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Abstract 

Determining the minimum number of units is an important step in heat exchanger network synthesis 

(HENS). The MILP transshipment model (Papoulias and Grossmann, 1983) and transportation model 

(Cerda and Westerberg, 1983b) were developed for this purpose. However, they are computationally 

expensive when solving for large-scale problems. Several approaches are studied in this paper to enable 

the fast solution of large-scale MILP transshipment models. Model reformulation techniques are 

developed for tighter formulations with reduced LP relaxation gaps. Solution strategies are also proposed 

for improving the efficiency of the branch and bound method. Both approaches aim at finding the exact 

global optimal solution with reduced solution times. Several approximation approaches are also 

developed for finding good approximate solutions in relatively short times. Case study results show that 

the MILP transshipment model can be solved for relatively large-scale problems in reasonable times by 

applying the approaches proposed in this paper. 
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Highlights 

• Model reformulations and several solution strategies are proposed for finding the optimal solution 

of the MILP transshipment model. 

• Several approximation approaches are developed for finding near optimal solutions. 

• Some relatively large-scale MILP transshipment models are solved in reasonable times by using 

the approaches proposed in this study. 

 

1. Introduction 

Heat exchanger network synthesis (HENS) has been an important topic in power, refining and chemical 

industries for several decades due to its crucial role in energy savings and cost reduction. Recently it is 

also of increased interest in broader areas, including carbon capture and storage (CCS), water treatment 

and energy polygeneration. HENS has been extensively studied in process systems engineering research, 

and a number of methodologies have been developed. Linnhoff and Hindmarsh (1983) proposed the pinch 

design method, which is based on physical insight for the maximum heat recovery in heat exchanger 

networks. Mathematical programming based approaches were first developed by Papoulias and 

Grossmann (1983) and Cerda and Westerberg (1983a, 1983b). Both methods are now widely used in 

grassroots design and retrofit of heat exchanger networks. Detailed reviews on developments of HENS 

methods can be found in Gundersen and Naess (1988), Furman and Sahinidis (2002), Morar and Agachi 

(2010) and Klemeš and Kravanja (2013). 

 

Two different types of HENS approaches have been studied: sequential and simultaneous. In the 

sequential approach the HENS problem is solved in three steps (Biegler et al., 1997): first, the utility cost 

(or consumption) is minimized with a linear programming (LP) model (Papoulias and Grossmann, 1983; 

Cerda and Westerberg, 1983a); second, the number of heat exchangers is minimized with a mixed-integer 

linear programming (MILP) model to determine the optimal stream matches (Papoulias and Grossmann, 

http://scholar.google.com/citations?user=-q_uRWAAAAAJ&hl=en&oi=sra�
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1983; Cerda and Westerberg, 1983b); finally, the total investment cost is minimized with a nonlinear 

programming (NLP) model, and the optimal heat exchanger network structure is derived (Floudas et al., 

1986). In contrast to the target-based sequential approach, the simultaneous synthesis approach optimizes 

energy, number of units and total heat exchanger area simultaneously in a mixed-integer nonlinear 

programming (MINLP) model (Yee and Grossmann, 1990; Ciric and Floudas, 1991). Due to its 

computational complexity, the simultaneous approach usually can only solve problems with small to 

medium sizes. The sequential approach, on the other hand, decomposes the HENS problem into several 

smaller subproblems that are much easier to solve, and hence is still considered the most practical way to 

solve industrial-scale HENS problems. 

 

In the sequential approach, minimization of the number of heat exchangers is a key step to determine the 

optimal structure of heat exchanger networks. The MILP transhipment and MILP transportation models 

are basic tools to calculate the minimum number of units. The major difference between the two is that 

the former uses a heat cascade while the latter uses direct matches, which makes the size of the former 

model significantly smaller. These models have been further developed during the last twenty years. A 

vertical MILP transshipment model was proposed by Gundersen and Grossmann (1990) and Gundersen et 

al. (1996), in which non-vertical heat transfer (i.e., criss-crossing) was minimized and the optimal 

solution with smallest heat exchange area could be identified. Floudas and Grossmann (1986) extended 

the MILP transshipment model for multiperiod operations. The MILP transshipment/transportation 

models were also incorporated into the simultaneous approach for heat exchanger network design 

(Shethna et al., 2000; Barbaro and Bagajewicz, 2005) and retrofit (Nguyen et al., 2010). In process 

synthesis, the MILP transshipment model has been applied to the optimal design of heat exchanger 

networks in a wide range of systems and processes, such as refrigeration systems (Shelton and 

Grossmann, 1986), batch/semi-continuous processes (Zhao et al., 1998), water utilization systems 

(Bagajewicz et al., 2002) and hybrid transportation fuel production processes (Elia et al., 2010). 

 

http://scholar.google.com/citations?user=338T-eEAAAAJ&hl=en&oi=sra�
http://scholar.google.com/citations?user=fiZryxEAAAAJ&hl=en&oi=sra�
http://pubs.acs.org/action/doSearch?action=search&author=Nguyen%2C+D+Q&qsSearchArea=author�
http://scholar.google.com/citations?user=fiZryxEAAAAJ&hl=en&oi=sra�
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Despite significant advances in MILP solvers (e.g., CPLEX, GUROBI, XPRESS) and application of the 

MILP transhipment/transportation models, solving the MILP itself is still quite challenging. Furman and 

Sahinidis (2001) proved that the minimum number of matches problem is 𝒩𝒫-hard in the strong sense 

due to its combinatorial nature. So far the MILP transshipment/transportation models are quite difficult to 

solve for large-scale problems, as will be shown later, rendering the minimum number of units problem as 

the major bottleneck in the HENS procedure. Only a few papers have investigated efficient solution 

approaches for large-scale MILP transshipment/transportation models. Gundersen et al. (1997) developed 

a MILP transshipment formulation with tighter heat transfer upper bounds and indicated that the gap 

between the MILP solution and its LP relaxation could be reduced by using the tighter formulation. 

Anantharaman et al. (2010) systematically studied approaches for improving the solution performance for 

the MILP transshipment model. The authors proposed three major approaches: pre-processing to reduce 

model size using insight and heuristics, model modification/reformulation, and improving efficiency of 

the branch and bound method. Several ideas for model modification and reformulation were investigated 

in this article, including decreasing the upper bound, adding integer cuts and reformulating the original 

model to set-partitioning formulations. The authors tested these ideas for several cases with the size of up 

to 22 process streams, and showed that the LP relaxation was significantly tightened. However, the above 

two papers did not present the effect on solution times. Hence, the actual computational performance of 

these model reformulations is unknown. Pettersson (2005) developed an approximate approach, which 

includes match set reduction and grouping, and solved the minimum number of matches problem with up 

to 39 process streams in reasonable times. The minimum number of units problem was also solved by 

evolutionary methods (Mocsny and Govind, 1984; Shethna and Jezowski, 2006). These approximate 

approaches, however, cannot guarantee the global optimal solution and also cannot indicate how far the 

obtained solution is with respect to the global optimum. 

 

This paper investigates several rigorous and approximate approaches for reducing the computational time 

required to solve large-scale MILP transshipment models. Both LP relaxation and solution time results 

http://scholar.google.com/citations?user=n-YjL0MAAAAJ&hl=en&oi=sra�
http://scholar.google.com/citations?user=EZmnZfEAAAAJ&hl=en&oi=sra�
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are presented. The remaining part of this paper is organized as follows. Section 2 presents solution times 

of MILP transshipment models for a variety of cases with small to large sizes, discusses reasons for the 

slow computation, and then shows results for weighted matches. Section 3 proposes several 

reformulations, including model disaggregation and addition of integer cuts, and then compares their 

results with the original model. Several solution strategies, e.g., branching priority, strong branching, 

parallel computing, are discussed in Section 4. Finally, Section 5 describes several approximation 

approaches, including using a relative optimality gap, a combined model, a reduced MILP model and a 

NLP reformulation. The paper is concluded in Section 6. 

 

2. Preliminary Results 

2.1 MILP Transshipment Model – Case Study and Results 

The MILP transshipment model is usually difficult to solve for the full heat exchanger network due to its 

computational complexity. Instead, the full network is partitioned into several subnetworks defined by the 

pinch points, and then the MILP transshipment model is solved for each subnetwork. This is a reasonable 

procedure because stream matches across the pinch are usually avoided (for exceptions see Wood et al. 

(1985)). 

 

Before solving the MILP transshipment model, the following LP transshipment model (Papoulias and 

Grossmann, 1983) is solved, which provides the minimum utility consumption and the location of pinch 

points that partition the full network into subnetworks: 
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where K is the index set for all temperature intervals; mc  and nc  are the unit cost of hot utility m and cold 

utility n, which are known parameters; H
ikQ  and C

jkQ  are the heat content of hot process stream i and cold 

process stream j at temperature interval k, which are known parameters; S
mQ  and W

nQ  are the heat load of 

hot utility m and cold utility n; ijkQ , mjkQ , and inkQ  are the amount of heat exchanged between hot 

stream i and cold stream j, hot utility m and cold stream j, and hot stream i and cold utility n at interval k; 

ikR  and mkR  are the heat residual of hot stream i and hot utility m exiting interval k. Pinch points are 

identified by these temperature intervals for which all the heat residuals are zero. The index sets are 

defined below: 

{ }kiiH k  interval heat to supplies  streamhot  |  =  

 

{ }kjjCk  interval fromheat  demands  stream cold |  =  

{ }kmmSk  interval heat to supplies utility hot  |  =  

 

{ }knnWk  interval fromheat  extracts utility  cold |  =  

 

Next, the MILP transshipment model is solved for each subnetwork, obtaining the minimum number of 

units and the optimal matches between hot and cold streams. In this model, the heat loads of hot and cold 
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utilities are fixed at values obtained in Model (M0). Both hot process streams and hot utilities (cold 

process streams and cold utilities) are considered as additional hot streams (cold streams), and the 

common index i (j) is used for them. The MILP transshipment model for each subnetwork q is formulated 

as follows (Papoulias and Grossmann, 1983): 
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where qK  is the index set for all temperature intervals in subnetwork q; q
ijy  is the binary variable that 

indicates the existence of match between hot stream i and cold stream j in subnetwork q; qU
ijQ ,  is the 

upper bound of heat exchanged between hot stream i and cold stream j in subnetwork q; qH  and qC  are 

index sets for all hot streams and cold streams present in subnetwork q. All other variables and index sets 

have the same meaning as in Model (M0). The upper bound qU
ijQ ,  is traditionally given by the smaller of 

the total heat content of hot stream i and cold stream j in the subnetwork: 
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where H
iFCp  and C

jFCp  are heat capacity flow rates of hot stream i and cold stream j; H
iinT ,  and C

jinT ,  are 

inlet temperatures of hot stream i and cold stream j; the exchanger minimum approach temperature 

(EMAT) is set to be zero. 

 

Model (M1) is tested for multiple cases. The stream information for all cases, including heat capacity 

flow rate (FCp), inlet temperature (Tin) and outlet temperature (Tout), is listed in Tables A1 and A2 in the 

Appendix. These cases are categorized into two types: balanced streams and unbalanced streams. Cases 

with balanced streams have similar FCps within the same order of magnitude (0.8 - 2.8); while cases with 

unbalanced streams have dissimilar FCps, whose values can span several orders of magnitude (0.2 - 14). 

Streams of all cases are selected as the subset of streams listed in Tables A1 and A2: The case with m hot 

streams and n cold streams (mH, nC) uses the first m hot streams and the first n cold streams in Table A1 

(or A2). Two utilities, high-pressure steam (500°C) and medium-pressure steam (350°C), and one cold 

utility, cooling water (20-30°C), are utilized. In all cases, the heat recovery approach temperature (HRAT) 

is set to 10K.  

 

The test problems are solved on a computer with single core 3.33 GHz CPU (except for the parallel 

computing case studies as will be shown later), 24.0 GB memory and running Windows 7. GAMS 24.1.3 

(McCarl et al., 2013) is used to formulate the model. Two MILP solvers, CPLEX 12.5 (CPLEX, 2013) 

and GUROBI 5.5 (GUROBI, 2013), are employed to solve the model to global optimality. Only the 

solver time reported by GAMS is reported here. Since the objective function of Problem (M1) can only be 

integer values, an absolute gap of 0.99 is used for the termination criterion. The optimal objective values 

and solution times for all cases are listed in Table 1 in which the reported CPU times are the sum of times 

for the solution of the MILP for each subnetwork. 
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Table 1. Optimization results and solution times for different cases by CPLEX and GUROBI 

Case b Optimal Objective 
Value a 

CPU Time (s) a 
CPLEX GUROBI 

   Balanced Streams 
5H, 5C 24 0.5 0.5 
8H, 8C 35 35.9 58.4 

10H, 10C 42 1,017.9 949.9 
12H, 12C 48 68,688.6 62,478.2 
15H, 15C c 57 > 100,000 > 100,000 

   Unbalanced Streams 
5H, 5C 26 0.3 0.1 

10H, 10C 39 25.7 16.2 
15H, 15C 55 660.1 3,135.1 
17H, 17C d 67 > 100,000 > 100,000 
20H, 20C c 77 > 100,000 > 100,000 

a Absolute gap 0.99 is applied. 
b mH, nC means m hot process streams and n cold process streams. HRAT = 10K. 
c Global optimal solutions are not confirmed due to very long computational times. For these cases, best solutions 
obtained so far are present. 
d Global optimal solution is obtained by using advanced computational strategies, which will be discussed later. 
 

For both solvers, the solution time increases exponentially with problem size. Despite the very significant 

progress of MILP solvers in recent years, the transshipment model (M1) can only be solved for problems 

with small to medium sizes (up to 15H, 15C). It is found that problems with unbalanced streams are 

easier to solve than those with balanced streams. This observation is expected because the matches are 

more restricted in cases with unbalanced streams, especially for those streams with large FCps. Note that 

most industrial cases actually have unbalanced streams, while cases with balanced streams are mostly 

used in academic papers. Comparing the performance of the two MILP solvers, CPLEX achieves similar 

solution times as GUROBI for balanced cases but shorter times for unbalanced cases. Hence, the overall 

performance of CPLEX is better than GUROBI for solving the MILP transshipment model. CPLEX is 

thus chosen as the MILP solver for all the following case studies.  
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2.2 Discussion 

There are several reasons for slow computation of Model (M1): 

a) Same coefficients in the objective function. 

b) Symmetry in the problem structure (Nemhauser and Wolsey, 1988). 

c) Large LP relaxation gap. 

 

Reason (a) is obvious since all binary variables in the objective function are multiplied by the coefficient, 

one. This tends to introduce degeneracy, that is, multiple optimal solutions with the same objective value. 

It is not an appropriate approach to change those coefficients to other values because the model then loses 

its physical meaning, i.e, the minimum number of matches. However, we can try to modify the 

coefficients to reflect potential heat exchange areas so that the computational speed is accelerated. We 

will discuss this approach in Section 2.3: Weighted Model. 

 

Reason (b) also follows from having the same coefficients in the objective function. The existence of 

symmetry in the model, which implies many alternative solutions with the same objective value, 

decreases branch and bound efficiency since many nodes with equivalent solutions are explored, which 

significantly increases the computational time (Margot, 2003). This also explains why unbalanced cases 

are easier to solve, since they may have less symmetry. It is difficult to develop symmetry breaking 

constraints in the MILP transshipment model. One possible way to reduce the effect of the symmetry is to 

introduce branching priority for binary variables. Some CPLEX options, e.g., strong branching, may also 

be helpful. These approaches will be discussed in Section 4: Solution Strategies.  

 

Reason (c) is verified by Table 2, which shows fairly large gaps between the optimal objective values and 

their LP relaxations for multiple cases (between 23.2 % and 33.0 %). The LP relaxation can be reduced 

http://scholar.google.com/citations?user=BkIva08AAAAJ&hl=en&oi=sra�
http://scholar.google.com/citations?user=ChLWT2oAAAAJ&hl=en&oi=sra�
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by introducing tighter formulations and adding integer cuts, which will be covered in Section 3: Model 

Reformulations. 

 

Table 2. LP relaxation for different cases 

Case Optimal Objective Value LP Relaxation Value 
        Balanced Streams 

5H, 5C 24 16.30 
8H, 8C 35 24.36 

10H, 10C 42 28.85 
12H, 12C 48 32.14 
15H, 15C 57 40.39 

        Unbalanced Streams 
5H, 5C 26 17.93 

10H, 10C 39 29.97 
15H, 15C 55 41.42 
17H, 17C 67 48.84 
20H, 20C 77 56.59 

 

Remark 

The significant performance difference between the balanced and unbalanced cases, in which only the 

values of FCps are different, indicates that parameter values may have a strong influence on both optimal 

results and solution times. To investigate the sensitivity of parameters on the solution and performance, 

the nominal values of FCps in both balanced and unbalanced cases are perturbed between ±10% from 

their base values (as shown in Table A1 and A2). Each case is run ten times with random values for FCps 

in the above interval. To keep the problems simple, all random values of FCps are rounded to the nearest 

tenth. The range of optimal objective values and solution times obtained from these ten runs for all cases 

are listed in Table 3. The results show that the selection of parameters has a significant impact on the 

solution time, but a much smaller impact on the optimal objective value. However, for most of cases, the 

average solution times with random values of FCps are still within the same order of magnitude as 

solution times with base values of FCps. 

 



12 
 

Table 3. Case study results with random values of FCps 

Case 

With Nominal Values of 
FCps a With Random Values of FCps b 

Optimal 
Value CPU Time (s) Range of 

Optimal Values 
Average CPU 

Time (s) Range of CPU Times (s) 

Balanced Streams 
5H, 5C 24 0.5 23 - 25 0.4 0.3 – 0.5 
8H, 8C 35 35.9 32 - 36 24.4 3.3 – 73.2 

10H, 10C 42 1,017.9 40 - 43 2,523.0 49.1 – 16,772.4 
12H, 12C 48 68,688.6 45 - 48 71,610.0 4,796.9 – > 100,000 
15H, 15C 57 > 100,000 56 - 60 > 100,000 > 100,000 – > 100,000 
Unbalanced Streams 

5H, 5C 26 0.3 24 - 26 0.2 0.1 – 0.3 
10H, 10C 39 25.7 38 - 40 15.6 3.9 – 29.3 
15H, 15C 55 660.1 55 - 59 8,610.7 369.5 – 40,293.0 
17H, 17C 67 > 100,000 67 - 70 > 100,000 78,280.7 – > 100,000 
20H, 20C 77 > 100,000 77 - 83 > 100,000 > 100,000 – > 100,000 
a Base values of FCps are taken from Table A1 and A2. 
b Random values of FCps are randomly generated within the interval between 90% and 110% of their base values. 
To keep simplicity, all random values contain at most one decimal. 
 

2.3 Weighted Model 

We first try to develop the weighted model with non-uniform coefficients in the objective function, which 

is the easiest approach. The idea of introducing weight factors to the objective function of the MILP 

transshipment model has been studied previously. Papoulias and Grossmann (1983) mentioned that 

weight factors could be generated by some pre-defined priorities for matches. Elia et al. (2010) introduced 

weight factors that were calculated by the order of the distance between two units and the order of stream 

flowrates (or equipment heat transfer rates). However, these weighted models were aimed at reducing the 

number of optimal solutions. Accelerating the computational speed was not the purpose of these articles, 

and no solution times were reported. 

 

In this study, weight factors are added to the objective function in Model (M1) to reflect the potential heat 

exchange areas in terms of heat transfer coefficients and temperature driving forces. The following 

weighted model is formulated: 
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All equations in Model (M2) are the same as (M1) except for the objective function. q
ijw  is the weight 

factor for the match (i,j) in subnetwork q (or q
ijy ), and is defined as:  
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where q
ijT ,in∆  and q
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stream j in subnetwork q. q
ijT ,in∆  and q
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where qH
iT ,

,in  and qH
iT ,

,out  are inlet and outlet temperatures of hot stream i in subnetwork q; qC
jT ,

,in  and qC
jT ,

,out  

are inlet and outlet temperatures of cold stream j in subnetwork q. 

 

For simplicity we assume all matches have the same overall heat transfer coefficient in Eq (2), but if the 

heat transfer coefficients are available, the weight factors in Model (M2) can be trivially modified as: 

q
ijij

qU
ijq

ij TU
Q

w
∆

=
,

                   (5) 

where ijU  is the heat transfer coefficient for the match (i,j). Note that the weight factor of a match is 

proportional to its heat transfer area. This means that a stream match with a smaller heat transfer area is 

associated with a smaller weight factor, and hence it is favored in the optimal solution. Therefore, this 

weighted model (M2) may not only reduce the solution time, but may also obtain solutions with 

potentially smaller total heat transfer areas compared to the original transshipment model (M1). 

 

The optimal results and solution times for the weighted model are compared with those of the original 

model in Table 4. Solution times for all cases are significantly reduced. However, the weighted model is 

still very difficult to solve for large-scale problems (e.g., 15H, 15C with balanced streams and 20H, 20C 

with unbalanced streams). The optimal objective values of the weighted model are not listed in the table. 

Instead, the values of the sum of all binary variables are presented in order to provide the original 

physical meaning of the model. The results show that more units are introduced by the weighted model 

since the fixed cost may be different for different matches. The weighted model may lead to networks 

with more matches but with smaller total heat transfer area and lower total capital costs (as discussed 

before). This topic, however, is outside of the scope of this paper.  
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Table 4. Optimization results and solution times for the weighted model 

Case Original Model (M1) a Weighted Model (M2) b 
∑ yij

 c CPU Time (s) ∑ yij
 c CPU Time (s) 

Balanced Streams 
5H, 5C 24 0.5 25 0.3 
8H, 8C 35 35.9 38 20.3 

10H, 10C 42 1,017.9 47 706.5 
12H, 12C 48 68,688.6 53 5,938.1 
15H, 15C 57 > 100,000 65 > 100,000 

Unbalanced Streams 
5H, 5C 26 0.3 26 0.2 

10H, 10C 39 25.7 44 6.1 
15H, 15C 55 660.1 60 281.2 
17H, 17C 67 > 100,000 76 1,399.3 
20H, 20C 77 > 100,000 84 6,8839.9 

a Absolute gap 0.99 is applied. 
b Relative gap 1% is applied. 
c Sum of matches in all subnetworks. 
 

3. Model Reformulations 

In order to reduce the LP relaxation gap, some tighter formulations for Model (M1) are studied here. Two 

reformulations are discussed in this section: using disaggregated models and adding additional integer 

cuts. Part of these approaches have been investigated in Anantharaman et al. (2010); however, only LP 

relaxations were reported in that article, and its largest case study included only 22 process streams. In 

this study, we present both LP relaxations and solution times with case studies of up to 40 process streams. 

 

3.1 Disaggregated Models 

The large upper bound in constraint (M1-3) is a major reason for the loose LP relaxation in Model (M1). 

Decreasing the upper bound is an effective way to tighten the LP relaxation and improve the solution time.  

Constraint (M1-3) in Model (M1) is first disaggregated at each temperature interval k so that the heat 

exchanged at the interval should be equal to or less than a new smaller upper bound multiplying the 

binary variable. The new disaggregated MILP transshipment model is shown below: 

http://scholar.google.com/citations?user=n-YjL0MAAAAJ&hl=en&oi=sra�
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Model (M1). 

 

Using a similar reasoning, the MILP transportation model (Cerda and Westerberg, 1983b) can be 

disaggregated, so that a new upper bound is defined for the heat transfer for each hot stream i in 

temperature interval k to each cold stream j in temperature interval l.  
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where jlikq , is the heat exchanged between hot stream i at interval k and cold stream j at interval l. The 

upper bound U
jlikQ ,  is thus defined as: { }C

jl
H
ik

U
jlik QQQ   ,min, = , which is expected to be the smallest upper 

bound among Model (M1), (M3) and (M4). 

 

The LP relaxations of Models (M1), (M3) and (M4) are compared in Table 5. The tightness of the LP 

relaxations of these models is ranked as follows: transportation model > disaggregated transshipment 

model > original transshipment model. Disaggregated models generally have much tighter LP relaxations 

than the original model; however, the improvement of the LP relaxation is not very significant 

considering the large gap between the true solution and the relaxation. 

 

Table 5. LP relaxation for disaggregated models 

Case Optimal 
Objective Value 

LP Relaxation Value 
Original 

Transshipment 
Model (M1) 

Disaggregated 
Transshipment 

Model (M3) 

Transportation 
Model (M4) 

Balanced Streams 
5H, 5C 24 16.30 16.72 16.80 
8H, 8C 35 24.36 24.76 24.79 

10H, 10C 42 28.85 30.08 30.10 
12H, 12C 48 32.14 33.40 33.63 
15H, 15C 57 40.39 42.39 42.58 

Unbalanced Streams 
5H, 5C 26 17.93 20.07 20.65 

10H, 10C 39 29.97 31.90 32.61 
15H, 15C 55 41.42 43.48 44.64 
17H, 17C 67 48.84 52.64 53.55 
20H, 20C 77 56.59 61.85 63.23 

 

Tighter reformulations do not always lead to faster computation if they are larger in size. The number of 

constraints in (M3) and (M4) is greatly increased. Assuming the total number of hot streams and cold 

streams in subnetwork q are q
HN  and q

CN , respectively, and the total number of temperature intervals in 

subnetwork q is q
KN , then the maximum number of constraints, including binary variables in Model (M1), 
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(M3) and (M4), are equal to q
C

q
H NN , q

C
q
H

q
K NNN  and ( ) q

C
q
H

q
K NNN 2

, respectively. Thus, there is a trade-

off between the tightness of the LP relaxation and model size. Tighter models would be helpful to reduce 

the number of nodes in the branch and bound tree, but the larger problem size would also increase the 

solution time at each node, possibly deteriorating the overall performance. The solution times for the 

various models are listed in Table 6. The transportation model shows the worst performance among the 

three models because of its large size, even though it has a slightly tighter LP relaxation. The 

disaggregated transshipment model, on the other hand, realizes a more optimal trade-off between the 

tightness and problem size in all cases except one, and it achieves the best overall performance. Hence, 

the disaggregated transshipment model (M3) is used as the base model in all the following computational 

tests. 

 

Table 6. Solution times for disaggregated models 

Case 
CPU Time (s) a 

Original Transshipment 
Model (M1) 

Disaggregated 
Transshipment Model (M3) 

Transportation 
Model (M4) 

   Balanced Streams 
5H, 5C 0.5 0.5 0.4 
8H, 8C 35.9 34.9 91.1 

10H, 10C 1,017.9 1,011.4 3,075.1 
12H, 12C 68,688.6 36,356.6 > 100,000 
15H, 15C > 100,000 > 100,000 > 100,000 

   Unbalanced Streams 
5H, 5C 0.3 0.2 0.4 

10H, 10C 25.7 21.1 150.1 
15H, 15C 660.1 1,043.1 > 100,000 
17H, 17C > 100,000 76,676.3 > 100,000 
20H, 20C > 100,000 > 100,000 > 100,000 

a Absolute gap 0.99 is applied. 
 

3.2 Additional Integer Cuts 

Model (M3) can be further tightened by introducing additional integer cuts. One type of enhanced integer 

cut is enforcing the total number of matches for each hot or cold stream to be at least one.  
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When the total heat content of a hot (or cold) stream is larger than that of all cold (or hot) streams, 

multiple matches can be enforced for that hot (or cold) stream. The tighter integer cuts are added as: 
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In Eq (7), the minimum number of matches for each hot (or cold) stream is enforced to be the smallest 

integer value that is larger than or equal to the ratio of its heat content to the maximum heat content of all 

cold (or hot) streams. The other type of integer cut is limiting the total number of stream matches to be 

smaller than or equal to the total number of hot and cold streams minus one, for each subnetwork q, as 

indicated by Hohmann (1971): 

1−+≤∑∑
∈ ∈

q
C

q
H

Hi Cj

q
ij NNy

q q

                 (8)  

We should note, however, that this constraint is not completely rigorous as there are exceptions to the rule 

for minimum number of units (Wood et al., 1985). 

 

By adding Eqs (7) and (8) to Model (M3), we obtain a disaggregated transshipment model with additional 

integer cuts as follows: 
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Table 7. LP relaxation for models with and without additional integer cuts 

Case Optimal Objective 
Value 

LP Relaxation Value 
Without Integer Cuts (M3) With Integer Cuts (M5) 

   Balanced Streams 
5H, 5C 24 16.72 17.63 
8H, 8C 35 24.76 24.81 

10H, 10C 42 30.08 30.80 
12H, 12C 48 33.40 34.08 
15H, 15C 57 42.39 42.47 

   Unbalanced Streams 
5H, 5C 26 20.07 20.10 

10H, 10C 39 31.90 31.90 
15H, 15C 55 43.48 43.53 
17H, 17C 67 52.64 52.79 
20H, 20C 77 61.85 61.89 
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Table 8. Solution times for models with and without additional integer cuts 

Case CPU Time (s) a 
Without Integer Cuts (M3) With Integer Cuts (M5) 

        Balanced Streams 
5H, 5C 0.5 0.5 
8H, 8C 34.9 33.2 

10H, 10C 1,011.4 878.3 
12H, 12C 36,356.6 33,869.2 
15H, 15C > 100,000 > 100,000 

        Unbalanced Streams 
5H, 5C 0.2 0.3 

10H, 10C 21.1 30.7 
15H, 15C 1,043.1 749.8 
17H, 17C 76,676.3 28,682.4 
20H, 20C > 100,000 > 100,000 

a Absolute gap 0.99 is applied. 
 

LP relaxations and solution times for Models (M3) and (M5) are compared in Table 7 and Table 8, 

respectively. After introducing additional integer cuts, the LP relaxations become somewhat tighter, 

especially for the balanced problems. The solution times for most cases are also reduced by these 

additional integer cuts. The results show that the effect of integer cuts on solution time is more significant 

for unbalanced cases, although the LP relaxation was only slightly improved. Since the additional integer 

cuts are helpful to improve the model performance, Model (M5) is used as the base model in all the 

following studies. 

 

4. Solution Strategies 

Results of the previous sections indicate that we cannot significantly reduce the solution time by only 

model reformulations or by adding integer cuts. To further improve the computational performance, 

several additional strategies are tested to improve the MILP solution process, including specifying 

branching priorities for binary variables, selecting the node branching rule, using a feasibility pump 

heuristic, employing relaxation induced neighborhood search (RINS), and optimizing on a parallel 
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processor. These solution strategies are covered in this section, and all of them can be implemented 

through CPLEX options (CPLEX, 2013). 

 

4.1 Branching Priority for Binary Variables 

Stream matches with larger  upper bounds on heat exchange usually have more a significant impact on the 

heat exchanger network. If the values of binary variables with larger upper bounds are determined early in 

the branch and bound procedure, the solution efficiency may be improved. Hence, we provide higher 

branching priority to the binary variables with larger upper bounds. The following specification is added 

to the GAMS model: qU
ij

q
ij Qy ,/1.prior = . 

 

Table 9. Solution times for models with and without branching priority for binary variables 

Case 
CPU Time (s) a 

Without Branching Priority 
With Branching Priority 

q
ijy .prior = 1/ qU

ijQ ,  

        Balanced Streams 
5H, 5C 0.5 0.5 
8H, 8C 33.2 29.6 

10H, 10C 878.3 607.0 
12H, 12C 33,869.2 24,400.8 
15H, 15C > 100,000 > 100,000 

        Unbalanced Streams 
5H, 5C 0.3 0.3 

10H, 10C 30.7 31.3 
15H, 15C 749.8 1,527.2 
17H, 17C 28,682.4 > 100,000 
20H, 20C > 100,000 > 100,000 

a Disaggregated transshipment model (M5) is used. Absolute gap 0.99 is applied. 
 

The solution times for the different problems with and without branching priorities are compared in Table 

9. The proposed branching priority for binary variables seems only effective for balanced cases; however, 

it will also be effective for unbalanced cases when combined with other strategies, as will be discussed in 

following subsections. 
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4.2 Node Branching Rule 

A node branching rule is a pre-defined priority for selecting the branching variable at the node that has 

been branched. It can be specified by the CPLEX option varsel (CPLEX, 2013). Four different node 

branching rules are studied here: branch on variable with maximum infeasibility (varsel 1), branch based 

on pseudo costs (varsel 2), strong branching (varsel 3), and branch based on pseudo reduced costs (varsel 

4). Strong branching is particularly interesting because under this rule a number of subproblems with 

tentative branches are partially solved and the most promising branch is then selected. This rule is 

potentially effective on large, difficult problems, such as the problems in this study, but the rule itself can 

be computationally intensive. The base case uses the default CPLEX setting, in which the branch variable 

is automatically selected (varsel 0). 

 

Table 10. Solution times with different node branching rules (without branching priority) 

Case 

CPU Time (s) a 
Branch Variable 
Automatically 

Selected 
(Base Case) 
(varsel 0) b 

Branch on 
Variable with 

Maximum 
Infeasibility 
(varsel 1) b 

Branch Based on 
Pseudo Costs 

(varsel 2) b 

Strong 
Branching 
(varsel 3) b 

Branch Based 
on Pseudo 

Reduced Costs 
(varsel 4) b 

Balanced Streams 
5H, 5C 0.5 0.5 0.3 0.5 0.4 
8H, 8C 33.2 62.1 35.6 120.3 33.9 

10H, 10C 878.3 1,848.0 955.5 2,106.1 754.7 
12H, 12C 33,869.2 > 100,000 34,799.6 92,240.2 40,949.7 
15H, 15C > 100,000 > 100,000 > 100,000 > 100,000 > 100,000 

Unbalanced Streams 
5H, 5C 0.3 0.2 0.2 0.3 0.2 

10H, 10C 30.7 24.9 20.8 74.8 41.2 
15H, 15C 749.8 14,114.6 846.9 4,932.8 1,274.5 
17H, 17C 28,682.4 > 100,000 > 100,000 > 100,000 23,102.8 
20H, 20C > 100,000 > 100,000 > 100,000 > 100,000 > 100,000 

a Disaggregated transshipment model (M5) is used. Absolute gap 0.99 is applied. 
b CPLEX option is listed in the parentheses. 
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Table 11. Solution times with different node branching rules (with branching priority: q
ijy .prior = 1/ qU

ijQ , ) 

Case 

CPU Time (s) a 
Branch Variable 
Automatically 

Selected 
(Base Case) 
(varsel 0) b 

Branch on 
Variable with 

Maximum 
Infeasibility 
(varsel 1) b 

Branch Based on 
Pseudo Costs 

(varsel 2) b 

Strong 
Branching 
(varsel 3) b 

Branch Based 
on Pseudo 

Reduced Costs 
(varsel 4) b 

Balanced Streams 
5H, 5C 0.5 0.5 0.4 0.4 0.5 
8H, 8C 29.6 26.0 27.0 37.3 26.8 

10H, 10C 607.0 481.0 515.3 628.1 563.1 
12H, 12C 24,400.8 22,606.6 24,509.3 31,545.2 24,643.4 
15H, 15C > 100,000 > 100,000 > 100,000 > 100,000 > 100,000 

Unbalanced Streams 
5H, 5C 0.3 0.2 0.2 0.2 0.2 

10H, 10C 31.3 14.8 6.8 10.2 8.5 
15H, 15C 1,527.2 693.7 692.2 471.2 742.7 
17H, 17C > 100,000 36,240.9 > 100,000 19,178.8 21,759.8 
20H, 20C > 100,000 > 100,000 > 100,000 > 100,000 > 100,000 

a Disaggregated transshipment model (M5) is used. Branching priority (𝑦𝑖𝑗
𝑞 .prior = 1/𝑄𝑖𝑗

𝑈,𝑞) is selected. Absolute gap 
0.99 is applied. 
b CPLEX option is listed in the parentheses. 
 

Solution times for cases with different node branching rules are listed in Table 10 and Table 11. Table 10 

shows results without any branching priority for binary variables, while Table 11 shows results with the 

binary branching priority proposed in Section 4.1. It is definitely not useful to specify any of the node 

branching rules if no binary branching priority is used. However, when binary branching priority 

q
ijy .prior = 1/ qU

ijQ ,  is applied, most of the problems with a specific node branching rule perform better 

than the base case. Strong branching (varsel 3) and branch on pseudo reduced costs (varsel 4) plus 

branching priority q
ijy .prior = 1/ qU

ijQ ,  achieve shorter solution times than the base case (without 

branching priority) for both balanced and unbalanced cases. Hence, these are two promising approaches 

for further studies. 
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4.3 Feasibility Pump 

The feasibility pump heuristic (Fischetti et al., 2005) can be used to find a feasible integer solution more 

quickly, which may be helpful to solve the MILP transshipment model faster. Two types of feasibility 

pump heuristics are implemented in CPLEX: a feasibility pump with an emphasis on finding a feasible 

solution (fpheur 1), and one with an emphasis on finding a feasible solution with a good objective value 

(fpheur 2) (CPLEX, 2013). The latter will likely obtain a better solution, but may also fail to find a 

feasible solution. These two feasibility pump heuristics are studied for all problems. The base case is set 

to be automatically choosing whether or not to use feasibility pump (fpheur 0). The results indicated that 

the feasibility pump heuristics are not helpful for improving the solution efficiency compared to the base 

case and are, therefore, not reported in this paper. 

 

4.4 Relaxation Induced Neighborhood Search (RINS) 

In CPLEX, RINS is a heuristic that explores a neighborhood around the current incumbent to try to find a 

new, improved solution (CPLEX, 2013). It formulates the neighborhood exploration as an MILP 

subproblem, called a sub-MIP. In this sub-MIP, binary variables with the same values in the incumbent 

and its LP relaxation are fixed, and the remaining variables are then solved. The sub-MIP is not solved to 

global optimality; instead its solution is truncated by limiting the number of nodes explored in the search 

tree. RINS may greatly improve the solution quality and, hence, increase the computational speed for 

MILP problems. RINS is only invoked at every kth node in the tree, where k is specified by the CPLEX 

option rinsheur (CPLEX, 2013). 

 

 

 

 

 



26 
 

Table 12. Solution times with different RINS rules with branching priority: q
ijy .prior = 1/ qU

ijQ ,   

Case 

CPU Time (s) a 

Automatic 
(Base Case) 
(rinsheur 0) b 

RINS Invoked 
Every 2,000th  

Node 
(rinsheur 2000) b 

RINS Invoked 
Every 3,000th  

Node 
(rinsheur 3000) b 

RINS Invoked 
Every 4,000th  

Node 
(rinsheur 4000) b 

Balanced Streams 
5H, 5C 0.5 0.4 0.4 0.4 
8H, 8C 29.6 37.1 37.2 36.1 

10H, 10C 607.0 466.9 423.5 458.0 
12H, 12C 24,400.8 30,582.3 26,817.0 27,894.0 
15H, 15C > 100,000 > 100,000 > 100,000 > 100,000 

Unbalanced Streams 
5H, 5C 0.3 0.3 0.3 0.2 

10H, 10C 31.3 6.7 6.6 6.8 
15H, 15C 1,527.2 553.9 511.1 657.9 
17H, 17C > 100,000 17,827.4 18,605.7 25,758.9 
20H, 20C > 100,000 > 100,000 > 100,000 > 100,000 

a Disaggregated transshipment model (M5) is used. Branching priority (𝑦𝑖𝑗
𝑞 .prior = 1/𝑄𝑖𝑗

𝑈,𝑞) is selected. Absolute gap 
0.99 is applied. 
b CPLEX option is listed in the parentheses. 
 

The solution times with different RINS frequencies are compared in Table 12. In the base case, RINS is 

implemented in the automatic mode (rinsheur 0). RINS achieves faster computation for most of cases, 

especially for unbalanced cases. The RINS invoked at every 3000th node together with binary branching 

priority q
ijy .prior = 1/ qU

ijQ ,  shows the best overall performance for all cases. 

 

Remark 

Multiple solution strategies can be implemented together. Table 13 lists solution times with node 

branching rules combined with RINS, which were previously shown to be effective strategies. In most 

cases, the performance of the combined strategies is worse than the best individual strategy. This means 

that solution efficiency cannot be easily improved by just combining several strategies together. 
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Table 13. Solution times with combined strategies (with branching priority: q
ijy .prior = 1/ qU

ijQ , ) 

Case 

CPU Time (s) a 
Automatic 

(Base Case) 
(varsel 0 + 

rinsheur 0) b 

Node Branching Rule + RINS 

(varsel 1 + 
rinsheur 3000) b 

(varsel 3 + 
rinsheur 3000) b 

(varsel 4 + 
rinsheur 3000) b 

Balanced Streams 
5H, 5C 0.5 0.4 0.3 0.4 
8H, 8C 29.6 25.7 37.4 40.1 

10H, 10C 607.0 500.1 617.6 494.9 
12H, 12C 24,400.8 25,701.9 36,408.1 29,197.2 
15H, 15C > 100,000 > 100,000 > 100,000 > 100,000 

Unbalanced Streams 
5H, 5C 0.3 0.3 0.2 0.3 

10H, 10C 31.3 16.6 12.0 6.6 
15H, 15C 1,527.2 1,923.1 475.5 371.1 
17H, 17C > 100,000 30,593.7 22,371.8 20,109.7 
20H, 20C > 100,000 > 100,000 > 100,000 > 100,000 

a Disaggregated transshipment model (M5) is used. Branching priority (𝑦𝑖𝑗
𝑞 .prior = 1/𝑄𝑖𝑗

𝑈,𝑞) is selected. Absolute gap 
0.99 is applied. 
b CPLEX option is listed in the parentheses. 
 

Summary 

The branching priority for binary variables ( q
ijy .prior = 1/ qU

ijQ , ) plus the RINS invoked at every 3000th 

achieves the best overall performance for most of cases; therefore, it is implemented with Model (M5) as 

the basis in the following studies. 

 

4.5 Parallel Computing 

Parallel computing technology can be applied to reduce time to solution if a multi-core CPU is available. 

CPLEX is capable of implementing parallel computing by using the threads option, where threads m 

means m cores are used for solution. Two different parallel modes are employed in CPLEX: deterministic 

and opportunistic. These can be realized by the CPLEX option: parallelmode (CPLEX, 2013). The 

deterministic mode (parallelmode 1) uses the same solution path for all runs and repeats the same results, 

while the opportunistic mode (parallelmode -1) may produce different solution paths and, consequently, 
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different optimal solutions and solution times. The opportunistic mode usually outperforms the 

deterministic mode because less synchronization is required between threads. In this study, six cores are 

used for parallel computing, with a speed of 3.33 GHz for each core of an Intel Xeon X5680 processor. 

All other hardware and software settings are the same as previous case studies. Parallel solution results 

from both the deterministic and opportunistic modes are listed in Table 14. The solution times with six 

cores are much smaller, but still larger than 1/6 of those with the single core due to overhead associated 

with synchronization between cores. The fast solution of large-scale cases still seems impossible even 

with parallel computing. Nevertheless, the reductions in CPU times are quite significant in most cases. 

The results also demonstrate that the opportunistic mode provides better performance than the 

deterministic mode for most cases. Parallel computing is clearly a good option, but will only be used in 

Sections 5.1 and 5.3. Note that for small-scale cases (e.g., 5H, 5C and unbalanced 10H, 10C), more time 

is required because additional time is spent in synchronization between the cores. 

 

Table 14. Solution times with parallel computing 

Case Single Core a Six Cores - Deterministic a Six Cores - Opportunistic a 
CPU Time (s) CPU Time (s) Speedup CPU Time (s) Speedup 

Balanced Streams 
5H, 5C 0.4 0.5 0.79 0.4 0.82 
8H, 8C 37.2 10.9 3.40 8.1 4.60 

10H, 10C 423.5 160.0 2.65 115.1 3.68 
12H, 12C 26,817.0 5,180.9 5.18 10,844.8 2.47 
15H, 15C > 100,000 > 100,000  > 100,000  

Unbalanced Streams 
5H, 5C 0.3 0.2 1.50 0.2 1.38 

10H, 10C 6.6 8.6 0.77 2.7 2.42 
15H, 15C 511.1 184.4 2.77 124.8 4.10 
17H, 17C 18,605.7 6,951.6 2.68 6,184.5 3.01 
20H, 20C > 100,000 > 100,000  > 100,000  

a Disaggregated transshipment model  (M5) is used. Branching priority (𝑦𝑖𝑗
𝑞 .prior = 1/𝑄𝑖𝑗

𝑈,𝑞) is selected. RINS is 
invoked every 3,000th node. Absolute gap 0.99 is applied. 
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5. Approximation Approaches 

Although some model reformulation techniques and solution strategies developed in the previous sections 

can improve the solution performance for the MILP transshipment model, solving large-scale problems in 

relatively short times is still a very difficult task. Instead of obtaining the exact global optimal solution, 

several approximation approaches are proposed in this section in order to quickly find good approximate 

solutions of Model (M5). 

 

5.1 Relative Optimality Gap 

A simple way to obtain an approximation is to terminate the MILP search by selecting an appropriate 

relative optimality gap. Case study results for Model (M5) with a 10% relative gap are listed in Table 15. 

By applying a 10% relative gap, the optimal objective values are identical or very close to their global 

optimal values, which are obtained with an absolute gap of 0.99. Note that the solution time can be 

reduced by one order of magnitude for some large-scale cases. Therefore, choosing a 10% relative gap for 

large-scale MILP transshipment models is an effective option. 

 

Table 15. Optimization results and solution times with relative optimality gap 

Case Absolute Gap 0.99 a,b Relative Gap 10% a 
Optimal Objective CPU Time (s) Optimal Objective CPU Time (s) 

Balanced Streams 
5H, 5C 24 0.4 24 0.4 
8H, 8C 35 37.2 35 25.3 

10H, 10C 42 423.5 42 143.3 
12H, 12C 48 26,817.0 48 4,654.1 
15H, 15C 57 > 100,000 58 > 100,000 

Unbalanced Streams 
5H, 5C 26 0.3 26 0.2 

10H, 10C 39 6.6 40 5.1 
15H, 15C 55 511.1 56 134.1 
17H, 17C 67 18,605.7 68 3,406.7 
20H, 20C 77 > 100,000 79 20,422.2 

a Disaggregated transshipment model (M5) is used. Branching priority (𝑦𝑖𝑗
𝑞 .prior = 1/𝑄𝑖𝑗

𝑈,𝑞) is selected. RINS is 
invoked every 3,000th node.  
b Global optimal solutions or best solutions obtained so far.  
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The solution time can be further reduced by using the 10% relative gap together with a parallel computing 

approach, as shown in Table 16; however, it is still impossible to solve some large-scale cases (e.g., 15H, 

15C with balanced streams) within a reasonable time.  

 

Table 16. Optimization results and solution times with 10% relative optimality gap and parallel 
computing 

Case Optimal Objective a CPU Time (s) a 
Single Core Six Cores b 

  Balanced Streams    
5H, 5C 24 0.4 0.5 
8H, 8C 35 25.3 7.2 

10H, 10C 42 143.3 52.7 
12H, 12C 48 4,654.1 1,035.9 
15H, 15C 58 > 100,000 > 100,000 

  Unbalanced Streams    
5H, 5C 26 0.2 0.2 

10H, 10C 40 5.1 5.4 
15H, 15C 56 134.1 95.5 
17H, 17C 68 3,406.7 2,119.9 
20H, 20C 79 20,422.2 8,813.1 

a Disaggregated transshipment model (M5) is used. Branching priority (𝑦𝑖𝑗
𝑞 .prior = 1/𝑄𝑖𝑗

𝑈,𝑞) is selected. RINS is 
invoked every 3,000th node. Relative gap 10% is applied.  
b Six CPU cores are used. Deterministic parallel mode is applied. 
 

5.2 Combined Model 

Another approximation scheme is to add the utility cost terms to the objective function of Model (M5) in 

order to optimize both the utility cost and weighted contribution of number of units. This scheme tends to 

reduce the degeneracy caused by unity coefficients of all the binary variables. Assuming that the identity 

of the subnetworks remains unchanged, the combined model is as follows: 
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where qS  and qW  are index sets for all hot utilities and cold utilities present in subnetwork q; qS
mQ ,  and 

qW
nQ ,  are the heat load of hot utility m and cold utility n in subnetwork q; wα  is the weight factor, for the 

minimum number of units term in the objective. The value of wα  can be tuned to achieve both a good 

approximate solution and a short solution time. 

 

The results for the combined model (M6) under different αw are compared in Table 17. For better 

comparison, only the sum of the binary variables is reported. The results demonstrate a trade-off between 

solution quality and solution time. By using a small value for αw (αw = 10), Model (M6) is the least 

similar to the base model (M5) and more similar to the LP transshipment model (M0). Thus, the CPU 

times are quite short but the solutions differ by up to 10 units in the largest instance. With a larger value 

for αw (αw = 50) Model (M6) becomes more similar to (M5), and the solution quality is improved 

(showing a discrepancy of  up to 6 units in the largest case), but the CPU times greatly increase. It is 

difficult to determine a suitable value of αw for all cases. Generally, the combined model achieves good 

solution quality for balanced cases and short solution times for unbalanced cases.  
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Table 17. Optimization results and solution times for combined models 

Case Base Model (M5) a,b Combined Model (M6) a,c 
αw = 10 αw = 25 αw = 50 

∑ yij CPU Time (s) ∑ yij CPU Time (s) ∑ yij CPU Time (s) ∑ yij CPU Time (s) 
Balanced Streams 

5H, 5C 24 0.4 25 0.2 25 0.4 25 0.5 
8H, 8C 35 37.2 36 3.0 35 41.0 35 79.8 

10H, 10C 42 423.5 45 5.0 44 96.0 43 1,748.1 
12H, 12C 48 26,817.0 52 3.3 50 174.9 48 18,836.6 
15H, 15C 57 > 100,000 64 5.7 63 29,390.4 61 > 100,000 

Unbalanced Streams 
5H, 5C 26 0.3 26 0.1 26 0.1 26 0.1 

10H, 10C 39 6.6 45 0.6 45 0.8 43 0.9 
15H, 15C 55 511.1 61 3.2 61 3.7 59 24.5 
17H, 17C 67 18,605.7 73 39.8 75 6.8 71 330.2 
20H, 20C 77 > 100,000 87 46.2 88 29.0 83 190.2 

a Branching priority (𝑦𝑖𝑗
𝑞 .prior = 1/𝑄𝑖𝑗

𝑈,𝑞) is selected. RINS is invoked every 3,000th node. 
b Absolute gap 0.99 is applied. 
c Relative gap 1% is applied. 
 

5.3 Reduced MILP Model 

Another solution approach is to fix part of the binary variables in Model (M5) and solve a reduced MILP 

model. The solution of the LP relaxation of Model (M5) can be used to fix the binary variables. The basic 

idea is that binary variables with the value of zero in the LP relaxation will tend to have the value of zero 

in the MILP solution. We define a set for these "zero" binary variables and fix them to zero in the full 

MILP model. However, this assumption may not hold true for all cases. Therefore, we develop a test to 

exclude some “zero” binary variables that could possibly be one in the final solution, fixing only those 

binary variables which have the highest probability to be zero in (M5) and then solving the reduced model. 

 

The procedure to derive the reduced MILP model is as follows: 

Initial:  Define the set of binary variables with the value of zero as . Set ∅.  
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Step 1:  Solve the LP relaxation problem, which can be the LP relaxation of the original transshipment 

model (M1), the disaggregated transshipment model (M3), or the transportation model (M4). Let 0Yy q
ij ∈  

if 0=q
ijy  in the solution of LP relaxation. Record the reduced cost of q

ijy  as q
ijrc . 

Step 2:  Solve the following reduced MILP model: 
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 If Model (M5-R) is feasible, record the optimal values of the binary variables q
ijy  as q

ijŷ , go to 

Step 3. If Model (M5-R) is infeasible, for every (i’, j’) such that 0'' Yyq
ji ∈ , check the value of 

reduced cost q
jirc '' ; keep q

jiy ''  in 0Y  if 0'' =q
jirc , and remove q

jiy ''  from 0Y  if 0'' ≠q
jirc ; go to 

Step 4. 
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Step 3:  The goal is to test whether any 0Yy q
ij ∈  from Step 2 should be set to one. For every (i’, j’) such 

that 0'' Yyq
ji ∈ , solve the following LP test problem for 1'' =q

jiy : 
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Check the value of heat exchange for (i’, j’): ∑
∈

=
qKk

kji
q

ji QQ '''' . If 0'' =q
jiQ , keep q

jiy ''  in 0Y ; if 

0'' >q
jiQ , remove q

jiy ''  from 0Y .  

Step 4:  For Set 0Y  determined in Step 2 or 3, solve Model (M5-R), and obtain the final solution, which is 

the approximate solution of Model (M5). 

 

Results for reduced MILP models derived from the LP relaxations of different formulations are listed in  

Table 18. The reduced model achieves good approximate solutions with significantly reduced solution 

times for most of cases. In some cases, the reduced model successfully solved the problem to the exact 

solution in less than one tenth of the original time. The LP relaxation formulation has significant 

influence on the performance of the reduced model. By using the LP relaxation of the original 
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transshipment model, which may be loose, Model (M5-R) could be infeasible in Step 2 of the above 

procedure; then set 0Y  is refined by the reduced cost of q
ijy  in the LP relaxation instead of solving a series 

of test problems and, hence, more binary variables tend to be fixed to zero in the final reduced MILP 

model, which leads to fast solution times but poor solution quality. The solution quality can be improved 

by using tighter LP relaxations, such as relaxation of disaggregated models. The reduced MILP, however, 

is still not able to solve the largest problems, but it provides good approximations for medium- to large-

scale problems. 

 

Table 18. Optimization results and solution times for reduced MILP models 

Case 
Full (Base) Model 

(M5) a 

Reduced Model (M5-R) a 
LP Relaxation of 

Original Transshipment 
Model b 

LP Relaxation of 
Disaggregated 

Transshipment Model b 

LP Relaxation of 
Transportation Model b 

∑ yij  CPU Time (s) ∑ yij  CPU Time (s) ∑ yij  CPU Time (s) ∑ yij  CPU Time (s) 
Balanced Streams       

5H, 5C 24 0.4 25 2.0 24 3.6 24 2.3 
8H, 8C 35 37.2 36 6.2 35 6.9 36 5.9 

10H, 10C 42 423.5 44 7.6 43 26.1 43 62.0 
12H, 12C 48 26,817.0 52 62.7 48 319.8 48 1,222.8 
15H, 15C 57 > 100,000 58 > 100,000 59 > 100,000 59 > 100,000 

Unbalanced Streams       
5H, 5C 26 0.3 26 1.7 26 2.0 26 1.8 

10H, 10C 39 6.6 42 3.7 41 4.9 41 10.9 
15H, 15C 55 511.1 61 12.5 56 45.0 55 310.8 
17H, 17C 67 18,605.7 72 61.9 70 53,486.5 70 6,631.7 
20H, 20C 77 > 100,000 86 159.0 79 > 100,000 82 > 100,000 

a Branching priority (𝑦𝑖𝑗
𝑞 .prior = 1/𝑄𝑖𝑗

𝑈,𝑞) is selected. RINS is invoked every 3,000th node. Absolute gap 0.99 is 
applied. 
b LP relaxation problem that determines which integer variables to be fixed at zero. 
 

Since both the reduced MILP model and the parallel computing option are the most promising, we can 

combine them for the solution of large-scale problems. Table 19 shows the solution times for reduced 

MILP models with a multi-core CPU. The reduced model derived from the LP relaxation of the original 

transshipment model is not studied here because it obtains relatively poor solutions as previously shown 

in Table 18. The reduced MILP model plus parallel computing achieves the best overall performance 
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among all options studied so far in this paper, and it is the only option that obtains a good approximate 

solution for the case of balanced streams, 15H, 15C, within reasonable time. The reduced model derived 

from the LP relaxation of disaggregated transshipment model outperforms that of transportation model in 

most cases. 

 

Table 19. Optimization results and solution times for reduced MILP models with parallel computing 

Case Full (Base) Model (M5) a,b 

Reduced Model (M5-R) a,b 
LP Relaxation of 

Disaggregated 
Transshipment Model 

LP Relaxation of 
Transportation Model 

∑ yij  CPU Time (s) ∑ yij  CPU Time (s) ∑ yij  CPU Time (s) 
Balanced Streams 

5H, 5C 24 0.5 24 3.8 24 3.5 
8H, 8C 35 10.9 35 7.4 36 7.3 

10H, 10C 42 160.0 43 12.6 43 25.7 
12H, 12C 48 5,180.9 48 110.2 48 243.1 
15H, 15C 57 > 100,000 59 13,657.5 59 > 100,000 

Unbalanced Streams 
5H, 5C 26 0.2 26 2.3 26 2.2 

10H, 10C 39 8.6 41 5.3 41 8.5 
15H, 15C 55 184.4 56 38.2 55 133.7 
17H, 17C 67 6,951.6 70 4,353.7 70 984.4 
20H, 20C 77 > 100,000 79 > 100,000 82 > 100,000 

a Branching priority (𝑦𝑖𝑗
𝑞 .prior = 1/𝑄𝑖𝑗

𝑈,𝑞) is selected. RINS is invoked every 3,000th node. Absolute gap 0.99 is 
applied. 
b Six CPU cores are used. Deterministic parallel mode is applied. 
 

5.4 NLP Reformulation 

The last approximation scheme is to reformulate the MILP model into a continuous NLP model to avoid 

combinatorial search and to take advantage of the fast speed of NLP solvers. The binary variables are first 

relaxed as continuous variables. To enforce the integrality of these binary variables in the spirit of 

complementarity problems (Biegler and Grossmann, 2004), we can either add the penalty term 

( )∑ ∑
∈ ∈

−
q qHi Cj

q
ij

q
ij yy 1  to the objective function, or add the inequalities ( ) ε≤− q

ij
q
ij yy 1  ( qHi∈∀ , qCj∈∀ , 

where ε  is a small positive number). The latter option usually causes numerical difficulties for finding 
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feasible solutions. Hence, it is not selected in this study. The NLP reformulation of Model (M5) or (M3) 

is presented below: 
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where nlpβ  is the penalty factor to enforce the integrality of all q
ijy . 

 

In this study, nlpβ  is set to be 1000, which is large enough to ensure integrality of q
ijy . Since NLP solvers 

are often trapped in local optimal solutions, a multi-start NLP solver is used to try to obtain a high-quality 

solution that is close to the global optimum. The following procedure is implemented to improve the 

solution quality: 

Initial:  Define the upper bound of the objective of Model (M7) as up
nlpZ . Set +∞=up

nlpZ . Add the 

equation up
nlpnlp ZZ ≤  to the constraints of Model (M7). The obtained new model is denoted (M7-

R). 

Step 1:  Solve Model (M7-R) by using a multi-start NLP solver (e.g., OQNLP in this study). Record the 

optimal objective value as l
nlpZ . 

Step 2:  Update 1l
nlp

up
nlp −= ZZ . 

Repeat  Step 1 and 2 Until Model (M7-R) is infeasible. 

 



38 
 

The above procedure tries to force the NLP solver to find a better solution by gradually reducing the 

upper bound of the objective. The results for the NLP reformulation are shown in Table 20. Despite the 

relatively short solution times, the NLP reformulation fails to find good approximate solutions, especially 

for large-scale cases, overestimating the number of units by up to 18. 

 

Table 20. Optimization results and solution times for NLP reformulation 

Case MILP (Base) Model (M5) a NLP Model (M7) b 
Optimal Value CPU Time (s) Optimal Value CPU Time (s) 

Balanced Streams 
5H, 5C 24 0.4 26 82.0 
8H, 8C 35 37.2 39 233.6 

10H, 10C 42 423.5 48 202.5 
12H, 12C 48 26,817.0 53 458.5 
15H, 15C 57 > 100,000 70 1,291.9 

Unbalanced Streams 
5H, 5C 26 0.3 26 81.9 

10H, 10C 39 6.6 46 864.8 
15H, 15C 55 511.1 66 1,242.7 
17H, 17C 67 18,605.7 79 1,674.0 
20H, 20C 77 > 100,000 95 14,804.0 

a Branching priority (𝑦𝑖𝑗
𝑞 .prior = 1/𝑄𝑖𝑗

𝑈,𝑞) is selected. RINS is invoked every 3,000th node. Absolute gap 0.99 is 
applied. 
b βnlp = 1000. OQNLP is used as the NLP solver. 
 

6. Conclusions 

In this paper, it is shown that the solution time of the MILP transshipment model increases exponentially 

with the problem size due to the combinatorial explosion in the selection of potential matches. Problems 

with unbalanced streams, which may be less symmetric, are easier to solve than those with balanced 

streams. By using weight factors in the objective function, the solution time is reduced but more units are 

usually introduced in the optimal solution. 

 

Several different approaches have been developed for faster solution of the MILP transshipment model. 

Model reformulations, including model disaggregation and adding integer cuts, can both strengthen the 
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LP relaxation and reduce the solution time. The disaggregated transshipment model with additional 

integer cuts was found to be the best formulation in this study. 

 

Several additional solution strategies have been investigated. The branching priority, which first branches 

the binary variable with the largest upper bound, together with RINS is a promising approach for faster 

solutions. Branching priority with strong branching is another good option. When a multi-core CPU is 

available, parallel computing can significantly reduce time to solution. In fact among all options to obtain 

a rigorous solution this was found to be the most effective. 

 

Instead of obtaining the exact global optimal solution, several approximation approaches have been 

studied for finding a good approximate solution in short time. A 10% relative optimality gap is a good 

approach, which solves some large-scale cases in reasonable times. The combined model with utility costs 

greatly reduces the solution time, although it is difficult to determine a proper weight factor for obtaining 

high-quality solutions. The reduced MILP model is another suggested approach, which is very effective, 

reducing the solution time by one to two orders of magnitudes, while still finding good approximate or 

even exact solutions. The reduced MILP model combined with parallel computing achieves the best 

overall performance among all the options presented in this paper with relatively modest overestimation 

of the minimum number of units (see Table 19). The NLP reformulation was fast but produced poor 

solutions for large-scale problems. 

 

In summary, by applying the proposed approaches in this paper, the MILP transshipment model can be 

solved for relatively large-scale problems, that is, 12H, 12C with balanced streams and 17H, 17C with 

unbalanced streams, in reasonable times. However, it is still quite difficult to solve problems above 15H, 

15C with balanced streams, and 20H, 20C with unbalanced streams, even with approximation schemes. 
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Appendix 

A.1 Stream Information 

Table A1. Stream information for balanced streams a 

Hot Streams b Cold Streams b 
Stream No. FCp (MW/°C) Tin (°C) Tout (°C) Stream No. FCp (MW/°C) Tin (°C) Tout (°C) 

1 1 400 120 1 1.5 160 400 
2 2 340 120 2 1.3 100 250 
3 1.5 380 150 3 2.5 50 300 
4 2.5 300 100 4 2.8 200 380 
5 1.7 420 160 5 1.9 150 450 
6 0.8 390 110 6 0.8 100 180 
7 1.2 360 200 7 1.7 200 350 
8 1.8 280 130 8 1.6 120 330 
9 1.1 250 80 9 0.9 110 220 

10 1.3 330 170 10 2.1 190 360 
11 2.1 430 300 11 1.8 260 420 
12 2.2 200 100 12 1.2 80 180 
13 1.2 150 70 13 1.6 130 390 
14 1.6 330 180 14 1.4 180 260 
15 1.9 370 115 15 2 155 365 
16 1.4 355 105 16 1 95 480 
17 0.9 310 130 17 1.1 175 385 
18 1.3 260 90 18 1.5 130 290 
19 1.1 300 115 19 2.2 210 430 
20 2.3 265 190 20 1.7 230 370 

a Hot utility: high-pressure steam (500°C), medium-pressure steam (350°C). Cold utility: cooling water (20-30°C). 
b Each case study selects a subset of streams in this table. A case with mH and nC means that the first m hot streams 
and first n cold streams in this table are selected. 
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Table A2. Stream information for unbalanced streams a 

Hot Streams b Cold Streams b 
Stream No. FCp (MW/°C) Tin (°C) Tout (°C) Stream No. FCp (MW/°C) Tin (°C) Tout (°C) 

1 6 400 120 1 14 160 400 
2 2 340 120 2 3 100 250 
3 0.5 380 150 3 0.4 50 300 
4 8 300 100 4 2.5 200 380 
5 3 420 160 5 2 150 450 
6 4 390 110 6 6 100 180 
7 0.2 360 200 7 1.5 200 350 
8 0.6 280 130 8 0.2 120 330 
9 1.5 250 80 9 5.5 110 220 

10 4 330 170 10 3 190 360 
11 12 430 300 11 8 260 420 
12 8 200 100 12 12 80 180 
13 5 150 70 13 0.3 130 390 
14 0.6 330 180 14 4.5 180 260 
15 0.3 370 115 15 1 155 365 
16 6 355 105 16 0.1 95 480 
17 0.9 310 130 17 7 175 385 
18 3 260 90 18 2 130 290 
19 1 300 115 19 0.5 210 430 
20 0.3 265 190 20 1.7 230 370 

a Hot utility: high-pressure steam (500°C), medium-pressure steam (350°C). Cold utility: cooling water (20-30°C). 
b Each case study selects a subset of streams in this table. A case with mH and nC means that the first m hot streams 
and first n cold streams in this table are selected. 
 
A.2 Problem Sizes 

Table A3. Problem sizes of MILP transshipment models for cases with balanced streams 

Case Number of Streams Number of Binary 
Variables 

Number of Continuous 
Variables 

Number of 
Constraints 

5H, 5C     
      Subnetwork 1 3H, 3C 12 38 32 
      Subnetwork 2 5H, 5C 30 94 61 
      Subnetwork 3 5H, 4C 25 105 65 
8H, 8C     
      Subnetwork 1 5H, 4C 24 85 61 
      Subnetwork 2 8H, 7C 63 236 121 
      Subnetwork 3 8H, 6C 56 250 127 
10H, 10C     
      Subnetwork 1 5H, 5C 30 96 69 
      Subnetwork 2 10H, 9C 99 471 199 
      Subnetwork 3 10H, 8C 90 492 209 
12H, 12C     
      Subnetwork 1 6H, 6C 42 148 95 
      Subnetwork 2 11H, 10C 119 665 249 
      Subnetwork 3 11H, 9C 109 678 262 
15H, 15C     
      Subnetwork 1 7H, 8C 64 242 137 
      Subnetwork 2 13H, 13C 181 975 339 
      Subnetwork 3 14H, 12C 176 1477 453 
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Table A4. Problem sizes of MILP transshipment models for cases with unbalanced streams  

Case Number of Streams Number of Binary 
Variables 

Number of Continuous 
Variables 

Number of 
Constraints 

5H, 5C     
      Subnetwork 1 3H, 3C 12 38 32 
      Subnetwork 2 5H, 5C 30 94 61 
      Subnetwork 3 5H, 4C 25 105 65 
10H, 10C     
      Subnetwork 1 5H, 5C 30 96 69 
      Subnetwork 2 7H, 7C 56 172 99 
      Subnetwork 3 10H, 10C 110 791 286 
15H, 15C     
      Subnetwork 1 7H, 8C 64 242 137 
      Subnetwork 2 14H, 15C 220 1476 454 
      Subnetwork 3 11H, 9C 108 976 309 
17H, 17C     
      Subnetwork 1 8H, 10C 90 407 195 
      Subnetwork 2 15H, 15C 239 1685 476 
      Subnetwork 3 15H, 13C 205 1966 541 
20H, 20C     
      Subnetwork 1 8H, 12C 108 482 226 
      Subnetwork 2 18H, 18C 339 3369 743 
      Subnetwork 3 18H, 14C 265 2435 647 
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