continue, as illustrated in 

Fig. 2. Notice that the darker electrode may already have suffered some degradation from the last 
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batch (steel heat) when the electrode replacement task of 30 min is executed. If we model the system 

as consisting of a single electrode, it means that the mass can reach negative values. Based on the 

values in Table 5, we set the minimum mass to 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝐿𝐿=-123 kg. 

Table 5. Alternative operating modes in Electric Arc Furnaces (stage 𝑘𝑘 = 1) 

Operating mode 𝑚𝑚 M1 M2 M3 
Power consumption 𝑝𝑝𝑝𝑝𝑘𝑘=1,𝑚𝑚 (MW) 40 60 75 
Duration for steel heats H1-H8, H13-H17, H21-H24 (min) 69 49 41 
Duration for steel heats H9-H12, H18-H20 (min) 76 54 45 
Electrode mass consumption 𝑚𝑚𝑚𝑚ℎ,𝑚𝑚 for H1-H8, H13-H17, H21-H24 (kg) 123.3 131.4 137.4 
Electrode mass consumption 𝑚𝑚𝑚𝑚ℎ,𝑚𝑚 for H9-H12, H18-H20 (kg) 135.7 144.5 151.2 
 

 

Fig. 2. Electrode replacement in electric arc furnaces. 

The objective is to minimize the total operating cost, consisting of electricity and electrode material 

costs. It should be highlighted that despite being of the same order of magnitude, the latter cost has 

previously been neglected. 

3. Resource-Task Network representation of the system 

Castro et al. (2013) tackled a closely related scheduling problem from the same steel plant with a 

discrete-time formulation based on the RTN process representation (Pantelides, 1994). Since many 

features are shared with the RTN presented next, here we only focus on the differences resulting from 

considering alternative operating modes for the electric arc furnaces and electrode replacement tasks. 
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In a discrete-time RTN formulation, equipment units can be treated as identical if their tasks have 

the same duration and involve the same consumption/production of resources. In such case, two 

identical parallel units can be modeled as an aggregate unit of size 2, to improve computational 

performance by reducing symmetry. From the problem statement in section 2, we know that the 

processing times and power requirements for the first three production stages only depend on the steel 

heat, so the EAFs, AODs and LFs can potentially be treated as aggregate units. Unfortunately, to 

accurately model electrode degradation, we need to treat the electric arc furnaces individually. Thus, 

stages 𝑘𝑘=2 and 𝑘𝑘=3 consider aggregate equipment units of size two, information provided by the 

following initial availability parameters: 𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴0 =𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿0 =2; while stages 𝑘𝑘=1 and 𝑘𝑘=4 feature two 

individual units (𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸1
0 =𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸2

0 =𝑅𝑅𝐶𝐶𝐶𝐶1
0 =𝑅𝑅𝐶𝐶𝐶𝐶2

0 =1). 

In stage 1 in Fig. 3, the melting tasks of a steel heat produce, at the end of execution, the sequential 

resource that locates the heat at the exit of the electric arc furnaces (e.g. H1 _E for heat 𝐻𝐻1). These 

resources need to be consumed as soon as they are produced, meaning that the corresponding transfer 

task (Transfer_H1_E_A) needs to start immediately after the end of the melting task. Its duration, 

Duration_E_A, is set to the minimum transfer time to stage 2, 𝑡𝑡𝑡𝑡𝑡𝑡𝑘𝑘=2𝐿𝐿  (check Table 1). The transfer 

task takes the heat to the entrance of the Argon Oxygen Decarburization units, generating resource 

H1 _Ai. At this state, the steel heat can wait for 𝑡𝑡𝑡𝑡𝑡𝑡2𝑈𝑈 − 𝑡𝑡𝑡𝑡𝑡𝑡2𝐿𝐿 minutes until the start of the second stage 

of production. The same constraints are enforced for all other stages’ output (e.g. H1 _Ao and H1 _Lo) 

and input location resources 𝑟𝑟 ∈ 𝑅𝑅ℎ,𝑘𝑘
𝐼𝐼𝐼𝐼  (e.g. H1 _Li and H1 _C).  
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Fig. 3. Resource-Task Network process representation showing three alternative operating modes for melting the steel heats in the electric arc 
furnaces. 
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The last three stages of production have a single operating mode (check processing times in Table 

2 and Table 4, respectively). Notice that the casting tasks, unlike the processing tasks of the previous 

stages, are defined for a group 𝑔𝑔 of heats (e.g. 𝐺𝐺1 = {𝐻𝐻1,𝐻𝐻2,𝐻𝐻3,𝐻𝐻4}). Although not apparent from 

Fig. 3, they need to be executed uninterruptedly, in an ordered sequence that includes a changeover 

time at the end (see details in Castro et al. (2013)). The output from the final production stage are the 

final product resources, e.g. H1. 

Most interactions of resources with tasks occur either at the beginning or at the end of task 

execution. They are represented in Fig. 3 in the form of dashed lines, with double arrows indicating 

a temporary consumption of the resource (equipment units are regenerated at the end of the tasks). In 

contrast, the consumption of electrical power PW occurs throughout the duration of the processing 

task. To make a distinction, such continuous interaction is represented by a solid line. 

3.1. Alternative operating modes in EAFs 

In the presence of alternative operating modes for the electric arc furnaces, we need to replicate the 

melting task of a steel heat into as many copies as the number of operating modes. Note, however, 

that the copies are not exact since each has a different power consumption that is reflected into a 

shorter or longer duration. In Fig. 3, we show the required tasks for the first 𝐻𝐻1 and last 𝐻𝐻𝐻𝐻 steel heat, 

where 𝑚𝑚 ∈ {𝑀𝑀1,𝑀𝑀2,𝑀𝑀3} represents the operating mode. As an example, Melt_H1_M1, with a duration 

Duration_EAFH1,M1 (see Table 5), represents the processing task of 𝐻𝐻1 in mode 𝑀𝑀1. All melting tasks 

temporarily use an electric arc furnace. 

It should be noted that Fig. 3 features fewer tasks and resources than those needed for modeling the 

first production stage for two reasons: (i) to simplify the diagram; (ii) to emphasize that, in general, 

alternative operating modes can be handled by using one aggregate unit (named here as EAFs). 
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3.2. Electrodes degradation in electric arc furnaces 

Electrode replacement is a relevant part of the operating cost of electric arc furnaces. Electrode 

sublimation rate is a function of power consumption, with the benefits of a shorter processing time 

resulting from a higher power consumption being counteracted by a slightly greater electrode mass 

depletion. It may force electrode replacement after a smaller number of batches, during which the 

electric arc furnace will be inoperative. We thus need to take into consideration the state of the 

electrode when generating the schedule, to accurately compute the operating cost. 

Since each electric arc furnace has its own electrode system, we cannot consider the two furnaces 

as an aggregate resource to model electrode degradation. Let resource Elect1 represent the electrode 

system of electric arc furnace EAF1. The initial condition at the beginning of the time horizon if given 

by 𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸1
0 , which can be the electrode mass when new, given by parameter 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚. Melting consumes 

a certain mass of electrode, a value that is a function of the steel heat and the operating mode (recall 

Table 5). In the context of a discrete-time RTN formulation, it can be modeled through structural 

parameters 𝜇𝜇𝑟𝑟,𝑖𝑖,𝜃𝜃 that define the amount of resource 𝑟𝑟 consumed/produced by task 𝑖𝑖 at a time 𝜃𝜃 

relatively to the start of the task. More specifically and being parameter 𝑚𝑚𝑚𝑚ℎ,𝑚𝑚 the mass required to 

process heat ℎ in mode 𝑚𝑚, making 𝜇𝜇𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸1,𝐻𝐻1_𝐸𝐸𝐸𝐸𝐸𝐸1_𝑀𝑀1,0 = −𝑚𝑚𝑚𝑚𝐻𝐻1,𝑀𝑀1 forces the consumption at the 

beginning of the processing task of heat 𝐻𝐻1 in 𝐸𝐸𝐸𝐸𝐸𝐸1 operating in mode 𝑀𝑀1, of the needed electrode 

mass of 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸1. In other words, the task can only start if enough mass is available. 

Fig. 4 shows the value of all non-zero structural parameters dealing with resources of equipment 

units, electrodes and the sequential resource (H1_E) for the first steel heat. Notice that electrode arc 

furnace 𝐸𝐸𝐸𝐸𝐸𝐸2 is consumed at the start of all tasks 𝑖𝑖 of type Melt_H1_EAF2, i.e. 𝜇𝜇𝐸𝐸𝐸𝐸𝐸𝐸2,𝑖𝑖,0 = −1. The 

equipment resource is then produced at the end of task, which occurs at a time 𝜏𝜏𝐻𝐻1,𝑚𝑚 relative to the 

start of the task, where 𝑚𝑚 is the operating mode. The required parameter for mode 𝑀𝑀2 is thus 

𝜇𝜇𝐸𝐸𝐸𝐸𝐸𝐸2,𝐻𝐻1_𝐸𝐸𝐸𝐸𝐸𝐸2_𝑀𝑀2,𝜏𝜏𝐻𝐻1,𝑀𝑀2
= 1. Resource H1_E is also produced at the end of the task: 

𝜇𝜇𝐻𝐻1_𝐸𝐸,𝐻𝐻1_𝐸𝐸𝐸𝐸𝐸𝐸2_𝑀𝑀2,𝜏𝜏𝐻𝐻1,𝑀𝑀2
= 1. 
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The electrode replacement tasks in Fig. 4, e.g. ReplaceElect_EAF1, have the purpose of adding a 

new electrode, which is done simply by producing the amount 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 at the end of the 30 min duration. 

The required parameter for 𝐸𝐸𝐸𝐸𝐸𝐸1 is: 𝜇𝜇𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙1,𝑅𝑅𝑅𝑅𝑅𝑅_𝐸𝐸𝐸𝐸𝐸𝐸1,⌈30 𝛿𝛿⁄ ⌉ = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚. 

 

Fig. 4. Resource-Task Network process representation handling electrode degradation in the electric 
arc furnaces operating in one of three alternative modes, for steel heat H1. 

4. Mathematical Formulation 

The structural parameters of the RTN are used to transform a generic formulation into one that is 

specific to the scheduling problem at hand. In this section, we present the constraints that are needed 

to accurately model the system, ensure that all heats reach the condition of final product and to achieve 

Melt_H1_EAF1_M1
Duration_EAFH1,M1

Melt_H1_EAF1_M2
Duration_EAFH1,M2

Melt_H1_EAF1_M3
Duration_EAFH1,M3

EAF1

EAF2

Elect1

Elect2

R0
Elect1=mass

R0
Elect2=mass

H1 _E

𝜇𝜇𝑅𝑅𝐴𝐴𝐿𝐿1,𝑖𝑖,0 = −1

R0
EAF1=1

𝜇𝜇𝑅𝑅𝐴𝐴𝐿𝐿1,𝐻𝐻1_𝑅𝑅𝐴𝐴𝐿𝐿1_𝑀𝑀1,𝜏𝜏𝐻𝐻1,𝑀𝑀1
= 1 𝜇𝜇𝑅𝑅𝐴𝐴𝐿𝐿1,𝐻𝐻1_𝑅𝑅𝐴𝐴𝐿𝐿1_𝑀𝑀3,𝜏𝜏𝐻𝐻1,𝑀𝑀3

= 1

𝜇𝜇𝑅𝑅𝐴𝐴𝐿𝐿1,𝐻𝐻1_𝑅𝑅𝐴𝐴𝐿𝐿1_𝑀𝑀2,𝜏𝜏𝐻𝐻1,𝑀𝑀2
= 1

𝜇𝜇 𝑅𝑅
𝐸𝐸𝐸𝐸
𝐸𝐸𝐸𝐸
1,𝐻𝐻

1_
𝑅𝑅𝐴𝐴

𝐿𝐿 1
_𝑀𝑀

1,0
=
−
𝑚𝑚
𝑚𝑚 𝐻𝐻

1,
𝑀𝑀
1

𝜇𝜇𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸1,𝐻𝐻1_𝑅𝑅𝐴𝐴𝐿𝐿1_𝑀𝑀2,0 = −𝑚𝑚𝑚𝑚𝐻𝐻1,𝑀𝑀2

𝜇𝜇𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸1,𝐻𝐻1_𝑅𝑅𝐴𝐴𝐿𝐿1_𝑀𝑀3,0 = −𝑚𝑚𝑚𝑚𝐻𝐻1,𝑀𝑀3

ReplaceElect_EAF1
Duration=30 min

ReplaceElect_EAF2
Duration=30 min

𝜇𝜇𝑅𝑅𝐴𝐴𝐿𝐿1,𝑅𝑅𝐸𝐸𝑅𝑅_𝑅𝑅𝐴𝐴𝐿𝐿1, 30 𝛿𝛿⁄ = 1

𝜇𝜇𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸1,𝑅𝑅𝐸𝐸𝑅𝑅_𝑅𝑅𝐴𝐴𝐿𝐿1, 30 𝛿𝛿⁄ =mass

𝜇𝜇𝑅𝑅𝐴𝐴𝐿𝐿2,𝑅𝑅𝐸𝐸𝑅𝑅_𝑅𝑅𝐴𝐴𝐿𝐿2, 30 𝛿𝛿⁄ = 1

R0
EAF2=1

𝜇𝜇𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸2,𝑅𝑅𝐸𝐸𝑅𝑅_𝑅𝑅𝐴𝐴𝐿𝐿2, 30 𝛿𝛿⁄ =mass

Melt_H1_EAF2_M3
Duration_EAFH1,M3

𝜇𝜇𝑅𝑅𝐴𝐴𝐿𝐿2,𝐻𝐻1_𝑅𝑅𝐴𝐴𝐿𝐿2_𝑀𝑀3,𝜏𝜏𝐻𝐻1,𝑀𝑀3
= 1

Melt_H1_EAF2_M2
Duration_EAFH1,M2

𝜇𝜇𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸2,𝐻𝐻1_𝑅𝑅𝐴𝐴𝐿𝐿2_𝑀𝑀3,0 = −𝑚𝑚𝑚𝑚𝐻𝐻1 ,𝑀𝑀3

𝜇𝜇𝑅𝑅𝐴𝐴𝐿𝐿2,𝐻𝐻1_𝑅𝑅𝐴𝐴𝐿𝐿2_𝑀𝑀2,𝜏𝜏𝐻𝐻1,𝑀𝑀2
= 1

𝜇𝜇𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸2,𝐻𝐻1_𝑅𝑅𝐴𝐴𝐿𝐿2_𝑀𝑀2,0 = −𝑚𝑚𝑚𝑚𝐻𝐻1,𝑀𝑀2

𝜇𝜇 𝑅𝑅
𝐸𝐸𝐸𝐸
𝐸𝐸𝐸𝐸
2,𝐻𝐻

1_
𝑅𝑅𝐴𝐴

𝐿𝐿 2
_𝑀𝑀

1,0
=
−
𝑚𝑚
𝑚𝑚 𝐻𝐻

1,
𝑀𝑀
1

Melt_H1_EAF2_M1
Duration_EAFH1,M1

𝜇𝜇𝑅𝑅𝐴𝐴𝐿𝐿2,𝐻𝐻1_𝑅𝑅𝐴𝐴𝐿𝐿2_𝑀𝑀1,𝜏𝜏𝐻𝐻1,𝑀𝑀1
= 1

𝜇𝜇𝐻𝐻1_𝑅𝑅,𝐻𝐻1_𝑅𝑅𝐴𝐴𝐿𝐿1_𝑀𝑀1,𝜏𝜏𝐻𝐻1,𝑀𝑀1
= 1

𝜇𝜇𝐻𝐻1_𝑅𝑅,𝐻𝐻1_𝑅𝑅𝐴𝐴𝐿𝐿1_𝑀𝑀2,𝜏𝜏𝐻𝐻1,𝑀𝑀2
= 1

𝜇𝜇𝐻𝐻1_𝑅𝑅,𝐻𝐻1_𝑅𝑅𝐴𝐴𝐿𝐿1_𝑀𝑀3,𝜏𝜏𝐻𝐻1,𝑀𝑀3
= 1

𝜇𝜇𝐻𝐻1_𝑅𝑅,𝐻𝐻1_𝑅𝑅𝐴𝐴𝐿𝐿2_𝑀𝑀3,𝜏𝜏𝐻𝐻1,𝑀𝑀3
= 1

𝜇𝜇𝐻𝐻1_𝑅𝑅,𝐻𝐻1_𝑅𝑅𝐴𝐴𝐿𝐿2_𝑀𝑀2,𝜏𝜏𝐻𝐻1,𝑀𝑀2
= 1

𝜇𝜇𝐻𝐻1_𝑅𝑅,𝐻𝐻1_𝑅𝑅𝐴𝐴𝐿𝐿2_𝑀𝑀1,𝜏𝜏𝐻𝐻1,𝑀𝑀1
= 1

𝜇𝜇𝑅𝑅𝐴𝐴𝐿𝐿2,𝑖𝑖,0 = −1



14 

good computational performance (based on experience). We also discuss the time representation used 

by the model and two closely related objective functions. 

4.1. Discrete-time representation 

To keep track of scheduling events, we rely on a single, 24-h time grid that is discretized into 

uniform slots 𝑡𝑡 ∈ 𝑇𝑇 of size 𝛿𝛿 (min), as seen in Fig. 5. To accurately account for the electricity cost 

with prices that change every hour, we assume that 60 (min) is a multiple of 𝛿𝛿. The mathematical 

formulation to be presented next works with time slots, so all durations 𝑑𝑑𝑖𝑖 given in section 2, in 

minutes, need to be converted into a number-of-time-slots basis 𝜏𝜏𝑖𝑖. To ensure feasibility of the 

schedule, durations are rounded up to a multiple of 𝛿𝛿: 𝜏𝜏𝑖𝑖 = ⌈𝑑𝑑𝑖𝑖 𝛿𝛿⁄ ⌉, where ⌈ ⌉ is the ceiling function. 

 

Fig. 5. Underlying uniform discrete-time grid. 

4.2. Model variables 

The mathematical formulation uses a single set of binary variables, 𝑁𝑁𝑖𝑖,𝑡𝑡, which assign the start of 

task 𝑖𝑖 to the start of slot 𝑡𝑡. Since we are dealing with a multistage process, it is possible to reduce the 

domain for task execution after computing earliest starting and finishing times for processing and 

transfer tasks (see for instance Castro et al., 2019). In contrast, we consider the full time-domain for 

electrode replacement tasks, to allow for different conditions in terms of initial electrode mass. The 

slots at which task 𝑖𝑖 can start are the elements of subset 𝑇𝑇𝑖𝑖. 

Nonnegative continuous variables Π𝑟𝑟,𝑡𝑡, compute the power 𝑟𝑟 ∈ 𝑅𝑅𝑃𝑃𝑃𝑃 (MW) and energy 𝑟𝑟 ∈ 𝑅𝑅𝐸𝐸𝐸𝐸 

(MWh) that needs to be purchased from electricity markets during slot 𝑡𝑡. If processing task 𝑖𝑖 requires 

an amount 𝑝𝑝𝑝𝑝 of power, then it will consume such value in every slot where it is active, i.e. 𝜇𝜇𝑟𝑟,𝑖𝑖,𝜃𝜃 =

−𝑝𝑝𝑝𝑝 ∀𝑟𝑟 ∈ 𝑅𝑅𝑃𝑃𝑃𝑃,𝜃𝜃 ∈ {0, … , 𝜏𝜏𝑖𝑖 − 1}. However, whenever there are rounding errors in the processing 

times, the power consumption will not be constant during the last active slot. To accurately compute 

1 |T|
2 |T|-1

Slot 1

3δ

Slot 2 Slot |T|-1

00:00 24:00

Slot t

t t+1
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the energy consumption (and then the cost), we define a new resource and only account for the active 

part of the task, i.e. 𝜇𝜇𝑟𝑟,𝑖𝑖,𝜃𝜃 = �
− 𝑝𝑝𝑝𝑝∙𝛿𝛿

60
    𝑖𝑖𝑖𝑖 𝜃𝜃 ∈ {0, … , 𝜏𝜏𝑖𝑖 − 2}

−𝑝𝑝𝑝𝑝∙(𝛿𝛿+𝑑𝑑𝑖𝑖−𝛿𝛿∙𝜏𝜏𝑖𝑖)
60

 𝑖𝑖𝑖𝑖 𝜃𝜃 = 𝜏𝜏𝑖𝑖 − 1
 ∀𝑟𝑟 ∈ 𝑅𝑅𝐸𝐸𝐸𝐸. 

Continuous variables 𝑅𝑅𝑟𝑟,𝑡𝑡 represent the excess value of resource 𝑟𝑟 at the start of slot 𝑡𝑡. They assume 

nonnegative values for all non-electrode resources, i.e. 𝑅𝑅𝑟𝑟,𝑡𝑡 ≥ 0 ∀𝑟𝑟 ∉ 𝑅𝑅𝐸𝐸𝐸𝐸, 𝑡𝑡. For electrode resources, 

the excess values can take negative values, in the range: 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝐿𝐿 ≤ 𝑅𝑅𝑟𝑟,𝑡𝑡 ≤ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∀𝑟𝑟 ∈ 𝑅𝑅𝐸𝐸𝐸𝐸, 𝑡𝑡. Setting 

𝑅𝑅𝑟𝑟,𝑡𝑡 = 0 ∀𝑡𝑡 is mandatory for some resources. As mentioned in section 3, we do it for the outlet 

resources of stages 1-3, to ensure immediate execution of the transfer tasks, and for the energy and 

power resources (𝑟𝑟 ∈ 𝑅𝑅𝑃𝑃𝑃𝑃 ∪ 𝑅𝑅𝐸𝐸𝐸𝐸). 

4.3. Objective functions 

We consider two objective functions that share the total energy and electrode replacement cost 

terms. Total energy cost is computed by multiplying the electricity price 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑟𝑟, by the sum of the 

energy consumed in all slots 𝑡𝑡 belonging to hour ℎ𝑟𝑟 (𝑡𝑡 ∈ 𝑇𝑇ℎ𝑟𝑟; easy to compute as a function of 𝛿𝛿). 

The electrode replacement cost is incurred by executing electrode replacement tasks 𝑖𝑖 ∈ 𝐼𝐼𝑅𝑅𝑅𝑅. 

However, the second term in eqs. (1)-(2) is insensitive to the number of batches left in the electrodes 

at the end of the time horizon, which may be important. The last term in eq. (2) makes the replacement 

cost continuous by also accounting for the fraction of electrode 𝑟𝑟 ∈ 𝑅𝑅𝐸𝐸𝐸𝐸 that has been consumed 

(positive term) or produced (negative term). It is computed by dividing the difference between the 

electrode condition at the beginning of the time horizon 𝑅𝑅𝑟𝑟0 and the final electrode mass 𝑅𝑅𝑟𝑟,|𝑇𝑇|, by the 

mass of a new electrode. 

min∑ ∑ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑟𝑟 ∑ Π𝑟𝑟,𝑡𝑡𝑡𝑡∈𝑇𝑇ℎ𝑟𝑟ℎ𝑟𝑟𝑟𝑟∈𝑅𝑅𝐸𝐸𝐸𝐸 + 𝑐𝑐𝑅𝑅𝑅𝑅 ∑ ∑ 𝑁𝑁𝑖𝑖,𝑡𝑡𝑡𝑡∈𝑇𝑇𝑖𝑖𝑖𝑖∈𝐼𝐼𝑅𝑅𝑅𝑅  (1) 

min∑ ∑ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑟𝑟 ∑ Π𝑟𝑟,𝑡𝑡𝑡𝑡∈𝑇𝑇ℎ𝑟𝑟ℎ𝑟𝑟𝑟𝑟∈𝑅𝑅𝐸𝐸𝐸𝐸 + 𝑐𝑐𝑅𝑅𝑅𝑅 ∑ ∑ 𝑁𝑁𝑖𝑖,𝑡𝑡𝑡𝑡∈𝑇𝑇𝑖𝑖𝑖𝑖∈𝐼𝐼𝑅𝑅𝑅𝑅 + 𝑐𝑐𝑅𝑅𝑅𝑅

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
∑ (𝑅𝑅𝑟𝑟0 − 𝑅𝑅𝑟𝑟,|𝑇𝑇|)𝑟𝑟∈𝑅𝑅𝐸𝐸𝐸𝐸  (2) 
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4.4. Model constraints 

The excess resource balances are the most important set of constraints for any RTN formulation 

since they collect the information of the RTN superstructure in an elegant way. In eq. (3), the excess 

of resource 𝑟𝑟 at time 𝑡𝑡, 𝑅𝑅𝑟𝑟,𝑡𝑡, is related to the amounts produced/consumed by all tasks ending/starting 

at 𝑡𝑡 and either to its value at 𝑡𝑡-1, 𝑅𝑅𝑟𝑟,𝑡𝑡−1 , or to the amount purchased from outside during slot 𝑡𝑡, Π𝑟𝑟,𝑡𝑡. 

𝑅𝑅𝑟𝑟,𝑡𝑡 = 𝑅𝑅𝑟𝑟0|𝑡𝑡=1 + 𝑅𝑅𝑟𝑟,𝑡𝑡−1|𝑡𝑡>1,𝑟𝑟∉(𝑅𝑅𝑃𝑃𝑃𝑃∪𝑅𝑅𝐸𝐸𝐸𝐸) + Π𝑟𝑟,𝑡𝑡|𝑟𝑟∈(𝑅𝑅𝑃𝑃𝑃𝑃∪𝑅𝑅𝐸𝐸𝐸𝐸) + ∑ ∑ 𝜇𝜇𝑟𝑟,𝑖𝑖,𝜃𝜃𝑁𝑁𝑖𝑖,𝑡𝑡−𝜃𝜃
𝜏𝜏𝑖𝑖
𝜃𝜃=0:
𝑡𝑡−𝜃𝜃∈𝑇𝑇𝑖𝑖

𝑖𝑖 ∀𝑟𝑟, 𝑡𝑡 (3) 

In eq. (3), energy and power resources (𝑟𝑟 ∈ 𝑅𝑅𝑃𝑃𝑃𝑃 ∪ 𝑅𝑅𝐸𝐸𝐸𝐸) are treated in a different manner from the 

others. To prevent the purchase of more low-cost energy than needed by active tasks (we have no 

means of storing energy to be used at a later time), we eliminate the connection with the resource 

values at 𝑡𝑡 − 1. Coupled with 𝑅𝑅𝑟𝑟,𝑡𝑡 = 0 (as stated in section 4.2), it leads to the simplification of the 

constraint to Π𝑟𝑟,𝑡𝑡|𝑟𝑟∈(𝑅𝑅𝑃𝑃𝑃𝑃∪𝑅𝑅𝐸𝐸𝐸𝐸) = −∑ ∑ 𝜇𝜇𝑟𝑟,𝑖𝑖,𝜃𝜃𝑁𝑁𝑖𝑖,𝑡𝑡−𝜃𝜃
𝜏𝜏𝑖𝑖
𝜃𝜃=0:𝑡𝑡−𝜃𝜃∈𝑇𝑇𝑖𝑖𝑖𝑖 , which reflects that all energy 

purchased from the market during slot 𝑡𝑡 must be consumed by tasks starting at 𝑡𝑡 (note that 𝜇𝜇𝑟𝑟,𝑖𝑖,0 <

0). 

For the outlet resources of stages 1-3, we fix 𝑅𝑅𝑟𝑟,𝑡𝑡 = 0 ∀𝑡𝑡, and so eq. (3) becomes: 

∑ ∑ 𝜇𝜇𝑟𝑟,𝑖𝑖,𝜃𝜃𝑁𝑁𝑖𝑖,𝑡𝑡−𝜃𝜃
𝜏𝜏𝑖𝑖
𝜃𝜃=0:𝑡𝑡−𝜃𝜃∈𝑇𝑇𝑖𝑖𝑖𝑖 = 0 . Therefore, if the resource is produced by task 𝑖𝑖 at time 𝑡𝑡, meaning 

𝑁𝑁𝑖𝑖,𝑡𝑡−𝜏𝜏𝑖𝑖=𝜇𝜇𝑟𝑟,𝑖𝑖,𝜏𝜏𝑖𝑖=1, then, a resource consuming task 𝑖𝑖´ must start at 𝑡𝑡, i.e. 𝑁𝑁𝑖𝑖´,𝑡𝑡=1 and 𝜇𝜇𝑟𝑟,𝑖𝑖´,0=-1. 

With the excess resource balances in eq. (3), it is still possible for the electrode replacement task 

𝑖𝑖 ∈ 𝐼𝐼𝑟𝑟𝑅𝑅𝑅𝑅 of electrode 𝑟𝑟, to start while there is still some residual electrode mass left, 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅. This, 

provided that the subsequent melting task, which subtracts 𝑚𝑚𝑚𝑚ℎ,𝑚𝑚, starts immediately after, and that 

𝑚𝑚𝑚𝑚ℎ,𝑚𝑚 ≥ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅. To ensure that a replacement task, which will add 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 to the value of the 

corresponding 𝑅𝑅𝑟𝑟,𝑡𝑡 variable at 𝑡𝑡 + 𝜏𝜏𝑖𝑖 (check Fig. 4), only starts after the electrode mass reaches zero 

or a negative value, we use eq. (4). 

𝑅𝑅𝑟𝑟,𝑡𝑡 + ∑ 𝜇𝜇𝑟𝑟,𝑖𝑖,𝜏𝜏𝑖𝑖𝑁𝑁𝑖𝑖,𝑡𝑡𝑖𝑖∈𝐼𝐼𝑟𝑟𝑅𝑅𝑅𝑅 ≤ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∀𝑟𝑟 ∈ 𝑅𝑅𝐸𝐸𝐸𝐸, 𝑡𝑡 (4) 
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The next two sets of constraints ensure that every steel heat ℎ is processed exactly once on stage 𝑘𝑘. 

The difference between eqs. (5)-(6), is that last-stage heats are hidden in groups 𝑔𝑔, recall Table 3. 

Note that subset 𝐼𝐼ℎ,𝑘𝑘 holds the processing tasks of heat ℎ belonging to stage 𝑘𝑘, while 𝐼𝐼𝑔𝑔 identifies the 

casting tasks of group 𝑔𝑔. 

∑ ∑ 𝑁𝑁𝑖𝑖,𝑡𝑡𝑡𝑡∈𝑇𝑇𝑖𝑖𝑖𝑖∈𝐼𝐼ℎ,𝑘𝑘 = 1 ∀ℎ,𝑘𝑘 = 1, … ,3 (5) 

∑ ∑ 𝑁𝑁𝑖𝑖,𝑡𝑡𝑡𝑡∈𝑇𝑇𝑖𝑖𝑖𝑖∈𝐼𝐼𝑔𝑔 = 1 ∀𝑔𝑔, 𝑘𝑘 = 4 (6) 

For the steel heats to reach the different stages, the transfer tasks must also be executed. In eq. (7), 

subset 𝐼𝐼ℎ,𝑘𝑘
𝑇𝑇  holds the transfer task of heat ℎ from stage 𝑘𝑘 to stage 𝑘𝑘+1. 

∑ ∑ 𝑁𝑁𝑖𝑖,𝑡𝑡𝑡𝑡∈𝑇𝑇𝑖𝑖𝑖𝑖∈𝐼𝐼ℎ,𝑘𝑘
𝑇𝑇 = 1 ∀ℎ, 𝑘𝑘 ≤ 3 (7) 

Finally, we need to ensure that the maximum transfer time between stages is not exceeded. For the 

inlet location resource 𝑟𝑟 ∈ 𝑅𝑅ℎ,𝑘𝑘
𝐼𝐼𝐼𝐼  of heat ℎ to stage 𝑘𝑘, this is done by limiting the number of slots with 

𝑅𝑅𝑟𝑟,𝑡𝑡=1, to the difference between the maximum and minimum transfer times (note that we subtract 

𝑡𝑡𝑡𝑡𝑡𝑡𝑘𝑘𝐿𝐿 since this was set as the duration of the transfer task to stage 𝑘𝑘, as discussed in section 3). To 

make sure that the effect of the rounding errors is eliminated, we use the floor function ⌊ ⌋ in eq. (8). 

∑ ∑ 𝑅𝑅𝑟𝑟,𝑡𝑡𝑡𝑡𝑟𝑟∈𝑅𝑅ℎ,𝑘𝑘
𝐼𝐼𝐼𝐼 ≤ �(𝑡𝑡𝑡𝑡𝑡𝑡𝑘𝑘𝑈𝑈 − 𝑡𝑡𝑡𝑡𝑡𝑡𝑘𝑘𝐿𝐿)/𝛿𝛿� ∀ℎ, 1 < 𝑘𝑘 ≤ 4 (8) 

5. Computational Results 

The mixed-integer linear programming model was implemented in GAMS 26.1 and solved with 

CPLEX 12.8 running in parallel deterministic mode using up to eight threads. Default settings were 

used except for the termination criteria, a relative optimality tolerance of 10-6 or a maximum wall 

time limit of one hour. The hardware consisted of a Windows 10, 64-bit desktop computer with an 

Intel i7-4790 (3.6 GHz) processor and 8 GB of RAM. 

We have used the electricity prices in Table 6, representative values from the EPEX day-ahead spot 

market, and assume that both electrodes have just been replaced before the beginning of the time 
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horizon, i.e. 𝑅𝑅𝑟𝑟0 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∀𝑟𝑟 ∈ 𝑅𝑅𝐸𝐸𝐸𝐸. Over the next couple of sections, we discuss the results for the 

two alternative objective functions given in eqs. (1) and (2). 

Table 6. Hourly Electricity prices (€/MWh) for sections 5.1 to 5.3 and 5.5. Taken from 
www.epexspot.com/en/market-data/dayaheadauction, former DE/AT market). 

Hour ℎ𝑟𝑟 0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑟𝑟  40.84 41.15 43.77 39.97 40.81 43.04 45.37 49.49 59.92 60 60.04 57.7 
Hour 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑟𝑟  52.86 50.05 50.94 54.04 57.52 64.91 59.92 57.99 43.68 38.46 40.94 35.89 

5.1. Discrete electrode replacement cost 

The objective function in eq. (1) minimizes the total operating cost considering a discrete electrode 

replacement cost. By discrete, we mean that the objective function is insensitive to the condition of 

the electrodes at the end of the 24-h scheduling period, costing the same to end with a barely used 

electrode or a depleted one. This is not good for the linear relaxation of the model since the 

optimization solver will be able to execute the replacement tasks partially, to regenerate the minimum 

amount of mass needed to process the 24 steel heats. Listed in Table 7 are the results as a function of 

the slot size, 𝛿𝛿={5, 10, 15} min, where it can be seen that CPLEX is unable to find a feasible solution 

for the finest grid setting and that the best solution is obtained for 𝛿𝛿=10 min. 

One way to significantly reduce the integrality gap, is to fix the number of electrode replacement 

tasks. This can be done systematically by means of the two-stage procedure illustrated in Fig. 6. The 

number of replacements, 𝑛𝑛𝑛𝑛𝑛𝑛, can be quickly estimated by solving the linear relaxation problem (LP) 

of the basic MILP formulation with eq. (9) replacing eq. (1) as the objective, and rounding up to the 

next integer. One can then go back to the MILP, adding eq. (10) and returning to eq. (1). The results 

in Table 8, which are not guaranteed to be the global optimum, show that we were able to reduce the 

integrality gap by roughly one order of magnitude, leading to reasonable optimality gaps at 

termination (below 1%). More importantly, we have been able to reduce the cost of the best-found 

solution by 1.42%, from €86,827 to €85,593. This is shown in Fig. 7 and described next. 

min∑ ∑ 𝑁𝑁𝑖𝑖,𝑡𝑡𝑡𝑡∈𝑇𝑇𝑖𝑖𝑖𝑖∈𝐼𝐼𝑅𝑅𝑅𝑅  (9) 

http://www.epexspot.com/en/market-data/dayaheadauction
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∑ ∑ 𝑁𝑁𝑖𝑖,𝑡𝑡𝑡𝑡∈𝑇𝑇𝑖𝑖𝑖𝑖∈𝐼𝐼𝑅𝑅𝑅𝑅 = 𝑛𝑛𝑛𝑛𝑛𝑛 (10) 

Table 7. Results for objective function with discrete electrode replacement cost. 

𝛿𝛿 
(min) 

EAF modes MILP 
(€) 

LP relaxation 
(€) 

Optimality 
gap 

15 (M1,M2,M3) 87,001 75,377 13.3% 
10 (M1,M2,M3) 86,827 73,718 15.1% 
5 (M1,M2,M3) no solution 73,671 - 

 

Table 8. Results for objective function with discrete electrode replacement cost and 2-stage solution 
procedure. 

𝛿𝛿 
(min) 

EAF mode MILP 
(€) 

LP rel. 
(€) 

Opt. gap # heats in 
(M1,M2,M3) 

Binary 
variables 

Total 
variables 

Equations 

15 (M1,M2,M3) 87,086 86,297 0.83% (14,1,9) 19661 37122 17684 
10 (M1,M2,M3) 85,593 85,210 0.42% (12,9,3) 30067 56168 26324 
5 (M1,M2,M3) no sol. 85,153 - - 60924 112945 52244 

 

 

Fig. 6. Two-stage procedure for reducing the integrality gap when working with a discrete 
replacement cost in the objective function. 

The first stage of the solution procedure for 𝛿𝛿=10 min, returns a value of 0.3729, indicating the 

need to replace one electrode. Looking at the optimal solution from the second stage of the procedure, 

it starts shortly before 10:00 (black rectangle in Fig. 7) and is allocated to EAF2. It occurs almost two 

Solve LP model
min eq. (9)

s.t. eqs. (3)-(8)
𝑁𝑁𝑖𝑖,𝐸𝐸 ∈ [0,1]

Solve MILP model
min eq. (1)

s.t. eqs. (3)-(8), (10)
𝑁𝑁𝑖𝑖,𝐸𝐸 ∈ {0,1}

Fix number of electrode 
replacement tasks 𝑛𝑛𝐸𝐸𝑡𝑡

through eq. (10)
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hours later than the end of the melting task in red (heat H12), which took the electrode mass to -66.3 

kg. Interestingly, the two EAFs follow very different strategies during the first 8 hours of operation, 

despite starting with the same mass, 1180 kg. EAF2 selects shorter tasks, being able to process 9 heats 

instead of 7, in which all but the last, correspond to a mid- (M2) or high-power (M3) intensity mode. 

The consequence is the sharper decrease in mass compared to EAF1, which saves 263.5 kg to later 

process heats H21 and H23 in the most energy efficient mode M1, when the cost is around 51 €/MWh, 

and H8 in M2, when electricity is cheaper (43.68 €/MWh). Note that since EAF1 ends operation around 

21:00, with the electrode in a condition of -114.5 kg, in practice, it would make sense to execute the 

expensive replacement task to make it ready for the next scheduling period (see recent work of Lee 

et al. (2020) on how to generate alternative schedules in the context of a rolling horizon approach). 

 

Fig. 7. Best-found solution (€85,593) when considering discrete electrode replacement cost in the 
objective function (𝛿𝛿 =10 min). Note that background colors are related to hourly electricity prices 
(lowest for dark green and highest for dark rose). 
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The main contributor to the objective function is, however, the electricity cost and so the schedule 

should avoid production when electricity is more expensive. To facilitate the analysis of the schedule, 

the background of Fig. 7 feature colors that are related to the electricity price, ranging from the 

cheapest prices in dark green to the most expensive in dark rose. It is clear that the EAFs avoid 

operation in the rose periods. Since EAFs perform by far the most energy intensive tasks, it is not 

surprising that the power and energy profiles reach values close to zero in such periods. 

Overall, 12 steel heats are processed in low-power mode M1, 9 in M2 and 3 in high-power mode 

M3. The optimization can thus take full advantage of the flexible operating modes for the electric arc 

furnaces. 

5.2. Continuous electrode replacement cost 

The objective function in eq. (2) considers a continuous replacement cost, i.e. we account for the 

cost of purchasing new electrodes but also penalize the decrease in mass compared to the initial 

condition. It has the advantage of making the formulation tighter and so the heuristic procedure in 

Fig. 6 is not required. The total operating cost in Table 9 becomes 38% higher than the values in 

Table 8 and heats are no longer processed in high-mass consumption mode M3. Two other results 

worth highlighting are the lower optimality gaps and the ability of CPLEX to find a good feasible 

solution for 𝛿𝛿=5 min. Note that the errors from rounding the processing times are higher for 𝛿𝛿 =10 

than for 𝛿𝛿=5, meaning fewer options to take advantage of lower electricity prices. Thus, the solution 

from the MILP should not degrade, unless we are unable to solve the problem to optimality (if we 

account for the optimality gaps, the best possible solution at termination is lower for 𝛿𝛿=5). 

Table 9. Results for objective function with continuous electrode replacement cost. 

𝛿𝛿 
(min) 

EAF mode MILP 
(€) 

LP relaxation 
(€) 

Opt. gap  # heats in 
(M1,M2,M3) 

15 (M1,M2,M3) 119,886 119,547 0.23% (21,3,0) 
10 (M1,M2,M3) 118,143 117,888 0.18% (22,2,0) 
5 (M1,M2,M3) 118,260 117,840 0.33% (21,3,0) 
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Fig. 8 presents the best-found solution, where the most striking difference compared to Fig. 7 is 

that the electrode mass profiles for the two EAFs are very similar. With the continuous replacement 

cost, the impact of replacement tasks is much lower, and therefore the optimization decides to execute 

two instead of one. As a consequence, the electrodes still have capacity for a few batches at the end 

of the day, not compromising the decision-making for the next 24 hours. Another advantage of this 

schedule is that it keeps power consumption below 100 MW, except for the first 49 min, during the 

parallel processing of heats H1 and H13 in mode M2. Afterwards, all melting tasks are performed in 

low-power mode M1. Since this is the mode with longer processing times, two melting tasks need to 

be shifted to the intermediate price periods between 11:00 and 17:00 (compared to Fig. 7). Overall, 

the power and energy consumption profiles are smoother, which is better for the power grid. 

 

Fig. 8. Best-found solution (€118,143) when considering continuous electrode replacement cost in 
the objective function (𝛿𝛿 =10 min). 
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We thus conclude that the objective with continuous replacement cost is more appropriate and so 

it will be the only option considered in the remaining of the paper. 

5.3. Alternative vs. single operating mode 

With the proposed mathematical formulation, for every melting task performed in the Electric Arc 

Furnaces we have the option to choose the operating mode from three alternatives. From the analysis 

of Table 10, we can see that the benefit can go up 7.22%. However, operating exclusively in low-

power mode M1 leads to essentially the same solution. The observed trend is that the lower the energy 

intensity mode the better. Thus, there is a clear trend for efficiency, both in terms of energy and 

electrode consumption, over production speed. Going for a single operating mode has the advantage 

of reducing problem size (by 35 and 18% in the number of binary and total variables, respectively), 

which may speed up solution time. Indeed, for M1, the MILP problem for 𝛿𝛿=15 min can be solved to 

optimality in just 2724 CPUs (results not part of Table 10). 

Table 10. Results for continuous replacement cost when considering a single operating mode for the 
EAFs (𝛿𝛿=10 min). 

Mode Cost 
(€) 

Cost 
Increase 

Opt. gap Binary 
variables 

Total 
variables 

Equations 

M1 118,146 0.00% 0.10% 19342 45443 26323 
M2 122,089 3.34% 0.76% 19702 45803 26323 
M3 126,675 7.22% 0.88% 19755 45856 26323 

 

5.4. Influence of electricity price profile 

Electricity price is a major source of uncertainty for daily operation, and thus it is interesting to 

analyze the results for a different profile. The values in Table 11 more than double the average price 

to 101.9 €/MWh. The most significant difference compared to Table 6, is the earlier and steeper rise. 

Not surprisingly, the optimization decides to finish the nightly operation of the EAFs sooner, despite 

processing eight heats instead of seven in EAF1 (compare Fig. 9 to Fig. 8). This is accomplished by 

processing three heats in high-power mode M3 and seven more heats in medium-power mode M2. It 
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is important to highlight that the processing of the 12 heats in mode M2 or M3 occurs in the cheaper 

green region, where it pays to be faster, so that we can fit more tasks, and be less energy efficient. 

Table 11. Electricity price profile for section 5.4 (€/MWh). Taken from 
www.epexspot.com/en/market-data/dayaheadauction, former DE/AT market, Tuesday 24/1/2017). 

Hour ℎ𝑟𝑟 0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑟𝑟  57.01 51.04 53.05 48.82 51.52 56.06 91.21 163.52 153.67 150.1 151.07 135 
Hour 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑟𝑟  121.58 117.68 112.21 117.18 120 131.01 138.91 113.8 109.92 78.98 66.17 56.61 

 

 

Fig. 9. Best-found solution (€174,103) when considering continuous electrode replacement cost in 
the objective function and a different electricity price profile (𝛿𝛿 =10 min). 

Despite low-power mode M1 being selected for most heats, it is no longer the best option when 

restricting operation to a single mode, with medium-power mode M2 being preferred (0.18% vs. 
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valid. Note that by doubling the average electricity cost, we decrease the relative importance of the 

electrode cost term, increasing the likelihood of selecting modes with larger mass consumption. 

Table 12. Results for continuous replacement cost when considering a different electricity price 
profile (𝛿𝛿=10 min). 

Modes Cost 
(€) 

Cost 
Increase 

Opt. gap # heats in 
(M1,M2,M3) 

(M1,M2,M3) 174,103 - 2.92% (12,9,3) 
M1 180,646 3.76% 0.42% - 
M2 174,417 0.18% 0.53% - 
M3 186,436 7.08% 4.56% - 

 

5.5. Influence of initial electrode mass 

All previous computational runs were made starting with new electrodes in the EAFs. We now 

study the influence of the initial electrode mass by considering 𝑅𝑅𝑟𝑟0= 400 kg and 600 kg, for the 𝑟𝑟 ∈

𝑅𝑅𝐸𝐸𝐸𝐸 resources of EAF1 and EAF2, respectively. In the bottom profiles of Fig. 10, the values at 0:00 

are lower, but this is because the melting tasks start at 0:00, leading to the immediate consumption of 

131.4 kg in EAF1 (H13 in M2) and 113.4 kg in EAF2 (H1 in M2) and to excess resource values of 268.6 

and 468.6 kg, respectively. Because of the lower initial mass, the electrode replacement tasks now 

need to be executed in the low-cost period (at 4:20 and 5:30), for the EAFs to still take advantage of 

the low electricity prices. Like in Fig. 8, there are just two tasks executed in the medium-power mode 

and so the first period of operation (and maintenance) of the furnaces ends later, leading to a 0.47% 

increase in cost, to €118,697. Since the replacement tasks are not executed in parallel, there are two 

drops in electricity consumption rather than one sharp drop but overall, the schedules in Fig. 8 and 

Fig. 10 are very similar. 
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Fig. 10. Best-found solution (€118,697) when considering continuous electrode replacement cost in 
the objective function and starting with used electrodes (𝛿𝛿 =10 min). 

6. Conclusions 

This paper presented a mixed-integer linear programming formulation for generating the daily 

schedule of the melt shop of a steel plant purchasing electricity from the day-ahead spot market. The 

novelty was to consider alternative operating modes for the electric arc furnaces together with the 

maintenance of their electrode systems, in order to achieve a tradeoff between energy efficiency, 

electrode lifetime and production time. Complicating scheduling constraints were derived after first 

representing the process as a Resource-Task Network. 

We have shown the value of the new formulation for decision-making by optimally scheduling an 

order of 24 steel heats, for two different price profiles taken from the EPEX day-ahead spot market. 

Of the three specified alternatives, at least two were selected, with a preference for the low-power 

mode, which is the most energy efficient, consumes the least mass of electrode, but lasts the longest. 
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Interestingly, we have seen that it is not necessarily the best choice to restrict the plant to a single 

mode throughout the day. Overall, the benefits from multi-mode operation compared to just using the 

high-power mode, can reach 7.22%. 

The computational study also involved two objective functions, differing in the calculation of the 

electrode replacement cost, which is an important component of the total operating cost. While the 

cost only incurs when inserting a new electrode in the system, this discrete option drives the 

optimization to depleted electrodes towards the end of the 24-h scheduling horizon. Since this may 

compromise the schedule for the next period, and since electricity prices tend to be at the lowest 

earlier in the day, it is better to add a continuous term that accounts for the change of electrode mass 

between the beginning and the end (the initial electrode masses are model parameters). Still, the 

solution for 24 hours in only a first step to a realistic formulation where a longer horizon is considered 

(at least two days) and only the schedule for the first day is executed. The inclusion of the second day 

serves the purpose of avoiding strong cutoff effects, which can make the results suboptimal in the 

long run. This is similar to what is done in model-predictive control. 

Alternative operating modes add flexibility to the system, but ideally one would want to change the 

mode during the melting of a steel heat and not just between heats. It requires a new mathematical 

formulation that will be the subject of future work. 
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Nomenclature 

Sets/Indices 

𝑔𝑔 = group of steel heats 
𝐻𝐻𝑔𝑔 = Steel heats belonging to group 𝑔𝑔 
ℎ = steel heat 
ℎ𝑟𝑟 = hour of the day 
𝑖𝑖, 𝑖𝑖´ = processing, transfer or electrode replacement task 
𝐼𝐼𝑔𝑔 = casting tasks of group 𝑔𝑔 
𝐼𝐼ℎ,𝑘𝑘 = subset of processing tasks of heat ℎ belonging to stage 𝑘𝑘 
𝐼𝐼ℎ,𝑘𝑘
𝑇𝑇  = subset of transfer tasks of heat ℎ from stage 𝑘𝑘 
𝐼𝐼𝑅𝑅𝑅𝑅 = electrode replacement tasks 
𝐼𝐼𝑟𝑟𝑅𝑅𝑅𝑅 = electrode replacement task that regenerates electrode mass resource 𝑟𝑟 
𝑘𝑘 = production stage 
𝑚𝑚 = operating mode in electric arc furnace 
𝑟𝑟 = resource 
𝑅𝑅ℎ,𝑘𝑘
𝐼𝐼𝐼𝐼  = inlet location resource of heat ℎ in stage 𝑘𝑘  

𝑅𝑅𝐸𝐸𝐸𝐸= energy resource 
𝑅𝑅𝐸𝐸𝐸𝐸 = electrode mass resource 
𝑅𝑅𝑃𝑃𝑃𝑃= power resource 
𝑇𝑇/𝑡𝑡 = time slots of discrete-time grid 
𝑇𝑇ℎ𝑟𝑟 = time slots belonging to hour ℎ𝑟𝑟 
𝑇𝑇𝑖𝑖 = time slots where task 𝑖𝑖 can start 
𝜃𝜃 = relative time with respect to the start of the task (ranges between 0 and 𝜏𝜏𝑖𝑖) 

Parameters 

𝑐𝑐𝑅𝑅𝑅𝑅 = cost of replacing an electrode (€) 
𝑑𝑑𝑖𝑖 = duration of task 𝑖𝑖 (min) 
𝑚𝑚𝑚𝑚ℎ,𝑚𝑚 = electrode mass degradation from processing heat ℎ in operating mode 𝑚𝑚 (kg) 
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = electrode mass added to the system by electrode replacement task (kg) 
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝐿𝐿 = lower bound of electrode mass in the system (kg) 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑟𝑟 = price of electricity in hour ℎ𝑟𝑟 (€/MWh) 
𝑝𝑝𝑝𝑝𝑘𝑘,𝑚𝑚 = power consumption in stage 𝑘𝑘 operating in mode 𝑚𝑚, if relevant (MW) 
𝑅𝑅𝑟𝑟0 = availability of resource 𝑟𝑟 in the beginning of time horizon (used for equipment units and 
electrode mass resources) 
𝑡𝑡𝑡𝑡𝑡𝑡𝑘𝑘𝐿𝐿/𝑡𝑡𝑡𝑡𝑡𝑡𝑘𝑘𝑈𝑈 = minimum/maximum transfer time of every heat from stage 𝑘𝑘-1 to stage 𝑘𝑘 (m3) 
𝛿𝛿 = size of every slot in discrete-time grid (min) 
𝜇𝜇𝑟𝑟,𝑖𝑖,𝜃𝜃 = amount of resource 𝑟𝑟 consumed (-) or produced (+) by task 𝑖𝑖 at relative time 𝜃𝜃 
𝜏𝜏𝑖𝑖 = duration of task 𝑖𝑖 in number of time intervals of size 𝛿𝛿 

Variables 

𝑁𝑁𝑖𝑖,𝑡𝑡 = binary variable indicating the start of execution of task 𝑖𝑖 in slot 𝑡𝑡 
𝑅𝑅𝑟𝑟,𝑡𝑡 = excess amount of resource 𝑟𝑟 at the start of slot 𝑡𝑡 
Π𝑟𝑟,𝑡𝑡 = amount of power or energy resource 𝑟𝑟 purchased during time slot 𝑡𝑡 (MW or MWh) 
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