
1

Discrete and continuous-time formulations for dealing

with breaks: preemptive and non-preemptive

scheduling

Pedro M. Castroa,* , Iiro Harjunkoskib and Ignacio E. Grossmannc

a Centro de Matemática Aplicações Fundamentais e Investigação Operacional, Faculdade de
Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.

b ABB Corporate Research, Wallstadter Strasse 59, 68526 Ladenburg, Baden-Württemberg,
Germany

c Center for Advanced Process Decision-Making, Department of Chemical Engineering, Carnegie
Mellon University, Pittsburgh, PA 15213, USA

Abstract

This paper presents new mixed-integer linear programming (MILP) approaches for handling

preemption both in discrete and continuous-time scheduling formulations. Preemption refers to the

possibility of interrupting the execution of a task when encountering a break, located at a pre-defined

time window, assuming that the task continues immediately after the end of the break. We rely on

Generalized Disjunctive Programming to derive the constraints for the continuous-time formulations

and on a compact convex hull reformulation to make them computationally efficient. We investigate

both the general precedence time representation and multiple time grids concepts. Generalization of

the discrete-time formulation is simpler, involving a change in the model parameters. Validation and

comparison of the mathematical formulations is done through the solution of sixteen benchmark

* Corresponding author: pmcastro@fc.ul.pt

2

problems, involving instances with one to three breaks. The results show that discrete-time

formulation is computationally more effective for flexible flowshops while the continuous-time

approach prevails for single stage plants with parallel units.

Keywords: Scheduling, Combinatorial Optimization, Integer Programming, Multiproduct batch

plants, Resource-Task Network.

1. Introduction

Preemptive scheduling has rarely been considered in the context of batch scheduling problems (Pei

et al., 2015). In preemptive scheduling, assuming it is operationally feasible, a job may be interrupted

and resumed later, even on a different machine, whereas interruptions are not allowed in

nonpreemptive scheduling. Preemption can lead to a more efficient use of the production resources,

e.g. lower makespan, but there are also cases where performance is not improved. Using the notation

of Graham et al. (1979), Brucker et al. (2003) identify the single stage parallel machine scheduling

problems for which preemption does not improve the objective value. A key assumption, aside from

being operationally feasible, is that all data are assumed to be integer, so all jobs can be split into as

many parts as the value of their processing times. It is thus not surprising that the authors found that

allowing preemption may turn a polynomially solvable problem into a NP-hard one.

Batsyn et al. (2014) propose a Boolean Linear Programming (an Integer Program with 0-1

variables) model for the preemptive single machine scheduling problem with release dates and integer

processing times. Each job is divided into unit parts, while the time horizon of interest is divided into

slots of size one, in a number that equals the sum of the processing times. In this discrete-time

formulation, the binary variables assign each part of a job to exactly one time slot. To cope with the

difficulty of CPLEX to handle problems with 25 jobs, the authors proposed a high-quality (optimality

gap <0.1% for the problems that could be solved to optimality) heuristic method capable of handling

problems with 5000 jobs in less than one hour.

3

Pei et al. (2015) extend the work of Batsyn et al. (2014) by considering a two-stage supply chain

scheduling problem, with a production stage and a single vehicle in the transportation stage. The first

stage features a single batching machine capable of handling multiple jobs in a serial fashion (one

batch) up to the given capacity. Each job must be assigned to exactly one batch. The processing of a

batch can be interrupted by another batch and resumed later (preemption). Once a batch is finished,

it will occupy the machine until the transportation vehicle returns to take it. The authors propose an

𝑂𝑂(𝑛𝑛 log 𝑛𝑛) exact algorithm to address the problem where the 𝑛𝑛 jobs are available at time zero, and a

heuristic with the same time complexity to address the case with different release dates.

Preemption in a context of a scheduling problem with precedence constraints between activities,

also appears in the multi-mode resource constraint project scheduling problem (Peteghem and

Vanhoucke, 2010). The authors propose a genetic algorithm and evaluate the impact of preemption

in the quality of the schedule. Using data instances from the PSPLIB, they get average makespan

improvements of about 0.5% for cases with nonrenewable resources, but also obtained runs with

worse solutions. This was justified by the larger project networks that are required when introducing

activity preemption.

A closely related problem is the multi-skilled resource investment project scheduling problem

(Javanmard et al., 2017). Different skills are required to accomplish project activities and the limits

on investment of renewable resources are considered decision variables. The authors propose two

mixed-integer linear programming (MILP) formulations. In the first, the assigned level of skills was

considered fixed, while in the second, the levels could be altered after preemption. Not surprisingly,

the second model led to a lower total cost. Two meta-heuristic algorithms were also proposed, with

the genetic algorithm outperforming its particle swarm optimization counterpart. They were first

validated using PSPLIB instances with up to 30 activities, leading to average optimality gaps below

0.04% (compared to the optimal solutions from the MILP models), and then used to tackle the

instances with 90 activities in roughly 1000 CPUs.

4

Preemption is just one of many aspects that may be encountered when facing a real-life scheduling

problem. The multitude and complexity of scheduling problems is increasing and with the growing

size and scope it is important to enable various collaboration schemes (Harjunkoski et al., 2014). As

different types of methods may need to collaborate, also stemming from various industries and

companies, it is important to have a common basis for exchanging information (Harjunkoski, 2016).

This is currently strongly driven by the digitalization activities such as Industry 4.0 that promote

crossing the traditional solution boundaries.

The standard ISA-95 can support the collaboration and integration of methods by offering a neutral

and uniform data structure. The ISA-95 standard (ANSI/ISA-95.00.03-2005), was originally created

to act as an interface between business- and control systems. Therefore, it defines most of the required

data fields needed for scheduling and furthermore offers an Extended Markup Language (XML)-

based implementation, which is extremely useful in a software-context as most programming

languages have built-in support for XML. The actual implementation of ISA-95 is realized through

XML-schemas and called B2MML (business to manufacturing markup language). The standard can

also be flexibly extended to meet future challenges and requirements (e.g. allowing for preemption).

The main benefit of using a standard is to remove problems in agreeing on the data design between

two entities. The ISA-95 standard has already been widely adopted and accepted by many industrial

solutions and a detailed description of its functions is described in part 1 of the standard (ANSI/ISA-

S95, 2000).

Apart from standardized data-interfaces, another challenge is how to effectively solve the

increasing growing number of heterogenous scheduling problems. The current work was driven by

the search for a truly generic scheduling formulation for process plants. Previous work with the

Resource-Task Network (RTN) discrete-time formulation of Pantelides (1994) have led us to choose

this approach as a basis for further development. Reasons for this decision include: (i) uniform

treatment of different types of resources (e.g. equipment, materials, utilities, manpower, etc.); (ii)

5

modeling paradigm easily understood by business stakeholders (e.g. Wassick and Ferrio (2011) from

the Dow Chemical Company); (iii) flexible approach, easily modified when new information

becomes available; (iv) the discrete-time model is better at finding good solutions in short

computational time, a requirement for a successful commercial software.

In this paper, we extend the RTN discrete-time formulation to preemptive tasks. We also develop

new constraints for handling preemption with continuous-time formulations, enabling a comparison

between the two types of time representation. It should be highlighted that contrary to the articles

discussed in the beginning of this section, preemption is not something that can occur throughout the

time horizon of interest. Instead, it is a possibility when a task encounters break periods occurring at

predefined time windows (e.g. preventive maintenance of equipment, working shifts, etc.). On the

other hand, the current paper is not restricted to integer processing times.

2. Preemptive vs. non-preemptive scheduling

Let 𝑏𝑏𝑏𝑏 be a break period occurring in a given time window [𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿 , 𝑏𝑏𝑏𝑏𝑏𝑏𝑈𝑈] of the scheduling horizon. In

most scheduling models, a non-preemptive mode of operation is assumed when facing a break,

meaning that a task 𝑖𝑖 can either be completely executed before the start of the break, or begin only

after the end of the break. Let 𝑇𝑇𝑇𝑇𝑖𝑖 and 𝑇𝑇𝑇𝑇𝑖𝑖 be non-negative variables representing the start and end

times of task 𝑖𝑖. The two possibilities can be formulated as an exclusive disjunction (Balas, 1979;

Raman and Grossmann, 1994), as can be seen in Fig. 1 (Castro et al., 2014).

Fig. 1. In non-preemptive scheduling, a task can either end before or start after a break.

𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿 𝑏𝑏𝑏𝑏𝑏𝑏𝑈𝑈

Break
period 𝑏𝑏𝑏𝑏

Task 𝑖𝑖 �
−

𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿 𝑏𝑏𝑏𝑏𝑏𝑏𝑈𝑈

Break
period 𝑏𝑏𝑏𝑏

Task 𝑖𝑖 ∀𝑖𝑖, 𝑏𝑏𝑏𝑏

𝑇𝑇𝑇𝑇𝑖𝑖 ≤ 𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿 𝑇𝑇𝑇𝑇𝑖𝑖 ≥ 𝑏𝑏𝑏𝑏𝑏𝑏𝑈𝑈

6

The goal of preemptive scheduling is to make the most of the available time, by allowing part of

the task to be executed before the break and the remaining part after the break. Assume that the normal

(non-preemptive) duration of task 𝑖𝑖 is given by parameter 𝑝𝑝𝑖𝑖 and let the non-negative variable 𝑃𝑃𝑖𝑖,𝑏𝑏𝑏𝑏

hold the extended duration due to break 𝑏𝑏𝑏𝑏. If the optimization decides to execute the task entirely

before or after 𝑏𝑏𝑏𝑏, as in Fig. 1, 𝑃𝑃𝑖𝑖,𝑏𝑏𝑏𝑏 will be equal to zero. Otherwise, if the optimization decides to

split the task, the extended duration will match the duration of the break period, 𝑃𝑃𝑖𝑖,𝑏𝑏𝑏𝑏 = 𝑏𝑏𝑏𝑏𝑏𝑏𝑈𝑈 − 𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿 , as

seen in Fig. 2. Equation (1) is valid in both cases and computes the total duration of the task as the

sum of the processing time 𝑝𝑝𝑖𝑖 plus the length of all break periods that the task crosses.

𝑇𝑇𝑇𝑇𝑖𝑖 − 𝑇𝑇𝑇𝑇𝑖𝑖 = 𝑝𝑝𝑖𝑖 + ∑ 𝑃𝑃𝑖𝑖,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ∀𝑖𝑖 (1)

Fig. 2. In preemptive scheduling, it is possible to extend the duration of a task so that it can start
before and end after a break period.

3. Preemption with continuous-time formulations

We now propose constraints to handle preemption with continuous-time formulations. As

highlighted in the review paper by Harjunkoski et al. (2014), these can rely on the concept of

precedence, or use a single or multiple time grids to keep track of activities.

We start by considering the general precedence formulation of Méndez and Cerdá (2002) for

multistage batch plants. In this formulation, there are already starting and ending time variables for

the orders in the different stages, making it easier to develop the preemption constraints. We then

consider the multiple time grid formulation of Castro and Grossmann (2006, 2012) for single stage

plants with parallel units, in which the start and end times are known only implicitly, from the timing

𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿 𝑏𝑏𝑏𝑏𝑏𝑏𝑈𝑈

Break period 𝑏𝑏𝑏𝑏

𝑝𝑝𝑖𝑖

𝑝𝑝𝑖𝑖

𝑃𝑃𝑖𝑖,𝑏𝑏𝑏𝑏

𝑇𝑇𝑇𝑇𝑖𝑖 𝑇𝑇𝑇𝑇𝑖𝑖

7

of event points that compose the grid of each equipment unit and from the assignments of orders to

units.

Note that while problems from single stage plants can also be addressed by the general precedence

formulation (such a topology is a special case of a flexible flowshop), they can be solved orders of

magnitude faster by the multiple time grid formulation (Castro and Grossmann, 2012).

3.1. New constraints for handling preemption with a general precedence formulation

Let the three alternative decisions in Fig. 2 be identified through binary variables: 𝑌𝑌𝑖𝑖,𝑏𝑏𝑏𝑏𝐵𝐵 (= 1), if

task 𝑖𝑖 completes execution before the start of break period 𝑏𝑏𝑏𝑏; 𝑌𝑌𝑖𝑖,𝑏𝑏𝑏𝑏𝐷𝐷 , if the task is executed during the

break; 𝑌𝑌𝑖𝑖,𝑏𝑏𝑏𝑏𝐴𝐴 , if it starts after the end of break period 𝑏𝑏𝑏𝑏. As can be seen in the disjunction in Eq. (2),

each decision is associated to three sets of constraints involving the continuous variables 𝑃𝑃𝑖𝑖,𝑏𝑏𝑏𝑏, 𝑇𝑇𝑇𝑇𝑖𝑖

and 𝑇𝑇𝑇𝑇𝑖𝑖, where parameters 𝑡𝑡𝑡𝑡𝑖𝑖𝐿𝐿, 𝑡𝑡𝑡𝑡𝑖𝑖𝐿𝐿, 𝑡𝑡𝑡𝑡𝑖𝑖𝑈𝑈 and 𝑡𝑡𝑡𝑡𝑖𝑖𝑈𝑈 represent the lower (superscript 𝐿𝐿) and upper bounds

(𝑈𝑈) on the starting and ending times of tasks.

⎣
⎢
⎢
⎢
⎡ 𝑌𝑌𝑖𝑖,𝑏𝑏𝑏𝑏𝐵𝐵

𝑃𝑃𝑖𝑖,𝑏𝑏𝑏𝑏 = 0
𝑡𝑡𝑡𝑡𝑖𝑖𝐿𝐿 ≤ 𝑇𝑇𝑇𝑇𝑖𝑖 ≤ 𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿

𝑡𝑡𝑡𝑡𝑖𝑖𝐿𝐿 ≤ 𝑇𝑇𝑓𝑓𝑖𝑖 ≤ 𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿 ⎦
⎥
⎥
⎥
⎤
�

⎣
⎢
⎢
⎢
⎡ 𝑌𝑌𝑖𝑖,𝑏𝑏𝑏𝑏𝐷𝐷

𝑃𝑃𝑖𝑖,𝑏𝑏𝑏𝑏 = 𝑏𝑏𝑏𝑏𝑏𝑏𝑈𝑈 − 𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿

𝑡𝑡𝑡𝑡𝑖𝑖𝐿𝐿 ≤ 𝑇𝑇𝑇𝑇𝑖𝑖 ≤ 𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿

𝑏𝑏𝑏𝑏𝑏𝑏𝑈𝑈 ≤ 𝑇𝑇𝑓𝑓𝑖𝑖 ≤ 𝑡𝑡𝑡𝑡𝑖𝑖𝑈𝑈 ⎦
⎥
⎥
⎥
⎤

−

�

⎣
⎢
⎢
⎢
⎡ 𝑌𝑌𝑖𝑖,𝑏𝑏𝑏𝑏𝐴𝐴

𝑃𝑃𝑖𝑖,𝑏𝑏𝑏𝑏 = 0
𝑏𝑏𝑏𝑏𝑏𝑏𝑈𝑈 ≤ 𝑇𝑇𝑇𝑇𝑖𝑖 ≤ 𝑡𝑡𝑡𝑡𝑖𝑖𝑈𝑈

𝑏𝑏𝑏𝑏𝑏𝑏𝑈𝑈 ≤ 𝑇𝑇𝑓𝑓𝑖𝑖 ≤ 𝑡𝑡𝑡𝑡𝑖𝑖𝑈𝑈⎦
⎥
⎥
⎥
⎤

−

 ∀𝑖𝑖, 𝑏𝑏𝑏𝑏

 (2)

The logic proposition implicit in the exclusive disjunction in Eq. (2) is that exactly one binary must

be active, which is translated into Eq. (3).

𝑌𝑌𝑖𝑖,𝑏𝑏𝑏𝑏𝐵𝐵 + 𝑌𝑌𝑖𝑖,𝑏𝑏𝑏𝑏𝐷𝐷 + 𝑌𝑌𝑖𝑖,𝑏𝑏𝑏𝑏𝐴𝐴 = 1 ∀𝑖𝑖, 𝑏𝑏𝑏𝑏 (3)

For the three rows of constraints inside the disjunctive terms in Eq. (2), we use the hull relaxation

reformulation (Balas, 1985; Raman and Grossmann, 1994). Taking the first row as an example, it

involves defining new sets of disaggregated variables (one for each term): 𝑃𝑃�𝑖𝑖,𝑏𝑏𝑏𝑏𝐵𝐵 , 𝑃𝑃�𝑖𝑖,𝑏𝑏𝑏𝑏𝐷𝐷 and 𝑃𝑃�𝑖𝑖,𝑏𝑏𝑏𝑏𝐴𝐴 . These

8

are related to the original variable 𝑃𝑃𝑖𝑖,𝑏𝑏𝑏𝑏 through Eq. (4), and to the corresponding binary variable

through Eqs. (5)-(7).

 𝑃𝑃𝑖𝑖,𝑏𝑏𝑏𝑏 = 𝑃𝑃�𝑖𝑖,𝑏𝑏𝑏𝑏𝐵𝐵 + 𝑃𝑃�𝑖𝑖,𝑏𝑏𝑏𝑏𝐷𝐷 + 𝑃𝑃�𝑖𝑖,𝑏𝑏𝑏𝑏𝐴𝐴 ∀𝑖𝑖, 𝑏𝑏𝑏𝑏 (4)

𝑃𝑃�𝑖𝑖,𝑏𝑏𝑏𝑏𝐵𝐵 = 0 ∙ 𝑌𝑌𝑖𝑖,𝑏𝑏𝑏𝑏𝐵𝐵 ∀𝑖𝑖, 𝑏𝑏𝑏𝑏 (5)

𝑃𝑃�𝑖𝑖,𝑏𝑏𝑏𝑏𝐷𝐷 = (𝑏𝑏𝑏𝑏𝑏𝑏𝑈𝑈 − 𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿) ∙ 𝑌𝑌𝑖𝑖,𝑏𝑏𝑏𝑏𝐷𝐷 ∀𝑖𝑖, 𝑏𝑏𝑏𝑏 (6)

𝑃𝑃�𝑖𝑖,𝑏𝑏𝑏𝑏𝐴𝐴 = 0 ∙ 𝑌𝑌𝑖𝑖,𝑏𝑏𝑏𝑏𝐴𝐴 ∀𝑖𝑖, 𝑏𝑏𝑏𝑏 (7)

Ideally, we want to eliminate the disaggregated variables to avoid increasing the problem size. In

this case, this is possible since each constraint inside a disjunctive term involves a single variable.

We simply need to replace Eqs. (5)-(7) in Eq. (4) to generate a sharp/compact formulation (Jeroslow

and Lowe, 1984; Castro and Grossmann, 2012). The result can be seen in Eq. (8).

𝑃𝑃𝑖𝑖,𝑏𝑏𝑏𝑏 = (𝑏𝑏𝑏𝑏𝑏𝑏𝑈𝑈 − 𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿) ∙ 𝑌𝑌𝑖𝑖,𝑏𝑏𝑏𝑏𝐷𝐷 ∀𝑖𝑖, 𝑏𝑏𝑏𝑏 (8)

Applying the same procedure to the second and third row of constraints in Eq. (2), leads us to Eqs.

(9)-(10).

𝑡𝑡𝑡𝑡𝑖𝑖𝐿𝐿 ∙ (𝑌𝑌𝑖𝑖,𝑏𝑏𝑏𝑏𝐵𝐵 + 𝑌𝑌𝑖𝑖,𝑏𝑏𝑏𝑏𝐷𝐷) + 𝑏𝑏𝑏𝑏𝑏𝑏𝑈𝑈 𝑌𝑌𝑖𝑖,𝑏𝑏𝑏𝑏𝐴𝐴 ≤ 𝑇𝑇𝑇𝑇𝑖𝑖 ≤ 𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿 ∙ (𝑌𝑌𝑖𝑖,𝑏𝑏𝑏𝑏𝐵𝐵 + 𝑌𝑌𝑖𝑖,𝑏𝑏𝑏𝑏𝐷𝐷) + 𝑡𝑡𝑡𝑡𝑖𝑖𝑈𝑈𝑌𝑌𝑖𝑖,𝑏𝑏𝑏𝑏𝐴𝐴 ∀𝑖𝑖, 𝑏𝑏𝑏𝑏 (9)

𝑡𝑡𝑡𝑡𝑖𝑖𝐿𝐿 ∙ 𝑌𝑌𝑖𝑖,𝑏𝑏𝑏𝑏𝐵𝐵 + 𝑏𝑏𝑏𝑏𝑏𝑏𝑈𝑈 ∙ (𝑌𝑌𝑖𝑖,𝑏𝑏𝑏𝑏𝐷𝐷 + 𝑌𝑌𝑖𝑖,𝑏𝑏𝑏𝑏𝐴𝐴) ≤ 𝑇𝑇𝑇𝑇𝑖𝑖 ≤ 𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿 ∙ 𝑌𝑌𝑖𝑖,𝑏𝑏𝑏𝑏𝐵𝐵 + 𝑡𝑡𝑡𝑡𝑖𝑖𝑈𝑈 ∙ (𝑌𝑌𝑖𝑖,𝑏𝑏𝑏𝑏𝐷𝐷 + 𝑌𝑌𝑖𝑖,𝑏𝑏𝑏𝑏𝐴𝐴) ∀𝑖𝑖, 𝑏𝑏𝑏𝑏 (10)

In summary, Eqs. (1), (3) and (8)-(10), are required to represent the possible preemption.

3.1.1. Non-preemption as a special case

If preemption is not allowed when encountering a break period (typical mode of operation), the two

alternatives in Fig. 1 can be handled simply by setting 𝑌𝑌𝑖𝑖,𝑏𝑏𝑏𝑏𝐷𝐷 = 0 ∀𝑖𝑖, 𝑏𝑏𝑏𝑏.

3.1.2. Link to standard formulation for flexible flowshops

We now recall the general precedence formulation of Méndez and Cerdá (2002), which is suitable

for flexible flowshops and can easily be adapted to flexible jobshops (see Harjunkoski et al., 2014).

In a flexible flowshop (Fig. 3), each order 𝑗𝑗 needs to go through the same sequence of stages 𝑘𝑘 to

9

reach the condition of final product, and on each stage, there are a set of parallel machines 𝑚𝑚 ∈ 𝑀𝑀𝑘𝑘

to choose from. Assuming that the parallel units of a stage are equivalent, a characteristic of the

benchmark problem in section 5, the connection with the preemptive constraints given above can be

made by noting that a task 𝑖𝑖 is equivalent to a pair (𝑗𝑗, 𝑘𝑘).

Fig. 3. A flexible flowshop with two parallel machines on the first and last stages (𝑀𝑀1 = {𝑀𝑀11,𝑀𝑀12},
𝑀𝑀𝐾𝐾 = {𝑀𝑀𝐾𝐾1,𝑀𝑀𝐾𝐾2}), and three machines on the second stage (𝑀𝑀2 = {𝑀𝑀21,𝑀𝑀22,𝑀𝑀22}).

Let binary variables 𝑋𝑋𝑗𝑗,𝑚𝑚,𝑘𝑘 = 1 if order 𝑗𝑗 is assigned to machine 𝑚𝑚 in stage 𝑘𝑘, and 𝑌𝑌𝑗𝑗,𝑗𝑗´,𝑘𝑘 = 1 if order

𝑗𝑗 globally precedes order 𝑗𝑗´ in stage 𝑘𝑘. Equation (11) states that exactly one machine 𝑚𝑚 is assigned

to the execution of order 𝑗𝑗 in stage 𝑘𝑘. Equations (12)-(13) guarantee that orders allocated to the same

machine cannot overlap. They can be viewed as super big-M constraints, involving three different

binary variables, which are known to yield poor linear relaxations. Relating the execution of an order

in consecutive stages is much simpler. Equation (14) states that the start time of order 𝑗𝑗 in stage 𝑘𝑘 + 1

must be greater than its ending time in stage 𝑘𝑘.

 ∑ 𝑋𝑋𝑗𝑗,𝑚𝑚,𝑘𝑘𝑚𝑚∈𝑀𝑀𝑘𝑘 = 1 ∀𝑗𝑗,𝑘𝑘 (11)

𝑇𝑇𝑇𝑇𝑗𝑗,𝑘𝑘 ≤ 𝑇𝑇𝑇𝑇𝑗𝑗´,𝑘𝑘 + 𝑡𝑡𝑡𝑡𝑗𝑗,𝑘𝑘
𝑈𝑈 �3 − 𝑌𝑌𝑗𝑗,𝑗𝑗´,𝑘𝑘 − 𝑋𝑋𝑗𝑗,𝑚𝑚,𝑘𝑘 − 𝑋𝑋𝑗𝑗´,𝑚𝑚,𝑘𝑘� ∀𝑗𝑗, 𝑗𝑗´ > 𝑗𝑗,𝑘𝑘,𝑚𝑚 ∈ 𝑀𝑀𝑘𝑘 (12)

𝑇𝑇𝑇𝑇𝑗𝑗´,𝑘𝑘 ≤ 𝑇𝑇𝑇𝑇𝑗𝑗,𝑘𝑘 + 𝑡𝑡𝑡𝑡𝑗𝑗´,𝑘𝑘
𝑈𝑈 �2 + 𝑌𝑌𝑗𝑗,𝑗𝑗´,𝑘𝑘 − 𝑋𝑋𝑗𝑗,𝑚𝑚,𝑘𝑘 − 𝑋𝑋𝑗𝑗´,𝑚𝑚,𝑘𝑘� ∀𝑗𝑗, 𝑗𝑗´ > 𝑗𝑗,𝑘𝑘,𝑚𝑚 ∈ 𝑀𝑀𝑘𝑘 (13)

𝑇𝑇𝑇𝑇𝑗𝑗,𝑘𝑘+1 ≥ 𝑇𝑇𝑇𝑇𝑗𝑗,𝑘𝑘 ∀𝑗𝑗,𝑘𝑘 < 𝐾𝐾 (14)

3.1.3. Objective function

The objective function considered in this work is to minimize the makespan, 𝑀𝑀𝑀𝑀, the maximum of

the last-stage 𝐾𝐾 finishing times, as seen in Eqs. (15)-(16).

M11

M12

M22

M21 MK1

MK2
M23

…

10

min𝑀𝑀𝑀𝑀 (15)

𝑀𝑀𝑀𝑀 ≥ 𝑇𝑇𝑇𝑇𝑗𝑗,𝐾𝐾 ∀𝑗𝑗 (16)

Assuming that the makespan occurs after the end of the last break period, one can use the tightening

constraint in Eq. (17). It states that the makespan must be greater than the sum of the processing times

of all orders executed in machine 𝑚𝑚 (second term on the left-hand side) plus the minimum processing

time over all stages before and after 𝑘𝑘, plus the total duration of break periods (the new term compared

to the constraint in Castro and Grossmann, 2005).

min
𝑗𝑗

(∑ 𝑝𝑝𝑗𝑗,𝑘𝑘´𝑘𝑘´<𝑘𝑘) + ∑ 𝑝𝑝𝑗𝑗,𝑘𝑘𝑋𝑋𝑗𝑗,𝑚𝑚,𝑘𝑘𝑗𝑗 + min
𝑗𝑗

(∑ 𝑝𝑝𝑗𝑗,𝑘𝑘´𝑘𝑘´>𝑘𝑘) + ∑ (𝑏𝑏𝑏𝑏𝑏𝑏𝑈𝑈 − 𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿)𝑏𝑏𝑏𝑏 ≤ 𝑀𝑀𝑀𝑀 ∀𝑚𝑚,𝑘𝑘 (17)

3.2. New constraints for handling preemption with a multiple time grid formulation

We consider a multiple time grid formulation with 𝑚𝑚 grids, one for every unit, comprising an equal

number of time slots |𝑇𝑇|. Let 𝑇𝑇𝑇𝑇𝑚𝑚,𝑡𝑡 and 𝑇𝑇𝑇𝑇𝑚𝑚,𝑡𝑡 be continuous variables representing the starting and

ending times of slot 𝑡𝑡 in unit 𝑚𝑚, respectively, which are bounded between zero and the time horizon

ℎ. Equation (18) states that the duration of the unit-slot must be greater than the processing time plus

the length of all break periods included in the slot (note that while the equality can also be used,

preliminary tests have shown a worse computational performance). Compared to Eq. (1), the first

term on the right-hand side is now a variable (𝑃𝑃𝑚𝑚,𝑡𝑡
𝑉𝑉) rather than a parameter, since the processing time

will depend on the order assigned to the slot.

𝑇𝑇𝑇𝑇𝑚𝑚,𝑡𝑡 − 𝑇𝑇𝑇𝑇𝑚𝑚,𝑡𝑡 ≥ 𝑃𝑃𝑚𝑚,𝑡𝑡
𝑉𝑉 + ∑ 𝑃𝑃𝑚𝑚,𝑡𝑡,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ∀𝑚𝑚, 𝑡𝑡 (18)

Eq. (19) states that the starting time of slot 𝑡𝑡 + 1 must be greater than the ending time of slot 𝑡𝑡,

while the makespan is the maximum, over all units, of the ending times of the last slot, as seen in Eq.

(20).

𝑇𝑇𝑇𝑇𝑚𝑚,𝑡𝑡+1 ≥ 𝑇𝑇𝑇𝑇𝑚𝑚,𝑡𝑡 ∀𝑚𝑚, 𝑡𝑡 < |𝑇𝑇| (19)

𝑀𝑀𝑀𝑀 ≥ 𝑇𝑇𝑇𝑇𝑚𝑚,|𝑇𝑇| ∀𝑚𝑚 (20)

11

Contrary to section 3.1, we now assume that breaks are unit-dependent, representing for instance

periods of preventive maintenance. Therefore, the index 𝑚𝑚 is added to the period bounds (e.g. 𝑏𝑏𝑚𝑚,𝑏𝑏𝑏𝑏
𝐿𝐿).

The three alternatives for the location of slot (𝑚𝑚, 𝑡𝑡) with respect to break period (𝑚𝑚, 𝑏𝑏𝑏𝑏) are modeled

through the disjunction in Eq. (21). Besides the changes to the domain and variables indices, the only

difference are the weaker bounds for the timing variables. This is because we need to consider a wide

variety of cases, ranging from no orders assigned to unit 𝑚𝑚 (𝑇𝑇𝑇𝑇𝑚𝑚,𝑡𝑡 = 𝑇𝑇𝑓𝑓𝑚𝑚,𝑡𝑡 = 0 ∀𝑡𝑡), to idle slots 𝑡𝑡∗

towards the end of the time horizon ℎ (𝑇𝑇𝑇𝑇𝑚𝑚,𝑡𝑡∗ = 𝑇𝑇𝑇𝑇𝑚𝑚,𝑡𝑡∗ ≤ ℎ).

⎣
⎢
⎢
⎢
⎡ 𝑌𝑌𝑚𝑚,𝑡𝑡,𝑏𝑏𝑏𝑏

𝐵𝐵

𝑃𝑃𝑚𝑚,𝑡𝑡,𝑏𝑏𝑏𝑏 = 0
0 ≤ 𝑇𝑇𝑇𝑇𝑚𝑚,𝑡𝑡 ≤ 𝑏𝑏𝑚𝑚,𝑏𝑏𝑏𝑏

𝐿𝐿

0 ≤ 𝑇𝑇𝑓𝑓𝑚𝑚,𝑡𝑡 ≤ 𝑏𝑏𝑚𝑚,𝑏𝑏𝑏𝑏
𝐿𝐿 ⎦

⎥
⎥
⎥
⎤
�

⎣
⎢
⎢
⎢
⎡ 𝑌𝑌𝑚𝑚,𝑡𝑡,𝑏𝑏𝑏𝑏

𝐷𝐷

𝑃𝑃𝑚𝑚,𝑡𝑡,𝑏𝑏𝑏𝑏 = 𝑏𝑏𝑚𝑚,𝑏𝑏𝑏𝑏
𝑈𝑈 − 𝑏𝑏𝑚𝑚,𝑏𝑏𝑏𝑏

𝐿𝐿

0 ≤ 𝑇𝑇𝑇𝑇𝑚𝑚,𝑡𝑡 ≤ 𝑏𝑏𝑚𝑚,𝑏𝑏𝑏𝑏
𝐿𝐿

𝑏𝑏𝑚𝑚,𝑏𝑏𝑏𝑏
𝑈𝑈 ≤ 𝑇𝑇𝑓𝑓𝑚𝑚,𝑡𝑡 ≤ ℎ ⎦

⎥
⎥
⎥
⎤

−

�

⎣
⎢
⎢
⎢
⎡ 𝑌𝑌𝑚𝑚,𝑡𝑡,𝑏𝑏𝑏𝑏

𝐴𝐴

𝑃𝑃𝑚𝑚,𝑡𝑡,𝑏𝑏𝑏𝑏 = 0
𝑏𝑏𝑚𝑚,𝑏𝑏𝑏𝑏
𝑈𝑈 ≤ 𝑇𝑇𝑇𝑇𝑚𝑚,𝑡𝑡 ≤ ℎ
𝑏𝑏𝑚𝑚,𝑏𝑏𝑏𝑏
𝑈𝑈 ≤ 𝑇𝑇𝑓𝑓𝑚𝑚,𝑡𝑡 ≤ ℎ⎦

⎥
⎥
⎥
⎤

−

 ∀𝑚𝑚, 𝑡𝑡, 𝑏𝑏𝑏𝑏

 (21)

The hull reformulation of Eq. (21) leads to Eqs. (22)-(25).

𝑌𝑌𝑚𝑚,𝑡𝑡,𝑏𝑏𝑏𝑏
𝐵𝐵 + 𝑌𝑌𝑚𝑚,𝑡𝑡,𝑏𝑏𝑏𝑏

𝐷𝐷 + 𝑌𝑌𝑚𝑚,𝑡𝑡,𝑏𝑏𝑏𝑏
𝐴𝐴 = 1 ∀𝑚𝑚, 𝑡𝑡, 𝑏𝑏𝑏𝑏 (22)

𝑃𝑃𝑚𝑚,𝑡𝑡,𝑏𝑏𝑏𝑏 = �𝑏𝑏𝑚𝑚,𝑏𝑏𝑏𝑏
𝑈𝑈 − 𝑏𝑏𝑚𝑚,𝑏𝑏𝑏𝑏

𝐿𝐿 � ∙ 𝑌𝑌𝑚𝑚,𝑡𝑡,𝑏𝑏𝑏𝑏
𝐷𝐷 ∀𝑚𝑚, 𝑡𝑡, 𝑏𝑏𝑏𝑏 (23)

𝑏𝑏𝑚𝑚,𝑏𝑏𝑏𝑏
𝑈𝑈 𝑌𝑌𝑚𝑚,𝑡𝑡,𝑏𝑏𝑏𝑏

𝐴𝐴 ≤ 𝑇𝑇𝑇𝑇𝑚𝑚,𝑡𝑡 ≤ 𝑏𝑏𝑚𝑚,𝑏𝑏𝑏𝑏
𝐿𝐿 ∙ �𝑌𝑌𝑚𝑚,𝑡𝑡,𝑏𝑏𝑏𝑏

𝐵𝐵 + 𝑌𝑌𝑚𝑚,𝑡𝑡,𝑏𝑏𝑏𝑏
𝐷𝐷 � + ℎ ∙ 𝑌𝑌𝑚𝑚,𝑡𝑡,𝑏𝑏𝑏𝑏

𝐴𝐴 ∀𝑚𝑚, 𝑡𝑡, 𝑏𝑏𝑏𝑏 (24)

𝑏𝑏𝑚𝑚,𝑏𝑏𝑏𝑏
𝑈𝑈 ∙ �𝑌𝑌𝑚𝑚,𝑡𝑡,𝑏𝑏𝑏𝑏

𝐷𝐷 + 𝑌𝑌𝑚𝑚,𝑡𝑡,𝑏𝑏𝑏𝑏
𝐴𝐴 � ≤ 𝑇𝑇𝑇𝑇𝑚𝑚,𝑡𝑡 ≤ 𝑏𝑏𝑚𝑚,𝑏𝑏𝑏𝑏

𝐿𝐿 𝑌𝑌𝑚𝑚,𝑡𝑡,𝑏𝑏𝑏𝑏
𝐵𝐵 + ℎ ∙ �𝑌𝑌𝑚𝑚,𝑡𝑡,𝑏𝑏𝑏𝑏

𝐷𝐷 + 𝑌𝑌𝑚𝑚,𝑡𝑡,𝑏𝑏𝑏𝑏
𝐴𝐴 � ∀𝑚𝑚, 𝑡𝑡, 𝑏𝑏𝑏𝑏 (25)

Similarly to section 3.1.1, non-preemption can be handled simply by setting 𝑌𝑌𝑚𝑚,𝑡𝑡,𝑏𝑏𝑏𝑏
𝐷𝐷 = 0.

3.2.1. Link to standard formulation for single stage plants with parallel units

To compute the non-preemptive processing time of slot (𝑚𝑚, 𝑡𝑡), we need to know which order is

assigned to it. The exclusive disjunction in Eq. (26) states that there can be at most one order assigned

to the slot. If it is order 𝑗𝑗 (𝑋𝑋𝑗𝑗,𝑚𝑚,𝑡𝑡 = 1), then the slot processing time 𝑃𝑃𝑚𝑚,𝑡𝑡
𝑉𝑉 must match the order

processing time 𝑝𝑝𝑗𝑗,𝑚𝑚, the start time must be greater than release date 𝑟𝑟𝑗𝑗 and the end time must be

lower than due date 𝑑𝑑𝑗𝑗 (see also illustration in Fig. 4). If no orders are assigned to the slot (𝑋𝑋𝑚𝑚,𝑡𝑡
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =

12

1), then the processing time is equal to zero and the timing constraints are relaxed up to the horizon

time ℎ.

Fig. 4. Multiple time grid formulation for single stage plants. Each order 𝑗𝑗 must be assigned a unit 𝑚𝑚
and exactly one time slot 𝑡𝑡 must be chosen. The time window for execution is the interval between
its release 𝑟𝑟𝑗𝑗 and due date 𝑑𝑑𝑗𝑗 and processing times are unit-dependent.

�

⎣
⎢
⎢
⎢
⎡

𝑋𝑋𝑗𝑗,𝑚𝑚,𝑡𝑡

𝑃𝑃𝑚𝑚,𝑡𝑡
𝑉𝑉 = 𝑝𝑝𝑗𝑗,𝑚𝑚
𝑇𝑇𝑇𝑇𝑚𝑚,𝑡𝑡 ≥ 𝑟𝑟𝑗𝑗
𝑇𝑇𝑇𝑇𝑚𝑚,𝑡𝑡 ≤ 𝑑𝑑𝑗𝑗 ⎦

⎥
⎥
⎥
⎤

−
𝑗𝑗

�

⎣
⎢
⎢
⎢
⎡ 𝑋𝑋𝑚𝑚,𝑡𝑡

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑃𝑃𝑚𝑚,𝑡𝑡
𝑉𝑉 = 0

𝑇𝑇𝑇𝑇𝑚𝑚,𝑡𝑡 ≥ 0
𝑇𝑇𝑇𝑇𝑚𝑚,𝑡𝑡 ≤ ℎ⎦

⎥
⎥
⎥
⎤
 ∀𝑚𝑚, 𝑡𝑡

 (26)

Equation (27) reduces solution symmetry by moving idle slots to the right of active slots. Equation

(28) then ensures that every order 𝑗𝑗 is assigned to exactly one slot.

𝑋𝑋𝑚𝑚,𝑡𝑡
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ⟹ 𝑋𝑋𝑚𝑚,𝑡𝑡+1

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∀𝑚𝑚, 𝑡𝑡 < |𝑇𝑇| (27)

 ��𝑋𝑋𝑗𝑗,𝑚𝑚,𝑡𝑡
−
𝑡𝑡

−
𝑚𝑚

 ∀𝑗𝑗

 (28)

The reformulation of the logic propositions in Eqs. (26)-(28) leads to the Eqs. (29)-(31), which

involve only binary variables.

𝑝𝑝𝑗𝑗,M1

M1

M2

…

𝑇𝑇𝑇𝑇M1,1
𝑇𝑇𝑇𝑇M1,1 𝑇𝑇𝑇𝑇M1,2 𝑇𝑇𝑇𝑇M1,2

…

𝑇𝑇𝑇𝑇M1,|𝑇𝑇| 𝑇𝑇𝑇𝑇M1,|𝑇𝑇|

Time slot 𝑡𝑡 = 1 slot 𝑡𝑡 = 2 slot 𝑡𝑡 =|T|

Time window for execution of order 𝑗𝑗𝑏𝑏𝑗𝑗 𝑑𝑑𝑗𝑗

𝑝𝑝𝑗𝑗,M2

…

𝑇𝑇𝑇𝑇M2,1 𝑇𝑇𝑇𝑇M2,1 𝑇𝑇𝑇𝑇M2,2 𝑇𝑇𝑇𝑇M2,2

…

𝑇𝑇𝑇𝑇M2,|𝑇𝑇| 𝑇𝑇𝑇𝑇M2,|𝑇𝑇|

0 ℎ

𝑋𝑋𝑗𝑗 ,M1,1 = 1 𝑋𝑋𝑗𝑗 ,M1,2 = 1 𝑋𝑋𝑗𝑗 ,M1,|𝑇𝑇| = 1

𝑋𝑋𝑗𝑗 ,M2,1 = 1
𝑋𝑋𝑗𝑗 ,M2,2 = 1 𝑋𝑋𝑗𝑗 ,M2,|𝑇𝑇| = 1

13

∑ 𝑋𝑋𝑗𝑗,𝑚𝑚,𝑡𝑡𝑗𝑗 + 𝑋𝑋𝑚𝑚,𝑡𝑡
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 1 ∀𝑚𝑚, 𝑡𝑡 (29)

𝑋𝑋𝑚𝑚,𝑡𝑡
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ≥ 𝑋𝑋𝑚𝑚,𝑡𝑡+1

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∀𝑚𝑚, 𝑡𝑡 < |𝑇𝑇| (30)

∑ ∑ 𝑋𝑋𝑗𝑗,𝑚𝑚,𝑡𝑡𝑡𝑡𝑚𝑚 = 1 ∀𝑗𝑗 (31)

The sharp/compact hull reformulation of the constraints inside the disjunction in Eq. (26) generates

Eqs. (32)-(35), which involve both binary and continuous variables.

𝑃𝑃𝑚𝑚,𝑡𝑡
𝑉𝑉 = ∑ 𝑝𝑝𝑗𝑗,𝑚𝑚𝑋𝑋𝑗𝑗,𝑚𝑚,𝑡𝑡𝑗𝑗 ∀𝑚𝑚, 𝑡𝑡 (32)

𝑇𝑇𝑇𝑇𝑚𝑚,𝑡𝑡 ≥ ∑ 𝑟𝑟𝑗𝑗𝑋𝑋𝑗𝑗,𝑚𝑚,𝑡𝑡𝑗𝑗 ∀𝑚𝑚, 𝑡𝑡 (33)

𝑇𝑇𝑇𝑇𝑚𝑚,𝑡𝑡 ≤ ∑ 𝑑𝑑𝑗𝑗𝑋𝑋𝑗𝑗,𝑚𝑚,𝑡𝑡𝑗𝑗 + ℎ ∙ 𝑋𝑋𝑚𝑚,𝑡𝑡
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∀𝑚𝑚, 𝑡𝑡 (34)

4. Preemption with a discrete-time formulation

In discrete-time formulations, the time horizon of interest is typically divided into uniform time

slots of duration 𝛿𝛿 (Harjunkoski et al., 2014). To keep the model tractable, it is often needed to

approximate the processing times 𝑝𝑝𝑖𝑖 (in minutes or hours) to multiples of 𝛿𝛿. More specifically, we

compute the duration of task 𝑖𝑖 (in number of time slots in the grid) by rounding up, i.e. 𝜏𝜏𝑖𝑖 = ⌈𝑝𝑝𝑖𝑖/𝛿𝛿⌉.

All other timing parameters can be converted in a similar manner. In particular, 𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿 and 𝑏𝑏𝑏𝑏𝑏𝑏𝑈𝑈 now

represent the slots where break 𝑏𝑏𝑏𝑏 starts and production can resume, respectively.

Let binary variable 𝑁𝑁𝑖𝑖,𝑡𝑡 = 1 indicate that task 𝑖𝑖 starts to be executed at slot 𝑡𝑡 and subset 𝑇𝑇𝑖𝑖 hold the

slots where task 𝑖𝑖 can start. Break periods help to reduce the model size by decreasing the elements

in 𝑇𝑇𝑖𝑖, and thus restricting the domain of variables 𝑁𝑁𝑖𝑖,𝑡𝑡. As an example, consider a task spanning over

𝜏𝜏𝑖𝑖 = 5 time slots executed in the vicinity of a four-interval break (𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿 = 9, 𝑏𝑏𝑏𝑏𝑏𝑏𝑈𝑈 = 13). In non-

preemptive scheduling, the domain for task execution is reduced by more than half compared to the

case of no break, to 𝑇𝑇𝑖𝑖 = {1,2,3,4,13,14, … }, as seen in Fig. 5.

14

Fig. 5. In non-preemptive scheduling, there is a significant reduction in the domain for task execution
before the break.

The domain for task execution is larger when allowing for preemption. As can be seen in Fig. 6,

the task can now also start at 𝑡𝑡 ∈ {5,6,7,8}. One aspect to consider is that its duration will be longer

than if started earlier. In other words, one can no longer refer to the task duration without specifying

the starting time slot. Thus, the duration parameter gains a time index: 𝜏𝜏𝑖̅𝑖,𝑡𝑡. In the three alternatives

shown in Fig. 6, the duration ranges between the nominal value (𝜏𝜏𝑖̅𝑖,1 = 𝜏𝜏𝑖𝑖 = 5), to 9 and 11 slots,

when facing one and two break periods, respectively.

Fig. 6. In preemptive scheduling, domain reduction for task execution is limited to the break periods
while task duration varies with the starting time slot.

4.1. Extended formulation for single stage plants

The most successful discrete-time scheduling model in Process Systems Engineering uses the State-

Task Network (STN) process representation (Kondili et al., 1993). Here, we are interested in the

equipment allocation constraint, which is basically the only constraint needed for single stage plants.

The constraint prevents tasks competing for the same unit 𝑚𝑚 to overlap in time and was later tightened

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

𝑡𝑡 ∉ 𝑇𝑇𝑖𝑖
𝑁𝑁𝑖𝑖,1 = 1

𝑁𝑁𝑖𝑖,4 = 1

Earliest start

𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿 𝑏𝑏𝑏𝑏𝑏𝑏𝑈𝑈

𝜏𝜏𝑖𝑖 = 5

Latest start

…

…

Th
re

e
al

te
rn

at
iv

es

1 2 3 4 5 6 7 8 9 10 11 12 13 14

𝜏𝜏𝑖𝑖,1 = 5𝑁𝑁𝑖𝑖,1 = 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14

3 4 5 6 7 8 9 10 11 12 13 14 15 16

𝜏𝜏𝑖𝑖,5 = 9𝑁𝑁𝑖𝑖,5 = 1

17

𝜏𝜏𝑖𝑖,7 = 11𝑁𝑁𝑖𝑖,7 = 1

𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿 𝑏𝑏𝑏𝑏𝑏𝑏𝑈𝑈

𝑏𝑏𝑏𝑏𝑏𝑏+1𝐿𝐿 𝑏𝑏𝑏𝑏𝑏𝑏+1𝑈𝑈

𝑡𝑡 ∉ 𝑇𝑇𝑖𝑖

𝑡𝑡 ∉ 𝑇𝑇𝑖𝑖

…

15

by Shah et al. (1993). Making it suitable for preemptive tasks requires a simple change in the duration

parameters (from 𝜏𝜏𝑖𝑖 to 𝜏𝜏𝑖̅𝑖,𝑡𝑡). In Eq. (35), we show an equivalent constraint (see derivation in Castro

et al., 2018).

 ∑ ∑ 𝑁𝑁𝑖𝑖,𝑡𝑡−𝜃𝜃
𝜏𝜏�𝑖𝑖,𝑡𝑡−1
𝜃𝜃=0:
𝑡𝑡−𝜃𝜃∈𝑇𝑇𝑖𝑖

𝑖𝑖∈𝐼𝐼𝑚𝑚 ≤ 1 ∀𝑚𝑚, 𝑡𝑡 (35)

Each task 𝑖𝑖 is now linked to a pair (𝑗𝑗,𝑚𝑚), with subsets 𝐼𝐼𝑚𝑚 and 𝐼𝐼𝑗𝑗 respectively holding the tasks that

are executed in unit 𝑚𝑚 or correspond to order 𝑗𝑗. Note that the timing domain of task 𝑖𝑖 (𝑇𝑇𝑖𝑖) takes into

account the location of breaks as well as release (𝑟𝑟𝑗𝑗), due date (𝑑𝑑𝑗𝑗) and processing time (𝑝𝑝𝑗𝑗,𝑚𝑚).

The execution of every order is enforced through Eq. (36).

∑ ∑ 𝑁𝑁𝑖𝑖,𝑡𝑡𝑡𝑡∈𝑇𝑇𝑖𝑖𝑖𝑖∈𝐼𝐼𝑗𝑗 = 1 ∀𝑗𝑗 (36)

Let 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 be a parameter indicating the starting time of slot 𝑡𝑡 (in minutes or hours). The makespan

must then be greater than the ending time of all tasks, as seen in Eq. (37).

𝑀𝑀𝑀𝑀 ≥ ∑ 𝑁𝑁𝑖𝑖,𝑡𝑡 ∙ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡+𝜏𝜏�𝑖𝑖,𝑡𝑡𝑡𝑡∈𝑇𝑇𝑖𝑖 ∀𝑖𝑖 (37)

4.2. Generalized Resource-Task Network (RTN) formulation

In more complex production facilities, we need to keep track of resources other than equipment

units. Pantelides (1994) introduced the Resource-Task Network (RTN) process representation to

unify the treatment of production resources. The key constraints are the excess resource balances,

which relate the availability of resource 𝑟𝑟 at time 𝑡𝑡 (nonnegative continuous variable 𝑅𝑅𝑟𝑟,𝑡𝑡) with the

amount at 𝑡𝑡 − 1 (or the initial availability 𝑅𝑅𝑟𝑟0) plus the amount produced by all tasks finishing at 𝑡𝑡

minus the amount consumed by all tasks starting at 𝑡𝑡. Assuming tasks with fixed batch size and

duration and no interaction with the system boundaries, such as in the flexible flowshop described in

section 3.1.2, we give in Eq. (38) the generalized constraint for handling both non-preemptive tasks

𝑖𝑖´ and preemptive tasks 𝑖𝑖. Note that the differences occur at the level of parameter indices, and so it

is straightforward to relax the assumptions and include more terms (one can use as starting point the

RTN excess resource balances in Harjunkoski et al. (2014) and Castro et al. (2018)).

16

 𝑅𝑅𝑟𝑟,𝑡𝑡 = 𝑅𝑅𝑟𝑟0|𝑡𝑡=1 + 𝑅𝑅𝑟𝑟,𝑡𝑡−1|𝑡𝑡>1 + ∑ ∑ 𝜇𝜇𝑟𝑟,𝑖𝑖´,𝜃𝜃𝑁𝑁𝑖𝑖´,𝑡𝑡−𝜃𝜃
𝜏𝜏𝑖𝑖´
𝜃𝜃=0:

𝑡𝑡−𝜃𝜃∈𝑇𝑇𝑖𝑖´
𝑖𝑖´ + ∑ ∑ 𝜇𝜇𝑟𝑟,𝑖𝑖,𝑡𝑡−𝜃𝜃,𝜃𝜃𝑁𝑁𝑖𝑖,𝑡𝑡−𝜃𝜃

𝜏𝜏𝑖𝑖,𝑡𝑡
𝜃𝜃=0:
𝑡𝑡−𝜃𝜃∈𝑇𝑇𝑖𝑖

𝑖𝑖 ∀𝑟𝑟, 𝑡𝑡 (38)

In general, the structural parameters 𝜇𝜇𝑟𝑟,𝑖𝑖,𝜃𝜃 represent the amount of resource 𝑟𝑟 consumed (-) and

produced (+) at a time 𝜃𝜃 relative to the start of the task. Their preemptive counterparts 𝜇𝜇𝑟𝑟,𝑖𝑖,𝑡𝑡,𝜃𝜃 gain

one index to identify the starting interval 𝑡𝑡. Let us now consider the specific case of a flexible

flowshop, where a task 𝑖𝑖 is linked to a (𝑗𝑗,𝑚𝑚,𝑘𝑘) triplet. The task consumes resource 𝑟𝑟−, linked to the

output of order 𝑗𝑗 from stage 𝑘𝑘 − 1, at its start, and produces resource 𝑟𝑟+, linked to the output of order

𝑗𝑗 from stage 𝑘𝑘, at its end. It also holds equipment resource 𝑟𝑟∗ at the start, linked to unit 𝑚𝑚, releasing

it at the end. Returning to the non-preemptive example in Fig. 5, we have 𝜇𝜇𝑟𝑟−,𝑖𝑖,0 = 𝜇𝜇𝑟𝑟∗,𝑖𝑖,0 = −1 and

𝜇𝜇𝑟𝑟+,𝑖𝑖,5 = 𝜇𝜇𝑟𝑟∗,𝑖𝑖,5 = 1. For the preemptive case in Fig. 6, and noting that the largest value of 𝜃𝜃 is 𝜏𝜏𝑖𝑖,𝑡𝑡,

we have for the three alternatives (from top to bottom):

• 𝜇𝜇𝑟𝑟−,𝑖𝑖,1,0, 𝜇𝜇𝑟𝑟∗,𝑖𝑖,1,0 = −1 and 𝜇𝜇𝑟𝑟+,𝑖𝑖,1,5, 𝜇𝜇𝑟𝑟∗,𝑖𝑖,1,5 = 1;

• 𝜇𝜇𝑟𝑟−,𝑖𝑖,5,0, 𝜇𝜇𝑟𝑟∗,𝑖𝑖,5,0 = −1 and 𝜇𝜇𝑟𝑟+,𝑖𝑖,5,9, 𝜇𝜇𝑟𝑟∗,𝑖𝑖,5,9 = 1;

• 𝜇𝜇𝑟𝑟−,𝑖𝑖,7,0, 𝜇𝜇𝑟𝑟∗,𝑖𝑖,7,0 = −1 and 𝜇𝜇𝑟𝑟+,𝑖𝑖,7,11, 𝜇𝜇𝑟𝑟∗,𝑖𝑖,7,11 = 1.

Compared to the continuous-time formulations, one can see that the modelling challenge has

switched from developing the constraints to generating the parameters of the RTN representation. It

should also be emphasized that it is straightforward to consider other discrete time formulations (e.g.

Velez et al., 2017).

5. Computational results

The mixed-integer linear programming models were implemented in GAMS 24.9.2 and solved with

CPLEX 12.7.1 running in parallel deterministic mode using up to eight threads. We have used default

settings except for the termination criteria, a relative optimality tolerance of 10-6 or a maximum wall

time limit of 3600 CPUs. The hardware consisted of a Windows 10, 64-bit desktop with an Intel i7-

4790 (3.6 GHz) processor and 8 GB of RAM.

17

Two different sets of benchmark problems are considered. The first set is based on a real-life

scheduling problem from a steel plant (Castro et al., 2013), a flexible flowshop with 𝐾𝐾 = 4 stages,

each with two units in parallel. To make the comparison easier between the discrete and continuous-

time formulations, we have: (i) relaxed the no interruption constraint in the continuous casting stage

(the last) between heats belonging to the same group; (ii) slightly changed the last-stage durations so

that the parallel units of a stage are equivalent. The problem involves 24 orders to schedule over one

day, with 𝛿𝛿 = 5 min slots guaranteeing the same data accuracy for the discrete and continuous-time

formulations (see processing times in Table 1). We have defined the 3 break periods given in Table

2 and generated sixteen instances of growing complexity by considering a subset of orders, the first

up to |𝐽𝐽|, and break periods. Eq. (39) enforces a maximum transfer time between consecutive stages,

with the 𝑡𝑡𝑡𝑡𝑘𝑘𝑈𝑈 values being 240, 240 and 120 min, for 𝑘𝑘 = 1, 2 and 3, respectively.

𝑇𝑇𝑇𝑇𝑗𝑗,𝑘𝑘+1 − 𝑇𝑇𝑇𝑇𝑗𝑗,𝑘𝑘 ≤ 𝑡𝑡𝑡𝑡𝑘𝑘𝑈𝑈 ∀𝑗𝑗,𝑘𝑘 < 𝐾𝐾 (39)

Table 1. Processing times 𝑝𝑝𝑗𝑗,𝑘𝑘 (min) for flexible flowshop problem.

Order/Stage 𝑘𝑘 = 1 𝑘𝑘 = 2 𝑘𝑘 = 3 𝑘𝑘 = 4
𝑗𝑗 ∈ {1, … , 4} 80 75 35 50
𝑗𝑗 ∈ {5, 6} 85 80 45 60
𝑗𝑗 ∈ {7, 8} 85 80 20 55

𝑗𝑗 ∈ {9, … , 12} 90 95 45 60
𝑗𝑗 ∈ {13, 14} 85 85 25 70
𝑗𝑗 ∈ {15, 16} 85 85 25 75
𝑗𝑗 = 17 80 85 25 75
𝑗𝑗 = 18 80 95 45 60
𝑗𝑗 = 19 80 95 45 70
𝑗𝑗 = 20 80 95 30 70

𝑗𝑗 ∈ {21, 22} 80 80 30 50
𝑗𝑗 ∈ {23, 24} 80 80 30 60

Table 2. Location of break periods (min) for flexible flowshop problem.

Break 𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿 𝑏𝑏𝑏𝑏𝑏𝑏𝑈𝑈
𝑏𝑏𝑏𝑏 = 1 250 280
𝑏𝑏𝑏𝑏 = 2 450 475
𝑏𝑏𝑏𝑏 = 3 700 745

18

The second set of problems deals with a single stage batch plant comprising |𝑀𝑀| = 5 units in

parallel. The main data for Ex1-Ex4 is taken from Castro and Grossmann (2006) and involve |𝐽𝐽| =

25 (Ex1-2) to 30 orders. The new information concerns the location of the break periods, which are

now unit dependent. Since these problems can be solved in a few seconds, and to test the limits of the

models, we have increased the number of orders by 5 per problem until reaching 50 in Ex8. There

are three instances for each example, featuring |𝐵𝐵𝐵𝐵| = 1, 2 or 3 break periods. The full set of data is

provided as Supplementary Material.

5.1. Flexible flowshop instances

We start the analysis by looking at the results in Table 3 for the discrete-time formulation and the

flexible flowshop instances. The first thing to note is that adding break periods leads to an increase

in the makespan. This was obviously expected, the main purpose of including the rows for |𝐵𝐵𝐵𝐵| = 0

being the comparison of model size and computational performance to the standard scheduling with

no breaks. In this respect, adding breaks leads to a reduction in the number of binary variables in the

problem (due to a reduced domain for task execution, recall illustrations in section 4), more so for

non-preemptive scheduling, for a computational time roughly in the same order of magnitude. When

considering the same breaks for all units, it is easy to generate the preemptive schedule from the

schedule with no breaks, one just needs to delay the end of the tasks executed around the break periods

for the duration of the break. It is thus no surprise, that the preemptive makespan matches the one for

|𝐵𝐵𝐵𝐵| = 0 plus ∑ (𝑏𝑏𝑏𝑏𝑏𝑏𝑈𝑈 − 𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿)𝑏𝑏𝑏𝑏 , i.e. just add 30, 55 and 100 min for |𝐵𝐵𝐵𝐵| = 1, 2 or 3 break periods

(check values in Table 2).

On the other hand, it is difficult to predict the increase in makespan from preemptive to non-

preemptive scheduling (note that the lower non-preemptive makespan reported in Table 3 for |𝐽𝐽| =

24, |𝐵𝐵𝐵𝐵| = 2 is because CPLEX failed to find the optimal preemptive schedule within the time limit

of one hour). There are two cases (|𝐽𝐽| = 20, |𝐵𝐵𝐵𝐵| = 1, 2) for which it is possible to cope with the

reduced domain for task execution by changing the production sequence (check Fig. 7 for |𝐵𝐵𝐵𝐵| = 2),

19

cases with minor (e.g. 5 min in |𝐽𝐽| = 16, |𝐵𝐵𝐵𝐵| = 1) and major degradation in makespan (e.g. 85 min

in |𝐽𝐽| = 12, |𝐵𝐵𝐵𝐵| = 3, very close to the total duration of breaks, 100 min).

Table 3. Results for flexible flowshop problem and discrete-time formulation (BV= binary variables,
LP= makespan of linear relaxation (min), MIP= makespan (min), optimal solutions in bold, maximum
computational time in italic).

 Preemptive scheduling Non-preemptive scheduling
|𝐽𝐽| |𝐵𝐵𝐵𝐵| BV LP MIP CPUs CPUs MIP LP BV
8 0 7664 371.44 485 10.6
 1 7472 393.97 515 10.2 6.62 520 395.91 7114
 2 7312 400.19 540 10.1 8.31 550 404.76 6590

10 0 9512 426.38 575 32.4
 1 9272 451.62 605 40.0 27.2 615 467.26 8820
 2 9072 463.66 630 53.4 7.81 675 493.87 8148

12 0 11360 477.81 665 123
 1 11072 504.66 695 84.2 56.6 710 523.16 10526
 2 10832 519.74 720 145 16.4 770 558.23 9706
 3 10400 525.50 765 133 14.3 850 572.72 8694

16 0 15128 562.90 835 572
 1 14744 590.47 865 285 190 870 597.07 14010
 2 14424 608.12 890 1087 83.2 905 634.88 12912
 3 13848 624.66 935 488 91.4 985 669.69 11558

20 0 18864 647.82 1010 1142
 1 18384 677.82 1040 1399 1150 1040 682.10 17462
 2 17984 695.88 1065 770 1192 1065 709.23 16078
 3 17264 717.52 1115 3600 690 1150 749.31 14374

24 0 22704 725.41 1310 3600
 1 22128 753.18 1210 3600 3600 1220 757.67 21026
 2 21648 772.10 1235 3600 934 1225 781.91 19382
 3 20784 797.49 1285 3600 3600 1310 829.27 17354

Fig. 7. Optimal solutions for flexible flowshop problem with 20 orders and 2 break points. The
makespan (1065 min) for preemptive scheduling (on the left) does not deteriorate when switching to
non-preemptive mode (on the right).

0 200 400 600 800 1000

M11

M12

M21

M22

M31

M32

M41

M42

Time (min)
0 200 400 600 800 1000

M11

M12

M21

M22

M31

M32

M41

M42

Time (min)

20

Table 4. Results for flexible flowshop problem and continuous-time formulation.

 Preemptive scheduling Non-preemptive scheduling
|𝐽𝐽| |𝐵𝐵𝐵𝐵| BV LP MIP CPUs CPUs MIP LP BV
8 0 176 485 485 0.29
 1 272 515 515 0.93 2.84 520 515 240
 2 368 540 540 1.97 18.2 550 540 304

10 0 260 575 575 0.97
 1 380 605 605 7.97 3600 615 605 340
 2 500 630 630 2.94 3600 675 630 420

12 0 360 665 665 496
 1 504 695 695 14.3 3600 710 695 456
 2 648 720 720 112 3600 770 720 552
 3 792 765 765 826 3600 850 765 648

16 0 608 835 840 3600
 1 800 865 870 3600 3600 870 865 736
 2 992 890 900 3600 3600 910 890 864
 3 1184 935 950 3600 3600 985 935 992

20 0 920 1010 1020 3600
 1 1160 1040 1060 3600 3600 1105 1040 1080
 2 1400 1065 1065 3316 3600 1070 1065 1240
 3 1640 1110 1115 3600 3600 1165 1110 1400

24 0 1296 1170 1180 3600
 1 1584 1200 1210 3600 3600 1235 1200 1488
 2 1872 1225 1255 3600 3600 1235 1225 1680
 3 2160 1270 1280 3600 3600 1370 1270 1872

Table 4 presents the results for the continuous-time model. Comparing the results between Table 3

and Table 4, one concludes that the discrete-time formulation has much better performance in the

flowshop problem than its continuous counterpart for the larger instances. Despite using a number of

binary variables that is roughly one order of magnitude larger, it can solve 12 preemptive instances

to optimality vs. 8 (|𝐵𝐵𝐵𝐵| > 0). The difference is even bigger for the nonpreemptive case (14 vs. 2).

For the latter case, the continuous-time formulation did find the optimal solution in 7 other instances,

but it was unable to close the optimality gap, due to the presence of the super big-M constraints in

Eqs. (12)-(13). For preemptive scheduling, the best possible solution was equal to the root node LP

relaxation in all cases. Furthermore, the tightening constraint in Eq. (17), for the specific problem

data, seems to lead to a formulation with zero integrality gap (note that the results for the LP column

in Table 4 match those of the MIP column in Table 3 for the proven optimal solutions; it is the reason

21

why the last 5 rows are not in bold). However, CPLEX found it difficult to guide the search in the

right direction, failing to find the optimum in all but one instance with 16 orders and beyond, and

often terminating with close to one million open nodes.

5.2. Instances from single stage plants with parallel units

The single stage problems feature order due dates and unit-specific breaks, two characteristics that

make it more difficult to generate an optimal preemptive schedule from one without breaks. The

results in Table 5 for the discrete-time formulation, show a more profound difference in

computational performance, with the non-preemptive mode of operation being often one or two

orders of magnitude faster. It is a consequence of the major reduction in problem size achieved by

each break period (compare BV columns). In particular, all problems with |𝐵𝐵𝐵𝐵| = 3 can be solved to

optimality for non-preemptive scheduling, and there only two suboptimal solutions returned for EX7

and EX8 (|𝐵𝐵𝐵𝐵| = 1) vs. all six cases when considering preemption.

While the discrete-time formulation performs reasonably well for the single stage instances, it is

not as fast as the continuous-time formulation. As can be seen in Table 6, all but one instances can

be solved to optimality except EX8 for |𝐵𝐵𝐵𝐵| = 3 (preemptive case). By optimality, we mean that the

solutions obtained using the number of slots listed in the |𝑇𝑇| columns were confirmed for |𝑇𝑇| + 1,

which is the standard heuristic procedure for time-grid based formulations (Harjunkoski et al., 2014).

Notice that the LP relaxation for a particular example varies with the number of slots but not with the

number of break periods. Since both the makespan and problem size increase with the number of

breaks, it is not surprising to observe an increase in computational time.

The values of |𝑇𝑇| in Table 6 indicate the maximum number of orders allocated to a unit. Dividing

the number of orders in the problem (|𝐽𝐽|) by the number of units (|𝑀𝑀| = 5) yields a lower bound on

the value of |𝑇𝑇| that achieves feasibility, which for EX1-EX8 is always an integer number. It

corresponds to a balanced distribution of orders over units, which is enough to ensure optimality in

many cases (e.g. EX2 and EX7 for preemptive scheduling). Interestingly, the optimal value of |𝑇𝑇| is

22

often not the same for the two operating modes, an indication of the major changes required in

sequencing (already reported for the flowshop instances) and order-unit assignment (processing times

now differ between units). As an illustration, we show in Fig. 8 the best-found/optimal schedules for

the most difficult problem, EX8 with |𝐵𝐵𝐵𝐵| = 3.

Table 5. Results for single stage plant and discrete-time formulation.

 Preemptive scheduling Non-preemptive scheduling
Problem |𝐽𝐽| |𝐵𝐵𝐵𝐵| BV LP MIP CPUs CPUs MIP LP BV

EX1 25 0 13548 139.86 188 18.7
 1 12709 147.72 198 22.2 9.48 215 161.77 10349
 2 12021 153.50 208 366 2.31 244 208.98 6555
 3 11428 159.00 215 33.5 1.20 268 243.14 4350

EX2 25 0 13273 146.10 197 19.1
 1 12434 155.98 207 16.4 10.5 224 171.89 10025
 2 11748 166.41 219 20.3 1.95 247 219.00 6169
 3 11156 172 227 16.3 1.09 266 246.81 4017

EX3 30 0 18063 125.24 178 3600
 1 16146 136.53 195 3600 16.9 196 142.27 13541
 2 14261 151.62 206 35.5 4.51 227 190.74 9281
 3 13432 156.25 214 27.9 2.26 257 206.92 6923

EX4 30 0 16753 175.39 220 3600
 1 15751 172.38 232 3600 8.53 242 189.05 12607
 2 14987 178.77 238 2454 2.14 274 244.17 7909
 3 14547 186.48 240 33.2 1.39 289 289 5206

EX5 35 0 25329 167.61 253 3600
 1 24330 176.77 264 3600 3600 279 188.57 21695
 2 23190 185.27 271 3600 9.28 294 225.88 15005
 3 21858 196.40 281 3600 5.49 319 274.32 9867

EX6 40 0 30453 166.7 237 3600
 1 29451 170.75 244 3600 3600 250 173.08 26982
 2 28217 176.90 252 3600 3511 267 195.45 20526
 3 26740 182.17 260 3600 54.8 291 215.82 14995

EX7 45 0 37497 161.66 256 3600
 1 36178 169.64 267 3600 3600 276 176.13 32730
 2 34710 176.41 275 3600 3600 286 188.77 24605
 3 32905 182.39 285 3600 53.8 303 210.48 18020

EX8 50 0 40885 183.07 289 3600
 1 39429 193.69 298 3600 3600 302 198.11 35818
 2 37836 200.99 304 3600 3600 313 212.85 27185
 3 35979 210.74 313 3600 96.8 326 243.13 20087

23

Table 6. Results for single stage plant and continuous-time formulation.

 Preemptive scheduling Non-preemptive scheduling
Problem |𝐽𝐽| |𝐵𝐵𝐵𝐵| |𝑇𝑇| BV LP MIP CPUs CPUs MIP LP BV |𝑇𝑇|

EX1 25 0 5 650 187 188 0.62
 1 6 870 173.99 198 2.56 3.68 215 173.99 840 6
 2 6 960 173.99 208 10.0 4.20 244 173.99 900 6
 3 6 1050 173.99 215 13.3 5.91 268 173.99 960 6

EX2 25 0 5 650 196 197 1.14
 1 5 725 196 207 1.23 3.78 224 183.05 840 6
 2 5 800 196 219 2.17 1.99 247 183.05 900 6
 3 5 875 196 227 3.87 6.22 266 183.05 960 6

EX3 30 0 7 1085 166.32 178 2.21
 1 6 1020 180 195 1.57 1.46 196 180 990 6
 2 6 1110 180 206 2.34 8.99 227 166.32 1225 7
 3 7 1400 166.32 214 13.4 3.14 257 180 1110 6

EX4 30 0 7 1085 206.99 220 2.32
 1 7 1190 206.99 232 12.1 7.89 242 206.99 1155 7
 2 6 1110 224.08 238 4.14 6.99 274 206.99 1225 7
 3 7 1400 206.99 240 28.6 13.0 289 206.99 1295 7

EX5 35 0 7 1260 250.53 253 0.82
 1 7 1365 250.53 264 3.40 36.9 279 245.91 1520 8
 2 8 1680 245.91 271 10.6 6.38 294 245.91 1600 8
 3 8 1800 245.91 281 34.7 8.73 319 245.91 1680 8

EX6 40 0 9 1845 226.98 235 13.5
 1 9 1980 226.98 244 26.0 18.7 250 226.98 1935 9
 2 8 1880 233.46 252 8.08 36.8 267 226.98 2025 9
 3 9 2250 226.98 260 98.5 31.6 291 226.98 2115 9

EX7 45 0 9 2070 253.95 256 2.71
 1 9 2205 253.95 266 5.28 8.33 275 253.95 2160 9
 2 9 2340 253.95 273 14.7 5.97 286 253.95 2250 9
 3 9 2475 253.95 283 61.1 33.2 303 251.36 2600 10

EX8 50 0 11 2805 281.80 286 49.1
 1 11 2970 281.80 296 41.5 92.8 300 281.80 2915 11
 2 11 3135 281.80 303 139 24.1 313 287.48 2750 10
 3 11 3300 281.80 311 3600 103 326 281.80 3135 11

24

Fig. 8. Optimal solutions for single stage problem with 50 orders and 3 break points (preemptive
schedule on the left, makespan=311; non-preemptive schedule on the right, makespan=326).

6. Conclusions

For cases where it is operationally feasible, taking advantage of the possibility of production tasks

being interrupted when facing a break, is important since it can improve equipment utilization and

reduce the makespan. This paper has expanded the scope of scheduling formulations by showing how

to handle preemptive tasks in a computationally efficient way. Both discrete and continuous-time

formulations were considered, the latter relying on the concept of general precedence or multiple time

grids.

Events occurring at specific points in time, like breaks, release and due dates, are valuable

information that can be used in a preprocessing step to reduce the domain of the binary variables of

a discrete-time formulation. Preemption makes the duration of the task to be dependent on its starting

time, a constraint that can be reflected in the model parameters, which gain one index. This is a very

minor difference compared to the standard formulation for non-preemptive tasks.

Coping with break periods in continuous-time formulations, on the other hand, is associated to new

sets of binary variables and constraints, which typically make the optimization problem more difficult

to solve. We have seen that these can be separated from the model part that handles the assignment

of orders to units and sequencing of orders allocated to a unit, either explicitly for the general

precedence formulation, or implicitly for multiple time grids. Non-preemptive tasks need to finish

0 50 100 150 200 250 300

M1

M2

M3

M4

M5

Time

22 3 35 38 20 25 5 50 2 18 13

17 8 15 37 39 4 48 42 24 43 45

28 36 27 44 21 10 23 30 47 16

11 19 40 31 12 32 9 41 26

1 6 7 14 29 33 46 34 49

0 50 100 150 200 250 300

M1

M2

M3

M4

M5

Time

22 3 35 2 20 25 38 50 2118 13

11 815 939 44842 2433 43

28 7 27 44 14 1023 26 47

519 40 31 12 32 41 45

1 36 1617 29 6 46 3449

30

37

25

before the start of a break or start after its end, leading to two new sets of binary variables. Preemptive

tasks have the additional possibility of being interrupted during the break.

Through the solution of a set of benchmark problems, we have found that the best formulation for

a problem depends on the plant topology. The discrete-time formulation was found better for flexible

flowshops, despite featuring an integrality gap greater than zero (unlike its continuous-time

counterpart for preemptive scheduling) and generating MILPs that are one order of magnitude larger

in size. It is primarily because continuous-time formulations cannot avoid using big-M constraints,

either to do the sequencing of orders in a unit, as with the general precedence model used for

comparison, or to do the transfer from one stage to the next, like in multiple time grid formulations.

Benefiting from a sharp/compact hull reformulation of the disjunctions used to derive the model, the

multiple time grid formulation solved faster for single stage plants.

Overall, accounting for breaks in a scheduling problem keeps the computational time in the same

order of magnitude.

Acknowledgments

This work was supported by Fundação para a Ciência e Tecnologia (projects IF/00781/2013 and

UID/MAT/04561/2013); and ABB Corporate Research.

References

ANSI/ISA-S95.00.01-2000, 2000. Enterprise-Control System Integration. Part 1: Models and

Terminology, ISBN: 1-55617-727-5.

ANSI/ISA-95.00. 03-2005, 2005. Enterprise-Control System Integration. Part 3: Activity Models

of Manufacturing Operations Management. ISA—The Instrumentation, Systems, and Automation

Society, ResearchTriangle Park, NC.

Balas, E., 1979. Disjunctive programming. Annals of Discrete Mathematics 5, 3-51.

26

Balas E., 1985. Disjunctive programming and a hierarchy of relaxations for discrete optimization

problems. SIAM J. Algebraic Discrete Methods 6(3), 466-486.

Batsyn, M., Goldengorin, B., Pardalos, P.M., Sukhov, P., 2014. Online heuristic for the preemptive

single machine scheduling problem of minimizing the total weighted completion time. Optimization

Methods & Software 29, 955-963.

Brucker, P., Heitmann, S., Hurink, J., 2003. How useful are preemptive schedules? Operations

Research Letters 31, 129-136.

Castro, P.M., Grossmann, I.E., 2005. New Continuous-Time MILP Model for the Short-Term

Scheduling of Multistage Batch Plants. Ind. Eng. Chem. Res. 44, 9175-9190.

Castro, P.M., Grossmann, I.E., 2006. An efficient MILP model for the short-term scheduling of

single stage batch plants. Comput. Chem. Eng. 30, 1003-1018.

Castro, P.M., Grossmann, I.E., 2012. Generalized Disjunctive Programming as a Systematic

Modeling Framework to Derive Scheduling Formulations. Ind. Eng. Chem. Res. 51, 5781-5792.

Castro, P.M., Grossmann, I.E., Veldhuizen, P., Esplin, D., 2014. Optimal Maintenance Scheduling

of a Gas Engine Power Plant using Generalized Disjunctive Programming, AIChE J. 60, 2083-2097.

Castro, P.M., Grossmann, I.E., Zhang, Q., 2018. Expanding scope and computational challenges in

process scheduling. Comput. Chem. Eng. 114, 14-42.

Castro, P.M., Sun, L., Harjunkoski, I., 2013. Resource-Task Network Formulations for Industrial

Demand Side Management of a Steel Plant. Ind. Eng. Chem. Res. 52, 13046-13058.

Graham, R.L., Lawler, E.L., Lenstra, J.K, Rinnooy Kan, 1979. Optimization and Approximation in

Deterministic Sequencing and Scheduling: a Survey. Ann. Discrete Math. 5, 287-326.

Harjunkoski, I., 2016. Deploying scheduling solutions in an industrial environment. Comput.

Chem. Eng. 91, 127–135.

Harjunkoski, I., Maravelias, C., Bongers, P., Castro, P.M., Engell, S., Grossmann, I.E., Hooker, J.,

Méndez, C., Sand, G., Wassick, J., 2014. Scope for industrial applications of production scheduling

models and solution methods. Comput. Chem. Eng. 62, 161–193.

27

Javanmard, S., Afshar-Nadjafi, B., Niaki, S.T.A., 2017. Preemptive Multi-Skilled Resource

Investment Project Scheduling Problem: Mathematical Modelling and Solution Approaches. Comput.

Chem. Eng. 96, 55-68.

Jeroslow, R.G., Lowe, J.K., 1984. Modelling with integer variables. Math. Programming Studies

22, North-Holland, Amsterdam, pp 167-184.

Kondili, E., Pantelides, C.C., Sargent, R.W.H., 1993. A General Algorithm for Short-Term

Scheduling of Batch Operations – 1. MILP formulation. Comput. Chem. Eng. 17, 211-227.

Méndez, C. A., Cerdá, J., 2002. An MILP framework for short-term scheduling of single-stage

batch plants with limited discrete resources. In J. Grievink, & J. van Schijndel (Eds.), Computer-aided

chemical engineering (Vol. 10) (p. 721). Amsterdam, The Netherlands: Elsevier.

Pantelides, C.C., 1994. Unified Frameworks for the Optimal Process Planning and Scheduling. In

Proceedings of the Second Conference on Foundations of Computer Aided Operations; Cache

Publications: New York, pp 253.

Pei, J., Fan, W., Pardalos, P.M., Liu, X., Goldengorin, B., Yang, S., 2015. Preemptive Scheduling

in Two-Stage Supply Chain to Minimize the Makespan. Optimization Methods & Software 30, 727-

747.

Peteghem, V.V., Vanhoucke, M., 2010. A Genetic Algorithm for the Preemptive and Non-

Preemptive Multi-Mode Resource-Constrained Project Scheduling Problem. European Journal of

Operational Research 201, 409-418.

Raman, R., Grossmann, I.E., 1994. Modeling and computational techniques for logic based integer

programming. Comput. Chem. Eng. 18, 563-578.

Shah, N., Pantelides, C.C., Sargent, R.W.H., 1993. A General Algorithm for Short-Term

Scheduling of Batch Operations – 2. Computational Issues. Comput. Chem. Eng. 17, 229-244.

Velez, S., Dong, Y., Maravelias, C.T., 2017. Changeover Formulations for Discrete-Time Mixed-

Integer Programming Scheduling Models. European Journal of Operational Research 260, 949-963.

Wassick, J.M., Ferrio, J., 2011. Extending the resource task network for industrial applications.

Comput. Chem. Eng. 35(10), 2124-2140.

	Abstract
	1. Introduction
	2. Preemptive vs. non-preemptive scheduling
	3. Preemption with continuous-time formulations
	3.1. New constraints for handling preemption with a general precedence formulation
	3.1.1. Non-preemption as a special case
	3.1.2. Link to standard formulation for flexible flowshops
	3.1.3. Objective function

	3.2. New constraints for handling preemption with a multiple time grid formulation
	3.2.1. Link to standard formulation for single stage plants with parallel units

	4. Preemption with a discrete-time formulation
	4.1. Extended formulation for single stage plants
	4.2. Generalized Resource-Task Network (RTN) formulation

	5. Computational results
	5.1. Flexible flowshop instances
	5.2. Instances from single stage plants with parallel units

	6. Conclusions
	Acknowledgments
	References

