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Abstract 

This article presents a new continuous-time model for long-term scheduling of a gas engine power 

plant with parallel units. Gas engines are shutdown according to a regular maintenance plan that 

limits the number of hours spent online. To minimize salary expenditure with skilled labor, a single 

maintenance team (shared by the gas engines) is considered which is unavailable during certain 

periods of time. Other challenging constraints involve constant minimum and variable maximum 

power demands. The objective is to maximize the revenue from electricity sales assuming seasonal 

variations in electricity pricing, by reducing idle times and shutdowns in high tariff periods. By first 

                                                 

*
 Corresponding author. Tel.: +351-210924643. E-mail: pedro.castro@lneg.pt 



2 

developing a generalized disjunctive programming model and then applying both big-M and hull 

reformulation techniques, we reduce the burden of finding the appropriate set of mixed-integer linear 

constraints. We then show through the solution of a real life problem that the most efficient model 

involves a big-M reformulation of the set of disjunctive constraints, while gaining valuable insights 

about the system. 

Keywords: optimization, logic, mathematical modeling, mixed-integer linear programming, 

planning 

Introduction 

All industrial sites require regular maintenance to enhance reliability of their equipments and 

avoid emergency shutdowns. The main concerns of maintenance scheduling are to guarantee feasible 

material and utility balances while minimizing payment for skilled labor
17

. As in-house skilled 

labors are limited and external labor is expensive, in order to minimize salary expenditure, plants 

will maintain separately to reduce the manpower requirement. 

The maintenance scheduling of generators in power systems is one of the most significant 

problems in power systems operation and management
18

. In order to avoid premature aging and 

failure of generators leading to unplanned and costly power outages, it is important to carry out 

preventive maintenance at regular intervals
19

. The maintenance schedule affects many short- and 

long-term planning functions. For example, unit commitment, fuel scheduling, reliability 

calculations and production cost all have a maintenance schedule as input and so a suboptimal 

schedule can affect each of these function adversely
20

. 

In traditional power systems, the maintenance scheduling of generator units was performed by the 

system operator and imposed to power plants
18

. However, many concepts of the power systems 

changed after restructuring and in the deregulated environments. In the latter, the conventional 

approach for maintenance scheduling involves interaction between the independent system operator 

(ISO) and the generation companies (GENCOs). In this process, the objective of the GENCOs is to 

maximize their annual benefits, while the ISO will also try to maximize the reliability of the power 
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grid and increase the reserve capacity at every time interval. Hence, the ISO may return some 

maintenance requests for modification. 

The maintenance scheduling of thermal generation units is a large-scale combinatorial 

optimization problem and the typical optimization methods have been applied to solve it: 

mathematical programming, dynamic programming, genetic algorithms, simulated annealing, tabu 

search, etc. The objective function is often quadratic
19-21

 based on economic cost or reliability. 

Mathematical programming formulations involve a discrete-time representation
18-21

 that uses binary 

variables to identify the time interval in which maintenance starts or is being performed. The 

maintenance time interval is one week with the time horizon being one
18-20

 or 5 years
21

 and four sets 

of linear constraints need to be enforced: (i) continuity of maintenance activities, where each unit is 

maintained for a specified length of time without interruption; (ii) maintenance window constraints, 

which define the possible times for execution of the maintenance activities; (iii) maximum and 

minimum power output constraints, which consider the demand and minimum reserve margins of the 

power system; (iv) Crew constraints, which consider the manpower availability for maintenance 

work; the maintenance resource is either the total number of skilled workers available
18-19

, or the 

constraints specify a maximum number of units that can be maintained at a given time
20

 or that no 

two units can be maintained simultaneously by the same crew
21

. Maintenance for a particular unit 

occurs just once in the given time horizon. 

In the real life problem addressed in this article, the maintenance of the power plant involves 

multiple shutdowns for each generator. Maintenance is enforced between a minimum and a 

maximum number of run hours after the previous shutdown and so the maintenance time windows 

are dynamic rather than static. Generators will feature an idle mode besides the online and shutdown 

modes to save online hours for periods where the electricity price is higher, leading to higher 

revenue from electricity sales. While this is straightforward to model with a discrete-time 

representation, it presents a challenge for a continuous-time model, required since the shortest 

duration of a planned maintenance is just 12 hours, a very small value compared to a time horizon of 

a few years. A similar challenge is associated to time dependent resource availability constraints, 
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which are quite common in practice (e.g. cost for manpower higher on Sundays). The novelty is thus 

related to the generation of practical mixed-integer linear constraints for continuous-time models 

dealing with time/cost dependent resource availability and shared resources (e.g. a single 

maintenance team). The solution approach is to start from much simpler generalized disjunctive 

programming constraints
7,12

, going along the lines of recent work by Castro & Grossmann
15

, who 

have done the same for the key concepts of immediate, general precedence and multiple time grids. 

Problem Statement 

We consider a gas engine power plant producing electricity from natural gas. At any one time, 

each engine  can be online, in standby or shutdown mode, and is characterized by power 

output  [MW] and number of run hours (not considering the hours spent in standby mode) 

before maintenance is required. Some flexibility is allowed on the shutdown schedule, so rather than 

considering a fixed value, the processing time is allowed to vary between given lower  and upper 

bounds  [h]. Index  represents an operation time period that includes a single shutdown of 

length  [h]. Typically, the required maintenance time increases with an increase in the number 

of total hours online. 

It is assumed that there is only 1 maintenance team doing shutdowns, meaning that only one 

engine can be on shutdown mode at a time. To reduce the costs, it may be convenient to make the 

maintenance team unavailable in certain periods of time (e.g. on Sundays, Christmas season). For 

each such period , the starting  and ending time  [h] (with respect to the origin of the time 

horizon) must be given. 

The amount of time spent on standby mode can be varied to stagger the shutdowns and to take 

advantage of higher electricity tariffs. For this particular case study, electricity sales in the winter 
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months are at a higher tariff than the sales in summer. Let  represent a time period of constant 

electricity price  [$/MWh] and  and  [h] its starting and ending time, respectively. 

Most of the time, all energy produced can be sold to the market (unlimited demand) but there can 

be periods up to a few weeks where the maximum power demand  is limiting. The starting and 

ending times of time period  are given respectively by  and  [h]. 

The objective will be to maximize the revenue from electricity sales for a given number of 

operation periods , while subject to a constant minimum power demand,  [MW], and the 

above mentioned constraints. 

Selection of Time Representation Concepts for Scheduling Model 

In a recent review paper dealing with production scheduling models for industrial applications, 

Harjunkoski et al.
1
 have identified the production environment and the modeling of time as the two 

most important features of a mathematical programming scheduling formulation. In terms of the 

production environment, the maintenance scheduling problem addressed here can be viewed as a 

sequential, single stage multiproduct continuous plant with parallel units. The multiple products are 

the specified operation time periods  that are scheduled following a predefined sequence with 

variable processing times and changeovers (the mandatory shutdowns). We also have a maintenance 

team, a resource that needs to be shared by the different engines that is not always available, and 

time dependent pricing and demand for electricity. 

In view of the given processing characteristics and constraints, deciding on either a discrete or 

continuous-time approach is hardly straightforward. In favor of discrete-time, we have the volatile 

prices, maximum electricity demand and maintenance team availability, the shared resource and the 

minimum power demand. In favor of continuous-time, there is the very simple plant topology, the 

variable processing times and the fact that the changeover times can be two orders of magnitude 
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smaller than the processing times. In the end, the latter feature was decisive since a very large 

number of time slots would be required by the discrete-time formulation to handle the problem data 

accurately (meaning an intractable problem), whereas the shared resource and the time dependent 

profiles, which do not change frequently, can still be handled by a continuous-time formulation 

despite the use of a more inefficient set of constraints. The constant minimum power demand will be 

enforced by eliminating the standby mode from as many engines as those required to achieve the 

minimum demand, plus one. 

Continuous-time models can be of different types
1
. Single time grid is preferred when in presence 

of shared resources
22

 but is highly inefficient for single stage plants
2
 when compared to multiple 

time grid models. In this case, it is not required to keep track of the availability of the maintenance 

team over time, just to make sure that the maintenance tasks do not overlap. General precedence 

models are known capable of modeling this constraint very efficiently and can be extended to 

multiple discrete resources
3,4,5

. The continuous-time model to be presented next is hybrid
5,6

 in the 

sense that it relies on two different concepts for time representation: (i) multiple time grids, one per 

gas engine, to keep track of the execution of the power production tasks; (ii) sequencing variables, to 

handle the single maintenance team constraint. The model has also to account for events occurring at 

discrete points in time, which define changes in the electricity tariff, power demand and availability 

of the maintenance team. 

Generalized Disjunctive Programming Formulation 

In this section, we highlight the main elements of the scheduling formulation while providing the 

model constraints in their simplest form. Generalized Disjunctive Programming
7,12

 (GDP) is used for 

this purpose, allowing us to focus on the linear constraints that are associated to each of the alternate 

decisions, defined by Boolean variables. In the next section, we discuss the transformation of the 

GDP into mixed-integer linear programming (MILP) formulations using big-M and convex hull 

reformulations
8
. 
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Timing production and maintenance tasks on gas units 

In order to ensure the minimum power supply constraint, gas engines  are divided into engines 

that are always on (either on online or shutdown mode), , and those that can be idle. The latter 

provide the necessary flexibility to maximize electricity production in periods of higher price. 

We use the concept of multiple time grids
2
 to determine the timing of the production and 

maintenance tasks. Each engine will feature exactly one production and one maintenance task per 

shutdown period , i.e. the given shutdown periods correspond to the slots of every time grid 

, see Figure 1 and Figure 2. Given that the online time of engine  in slot  is not fixed but 

allowed to vary in [ , ], we need to define nonnegative continuous variables . The other 

nonnegative continuous variables are  and , which identify the starting and ending time of 

production in slot  of engine  and  the beginning of the shutdown period  of engine . 

Engine online
Engine shutdown

Engine online
Engine shutdown

Time slot t Time slot t+1

... ...

 

Figure 1. Events occurring within the time slots of always on gas engines. 

It should be noted that the assumption of a maximum of two occurrences per time slot of the 

standby (idle) mode (see Figure 2) may remove the optimal solution from the feasible space. In fact, 

we started to postulate a single occurrence (before the online mode) only to find out that there were 

periods of high electricity tariff with engines in standby mode. These disappeared for two 

occurrences, leading to higher revenue. 
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Engine online
Engine idle Engine shutdownEngine idle

Time slot t
 

Figure 2. Events occurring within the time slots of gas engines that can be idle. 

From Figure 1 and Figure 2, the timing constraints are straightforward. Equation 1 states that the 

ending time is equal to the starting plus processing time. The beginning of the maintenance period 

coincides with the end of processing for always on engines, Eq. 2, or is greater than it for the others, 

Eq. 3. Then, the starting time of the online mode in slot  is either equal to (Eq. 4) or greater 

than (Eq. 5) the starting time of the maintenance mode in slot  plus the fixed shutdown length in . 

The starting time of the first slot for always on units must also be equal to zero, Eq. 6. 

 (1) 

 (2) 

 (3) 

 (4) 

 (5) 

 (6) 

Depending on the problem data, it is possible to reduce the domain of the model variables and 

improve computational performance. To facilitate interpretation of the constraints, the variable 

bounds are written in lower case featuring the same characters as the corresponding model variable 

and an extra superscript identifying if it is a lower ( ) or an upper ( ) bound. As an example,  

represents the lower bound on the starting time of processing task , while  indicates the 
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upper bound on the starting time of the shutdown period  of engine . Eqs. 7-10, thus define the 

upper and lower bounds for the timing variables. 

 (7) 

 (8) 

 (9) 

 (10) 

Sequencing maintenance tasks performed by the single maintenance team 

Enforcing the single maintenance team constraint can be done through the use of general 

precedence sequencing variables
9,10

. If one considers any pair of tasks  and , there are 

only two possibilities (hence the use of the exclusive OR in Figure 3), either  before or after 

. Naturally, there can be other shutdown tasks between the pair being considered. Notice also 

that there is no need to consider  since Eqs. 1-5 ensure that there is no overlap of shutdown 

tasks belonging to different slots of the same unit. 

Shutdown (t,m)

Shutdown (t',m') Shutdown (t',m')

Shutdown (t,m)

 

Figure 3. Sequencing pairs of maintenance tasks through general precedence variables. 

Let  be Boolean variables indicating if shutdown of slot  in unit  starts before the 

shutdown of slot  in unit . The corresponding constraint in Disjunctive Programming form is 

given by Eq. 11. 
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 (11) 

Making the maintenance team unavailable in certain periods of time 

Another constraint is that the maintenance team it is not available in certain periods of time. Thus, 

shutdown task  either ends before the start of unavailable period  or starts after the end of 

, see Figure 4. Being  the new set of general precedence Boolean variables, Eq. 12 results. 

Unavailable 
period tu

Shutdown (t,m)

Unavailable 
period tu

Shutdown (t,m)

 

Figure 4. Shutdown tasks cannot take place over unavailable periods of the maintenance team. 

 

 (12) 

Calculating the revenue over the different electricity price periods 

Dealing with the different electricity tariffs and computing the revenue is the most challenging part 

of the model. We follow the approach of Nolde and Morari
11

, who have identified six different types 

of interactions between a processing task and a time period of constant electricity price, when 

addressing the electric load tracking scheduling problem of a steel plant. Constraints were derived 

using logic relations
12

 and reformulated into mixed-integer linear programming format using the big-

M technique. However, the MILP constraints were not actually shown. Also using big-M 
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constraints, Haït and Artigues
13

 proposed a computationally more efficient model for the exact same 

problem, while Hadera and Harjunkoski
14

 applied the concept to a more complex steel plant. 

Constant price 
period tp

Online (t,m)

period tp-1 period tp+1

 

Figure 5. Interaction of processing tasks with periods of constant electricity price periods. 

Let Boolean variables from  to  account for the six possible location types of 

processing task  with respect to constant electricity price period , see Figure 5. Type  

corresponds to the full duration being located inside the price period, i.e. both the starting and ending 

time of the task must be greater than the interval lower bound and lower than its upper bound. In 

such case, the time factor  to consider for computing the revenue, is equal to the processing 

time , see disjunction further to the left in Eq. 13. If the tasks starts before  but ends within 

 ( ), the time factor is equal to the difference between the ending time of the task 

and the interval lower bound. The same can be done for the four remaining alternatives. Note that in 
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the last three disjunctions, the calculation of  involves only parameters, which facilitates the 

convex hull reformulation. 

 

 

 (13) 

In Eq. 13, redundant constraints are inside parenthesis. As an example, if , it is not 

necessary to consider , since this is ensured by  and Eq. 1. Redundant 

constraints are shown in order to make it easier to identify those that are shared by different location 

variables, something that will be explored in the next section. Overall, for every  there are 

14 non-redundant constraints that need to be reformulated. 

Implicit in Eq. (13) is the fact that the sum over all time periods of the time factor variables must 

be lower than the processing time of the corresponding time period. While not strictly necessarily, 

Eq. (14) leads to a reduction in the integrality gap and improves computational performance by over 

one order of magnitude. If time periods  are sufficiently long to allow execution of all tasks, we 

can use the equality instead. 

 (14) 
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To calculate the revenue due to processing task  in period , one just needs to multiply the 

time factor  by the electricity price  and the power output  due to engine . The 

objective function of maximizing the total revenue is thus given by Eq. 15. 

 (15) 

Ensuring power output does not exceed maximum demand 

While in general it is assumed that all energy produced can be sold to the market, it is possible to 

have times of low power demand during some weeks of the year. Considering that the maximum 

power demand  is higher than the minimum power output  from the always on 

engines, we need to account for the other units ( ) that are operating in low demand 

period . Operating in period  does not necessarily mean starting and ending within , i.e. any 

of the first four types of interaction in Figure 5 can occur. Thus, processing task  can either 

end before ( ), be active inside or start after ( ) period , see Figure 6.  

Low demand period 
td

Online (t,m) Online (t,m) Online (t,m)

 

Figure 6. Interaction of processing tasks with low electricity demand periods. 
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The disjunctive programming constraints are given in Eq. 16. Notice that the constraints involving 

timing variables  and  in disjunction  are those shared by types , while 

before and after correspond respectively to types  and . 

 

 (16) 

Eq. 17 then ensures that the maximum power demand is not exceeded. 

 (17) 

Mathematical Programming Formulations 

We will be deriving alternative Mathematical Programming formulations by applying the standard 

big-M and convex hull reformulations to the Generalized Disjunctive Programming formulation 

presented in the previous section. In the process, all Boolean variables are converted into binary 

variables, e.g. . In order to make the linear relaxations as tight as 

possible, we will be using information from the lower and upper bounds of the model variables (Eqs. 

7-10). 

The disjunctions in Eq. 13 can be reorganized so that a particular timing constraint appears only 

once. As will be seen in the Computational Results section, the advantage is the generation of fewer 

constraints, which in the case of the big-M reformulation are also tighter due to the presence of 

multiple binary variables. On the other hand, the quality of the hull relaxation might not be as good 

due to the weaker bounds on half of the constraints. 

The condition that the starting time of task  is greater than lower bound of time period  is 

shared by location type ,  and , while the reverse is true for type ,  and . This is reflected in 
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Eq. 18, while the six other possibilities related to variables  and  are part of Eqs. 19-21. 

Eq. 22 deals with the remaining constraints involving the  variables.  

 

 (18) 

 

 (19) 

 

 (20) 

 

 (21) 

 

 

 (22) 

Overall, there are 8 sets constrains in Eqs. (18-21) as opposed to 14 in Eq. (13). It should also be 

highlighted that applying basic steps
16,23

 to Eqs. (18-21) would yield Eq. (13) for every . 
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Big-M reformulation 

We start by reformulating Eq. 11 that avoids maintenance tasks to occur simultaneously. By 

following the general guidelines
8
 to generate the MILP constraints and compute the tightest possible 

values for the big-M parameters, which were illustrated by Castro and Grossmann
15

 in the context of 

scheduling formulations, Eqs. 23-24 result. 

  (23) 

  (24) 

Equations 25-26 correspond to the reformulation of the two disjunctions in Eq. 12, which ensures 

that the maintenance team cannot be assigned to work on unavailable periods. 

  (25) 

  (26) 

The timing constraints related to the location of the processing tasks with respect to the constant 

electricity time periods are given by Eqs. 27-34. They correspond to the reformulation of the 

inequalities inside the disjunctions in Eqs. 18-21. Note that we have used the conversion
12,15

 of logic 

constraints of the type , featuring the model’s Boolean variables 

and the auxiliary variable , into MILP format , with 0-1 

variables. 

  (27) 

  (28) 

  (29) 

  (30) 
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  (31) 

  (32) 

  (33) 

  (34) 

It should be emphasized at this point that the equivalent constraints to Eqs. 27-34 in Hudera and 

Harjunkoski
14

 are larger in number and weaker due to the presence of fewer binary variables (except 

in Eqs. 30-31) and the use of a single and hence necessarily larger big-M value in the constraints. 

The steel problem
14

 also features fixed rather than variable processing times, allowing for the 

simplification of Eq. (35). Interestingly, the computation of the equivalent variables to  

resembles Eq. (72) for the hull relaxation, but a different set of variables is used, which appear from 

the exact linearization of bilinear terms involving continuous and binary variables. 

The next set of constraints calculate the time taken by processing task  in period . Since 

we are dealing with equality constraints, these first need to be divided into two inequality 

constraints. Taking as example the constraint inside the  disjunction in Eq. 22, 

. The values of the big-M parameters are then 

 and , leading to Eqs. 35-36.  

  (35) 

  (36) 
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The remaining constraints are obtained in a similar fashion (Eqs. 37-42). Notice that the global 

constraints in Eq. (36) and Eq. (42), stating that  cannot be higher than the task’s processing 

time neither than the time interval length, appear naturally from the derivation. 

  (37) 

  (38) 

  (39) 

  (40) 

  (41) 

  (42) 

  (43) 

Four sets of big-M constraints are required to reformulate Eq.16. Eq. 44 states that if processing 

task  is executed before time period , then the ending time must be lower than the start of 

the low maximum demand period. Notice that there is no need to use big-M constraints for the 

starting time variables due to Eq. 1. The same applies when enforcing the starting time variables to 

be greater than the ending time of period  whenever the processing task is executed after , see 

Eq 45. If, on the other hand, part of the task takes place within , we need to enforce the bounds in 

Eqs 46-47. 

  (44) 

  (45) 
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  (46) 

  (47) 

Hull reformulation 

Compared to the big-M reformulation, the convex hull reformulation involves additional 

disaggregated variables and constraints. Hence, the benefits in solution time from a stronger linear 

relaxation may be surpassed by the difficulties resulting from a larger problem size
16

 and is often 

difficult to predict the best performer. The current problem, with its four sets of disjunctive 

constraints (Eqs. 11-13, 16) involving different sets of variables, is a good opportunity to gain 

valuable knowledge concerning the identification of problems where the additional modeling effort 

required for the derivation of the hull reformulation may be compensated by the improved 

computational performance. 

The first set of constraints (Eq. 11) ensures that the maintenance team is not assigned to two tasks 

simultaneously and involves timing variables  and  for disjunction . The 

convex hull reformulation for this part of the model requires disaggregated variables with 6 indices 

(e.g. ) together with 12 sets of constraints, as can be seen in the Appendix. It 

compares with the just two sets of constraints required by the big-M reformulation, which is 

responsible for a significantly smaller mathematical problem and considerably better performance. 

These results are consistent with those for the single stage general precedence formulation in Castro 

and Grossmann
15

. 

Fortunately, the results for the other two sets of constraints are more encouraging, as will be seen 

later on. We start with the unavailability of the maintenance team constraint in Eq. 12, which 

involves a single variable ( ) and one or two parameters in each disjunction . Since 

the indices of the variable are shared with the constraint domain, the new disaggregated variables, 
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 and , only feature one additional index compared to the original variable. 

Furthermore, the single constraint inside the disjunction can be viewed as a bounding constraint, 

acting as an upper bound on the execution of the maintenance task for the left ( ) disjunction and as 

a lower bound for the right disjunction ( ), see Eqs. 48-49. As a consequence, we will be requiring 

fewer additional constraints than expected. In particular, the fifth set of constraints in Eq. 50 states 

that the sum of disaggregated variables associated to the two disjunctions, must be equal to the 

original variable for every unavailable period . 

  (48) 

  (49) 

  (50) 

The majority of the constraints required for calculating the revenue on the different electricity time 

periods also act as bounding constraints on the timing variables. Eqs. 18-21 also involve a single 

variable with a subset of the indices featured in the constraint domain, thus leading to the same five 

sets of constraints. More specifically, Eqs. 51-53 are the hull reformulation of Eq. 18. 

  (51) 

 (52) 

  (53) 

The MILP constraints for Eqs. 19-21 are given in Eqs 54-62. 

  (54) 

  (55) 
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  (56) 

  (57) 

  (58) 

  (59) 

 

 (60) 

 (61) 

  (62) 

It remains to reformulate the disjunctions associated to the calculation of time factors , Eq. 

22. Notice that the three disjunctions further to the left involve three other variables, ,  and 

, which need to be disaggregated. However, unlike what we have seen so far, each of these 

variables appears in a single constraint. Thus, rather than defining one disaggregated variable for 

each disjunction, it suffices two define just two, one for the disjunction where they appear 

(superscript equal to the corresponding binary variable, e.g. ) and another for the other cases ( 

e.g. ). The constraints relating the new disaggregated variables with the binary variables and 

the disjunctive programming variables are given below in Eqs. 63-71. 

  (63) 

  (64) 

  (65) 
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  (66) 

  (67) 

  (68) 

  (69) 

  (70) 

  (71) 

The time factor  can then be written as a sum of multiple terms, one for each constraint 

associated to the disjunctions in Eq. 22. 

  (72) 

Finally, we have the constraints identifying the tasks executed in the low electricity demand 

periods, Eqs. 73-80. Notice the three additional sets of disaggregated starting and ending time 

variables. 

  (73) 

  (74) 

 (75) 

 

 (76) 

  (77) 
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  (78) 

  (79) 

  (80) 

Remarks 

It should be highlighted that the min and max functions in Eqs 63, 66, 69 and 73-78 have the 

purpose of tightening the upper and lower bounds and lead to a significant improvement in the 

quality of the linear relaxation. As an example, if the interaction is of type , the full extent of the 

task must be located within , meaning that the upper bound on the disaggregated variable in Eq. 63 

is the lowest value between the maximum processing time and the duration of . While we can do 

the same in other constraints of the hull reformulation, preliminary results have shown a worse 

performance and no influence in the integrality gap. Hence we have opted to keep the constraints 

simpler. 

Common constraints 

The big-M and convex hull reformulation share the constraint that exactly one type of interaction 

of processing task  with constant electricity price period  must be selected. 

  (81) 

Similarly, processing task  is either completely before, completely after or partially within 

lower power demand period . 

  (82) 
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Case Study 

We consider a power plant with 18 identical gas engines with a generation capacity per engine 

. The minimum electricity production should be , corresponding 

to a minimum of  engines online simultaneously (recall that this class is either online or in 

shutdown mode and that at most one engine is in shutdown mode). The schedule involves  

operation time periods, with the number of online hours ranging between [2000, 2500] except for 

 , which ends in a major shutdown. The duration of the required maintenance shutdowns is also 

given in Table 1. 

The production plan is to be obtained for roughly 3.5 years, comprising 8 time periods of constant 

electricity price, where the low tariff is intercalated with the high tariff, see Table 2. There are also 4 

periods of maximum power demand lasting 3 weeks each (Table 3) and the maintenance team is 

unavailable one week around Christmas (Table 4). 

Table 1. Bounds on time spent online and length of shutdown periods (same for all engines) [h] 

 

1 2 3 4 5 6 7 8 9 10 11 12 

 2500 2500 2500 2500 2500 2500 2500 3000 2500 2500 2500 2500 

 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 

 

12 72 12 96 12 120 12 432 12 72 12 120 

Table 2. Electricity cost data 

 

1 2 3 4 5 6 7 8 

 [h] 3624 5832 12384 14592 21144 23352 29928 32136 

 [h] 0 3624 5832 12384 14592 21144 23352 29928 

 [$/MWh] 40 75 40 75 40 75 40 75 

Table 3. Periods of maximum power demand 

 

1 2 3 4 

 [h] 2664 11424 20184 28968 

 [h] 2160 10920 19680 28464 

 [MW] 140 140 140 140 

Table 4. Periods of maintenance team unavailability 
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1 2 3 4 

 [h] 8688 17448 26208 34968 

 [h] 8520 17280 26040 34800 

 

Most of the complexity of the model arises from the 4-index binary variables . Given that 

the gas engines are identical, we can assume that within operation period , the shutdown of unit  

precedes the shutdown of unit . Then, due to the processing time constraints, it can also be 

ensured that shutdown ( ) precedes shutdown ( ) for . The general condition, given in 

Eq. 83, is responsible for orders of magnitude reduction in computational time. In later periods, it 

may also occur that shutdown ( ) of low index units occurs before ( ) of high index units, 

but that is a decision for the optimization solver to make. 

  (83) 

Bounding the model variables 

Most constraints need information from the timing variables lower and upper bounds. Based on 

the chosen order for the shutdown tasks, one can derive rigorous lower bounds for the start of the 

maintenance tasks ( ) based on Figure 7. On the one hand, the lower bound for shutdown ( ) 

may be the preceding processing task ( ), which lasts a minimum of  (e.g. slot 1 for unit 1). 

On the other hand, the limiting factor for unit  may be the end of shutdown task ( ). 
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(t,m) (t,m) (t+1,m) (t+1,m)

(t,m+1) (t,m+1) (t+1,m+1) (t+1,m+1)

 

Figure 7. Two possible situations defining the lower bounds on the start of the shutdown tasks. 

The required lower bounds are calculated according to Eq. 84. As for the upper bounds, we use the 

same formula replacing the lower bounding parameters with their upper bounding counterparts. 

However, it should be highlighted that upper bounds are heuristic since both periods of low power 

demand and maintenance team unavailability may cause further delays, possibly compromising 

feasibility. The reason why this was not observed is probably due to the large flexibility of online 

hours before shutdown and the small number of such relatively short periods. 

  (84) 

The bounds for the starting time variables are given by Eqs. 85-86. In Eq. 86, the right-hand side 

has a conditional domain since the starting time of always on units in the first slot is equal to 0, 

recall Eq. 6. 

  (85) 

  (86) 
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Computational Results 

The mixed-integer linear programming models resulting from the big-M and hull reformulations 

of the generalized disjunctive programming model were implemented in GAMS 24.1 and solved by 

CPLEX 12.5 using a single thread and default options up to a relative optimality tolerance=10
-6

 or 

maximum computational time=3600 CPUs. The hardware consisted on a desktop with an Intel i7 

950 (3.07 GHz) with 8 GB of RAM running Windows 7. 

Table 5. Composition of four MILP formulations tested as a function reformulation strategy 

used for each set of disjunctions. 

Model BM-1 BM-2 Hybrid Hull 

Disjunctive constraints/Reformulation Big-M Big-M Hull Hull 

Single maintenance team (Eq. 11)      

Unavailability of maintenance team (Eq. 12)      

Interaction with electricity price periods (Eq. 13)      

Interaction with electricity price periods (Eqs. 18-22)      

Maximum power output (Eq. 16)      

 

Computational performance of four alternative mixed-integer linear programming models 

involving different combinations of disjunctive constraints and reformulation methods (details given 

in Table 5) is illustrated through the solution of 5 test problems of varying difficulty based on the 

data provided in the previous section. More specifically, we consider the full problem with  

operation periods,  constant electricity price periods,  periods of maximum power 

demand and  periods where the maintenance team is unavailable; and four subproblems of 

it. The actual data is provided in Table 6 together with key computational statistics. 

We can see that model BM-1 has a slightly better performance than BM-2 and Hybrid, being 

responsible for lower computational times and leading to a better solution for . 

Nevertheless it should be highlighted that BM-2 returns a lower optimality gap than BM-1, due to a 

lower best possible solution at the time of termination (254.85 vs. 255.72). The hull reformulation 
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was the worst performer, barely failing to prove optimality for  and roughly doubling the 

optimality gap for the largest problem. 
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Table 6. Key results for alternative reformulations of disjunctive programming model (best solutions in bold, maximum computational time in 

italic) 

Reformulation BM-1 BM-2 Hybrid Hull 

    

Revenue [10
6
$] 

Gap 

(%) 

CPUs Revenue 

[10
6
$] 

Gap 

(%) 

CPUs Revenue 

[10
6
$] 

Gap 

(%) 

CPUs Revenue 

[10
6
$] 

Gap 

(%) 

CPUs 

4 3 2 1 83.64 - 0.38 83.64 - 0.51 83.64 - 0.52 83.64 - 0.66 

6 4 2 1 127.31 - 2.28 127.31 - 2.23 127.31 - 7.43 127.31 - 8.44 

8 5 3 2 163.17 - 75.0 163.17 - 356 163.17 - 544 163.17 0.01 3600 

10 7 4 3 213.83 - 119 213.83 - 142 213.85 - 142 213.85 - 914 

12 8 4 3 251.38 1.73 3600 250.87 1.59 3600 250.89 1.82 3600 250.37 3.28 3600 

 

Table 7. Computational statistics related to problem size 
a
 

Reformulation BM-1 BM-2 Hybrid Hull 

 

BV TV E I.G. (%) TV E I.G. (%) TV E I.G. (%) TV E I.G. (%) 

4 2502 4537 10641 37 4537 9345 26 8137 14601 1 17929 39081 1 

6 5319 9397 22125 46 9397 19533 40 16309 29577 9 38341 84657 9 

8 9540 16345 38362 55 16345 34042 44 28297 51466 9 67465 149386 9 

10 16065 26461 63167 50 26461 55607 46 47341 86027 11 108541 239027 11 

12 22410 36937 88115 55 36937 77747 52 65017 118571 19 153145 338891 19 
a
 BV=binary variables; TV=total variables; E=equations; I.G.=integrality gap calculated with respect to best known solution
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Table 8. Computational statistics following increase in shutdown flexibility 

 BM-1 BM-2 Hybrid Hull 

 

I.G. 

(%) 

Revenue 

[10
6
$] 

Gap 

(%) 

CPUs I.G. 

(%) 
Revenue [10

6
$] 

Gap 

(%) 

CPUs I.G. 

(%) 

Revenue 

[10
6
$] 

Gap 

(%) 

CPUs I.G. 

(%) 

Revenue 

[10
6
$] 

Gap 

(%) 

CPUs 

4 41 83.64 - 0.60 30 83.64 - 0.72 7 83.64 - 1.30 7 83.64 - 1.71 

6 51 127.31 - 1524 47 127.31 - 1217 14 127.31 - 1704 14 127.31 0.55 3600 

8 58 163.64 3.04 3600 50 163.64 2.32 3600 22 163.64 2.29 3600 22 163.64 3.48 3600 

10 53 214.20 4.24 3600 50 214.21 4.48 3600 26 213.88 6.51 3600 26 no sol. - 3600 

12 58 249.55 14.5 3600 56 250.15 12.8 3600 36 247.50 15.8 3600 36 no sol. - 3600 
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The computational statistics in Table 7 help to explain the relative performance of the models. 

While sharing the same number of binary variables, the big-M models have the advantage of 

requiring the fewest variables and constraints but the disadvantage of providing the worst linear 

relaxation (higher integrality gaps). The results for BM-2 show that reorganizing the disjunctions in 

Eq. (13) into Eqs. (18-22) effectively leads to a smaller and tighter model. However, the reduction in 

integrality gap is considerably smaller than the one that can be achieved with the hull relaxation, 

which is reflected in comparable performances by BM-1 and BM-2 (confirmed by the results in 

Table 8). The other interesting result is that the reformulation method chosen for single maintenance 

team constraint has a major effect in problem size without affecting the integrality gap. More 

specifically, the Hybrid formulation requires less than half the number of variables and constraints 

than the Hull formulation. It thus represents the best tradeoff between problem size and quality of 

the relaxation, leading to better solutions and lower optimality gaps at the 1-hour termination time 

(check also Table 8). 

The best found solution for  is given in Figure 8. Notice that not all engines are capable 

of finishing their production tasks within 32316 h, the upper bound of the last electricity cost period. 

Twelve engines complete the 12 periods of operation, some long before the end of the horizon, 

engines M13-M17 complete 11, while engine M18 completes just 10. For the overall analysis of the 

schedule it is thus convenient to neglect the terminal effects roughly after the 27000-h mark so we 

are considering 3 full years of operation. 

The most interesting aspect is that there are no idle periods in the high electricity cost periods, as 

desired to meet the goal of maximizing revenue from electricity sales. This can be confirmed by the 

power output profile that shows a minimum production of 170 MW in the first three green periods, 

corresponding to a single engine under maintenance. Considering that the labels inside the rectangles 

give the processing time, a distinction can be made between always on engines (M1-M9) and the 

others. Non always on engines mostly operate for a time corresponding to the upper bound values 

given in Table 1, which maximizes productivity. In contrast, always on engines, predominantly M1, 
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often operate closer to the lower bound to provide enough flexibility to execute all required 

shutdowns. This point will be discussed further in the next subsection. 
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Figure 8. Best found solution for  operation periods problem (background shows periods 

with low tariff in yellow, periods with high tariff in green, periods with no maintenance team 

available in red and periods with maximum power demand in grey). 

The maximum demand periods of 140 MW, in red, are frequently used to perform the mandatory 

maintenance tasks, as it is apparent in the second of such periods with the 96 h shutdowns of engines 

M16-M18. The 432 h shutdowns, which start around the 17000-h mark, are a severe bottleneck on 

power output. One should thus consider hiring an additional maintenance team and incorporating its 

cost in the objective function. This will be the subject of future work. Finally, and while difficult to 

see, the constraint of no maintenance team available during the periods in grey, is being respected. 

Shutdown schedule flexibility 

The mathematical formulation meets the minimum power demand constraint in an indirect way, 

by not allowing idle times for a subset of the gas engines. Given the single maintenance team 
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constraint, there exists a feasible region only if the processing times are allowed to vary within a 

sufficiently wide range. In fact, raising the minimum electricity production to  makes 

test problems with  infeasible, while the remaining two become infeasible for 

. This occurs even after increasing the values of the heuristic upper bounds in Eqs. 

84 and 86. 

To test the influence of the range of processing times in computational performance, we reduced 

the values of  in Table 1 from 2000 h to 1500 ( ) and 1000 ( ). Compared to the base 

case, the problem is being relaxed and hence solution quality cannot degrade provided that sufficient 

time is given to the optimization solver. The results in Table 8 show no improvement in the value of 

the objective function for , but slightly higher revenues are returned by the big-M model 

for , (163.64 vs. 163.17 and 214.21 vs. 213.85 check Table 6). The drawback is that the 

computational time increased by at least one order of magnitude, which was difficult to predict 

despite the increase in integrality gap, which roughly doubled for the Hybrid and Hull formulations 

but did not change much for BM-1 and BM-2, given that the problem size did not change. As a 

consequence, good quality solutions become harder to obtain for the largest problem (notice that no 

feasible solution could be found in 1-h of computational time by the Hull model). We have also 

confirmed of the well-known capability of big-M formulations to find good solutions in the early 

nodes of the search tree, which, by better guiding the search, lead to smaller optimality gaps than 

those obtained by the Hybrid formulation. 

Overall, optimality gaps around 12% can be too high in the context of revenue in the interval [250, 

282] million dollars. Hence, shutdown flexibility should be kept as low as possible to ensure a good 

computational performance. 
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Conclusions 

This paper has proposed a new continuous-time generalized disjunctive programming model for 

the optimal maintenance scheduling of a gas engine power plant. Emphasis was put on the derivation 

of constraints related to the availability of the single maintenance team, a resource shared by the gas 

engines, to the maximum demand constraints and to the calculation of the revenue from electricity 

sales in the given constant tariff electricity periods. By using the high-level construct of disjunctive 

programming, simple linear constraints could be associated to each decision variable, which were 

then converted into mixed-integer linear programming format using big-M and hull reformulations. 

In particular, we have shown that the disjunctions linked to revenue calculation can be reorganized 

so that a particular linear constraint appears only once. This has the advantage of leading to smaller 

and tighter mathematical formulations. The results have shown that the big-M reformulation of the 

disjunctive constraints leads to the most computationally efficient models and that the hull 

reformulation of the single maintenance team constraint is particularly inefficient. 

Through the solution of an industrial case study featuring identical engines, we have shown that a 

near optimal (<2% optimality gap) maintenance plan can be derived for a time horizon of 3 years, 

considering seasonal variations in electricity price and other volatile, yet deterministic, resource 

profiles. Furthermore, we have identified that the single maintenance team becomes an important 

bottleneck around the time the mandatory shutdowns become longer, significantly reducing power 

output and revenue. Future work will thus look into the cost-benefit effect of hiring an additional 

team. 
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Appendix 

For completeness, we show below the convex hull reformulation of the disjunction in Eq. 11, 

which is responsible for a major increase in the number of continuous variables and constraints and a 

significantly worse computational performance than its big-M counterpart. 

Let  and  be the disaggregated variables associated to the left 

disjunction, which is reformulated in Eq. A1. Similarly, the right disjunction is reformulated into Eq. 

A2. 

  (A1) 

  (A2) 

The original problem variables are related to the new disaggregated variables through Eqs. A3-A4. 

  (A3) 

  (A4) 

Finally, we have the bounding constraints that use the knowledge of the relative position of the 

two maintenance tasks under consideration (Eqs. A5-A8). 

  (A5) 

  (A6) 

 (A7) 

  (A8) 
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