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Abstract 
This paper first reviews recent developments in process synthesis and discusses some of the major 
challenges in the theory and practice in this area. Next, the paper reviews key concepts in optimization-
based conceptual design, namely superstructure representations, multi-level models, optimization 
methods, and modeling environments. A brief review of the synthesis of major subsystems and 
flowsheets is presented. Finally, the paper closes with a critical assessment and future research 
challenges for the process synthesis area. 

Introduction 
Process synthesis is the assembly and interconnection of units into a process network—involving 
different physical and chemical phenomena to transform raw material and energy inputs into desired 
outputs—with the goal of optimizing either economic, environmental, and/or social objectives. The past 
few decades have seen great advances in process synthesis tools and techniques. Recent theoretical 
contributions in modeling and optimization offer both new directions and opportunities to address 
challenges related to environmental initiatives, new energy sources, and industry shifts, as well as the 
ever-present competitive pressures of globalization. Broad retrospectives on conceptual process design 
can be found in (1–3) and a recent review in (4). In this work, we aim to review the state-of-the-art in 
optimization-based process design, reviewing ideas and concepts presented in (5). First, we discuss 
major approaches to process synthesis, recent developments in the field, and current challenges for 
conceptual design. Next, we give brief reviews for core areas of optimization-based design. We follow 
this with a critical assessment of the state-of-the-art, and finally, we discuss future challenges for the 
field. This paper does not address batch process and scheduling problems; the interested reader is 
referred to (6–8). 

Major approaches to synthesis 
The first synthesis techniques were evolutionary in nature (9), whereby heuristics and engineering 
judgement are used on an existing flowsheet to propose enhancements by adding or modifying process 
units one at a time. This strategy limits exploration to a neighborhood of the base case. Two classes of 
approaches emerged to address this limitation: decomposition-based methods (10, 11) and 
optimization-based methods (5, 12, 13). Decomposition techniques allow for good initial flowsheets, but 
they have limited ability to consider interactions between different decision layers, such as between 
separation sequencing and heat integration (14). As an alternative, optimization-based strategies 
rigorously search through a proposed design space for the optimal configuration. Limitations here arise 
in our ability to define an appropriate search space, select a suitable degree of approximation, and solve 
the resulting optimization problems. 

Optimization-based strategies involve three major steps: 1. postulation of a set of process alternatives 
represented by a superstructure, 2. its formulation as a mathematical programming model, and 3. 
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determination of the optimal configuration by solving the model with an optimization algorithm. Since 
configurations that are not postulated as part of the search space cannot be found, systematic methods 
for superstructure generation are needed to ensure that a comprehensive yet concise design space is 
defined. Formulation involves translating the logic and specifications of process alternatives into an 
algebraic description that is amenable to optimization algorithms. Process synthesis problems typically 
result in a discrete/continuous mathematical program of the form (MIP): 

min 𝑍𝑍 = 𝑓𝑓(𝑥𝑥, 𝑦𝑦) 

𝑠𝑠. 𝑡𝑡. ℎ(𝑥𝑥,𝑦𝑦) = 0 (MIP) 
𝑔𝑔(𝑥𝑥,𝑦𝑦) ≤ 0 
𝑥𝑥 ∈ 𝑋𝑋,𝑦𝑦 ∈ {0,1} 

In (MIP), we minimize the objective function 𝑓𝑓(𝑥𝑥,𝑦𝑦) subject to constraints defined by the equalities 
ℎ(𝑥𝑥,𝑦𝑦) and inequalities 𝑔𝑔(𝑥𝑥,𝑦𝑦). The objective is to minimize cost, environmental impact, or some other 
preferred performance metric. If maximization (e.g. for profit) is desired, then the negative of the 
respective (e.g. profit) function can be minimized. The equalities characterize physical relations and 
system performance (e.g. mass balances or thermodynamics); the inequalities describe process 
specifications and equipment limits. The continuous variables 𝑥𝑥 correspond to state or design values 
such as flowrates and temperatures, and the variables 𝑦𝑦 correspond to binary (0 or 1 value) decisions 
such as the selection or omission of a process unit. Problems involving multiple objectives can also be 
addressed by casting them as problems with a single objective. For this, the 𝜖𝜖-constraint method is a 
common approach (15). 

When any of the functions 𝑓𝑓,𝑔𝑔, ℎ are nonlinear, MIP is a Mixed-Integer Non-Linear Program (MINLP); 
otherwise, it is a Mixed-Integer Linear Program (MILP). In the absence of binary variables 𝑦𝑦, the problem 
MIP is a Non-Linear Program (NLP) or, if all functions are linear, a Linear Program (LP). Recently, a new 
logic-based modeling framework called Generalized Disjunctive Programming (GDP) has also become 
popular for synthesis problems. It is interconvertible with MINLPs or MILPs. NLP process synthesis 
problems were first addressed by Sargent & Gaminibandara (12, 13). The extension to include discrete 
and logical decisions in the form of MINLPs and GDPs was later made by Grossmann and colleagues (16). 

Recent developments 
Based upon a belief that no new chemical plants would be built in the US, optimization-based process 
design saw an erosion of interest in the 90’s in favor of scheduling and operational issues. Despite this, 
progress continued across the major process synthesis research areas, with most attention concentrated 
in the subsystems of heat exchanger and separation networks. Figure 1 illustrates contributions in the 
major process synthesis areas before the millennium, between 2000 and 2013, and in the past three 
years. Out of 1270 process synthesis papers in a recent search of the citation database Web of Science 
(WoS), 40% deal with heat exchanger network synthesis (HENS) and 30% address mass exchange or 
separation networks (MENS), including distillation. This finding also aligns with recently reported trends 
for the citation database Scopus (4). In these subsystems, the papers with the highest citation counts are 
older ones: (17) with 403 for HENS and (18) with 383 for MENS. Other well-established areas such as 
reactor network synthesis and general flowsheet design have seen steady, albeit more muted, interest 
over the years. Many of the prominent papers in these areas were also published before the new 
millennium.  
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FIGURE 1: WEB OF SCIENCE PROCESS SYNTHESIS CONTRIBUTIONS FROM TRADITIONAL AREAS OF HEAT EXCHANGE 
NETWORK SYNTHESIS (HENS), DISTILLATION SEQUENCES (DS), GENERAL FLOWSHEETS (GF), MASS EXCHANGE 
NETWORK SYNTHESIS (MENS), AND REACTOR NETWORKS (RN) 

Three major trends drive a recent resurgence in interest for process design: the US shale gas boom (19), 
a transition in the pharmaceutical industry for Quality by Design (20, 21) and continuous manufacturing 
(22), and growing environmental initiatives (23). The rising availability of inexpensive shale gas and its 
liquid natural gases has spurred interest in construction of new chemical facilities and expansion of 
current ones to exploit the advantaged energy and feedstock sources (24). Similarly, design shifts in the 
pharmaceutical industry create demand for academic contributions to address the challenges of change 
in that industry. However, environmental concerns have attracted the most attention, particularly for 
the design of processes with higher resource efficiency and to accommodate new bio-based feed stocks. 
These challenges have been addressed by many authors in the literature. 

Among newer contributions, there has been particular success in the areas of dividing wall columns, 
reactive distillation, and water network synthesis. Figure 2 shows the growth in these areas across the 
past couple of decades. Contributions from Olujic et al. (25) and Stankiewicz (26) have been influential. 
All results for dividing wall columns and process synthesis have come since 2000, most of which (24 of 
39) were published in the past three years. Spurred by recent concerns about freshwater sources, the 
area of water network synthesis has seen great growth, with 58 of 92 WoS contributions published since 
2000, 23 of which were published in the past three years. Multi-objective optimization has also seen 
growing prominence due to environmental concerns (23, 27). Especially impactful was the introduction 
of life-cycle analysis (28) at the turn of the century. 
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FIGURE 2: WEB OF SCIENCE PROCESS SYNTHESIS CONTRIBUTIONS FROM GROWTH AREAS OF MULTI-OBJECTIVE 
OPTIMIZATION (MOO), PROCESS INTENSIFICATION (PI), WATER NETWORKS (WN), DIVIDING WALL COLUMNS (DWC) 
AND RIGOROUS MODELS (RM) 

Another area of process design that is transformative by definition (29) is process intensification (PI), 
which promises orders of magnitude improvements in process characteristics such as reaction rates or 
equipment volumes through use of increased fields or gradients; modified transport mechanisms, 
geometries, and driving forces; and integrated equipment (30). Process Systems Engineering (PSE) and 
PI have complementary goals in seeking process improvements and their coupling is well-suited (31). In 
fact, under the definition for PI as “any chemical engineering development that leads to a substantially 
smaller, cleaner, and more energy-efficient technology” (29), most process synthesis activities can be 
regarded as intensification. The synthesis of intensified processes has been a very popular subject in 
recent years, with 138 entries in WoS, with more than half of those published within the past three 
years. A recent review of PI from a process synthesis perspective can be found in (32). High impact 
contributions in this area include a paper by Cardona & Sanchez on intensified processes for fuel ethanol 
production (33). Recently, Lutze et al. have also demonstrated a hierarchical decomposition-based 
synthesis method starting from process phenomena building blocks (34). Intensification promises to be 
a powerful tool to address environmental challenges (35). Aside from the benefits of efficiency 
improvements for the environment, PI can be applied to carbon capture processes (36) in order to 
improve their economics and make them more viable. 

Process synthesis also benefits from advancements in solver and computational performance. 
Continued gains in these areas have made tractable classes of problems that were previously too 
difficult. Improvements in computing power and memory facilitate solution of larger and more complex 
problems. Coupled with the development of nonlinear solvers capable of exploiting sparsity, algorithms 
can solve large-scale NLPs and thus consider rigorous models that more accurately represent the 
underlying process. Of the citations in WoS for keywords “rigorous model” with “process 
design/synthesis”, all have been since 2000, with the most heavily cited being a reactive moving bed 
model (37). Significant advances in MILP solvers, including the introduction of cutting planes (38), have 
made possible the solution of linear and discrete problems with hundreds of thousands of variables and 
constraints. MINLP and GDP solution techniques have taken great strides as well (39, 40). The growth of 
global optimization (41) for both nonlinear and discrete problems offers decision-makers mathematical 
certainty for a given model that the solution found is within a certain tolerance from the best possible 
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solution. Improved solver performance has also made consideration of multiple objectives (3) and 
process and parameter uncertainty (42) much more tractable. 

There has also been progress made on the theoretical and practical aspects of modeling due to the 
emergence of GDP (16) and Object-Oriented Modeling (OOM) (43). These complementary 
developments facilitate structured model creation and provide a systematic framework for expressing 
the logic of superstructure alternatives using higher-level logical operators and disjunctions, for which 
automatic reformulations can be applied to yield MILPs or MINLPs of varying complexity. The result for 
synthesis will be the ability to further standardize the model building process and enable easier error-
checking and validation. Detailed descriptions of both GDP and OOM are given in later sections. 

Major challenges 
Despite progress in the area, challenges remain both in theory and in practice. The ability to robustly 
solve large, industrially-relevant problems remains limited. Even simple flowsheet structures such as 
mixers and splitters give rise to non-convex nonlinear expressions in the form of bilinear split fractions 
and mass balances (44). Incorporation of process thermodynamics and transport phenomena further 
complicate the ability of optimization algorithms to arrive even at a feasible design, let alone an optimal 
one. Therefore, finding a good initial starting point for the optimization problem can be a major 
challenge. One option is to start the optimization with variable values initialized at a feasible base case 
design obtained by other means. Barttfeld et al. present a thermodynamics-based initialization approach 
for distillation column design (45). Another promising approach to the initialization challenge was 
presented by Amundsen & Swaney using a strategy based on a canonical primal-dual formulation that 
guarantees convergence of a nonlinear model (46, 47), at least for simulation of a specified process 
configuration. Due to the inherent non-convexities, searching for globally optimal solutions raises 
another layer of difficulties. Specialized assumptions are typically necessary in order for the problems to 
be tractable. For example, fixing temperatures to a single value or a discrete set of values can greatly 
simplify heat balances and thermodynamic calculations. However, these assumptions yield 
approximations that may not be appropriate for a given process flowsheet. Therefore, there has been 
no consensus for a unified approach to solving flowsheet problems. 

There are also challenges we face in leveraging synthesis and expanding its capabilities to address social 
and industrial issues. One area of great interest is in process design under uncertainty. During 
conceptual design, there are often process parameters that are not well known, such as kinetic rate 
constants or product and feedstock prices. Design under uncertainty allows us to systematically hedge 
against exceptional realizations of process parameters through a combination of planned recourse 
actions and/or design tolerance. Initial work in process design under uncertainty involved theoretical 
advances in flexibility analysis (48, 49). Later, two-stage stochastic programming was used by 
Pistikopoulos & Ierapetritou (50). A review of these early developments can be found in (51). Other 
theoretical advancements followed in the late 1990s, both in formulation (52, 53) and solution 
algorithms (54). With the attention shift towards scheduling and operations, there have been fewer 
recent contributions in process synthesis with uncertainty. However, there have been a few recent 
publications in which uncertainty analysis is extended to tackle issues of process sustainability (55–57). 

With rising demands on natural resources around the globe, sustainability is likely to feature even more 
strongly in considerations for conceptual process design. Energy use in developing countries continues 
to grow at compounding rates (58) and sources of fresh water are increasingly strained. In fact, a water 
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supply crisis is rated by the World Economic Forum as one of the most likely and consequential of 
existing global risks (59). Meanwhile, CO2 emissions have continued to grow even with the stall in 
industrial investment due to the recent global financial crisis (60). With growing public support for 
emissions reduction programs, carbon-intensive industries face increasing regulatory risk in their 
operations. 

Process design is well-positioned to help society and industry cope with these challenges. Intelligent 
green-field and retrofit designs can help minimize resource-intensity of industrial processes so that 
developing countries can continue seeing growing standards of living while industry transitions towards 
more sustainable processes. One growth area of sustainable design is incorporation of biomass as a 
chemical feedstock (61). Due to the renewable fuel standard in the US, large volumes of corn ethanol 
have been produced (62, 63). However, production of ethanol from crop corn has raised issues of 
competition with the food supply chain, leading to artificially increased global food prices. Therefore, 
research is ongoing on processes for non-food sources, such as switchgrass (64–66) and other inputs 
(67). 

Core areas of optimization-based conceptual design 
Superstructures 
Postulation of a set of alternatives, represented by a superstructure, is the first step in an optimization-
based approach to process synthesis. Selection of the appropriate superstructure is important not only 
because the optimal configuration can only be found if it is described in the superstructure (1, 68), but 
also due to the modeling implications that it can have. Two commonly used types of representations are 
the State-Task Network (STN) and State-Equipment Network (SEN). 

 

FIGURE 3: STATE-TASK NETWORK (STN) SUPERSTRUCTURE, FIGURE FROM (69) 

The STN representation (see Figure 3) is inspired by contributions in scheduling (70) and consists of state 
nodes connected by distinct processing tasks that transform one state to another. Equipment 
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assignment is handled implicitly in the model, and can accommodate use of a single piece of equipment 
for multiple tasks, such as in batch scheduling. The SEN representation (see Figure 4) developed out of a 
desire to decrease the number of process nodes required to describe a distillation sequence (71). For a 
four-component system with sharp separations, three process nodes are required to describe all 
possible configurations with an SEN versus ten for the STN. The SEN is also better suited for use of 
rigorous distillation models, since only three columns would need to be modeled and none of the 
columns become inactive, leading to zero-flow singularities. Yeomans & Grossmann give a detailed 
comparison of these two representations and present the respective GDP models (72). 

 

FIGURE 4: STATE-EQUIPMENT NETWORK (SEN) SUPERSTRUCTURE, FIGURE FROM (72) 

The state-space model introduced by Bagajewicz & Manousiouthakis presents a perspective inspired by 
work in HENS and MENS, where the interconnections of a superstructure are handled in a distribution 
network and the process operations take place in an operator network (73). Under the state-space 
framework, a distillation sequence can be represented as interacting sets of heat and mass exchange 
networks. The result is a linear programming problem when certain process conditions, such as 
temperatures, are pre-specified. A review of other specialized superstructures developed for 
subsystems can be found in (72), and they are also discussed later in the subsystems section. 

Systematic generation of the superstructure in order to include all relevant alternatives was first 
discussed by Friedler and colleagues, who presented the concept of a process graph (P-graph) as an 
extension of graph theory (74) and gave a polynomial time algorithm (75) to determine the necessary 
interconnections given a set of inputs, processes, and outputs. More recently, Wu et al. present a new 
representation composed of process units, ports, and conditioning streams, while also giving a set of 
four rules by which to generate simple superstructures describing feasible processes (76). 

Models (high level, shortcut, rigorous) 
Following postulation of a superstructure, its nodes and interconnections must be translated into the 
variables and constraints of a mathematical model. In general, there is not a unique relationship 
between a model and its underlying superstructure. That is, the same superstructure can be modeled in 
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different ways—including at various levels of modeling detail. Models can be characterized into three 
main levels of detail: high-level aggregate models, shortcut models, and detailed rigorous models. 

High-level (aggregated) models 
The most simplified models are aggregated models, where the synthesis objective is focused only on the 
dominant elements of the objective or system constraints. These models take a high-level view of the 
design problem and are appropriate when little detailed process information is available or desired. 
They are frequently used in the context of targeting in order to provide an idea of the improvement 
possible when using a more detailed model. Aggregate models include the transshipment model (see 
Figure 5) for predicting minimum utility or number of exchangers in HENS (77) and MENS (18), 
distillation models to minimize utility cost (78), and reactor models to maximize yield (79). Since 
aggregate models tend to focus on one objective and have simpler constraints, they also tend to be 
optimistic in their predictions versus a more nuanced model, though this is not always true. 

 

FIGURE 5: TRANSSHIPMENT LINEAR PROGRAMMING MODEL FOR HEAT EXCHANGE NETWORK SYNTHESIS 

Shortcut models 
At a more detailed level of approximation, shortcut models provide better predictions. These models 
involve more complex cost functions in the objective, yet retain a simpler nonlinear description of the 
process units. Shortcut models enable the modeler to predict more accurate profits and costs, including 
discontinuous investment functions, while maintaining tractability in the overall model. As a result, 
shortcut models are popular for performing global optimization. However, though simplified constraints 
are used for the process models, the resulting NLP, MINLP, or GDP is still typically nonconvex due to 
mass and energy balances on mixing and splitting nodes. Examples of shortcut models can be found for 
heat exchanger networks (17, 80), distillation sequences (72, 81, 82), and general process flowsheets 
(76, 83–87). 
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FIGURE 6: SHORTCUT FLOWSHEET SUPERSTRUCTURE, FIGURE FROM (85) 

Rigorous models 
Rigorous models involve complex unit performance predictions, including equilibrium- or rate-based 
mass and/or heat transfer. A major barrier in the optimization of these systems is that the models are 
typically implemented in “black” boxes in which only function evaluations can be performed. Derivatives 
are typically not available and must be obtained by finite differences, which are subject to numerical 
inaccuracies. Furthermore, due to the potentially nonconvex equations involved in characterizing the 
additional process details, there can be local optima for the resulting mathematical program. Moreover, 
with growing problem size, global optimization methods may become intractable. As a result, finding a 
good initial starting point for optimization of rigorous models can be a challenge in itself. The bulk of 
interest in rigorous models has been related to synthesis of distillation sequences (71, 88–92). 

Selection of the appropriate level of detail is an important modeling task, driven by the specific 
engineering needs and modeling intent. The modeler must contend with the tradeoff between solving 
approximate models exactly, versus solving more exact models only approximately. In general, 
aggregate models result in smaller LP, NLP, or MILP problems that may solve in seconds to minutes 
while shortcut models and rigorous models yield larger MINLP (or GDP) problems that require much 
more computational effort. 
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FIGURE 7: RIGOROUS MODEL SUPERSTRUCTURE, FIGURE FROM (93) 

GDP 
Even after specifying a model detail level, there is no unique way to express the logic encapsulated in 
the superstructure as a set of variables and constraints. Generalized Disjunctive Programming (GDP) 
provides a remedy to this by allowing the modeler to formulate discrete/continuous optimization 
problems using higher-level logic (94). GDP can be seen as an extension of disjunctive programming (95) 
in which both nonlinearities and discrete variables are introduced into the model. Recent reviews of 
GDP can be found in (16, 40, 96). 

GDP models involve continuous and Boolean variables with constraints in the form of algebraic 
expressions, conditional constraints encapsulated within disjunctions, and logical propositions. The 
resulting mathematical program is of the form: 
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𝑥𝑥 ∈ 𝑋𝑋 
𝑌𝑌𝑘𝑘𝑘𝑘 ∈ �𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,  𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹�  𝑘𝑘 ∈ 𝐾𝐾,  𝑗𝑗 ∈ 𝐼𝐼𝑘𝑘  

where 𝑥𝑥 are continuous variables and 𝑌𝑌 are the Boolean variables. The objective function contains terms 
𝑐𝑐𝑘𝑘 corresponding to selection of certain disjunctions as well as a function 𝑓𝑓(𝑥𝑥) on the continuous 
variables. These two terms typically correspond to fixed and operating costs, respectively. The algebraic 
constraints 𝑔𝑔(𝑥𝑥) ≤ 0 represent constraints (inequalities or equalities) that must be satisfied for any 
realization of the discrete choices, while the constraints 𝑟𝑟𝑘𝑘𝑘𝑘(𝑥𝑥) ≤ 0 and fixed charge 𝑐𝑐𝑘𝑘 = 𝛾𝛾𝑗𝑗𝑗𝑗  only need 
to be valid in the disjunctions for which the corresponding Boolean variable 𝑌𝑌𝑗𝑗𝑗𝑗  is 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇. The logical 
constraints Ω(𝑌𝑌) = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 then describe the logical propositions relating Boolean variables. 

In the context of process synthesis, GDP provides a convenient way to formulate a model for a 
superstructure (85). The constraints 𝑔𝑔(𝑥𝑥) describe superstructure nodes that are “fixed” or always 
present in the final design. The disjunctions represent the choice among process alternatives, with the 
binary variables 𝑌𝑌𝑗𝑗𝑗𝑗  denoting the presence or absence of nodes (e.g. tasks or equipment) in the final 
process configuration. Process constraints related to a node are thus only enforced if the node is 
selected in a given design. Logical constraints Ω(𝑌𝑌) dictate relationships among the superstructure 
nodes. For example, the need to select a better separation unit if the cheaper reactor is chosen can be 
represented using the logical implication operator: 𝑌𝑌cheap reaction ⟹ 𝑌𝑌better separator. Other examples of 
logical implications can be found in (16). An alternative formulation based upon the ideas of process 
synthesis can be seen in (GDP’). 

min 𝑍𝑍 = �𝑐𝑐𝑘𝑘
𝑘𝑘∈𝐾𝐾

+ 𝑓𝑓(𝑥𝑥) 

𝑠𝑠. 𝑡𝑡. 𝑔𝑔(𝑥𝑥) ≤ 0 (GDP’) 

�
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𝑐𝑐𝑘𝑘 = 𝛾𝛾𝑘𝑘

� ∨ �
¬𝑌𝑌𝑘𝑘

𝐵𝐵𝑘𝑘𝑥𝑥 = 0
𝑐𝑐𝑘𝑘 = 0
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Ω(𝑌𝑌) = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 
𝑥𝑥 ∈  𝑋𝑋 
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Here, the more general disjunction over terms 𝑗𝑗 is replaced by an explicit disjunction between the 
existence or absence of a node. When the node is present (𝑌𝑌𝑘𝑘 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇), the corresponding equations are 
enforced. When it is absent (¬𝑌𝑌𝑘𝑘 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇), then linear constraints 𝐵𝐵𝑘𝑘𝑥𝑥 = 0 force a subset of variables 
to zero, such as flow rates, while allowing others, like temperature, to vary. The fixed costs 𝑐𝑐𝑘𝑘 for an 
absent node are also set to zero. 

Both (GDP) and (GDP’) can either be solved either by reformulation into an MILP/MINLP, followed by 
traditional MILP/MINLP solution techniques, or by directly addressing the disjunctions via logic-based 
methods (97). The big-M (BM) and hull reformulations (CH), which consist of the intersection of convex 
hulls for each disjunction, are the most common alternatives for reformulation of a GDP into an MINLP. 
The CH technique results in a tighter feasible region than BM (87), but it also results in a large problem 
size with many more variables and constraints. The resulting performance is thus difficult to ascertain 
ahead of time (98). Intermediate strategies are also possible, with the BM model augmented by addition 
of cutting planes (99) or by the use of multiple different big-M parameters (100). These reformulation 
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techniques allow the modeler to take advantage of advancements in MILP/MINLP solution algorithms. 
On the other hand, logic-based methods offer their own set of advantages. Two of these specialized 
algorithms are Logic-based Branch and Bound (101, 102) and Logic-based Outer-Approximation (LOA) 
(85). LOA is an extension of Outer-Approximation in which NLP subproblems are solved in a reduced 
space. For a given process configuration proposed by the MILP master problem, the subproblem 
contains only the constraints present in active disjunctions; all others are disregarded. The result is both 
improved efficiency and robustness, as zero-flow singularities through inactive process units are 
avoided. LOA can handle non-convexities through the use of penalty functions and slack variables (93). 
Alternatively, the extension of LOA for rigorous global optimization is also available (103, 104). 

Modeling environments 
Various modeling environments are available for the formulation and solution of mathematical 
programming models. The two most established platforms are GAMS (105) and AMPL (106). These 
environments typically require models to be input explicitly in algebraic form. These are then 
automatically translated into inputs through various interfaces to solution algorithms, which return a 
formatted output file. Of the two, GAMS is very strong in the longevity of backwards support for their 
syntax. A model written thirty years ago will still run today with few if any modifications. This is all the 
more impressive given the shifts in the computing world during this timeframe. On the other hand, 
AMPL has shown greater interoperability, with custom third party programs able to access compatible 
solvers through the AMPL Solver Library. More recently the modeling platform AIMMS (107) has also 
grown in popularity, particularly among the industrial community. A book by Kallrath provides a more 
detailed review of the established modeling systems (108). 

The past few years have seen another generation of modeling environments enter the scene with the 
introduction of PyOMO (109) and JuMP (110). These two modeling frameworks are directly built upon 
the Python and Julia higher-level programming languages, respectively. This allows the modeler direct 
access to the modeling objects, facilitating the paradigm shift towards object-oriented modeling and 
enabling easy prototyping of meta-algorithms. 
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FIGURE 8: CONTRASTING TRADITIONAL AND OBJECT-ORIENTED MODELING APPROACHES 

Object-oriented modeling (OOM) provides an intuitive way of modeling superstructures in which 
variable and constraint definitions for various superstructure elements are encapsulated within 
respective classes of objects, organized in a hierarchy. The quest for modularity is a long-standing one 
(83), with recent interest as well (76, 111). The new generation of modeling environments makes this 
vision possible. In the PyOMO language, Block objects are well-suited for this role (43). For example, a 
Flowsheet block may contain several equipment blocks, including a Multi-stage Compressor block, which 
itself would contain multiple Compressor blocks and Cooler blocks as well as linking constraints dictating 
that shaft work among constituent compressors are equal. OOM is also symbiotic with a GDP approach 
by placing variables and constraints in intuitive groupings for disjunctions, which can be seen as 
conditionally active blocks. Furthermore, OOM enables code sharing between common model elements, 
as material balances for mixer and splitter blocks in various parts of the superstructure are not likely to 
different greatly. In contrast to the traditional approach, the OOM paradigm produces models that are 
more readable and easier to validate. 
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FIGURE 9: USE OF OBJECT-ORIENTED MODELING WITH GENERALIZED DISJUNCTIVE PROGRAMMING 

By allowing modelers to perform programmatic manipulations of modeling objects, the newer 
environments also enable easier prototyping of novel solution algorithms. Programmatically generated 
cuts can be automatically added to an existing model and different classes of constraints can be 
deactivated or reactivated as needed within a Python or Julia script to implement algorithms, such logic-
based outer-approximation. 

Optimization methods 
After a model is constructed, the next step is solving it with an appropriate optimization algorithm. 
Although computational gains through improved processors and especially larger memory capacities 
have been impressive, algorithmic gains have been even greater (38). Codes for solution of LP problems 
are by this point very mature, with two main methods: the simplex algorithm (112) and interior point 
methods (113, 114). A review of advances in linear programming can be found in (115). For MILPs, the 
classical simplex branch and bound strategy (116) is now augmented by several cutting plane techniques 
including lift-and-project (117), Gomory mixed-integer (118), and mixed-integer rounding cuts (119). 
Bixby & Rothberg give an excellent analysis of the computational performance enhancement for each 
class of cutting planes (38), while a comprehensive overview of the theory can be found in the 
monograph (120). The most popular solvers for LP and MILP problems are the commercial packages 
CPLEX (121), Gurobi (122), and XPRESS (123). A review of noncommercial options is available in (124). 

Nonlinear programming solvers have traditionally relied either on the successive quadratic programming 
(SQP) (125–127) or reduced gradient (128) strategies. Excellent descriptions of the underlying theory 
can be found in textbooks by Fletcher (129) and Bazaraa et al. (130). SQP codes include SNOPT (131), 
while reduced gradient codes feature CONOPT (132) and MINOS (133). Recently, interior point methods, 
inspired by work in the LP community, have also become a viable alternative, particularly for large-scale 
problems. IPOPT (134) and KNITRO (135) are the most common of these. A recent review of these NLP 
codes and their nuances can be found in (136). Another recent development has been a proliferation in 
codes for derivative-free optimization (137). These codes allow for optimization of systems in which 
derivative information is not available, such as in “black box” simulations. In contrast to the breakaway 
success of linear and mixed-integer solvers, few commercial nonlinear solvers are available—CONOPT is 
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the main exception—with most code development taking place in academic settings. One reason for this 
may be due to the customer service implications of robustness for NLPs. While most LPs and MILPs, 
even poorly formulated, will yield a solution, an NLP poorly formulated or not initialized may fail to 
converge. 

This challenge extends to the case of MINLPs, whose solution relies on use of NLP, MILP, and/or LP sub-
problems. Recent reviews of MINLP methods can be found in (5, 40, 138, 139). The main methods for 
tackling MINLPs include Branch and Bound (B&B) (140), Generalized Benders Decomposition (GBD) (141, 
142), and Outer-Approximation (OA) (143). B&B is an extension of the MILP strategy in which sub-
problems are NLPs rather than LPs. Both GBD and OA iterate between an MILP master problem that 
selects new 0-1 variable configurations and NLP sub-problems for fixed values of the 0-1 variables. At 
each iteration, new cuts are added to the master problem, which predicts lower bounds on the objective 
value. Sub-problems, if feasible, determine the upper bounds. Termination occurs when the bounds 
converge. The main difference between GBD and OA lies in the cuts added at each iteration. OA adds 
linearizations of the nonlinear functions while GBD derives its cuts from Lagrangean functions 
parametric in 0-1 variables. Other techniques include LP/NLP B&B (144) and 𝛼𝛼-ECP (145). The main 
codes available for general convex MINLPs include DICOPT (93), Bonmin (146), 𝛼𝛼-ECP, FilMINT (147), 
MINLP_BB (148), and SBB (149). 

The methods discussed above for NLPs and MINLPs yield guaranteed convergence to the global 
optimum only for convex problems. In the presence of complex nonlinearities, rigorous global 
optimization techniques are necessary to guarantee global optimality. These techniques take advantage 
of special mathematical structures in the optimization problem, such as bilinear, linear fractional, and 
concave separable terms, whose combination can express the range of algebraic models excluding 
trigonometric functions (150). Using the special structures, rigorous convex envelopes can be 
constructed and iteratively tightened (151–153). A review of global optimization methods can be found 
in (41). The most popular codes for general purpose global optimization of NLPs and MINLPs include 
BARON (154), ANTIGONE (155) and SCIP (156), as well as the open source code Couenne (157). While 
these general purpose solvers are growing more powerful, knowledge of special problem structure can 
lead to development of specialized codes that may be more robust, converge faster, or enable 
treatment of larger problem sizes. Examples include outer-approximation algorithms (158) or branch 
and contract (159). Global optimization algorithms are also available for GDP models (96, 101, 160). 

Non-rigorous techniques for global optimization, such as simulated annealing (161), genetic algorithms 
(162), and Tabu search (163), also continue to be popular in situations when objective function 
evaluations are cheap and derivative information is not readily available. These methods can provide 
good heuristic solutions. However, they do not give any guarantee of convergence to a rigorous global 
solution in finite time, and they tend to depend upon ad-hoc penalty functions for constraint handling. 

Subsystems and flowsheets 
In the following section, we give a brief overview of advances in model development for subsystems 
(heat exchanger networks, steam and power, distillation networks, mass exchange and water networks, 
and reactor networks) and process flowsheets. Where possible, we refer the reader to authoritative 
reviews on subsystems and focus on the ideas that have had the most impact. 
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Heat exchanger networks 
Heat exchanger network synthesis (HENS) has attracted by far the most interest of the process synthesis 
subsystems. As a result, many excellent reviews are available in the area. Furman & Sahinidis provide 
the most highly cited review (164). Morar & Agachi provide a more recent update (165), while Klemes & 
Kravanja discuss developments in both mathematical programming and pinch-based approaches (166). 
Much of the attention on HENS is due to interest in heat integration. Beginning with (167, 168), many 
recent contributions incorporate heat integration as part of a larger process synthesis or optimization 
problem (169–171). Progress continues to improve the scope and size of tractable problems (172). 
Computational tools for HENS synthesis include SYNHEAT (17) (see Figure 10) and Aspen Energy 
Analyzer (173). 

 

FIGURE 10: HEAT EXCHANGE NETWORK SUPERSTRUCTURE FROM (17) 

Steam and power 
Steam and power plants provide steam utility to the process and, if needed, electric and mechanical 
power to the rest of the processing plant. Initial LP models for optimizing utility production were 
proposed by Petroulas & Reklaitis (174), followed by an MILP formulation by Papoulias & Grossmann 
(175) for fixed utility demands and operating conditions. Refinements continued in the 1990s (5), 
including publication of one of the first MINLP models for utility network synthesis (176) (see Figure 11). 
Towards the new millennium, research attention shifted more towards operational aspects (177). 
Recent interest in carbon capture for electricity generation and cogeneration has led to newer 
contributions (170, 178–181). A recent review of utility plant synthesis can be found in (182). 
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FIGURE 11: UTILITY PLANT SUPERSTRUCTURE, FIGURE FROM (176) 

Distillation network synthesis 
After HENS, distillation network design has received the most attention due to the importance of 
separations in the process industry. Distillation is an expensive operation, both in terms of investment 
and operating costs (183), yet its ubiquity testifies to its effectiveness as a separation method, even for 
non-ideal and azeotropic mixtures. As a result of its prominence and expense, many contributions have 
been made to improve its design and operation (184). A review of early techniques can be found in (185, 
186). Distillation synthesis includes one of the earliest uses of superstructure optimization (13), giving a 
tray-by-tray NLP model. A later MILP model opened the way for design of heat integrated distillation 
sequences (69). With the ability to heat integrate distillation columns, significant operating cost 
reductions became possible, as not only is the hot utility load on one column reduced, but the cold 
utility requirement for another column is also reduced. Subsequent modeling contributions enabled 
treatment of more complex column configurations and cost functions (187–189). The next major 
development was the introduction of tray-by-tray rigorous models (71, 190, 191), providing a more 
realistic prediction of column performance. Recent work has included the introduction of GDP synthesis 
models (90, 192, 193), rigorous models and solution methods (45, 91, 194), and thermally integrated 
models (195, 196) for distillation columns (see Figure 12). 
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FIGURE 12: STN DISTILLATION SYNTHESIS SUPERSTRUCTURE FROM (195) 

Within distillation network synthesis, the design of reactive distillation configuration is a popular topic. 
Okasinski & Doherty explain how reactive distillation can bring economic benefits by decreasing 
required investment costs, exploiting synergies between the reaction and separation, and simplifying 
the flowsheet (197). Siirola provides a classic case study for the benefits of reactive distillation (198). 
Superstructures and models for reactive distillation have been developed by multiple authors (83, 199–
201). As a result of its popularity, many good reviews are also available for reactive distillation (202–
205). 

Mass exchange and water networks 
Research into synthesis of mass exchange networks (MENS) arose to address the design of waste 
treatment systems (18). In the limiting case of single-component concentration targets, the MENS 
problem has several similarities to the HENS problem, with analogous driving forces in concentration 
and temperature. As with HENS, an LP targeting model is available (206), as well as an MILP 
transshipment model and MINLP utility cost problem (207). Kovacs et al. introduced global optimization 
of MENS superstructures (208). As with HENS, heuristic methods based on pinch analysis also exist for 
MENS (209), with the most highly cited papers in water network synthesis (a subset of MENS) 
dominated by heuristic modeling and optimization methods. Recently, the topic of water network 
synthesis has gained additional prominence due to growing awareness of diminishing freshwater 
supplies and the need to reduce utilization rates (210). Wang & Smith and Kuo & Smith introduced a 
graphical approach to superstructure optimization of water networks (211, 212). Later, Alva-Argaez and 
coworkers introduced an iterative MILP solution strategy (213) for the model in (211), and Galan & 
Grossmann give an approximate global optimization strategy for the same (214). Recent work in water 
treatment networks has included new rigorous MINLP/GDP models and solution strategies for global 
optimization (215, 216) (see Figure 13). Recent trends for MENS have included a move towards 
incorporating both mass and heat integration in processes (217–220). A review of combined water and 
energy integration can be found in (221). 
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FIGURE 13: WATER NETWORK SUPERSTRUCTURE FROM (215) 

Reactor networks 
The mathematical programming approach to reactor network synthesis relies on the combination of two 
strategies: targeting and superstructure optimization. Key to the targeting problem is the concept of an 
“attainable region”—the convex hull of concentrations achievable from the feed through reaction and 
mixing operations (222). Glasser et al. and Hildebrandt et al. developed a geometrical method for 
obtaining the attainable region given a feed concentration (223, 224) (see Figure 14). Later, some 
characteristics of the attainable region were given in (225). Solution of the targeting problem yields an 
achievable bound on system performance that does not rely on a selected reactor configuration. This 
knowledge informs the generation of a superstructure that includes the optimal structure. Early 
targeting models were developed by various authors (79, 226). A state-space approach was presented 
by Burri et al. (227). Contributions for superstructure optimization include (228, 229). More recently, 
Esposito & Floudas present a global optimization approach to isothermal reactor network synthesis 
(230). 

 

FIGURE 14: ATTAINABLE REGION EXAMPLE, FIGURE FROM (224) 
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Process Flowsheets 
Most computational tools for process flowsheet synthesis continue to be based upon the hierarchical 
decomposition approach, rather than a mathematical programming one. With hierarchical 
decomposition (231), the synthesis process is divided into five decision levels: 1) batch vs continuous, 2) 
input-output structure, 3) recycle structure and reactors, 4) separation systems and 5) heat exchanger 
network. The method progresses through these decision levels sequentially. Heuristics, shortcut design 
procedures, and engineering intuition guide design choices made at each decision level that are then 
imposed upon subsequent decision levels. The result is a base case design that can be subsequently 
modified. Among the most prominent implementations of hierarchical decomposition are PROSYN (232) 
and ICAS (233). PROSYN relies on a set of heuristic rules and expert systems for flowsheet elements to 
walk the end user through the design process. In contrast, ICAS is built upon an equation-oriented 
process simulation framework with various toolboxes aimed at addressing specific design problems, 
such as sustainability analysis (234). 

In contrast to the hierarchical decomposition approach, mathematical programming simultaneously 
optimizes at multiple decision levels, providing both the configuration and operating levels of the 
optimal process. This can lead to synergies not obvious in a sequential design approach (167, 168). With 
mathematical programming, binary variables (0-1/true-false) denote presence or absence of units in the 
superstructure of process alternatives. Modeling and solution approaches to flowsheet synthesis have 
focused on exploiting the special structure of synthesis problems: specifying the process configuration 
typically leaves only continuous variables, yielding an NLP. The DICOPT outer-approximation algorithm 
and its refinements (93, 143, 235, 236) iteratively optimize the continuous variables for a fixed 
configuration and select the next configuration using an MILP master problem with linearizations based 
upon the previous NLP sub-problem solutions. However, this algorithm is susceptible to becoming 
trapped in local solutions for nonconvex problems due to singularities introduced by zero value flow 
rates through non-selected process unit models. The Modeling/Decomposition strategy introduced by 
Kocis & Grossmann (84) attempts to address this issue by solving the NLP sub-problem only for selected 
units and interconnections in the superstructure. One of the only existing software packages developed 
for mathematical programming based flowsheet synthesis, MIPSYN (originally named PROSYN) (237–
239), uses this strategy. 

In order to leverage existing flowsheet simulators, various authors have also attempted to integrate 
mathematical programming techniques with simulation software (239–241). A recent contribution 
involves the use of Kriging surrogate models for various process units (242). 

With a mathematical programming approach, the introduction of logic-based methods and Generalized 
Disjunctive Programming (GDP) enables much more structured model formulation and solution 
strategies. A summary of the advances in GDP are given in previous sections, but the most promising 
developments are Logic-based Outer-Approximation (85) and its global optimization counterpart (103). 
These strategies formalize the reduced space NLP technique introduced in (84) and thus effectively 
sidestep zero-flow-related difficulties in model solution. Recent work on cutting planes (104), redundant 
constraints (243), and logical reformulations (96) have also improved the tractability of global 
optimization for a variety of process networks. 
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FIGURE 15: PROCESS FLOWSHEET SUPERSTRUCTURE, FIGURE FROM (86) 

Critical Assessment 
Although there has been significant progress in optimization-based process design, several challenges in 
implementation and theory deserve more attention. In many areas, theory has made great 
advancements, but the progress is not reflected in commercial packages; that is, academic impact has 
not translated into industrial impact. Harmsen gives a blunt opinion on penetration of mathematical 
programming-based synthesis tools in industrial practice: “So far the industrial [community] does not 
apply the method for generating completely new process designs” (244). One reason for this gap is that 
there is a lack of a general-purpose mathematical programming synthesis tool akin to Aspen for 
flowsheet simulation. 

Few computational tools are available to tackle the general conceptual design problem. ICAS is a 
thermodynamics- and decomposition-driven toolset allowing for generation of alternatives, but it does 
not guarantee rigorous optimality (245). Similarly, PROSYN relies on heuristics and expert systems (232). 
MIPSYN performs superstructure optimization using a mathematical programming-based approach 
(246), but its codebase has become dated. PNS Editor, though able to handle multi-period problems, is 
restricted to linear constraints with fixed costs (247), precluding use of rigorous models. Many other 
attempts at toolmaking over the years are no longer in active development or have not gained enough 
attention (11, 248, 249). There are multiple options available to close this gap. One way is to incorporate 
more mathematical programming techniques into existing industrial tools. The LP and MILP solver 
community has been particularly successful in this regard, with Gurobi recently announcing a 
partnership with the SAP business intelligence toolset (250). Academic efforts have also been made to 
integrate MINLP solution tools with flowsheet simulators, including early work by Lang & Biegler (251) as 
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well as a recent contribution by Caballero et al. (92). Another strategy is the creation of a general-
purpose synthesis tool for widespread adoption. This approach involves many challenges of its own, 
including the need to be user-friendly and approachable for novice modelers. In this endeavor, the shift 
towards Object Oriented Modeling and Generalized Disjunctive Programming will be a key asset, 
providing the ability to easily define and connect common flowsheet building blocks and abstract away 
the variable, constraint, and disjunction definitions behind a higher level programming object or a 
diagram of a distillation column on the screen. 

Continued theoretical development of optimization-based process design methods is also important, 
including in the area of global optimization (41). Global optimization provides decision-makers with a 
mathematically rigorous assessment of the solution quality by providing a bound on the performance of 
a feasible solution to the given mathematical model. Unfortunately, current general purpose techniques 
are limited in terms of the problem sizes for which bound convergence is possible in a practical 
timeframe. Specialized algorithms designed to exploit particular problem structures expand the range of 
tractability, but these algorithms frequently need to be fine-tuned to the specific application and they 
may still be limited by the need to develop model approximations. 

Theoretical advances are also needed to address the challenge of rigorous models, or more broadly, the 
incorporation of multi-scale information in the design process. Physical or chemical phenomena at the 
micro-scale may influence the performance of a unit model at the design level in nontrivial ways. 
Accounting for these effects may require addition of many variables and constraints to the 
superstructure model or the development of reduced-order models (252). Both of these approaches 
would benefit from increased attention. Surrogate models have garnered the most recent attention as a 
way to address this need (242, 253). Systematic methods for deriving surrogate models such as ALAMO 
(254) show great potential for allowing consideration of detailed phenomena at the process synthesis 
level. 

Although process intensification holds much promise, design of intensified processes remains a 
theoretical challenge. In particular, work is needed to determine how to postulate superstructures for 
intensified processes such that a minimal coverage of the feasible alternatives is obtained. Different 
authors have proposed the use of phenomena-based building blocks as the fundamental components 
for designing a process (34, 255). Superstructures based upon these phenomena-based blocks are able 
to represent intensified processes, but few methods are available to determine which and how many 
phenomena blocks are needed to represent available alternatives. Furthermore, it is not yet established 
how to determine the optimal configuration of phenomena blocks because assignment of phenomena 
into tasks or equipment is needed in order to determine the value or cost of groups of blocks. One 
possible approach is to treat the system as a bilevel program, where the upper level decisions involve 
selection and configuration of the phenomena blocks while a lower-level optimization program groups 
the blocks into tasks or equipment and provides pricing information. However, this class of problems is 
very difficult to solve, with algorithms for the general nonconvex bilevel MINLP only recently becoming 
available (256, 257) and restricted to smaller problem sizes. Recent heuristic methods for synthesis 
sidestep this challenge, but opportunities exist for rigorous mathematical programming approaches to 
the problem. 

Another challenge associated with synthesis of intensified processes is the need to use rigorous models 
to properly characterize the detailed chemical and physical phenomena exploited for intensification. For 
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example, in reactive distillation, the rate of reaction may depend strongly upon the temperature at each 
stage rather than any aggregate measure. An accurate depiction of process characteristics would also be 
necessary to determine viability of intensification based upon task integration. 

Retrofit design also remains a substantial challenge for process synthesis. A review by Grossmann et al. 
from 1987 (258) lays out many unique difficulties of retrofit design that are still relevant today. 
Compared to green-field design, the retrofit problem can be much more challenging, with a larger 
search area in design space and inclusion of high-fidelity models for existing equipment. Whereas in 
green-field design, equipment can be represented by a model for its nominal performance, retrofit 
design may need to consider intricacies related to the internal geometries of current process units or 
other such details. Existing plant layout and piping may lead to other limitations that are not typically 
considered in green-field design, such as space availability on piping racks. Work on retrofit design has 
focused primarily on heat exchanger networks, with initial work in (259–261) and more recent 
contributions in (262, 263); there are also some recent contributions in water networks (210, 264). 
Opportunity exists to generalize current methods for other subsystems and for general process 
flowsheets. 

Theoretical challenges are also present for methods to handle uncertainty in process parameters or 
requirements. Traditional approaches have centered upon feasibility and flexibility analysis of processes 
(48, 49, 265). Another possible approach is two stage stochastic programming, which could exploit the 
natural time gap between design and configuration of a process in the first stage and the start of 
operations in the second stage (50). Multi-stage stochastic programming incorporating future expansion 
opportunities would be a natural extension. However, these approaches would increase the complexity 
of an already difficult design problem. Therefore, new theoretical advances are needed to ensure that 
these techniques are tractable for relevant-sized problems. 

Future Challenges 
Sustainability-oriented initiatives, in addition to the more traditional profit motive, are likely to drive 
demand for process design research in the future. One such initiative is the incorporation of biomass as 
a chemical and energy feedstock. While corn-based ethanol featured prominently in the first generation 
of bio-based feed stocks, there is growing interest in fuel production from algal or non-food crop 
sources. Furthermore, conversion of biomass to chemical precursors for plastics production or other 
uses is also an active area of study. As these technologies gain maturity, scale-up and process design will 
become active considerations. Due to the transportation costs of biomass, research is also needed to 
determine whether a distributed versus more traditional centralized manufacturing system is best (266). 
Design of alternative energy systems will also be a growth area. Process alternatives for carbon capture 
power generation facilities need to be evaluated and optimized so that existing sources of energy can be 
consumed while mitigating the impact on the environment. Integration of new renewable power 
sources such as wind and solar into existing energy networks also continues to be a challenge (267), with 
research needed to ensure grid reliability and mitigate the unintended consequences of generation 
volatility. 

At the same time, increased production of shale gas in the US and other regions introduces new demand 
for C1 and C2 chemistry flowsheets. With low-cost and plentiful shale gas available both as a feedstock 
and as an energy source, chemical producers are looking to expand their existing operations and 
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construct new facilities. These developments provide new opportunities to put recent conceptual design 
theory into practice. 

Another area of rising consequence is modular and distributed manufacturing. These complementary 
concepts introduce a new angle to economies of scale. Taking advantage of process intensification (268), 
the aim is realize economies of scale not by building a world-scale continuous or batch facility, but by 
mass-production of small-scale modular continuous plants (269). These modular plants benefit from the 
efficiency of a continuous process while retaining flexibility characteristic of a batch process, due to the 
ability to reconfigure inter-compatible process modules (270). Modularity also allows for these plants to 
be quickly designed and constructed, decreasing payback periods and speeding up time-to-market for 
new products (271). By distributing these plants to sites near either customers or key feedstocks, 
significant logistical cost reductions are also possible. Locating a plant next to a customer also allows for 
increased responsiveness to evolving customer needs. Altogether, this new style of manufacturing 
shows great promise for delivering the short design lead times to address market variability and the 
production efficiencies to address intensified global competition (271). 

Finally, recent advancements in spaceflight promise to spark a new era of extra-terrestrial commercial 
activity, with new opportunities for process design. Already, significant investments in extra-planetary 
industrial activity are being made in the area of asteroid mining (272). While in the near term this 
activity will be restricted to precious compounds brought back to Earth for processing, interest will grow 
for the ability to perform some processing activities in space and avoid the significant transportation 
costs. Efforts to place human settlements on the moon and Mars will also require local processing of 
resources, both to sustain habitable conditions and to provide materials for expansion and 
development. The designs for these emerging applications will face different challenges than 
earthbound processes, both in the key objectives as well as in the necessary constraints. For example, 
processes destined for launch will face stringent mass and volume limitations given current rocket 
technology. However, developments on the ground can also have an effect. For example, advances in PI 
may be a powerful tool for expanding viability of extra-terrestrial processing. Regardless of where they 
are applied, many of the principles of design (273) will hold true, wherever the final process—on the 
ground, in orbit, or out of this world—and so they will remain key lessons for future generations of 
engineers. 
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