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Abstract

We present Pyosyn, an open-source framework for systematic superstructure-
based process synthesis, including a new representation, superstructure gener-
ation approaches, modeling, and solution strategies. The new Pyosyn Graph
(PSG) representation consists of units, ports, and streams, and includes support
for nested units, including new “single-choice” units and modular superstructure
construction. We introduce superstructure generation strategies based on both
library-assisted and direct-hierarchical means-ends analysis. For the library-
assisted approach, we describe generalized port annotations that describe con-
ditions for compatibility between connected unit ports. We extend literature
methods to present seven screening rules based on new material port annotations
that categorize process chemical species as primary, secondary, or residual. We
then describe high-level mathematical modeling of PSG representation elements
using Pyomo.Network and Pyomo.GDP, including the automated handling of
special cases. We also introduce the use of tailored logic-based decomposition
algorithms to address “zero-flow” singularities characteristic of synthesis prob-
lems. Finally, we demonstrate the flexible use of Pyosyn tools on a set of diverse
case studies.

Keywords: conceptual design, mathematical programming, generalized
disjunctive programming, process synthesis, open source

1. Introduction

Recent developments have brought new opportunities as well as new chal-
lenges for the chemical process industry, including availability of inexpensive
feedstocks from the shale gas revolution in the U.S., rising awareness of envi-
ronmental impacts, evolving regulatory landscapes, and renewed volatility in5
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market conditions (Grossmann and Harjunkoski, 2019). The industry must de-
cide how to best adapt its business practices to most effectively provide society
with the fuels, polymers, pharmaceuticals, and other chemical goods necessary
to sustain increasing standards of life across the world. Integral to these anal-
yses are the process flowsheet designs themselves, both for the construction of10

new process plants and the retrofit of existing facilities. In crafting these new
designs, decision-makers must choose between novel modular and/or intensified
processing options that promise new operating modes and economic gains, or
the time-tested efficiency and reliability of conventional large-scale processing
plants.15

Advances in conceptual process design aim to help decision-makers in as-
sessing existing and prospective technology alternatives. Several broad re-
views in overall flowsheet design may be found in literature (Tsay et al., 2018;
Chen and Grossmann, 2017; Barnicki and Siirola, 2004; Westerberg, 2004), with
other authors focusing on recent challenges such as sustainability/circular econ-20

omy (Mart́ın and Adams II, 2019; Avraamidou et al., 2020), process intensifi-
cation (Sitter et al., 2019; Tula et al., 2019a; Tian et al., 2018a), and modular
design (Baldea et al., 2017). Three main conceptual design approaches are
described in the literature: evolutionary methods (Stephanopoulos and Wester-
berg, 1976), hierarchical decomposition (Douglas, 1985; Siirola and Rudd, 1971),25

and superstructure-based methods (Sargent and Gaminibandara, 1976).
Evolutionary methods involve iterative variations from a starting base case,

utilizing various rules for permuting the design (Nishida et al., 1981; Neveux,
2018). Some recent authors also refer to these methods as “superstructure free”
strategies (Boonstra et al., 2016). These techniques rely on effective permuta-30

tion rules to cover desirable regions of design space. In general, convergence
guarantees in finite time are not available, with termination criteria commonly
defined in terms of a time limit or a stalling of progress between successive
iterates.

Hierarchical decomposition involves a sequence of decisions made at progres-35

sively refined detail levels. Douglas (1988) defines these detail levels as:

1. Batch versus continuous

2. Input-output structure

3. Recycle structure and reactors

4. Separation systems40

5. Heat exchanger network

The intuition is to first make those decisions at a high level that are most conse-
quential, and then to refine the behaviors of flowsheet subsystems to arrive at an
optimal flowsheet. Heuristics and rules-of-thumb guide decision-making at each
decision level. These can be based on targeting techniques Horn (1964); Glasser45

et al. (1987) and pinch analysis Linnhoff and Hindmarsh (1983); Hohman (1971),
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or other forms of engineering judgement. Through the use of these decision lev-
els, hierarchical decomposition modularizes the decision-making process, creat-
ing an intuitive design procedure for decision makers. However, potential inter-
actions between decision levels become more difficult to capture, e.g. between50

process design and heat integration (Lang et al., 1988; Duran and Grossmann,
1986b). More recent work in this area, e.g. by Tula et al. (2019b), combine
library knowledge with thermodynamic insights to address these challenges.

Superstructure optimization aims to provide a systematic search over the
entire relevant design space, by postulating all relevant permutations of the55

process alternatives and their interconnections (captured as a superstructure),
then formulating a mathematical programming model and solving it to identify
the optimal design. The use of mathematical programming confers one of the
main advantages of superstructure-based synthesis—a mathematical optimality
guarantee (with global optimization techniques) of the maximum gap with re-60

spect to the user-specified objective function, between a feasible flowsheet and
the best possible design embedded in the superstructure. This approach relies
on the success of three main steps:

1. Generation of a superstructure embedding the relevant flowsheet alterna-
tives65

2. Formulation of a tractable mathematical programming model

3. Solution with a mathematical programming code to obtain optimal flow-
sheet design

The first step is generation of a superstructure representation that embeds the
optimal flowsheet. The optimal design must be a subgraph of the superstructure70

to be successfully identified (Westerberg, 2004; Agrawal, 1996). The choice of
representation can also have an impact on the tractability of the later solution
step (Yeomans and Grossmann, 1999). Mencarelli et al. (2020) provide a de-
tailed review of superstructure representations and their respective generation
techniques. Next, the superstructure must be translated into a mathematical75

model that captures the relevant decision logic and constraints. Even under
ideal thermodynamic assumptions, a flowsheet design involving multiple chemi-
cal species will usually yield a Mixed-Integer Nonlinear Programming (MINLP)
model with both continuous and discrete decision variables, and with non-convex
variable relationships (Trespalacios and Grossmann, 2014). More recently, Gen-80

eralized Disjunctive Programming (GDP) has also gained popularity as an al-
ternative modeling approach. We discuss these modeling approaches in more
detail in Section 5. Finally, given the difficult class of optimization problems
that result from process design applications, advanced solution algorithms are
often necessary to arrive at optimal or near-optimal candidate solutions and85

to converge the optimality within a given tolerance. Trespalacios and Gross-
mann (2014) and Kronqvist et al. (2019) provide recent reviews of MINLP and
GDP solution algorithms. We also further elaborate on solution strategies in
Section 6.
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Despite these academic accomplishments, industrial practice largely remains90

partial enumeration, in which a set of prospective case studies are run to ana-
lyze specific feasible flowsheet configurations. As a result, a longstanding am-
bition of our community has been the development of effective computational
tools to make state-of-the-art techniques accessible to both practitioners and
fellow researchers. Software tools to support synthesis range from commer-95

cial process simulators to specialized tools for the synthesis of specific subsys-
tems, for example, SYNHEAT (Yee and Grossmann, 1990) for heat exchanger
network synthesis. Of particular interest are general purpose process synthe-
sis tool sets. PROSYN (Schembecker et al., 1994) and ICAS (Gani et al.,
1997) are the main tools that support a hierarchical decomposition design ap-100

proach. For superstructure-based synthesis, MIPSYN (Kravanja and Gross-
mann, 1990), Super-O (Bertran et al., 2017), P-Graph Studio (Friedler et al.,
2019), and SYNOPSIS (Tian et al., 2018b) are the actively developed platforms.
Of superstructure-based frameworks, Super-O has made notable inroads among
the industrial space. However, there remain hurdles to widespread adoption of105

these tools.
These hurdles include lack of awareness, a high cost of adoption, and the

inherent difficulty of optimal process flowsheet design problems. Lack of aware-
ness stems both in terms of the value of conceptual design, and in how to use
these tools. The solution to this lies in education, both to students at our aca-110

demic institutions and among our collaborators. The high cost of adoption also
deters some potential users. This begins with availability. Though their frame-
works and methods may be described in literature, none of the tools listed above
are yet released on an open-source basis. Even when the tools are available, it
may be a challenge to integrate pre-existing models and analysis workflows,115

which may be developed in custom software. Finally, it can be computation-
ally difficult to solve the large mathematical programming problems associated
with superstructure synthesis to obtain a feasible and optimal solution. Prac-
titioners are often unaware of the scope of design that can be addressed with
state-of-the-art tools.120

In seeking solutions to the conceptual design problem, these tools must also
balance a fundamental trade-off of process synthesis analyses: between general-
ity, fidelity, and tractability (see Figure 1). We denote this the “central trade-

Generality

Fidelity Tractability

Figure 1: Central trade-off of process synthesis strategies

off” of synthesis. In the central trade-off, generality refers to the scope of design
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space that a given synthesis technique is able to enumerate, whether implicitly125

or explicitly. With great recent interest in process intensification (Stankiewicz,
2018), promising great improvements to cost, equipment size, and process reli-
ability, several authors have proposed design strategies with chemical/physical
phenomena as the base-level flowsheet building blocks, rather than equipment
or processing tasks (see review by Sitter et al. (2019)). At the same time, the130

models describing interconnection and selection of these phenomena must be
sufficiently detailed to capture the synergistic effects of intensification. That is,
they must have reasonably high fidelity. However, a design trade-off favoring
generality and fidelity often struggles with tractability, as state-of-the-art solu-
tion strategies may not be able to identify good solutions, let alone potentially135

optimal ones. This trade-off is broadly relevant, as with enterprise-wide opti-
mization (Grossmann, 2014), a process design may take place in the context of a
larger petrochemical complex, or even a multi-site processing network; however,
attempting to model all process elements at a high level of detail may be chal-
lenging to even simulate, a necessary prerequisite of optimization. As a result140

of the adoption hurdles and the inherent difficulties of synthesis, there remains
wide scope for continued advances in process design.

In this paper, we introduce Pyosyn, a new flexible framework for conceptual
process design, within the IDAES process systems engineering tool set (Miller
et al., 2018). Pyosyn postulates an open-source collection of inter-operable145

methods and tools, interlinked using the Python general purpose programming
language. Where stable versions of Pyosyn software components are available,
we highlight their use and function; otherwise, we describe the methods and
logic required to link framework elements together. Pyosyn may not be the
final solution to all of the challenges listed above; however, we intend for it150

to serve as an open platform upon which the community may try new ideas,
and expose new audiences to the benefits of systematic design. By adopting a
modular design, we offer users the ability to select the components of Pyosyn
that are most useful to their needs, and to integrate their own custom solution
for other capabilities. In the following sections, we describe functionality present155

in the various components of Pyosyn, and how it may be adapted to suit different
design applications. In Section 3, we introduce the Pyosyn Graph (PSG), a new
superstructure representation for Pyosyn. In Section 4, we describe generation
approaches for PSG. We then discuss translation of the PSG representation
into a logical model in Section 5, followed by the suite of supported solution160

strategies in Section 6. We demonstrate the Pyosyn design approaches and its
adaptability with case studies in Section 7. Finally, we conclude in Section 8.

2. Problem statement

In this paper, we define the conceptual design problem as follows: given
a set of potential raw materials and desired end products, as well as a set165

of processing alternatives, identify the process flowsheet, equipment sizes, and
operating conditions that optimize an economic, social, and/or environmental
objective.
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Several adaptations of this problem are possible to accommodate different
applications. For example, alternative objectives can be adopted. For multi-170

objective design, the ε−constraint method is popular (Ehrgott and Wiecek,
2005); we refer the reader to a review by Marler and Arora (2004) for more
details. In retrofit design, existing equipment can be added as an alternative,
and their costs can be adjusted to better reflect the trade-offs. In situations
where multiple feed and/or product candidates exist, they can also be added as175

alternatives.
Conceptual design often takes place within the context of a broader analysis–

for example, as part of a feasibility study for a new product launch. Its results
may form the basis for a subsequent detailed design study, or may be used to
guide the direction of related process technology research. That is to say, concep-180

tual design is rarely a once-through exercise, and the analysis may be repeated
to explore the Pareto-frontier between multiple objectives, or the constituent
model assumptions may be revisited based on further analysis. A conceptual
design framework must therefore be flexible enough to allow a decision-maker
to pose the questions relevant to their analysis.185

Model library
Helmet ALAMOpy PySMO

Data-driven models

GDP model

GDPopt
solver

Subproblem models
Full space

MINLP model

Algebraic solvers

PSG superstructure

Optimal flowsheet

Pyosyn

IDAES further analysis

Custom
repn.

Custom
constr.

Custom
solvers

External
analyses

External
data

Custom
models

Define design problem

Generate superstructure alternatives

Model superstructure logic

Generate algebraic models

Solve conceptual design problem

Further analysis

Figure 2: Pyosyn framework conceptual flow diagram, illustrating key components and flexible
integration points. Abbreviations: repn = representation; constr = constraints.

Based on these challenges, we adopt the following guiding principles in de-
signing Pyosyn:

1. Intuitive representations
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2. Systematic transformations to algebraic models

3. Flexible solution strategies190

4. Open architecture

Intuitive representations for both the superstructure topology—through an
inherently modular implementation—and the high-level decision logic—through
an explicit syntax—facilitate ease-of-use for Pyosyn users. Both help manage
complexity as iterative adjustments are made to design assumptions or design195

goals. Systematic, automated reformulations from the logical model to alge-
braic forms facilitate the ability to make model adjustments using higher-level
intuitive representations, without the need to propagate these changes manually
to solver-compatible syntax. Flexible solution strategies without the need for
model adjustments in Pyosyn allows for more robust solution of synthesis prob-200

lems, as one approach may be able to provide a solution when others fail. And
finally, the open-source implementation of Pyosyn gives transparency into its
functionality, facilitates future research development, instils confidence in the
software, and allows for arbitrary customization.

Figure 2 gives a broad overview of the components of Pyosyn, as well as205

its potential interfaces to other IDAES tools (Miller et al., 2016) and external
data/specifications. To define the design problem, alternatives from the IDAES
unit model library (Lee et al., 2018) may be used, in addition to data-driven
models built using IDAES surrogate model-building tools. Superstructure units
based on custom models may also be used with Pyosyn, providing that they210

define the appropriate flowsheet interfaces using unit ports (see Section 3.1.2).
Next, Pyosyn supports the generation of a superstructure representation

via Pyomo.Network and the underlying graph representation using the Python
package networkx (Hagberg et al., 2008). In Section 3, we describe the Pyosyn
Graph representation, and generation strategies in Section 4. However, a cus-215

tom representation (e.g. a superstructure for HEN or utility plant synthesis)
may also be used with Pyosyn, provided that it can be translated to a logical
or algebraic mathematical programming model.

Flexibility is also provided for modeling superstructure logic and translating
it to a mathematical form. Here, Pyosyn employs Pyomo.GDP (Chen et al.,220

2018) to offer high-level logical syntax for describing superstructure logic. Ad-
vanced solvers in Pyomo.GDP such as GDPopt (Chen et al., 2018) can directly
address these logic-based models, but systematic reformulations are also pos-
sible to conventional algebraic forms. Custom model specifications may be in-
troduced into Pyosyn through the addition of custom constraints. Likewise,225

custom solution routines can also be implemented for a given Pyosyn design
problem. Finally, the optimal flowsheet design can be passed to other IDAES
or external tools for further analysis.
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3. Superstructure representation

The choice of superstucture representation can impact the central trade-off230

of synthesis. As previously mentioned, a representation can affect the tractabil-
ity of the resulting algebraic model (Yeomans and Grossmann, 1999). Indeed,
the R-graph representation (Farkas et al., 2005) was conceived in large part to
improve tractability compared to the State-Equipment Network (SEN) repre-
sentation (Smith and Pantelides, 1995), or the State-Task Network with One235

Task, One Equipment (STN-OTOE) (Kondili et al., 1993). More recently, su-
perstructures have been introduced for process intensification with a greater
emphasis on generality (Demirel et al., 2017; Lutze et al., 2013; Kuhlmann and
Skiborowski, 2016), but sometimes to the detriment of tractability. Specialized
representations for subsystems have also long existed, e.g. for distillation se-240

quencing (Agrawal, 1996) and heat exchanger networks (Yee and Grossmann,
1990). We refer the reader to a recent critical review of existing superstructure
representations (Mencarelli et al., 2020).

The ideal superstructure representation is defined by three characteristics:
generality, ease of use, and tractability. Generality and tractability consid-245

erations here are the same as described for the central trade-off of synthesis.
The superstructure must embed the optimal configuration, and its complexity
impacts tractability. Ease of use is less well-defined in literature. However, its
characteristics include visual appeal, the existence of systematic approaches and
tools to support its generation, and the ease of modeling—elements that make250

it more intuitive to the process engineer and facilitate its adoption.
In this work, we introduce the Pyosyn Graph (PSG) representation with

these goals in mind. Among the sources of inspiration for the PSG, we highlight
the P-Graph (Friedler et al., 1992), STN (Kondili et al., 1993), SEN (Smith and
Pantelides, 1995), Unit-Operation-Port State Superstructure (UOPSS) (Kelly,255

2004), Unit-Port-Conditioning Stream (UPCS) (Wu et al., 2016), and Process-
ing Step-Interval Network (PSIN) (Bertran et al., 2017) representations. The
P-Graph and the UPCS representations both describe clear, graph-based sys-
tematic generation strategies, aiding in ease of use. The STN and SEN repre-
sentations offer visual representations similar to the familiar process flow dia-260

gram (PFD). These both describe a directed bipartite graph between tasks (or
equipment), with states as the connecting arcs. From the PSIN, we draw in-
spiration from its nesting of processing phenomena within each processing step-
interval “unit”. We also draw inspiration from the Pyomo algebraic modeling
language (Hart et al., 2017)—upon which we build Pyosyn—and its support for265

“Block”-centric hierarchical modeling (Friedman et al., 2013).

3.1. PSG Representation

The Pyosyn Graph (PSG) representation consists of three main represen-
tation elements: (1) units, representing potential system control volumes; (2)
unit ports, corresponding to boundaries through which flows of material and/or270

energy may take place; and (3) streams, which represent these flows between
control volumes.
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Figure 3: Demonstration of PSG representation elements.

3.1.1. Units

The processing units in the PSG are the central elements of the represen-
tation. We denote the set of PSG units U. Traditionally, superstructure units275

have been understood to represent alternative processing tasks (STN) (Kondili
et al., 1993) or equipment (SEN) (Smith and Pantelides, 1995) in the flow-
sheet. Here, we adopt a more general definition in which units can represent
any predetermined operation on a control volume. Many other existing repre-
sentations adopt this more general definition (Papalexandri and Pistikopoulos,280

1994; Friedler et al., 1992; Wu et al., 2016; Bagajewicz and Manousiouthakis,
1992). In many cases, the PSG unit will correspond to a physical piece of equip-
ment, as in the SEN or STN-OTOE (Yeomans and Grossmann, 1999). However,
as we illustrate below, a PSG unit can also represent a process subsystem, a
processing task, or a control volume within a potential piece of equipment. Like285

with the UOPSS (Kelly, 2004) and UPCS (Wu et al., 2016), the PSG introduces
two special types of units: source and sink units. Source and sink units gov-
ern the material/energy in and out flows, respectively, for their parent unit (or
at the top-most level, the overall flowsheet). Specifications on feed or product
qualities may be found here.290

Unlike previous representations, PSG units can be nested. We term the
containing unit as the “parent” unit, and its “children” are the units nested
within. The set Uu denotes the children of unit u ∈ U. This feature enables
the PSG to more readily capture the hierarchical mental model inherent in
most flowsheets, as well as to facilitate features for improved tractability. An295

example of nested units can be found in Figure 4, where unit 2 represents the
entire reaction section, including both reaction alternatives. PSG supports unit
nesting to an arbitrary depth, as a nested unit may also contain its own child
units.

When units are nested, source and sink nodes are created to correspond300

to each of the parent unit’s ports. We highlight the relationship between these
nodes and their parent unit’s ports in Figure 4, and subsequently, with a dashed
box. Adding these source and sink nodes increases the total number of units
and ports required for a PSG representation. In modern computational tools,
these extra representational aids add little complexity, and can be readily pre-305

9



Feed

1

Inlet

5

Rxn. 1

6

Rxn. 2

7

Outlet

8

2
Reaction section

Product
Option 1

3

Product
Option 2

4

p1,1 p2,1
p2,2

p3,1

p4,1

p5,1

p6,1 p6,2

p7,1 p7,2

p8,1

Figure 4: PSG representation with nested flowsheet units. Units 5, 6, 7, and 8 are children
of parent unit 2, representing the reaction section of the flowsheet. Dashed boxes indicate
the association between source unit 5 with parent port p2,1, and sink unit 8 with parent port
p2,2, respectively.

processed. In fact, we can even observe in Figure 5 that the bipartite graph
corresponding to the nested representation (Figure 5b) has fewer high-degree
ports than the unnested representation (Figure 5a). Due to automated sim-
plifications possible with degree 1 ports (see Section 5.4), unit nesting reduces
complexity. Support for unit nesting also affords the PSG representation the310

ability to conceptually group major decisions. Moreover, using these auxiliary
units (source/sink nodes associated with parent ports), streams never cross unit
boundaries, maintaining clearer interface boundaries. This nesting also allows
us to introduce “single-choice” units, describing process sections in which the
optimal flowsheet involves selection of only one unit among a set of alternatives,315

as may be the case with reactors in Figure 4. These features play into tractabil-
ity considerations for the PSG, as explained later in Section 5.2, where we also
elaborate further on single-choice units.

p1,1

p2,2

p3,2

p2,1

p3,1

p4,1

p5,1

(a) PSG without unit nesting (see Figure 3).

p1,1

p5,1

p6,2

p7,2

p2,2

p2,1

p6,1

p7,1

p8,1

p3,1

p4,1

(b) PSG with unit nesting (see Figure 4).

Figure 5: Bipartite representation of the outlet and inlet ports in the illustrative superstruc-
tures. Ports with degree > 1 are highlighted, demonstrating reduced complexity through unit
nesting.

10



In general, control volumes are understood to abide by material and energy
conservation. However, in superstructure flowsheet representations, some mate-320

rial and energy flows of lesser significance are often abbreviated away, implicitly
handled in the eventual mathematical model for the unit or simply ignored. For
example, a separation task in the STN (Kondili et al., 1993) does not explicitly
show the energy flows necessary for a distillation. Energy flows are also implicit
in the UPCS (Wu et al., 2016), both in the units and the conditioning streams.325

The PSG representation also supports this mode of use, with units permitted
to internally define handling of these quantities. In nested units, these relation-
ships can manifest as source and/or sink units not associated with a port on
their parent unit, creating implicit ports. However, in keeping with the prin-
ciples of Pyosyn, we encourage an explicit characterization of unit interfaces,330

when possible.

3.1.2. Ports and streams

Ports define the physical or conceptual interfaces on a unit’s control volume,
through which material and/or energy flow may take place. We denote the set
of ports P. The enumeration of these interfaces for each unit u is given by the335

set of port numbers PNu. A port is uniquely defined by both its associated unit
u and its port number pn ∈ PNu. In continuous interfaces where an infinite
number of ports might be justified (e.g. membrane systems), PSG ports may
be introduced at collocation points, or the interface may be manually defined
using custom constraints in a membrane unit.340

We define two main types of ports: inlet ports Pin and outlet ports Pout,
corresponding to flows into a unit and out from a unit, respectively. An inlet
port functions as a multi-stream mixer, and an outlet port functions as a multi-
stream splitter. We do not consider bidirectional flow in this work, so these
sets are disjoint: Pin ∩ Pout = ∅. For convenience, we also define the set of345

inlet ports connected to outlet port p ∈ Pout as Pp, and the set of the outlet
ports connected to inlet port p′ ∈ Pin as Pp′ . Among these, we also distinguish
between ports for material flow Pm and those for purely energy flow Pe.

In the PSG representation, streams serve only the conceptual function of
defining feasible connections between outlet ports and inlet ports. That is,350

streams are implicitly defined by the set of feasible pairings between outlet ports
and inlet ports, s ∈ S ⊆ Pout × Pin. If a stream does not exist, no flow may
take place between the corresponding outlet-inlet port pair. The combination
of ports and streams in the PSG creates a bipartite graph, from the outlet ports
to the inlet ports, similar to that of the UOPSS (Kelly, 2004) or UPCS (Wu355

et al., 2016) representations.

4. Superstructure generation

Means-ends analysis (MEA) forms the basis for most superstructure gener-
ation approaches. First introduced by Newell and Simon (1961), and applied to
chemical process synthesis problems by Siirola et al. (1971), MEA describes the360

11



recursive action of identifying tasks that bring an initial state (e.g. raw mate-
rials) to a final state (e.g. desired products). MEA sees two main modes of use
in superstructure generation: library-assisted or standalone. PSG is compatible
with both modes of generation. In the library assisted mode, MEA is used in
conjunction with a library of unit models, potentially augmented with the inclu-365

sion of custom models. MEA selects the library units (and, if applicable, their
respective number of occurrences) relevant to the design problem. From this
set of library units, the most straightforward generation approach is to form the
fully-connected graph between all outlet ports to all inlet ports, then to screen
based on connectivity rules. This strategy is adopted by Wu et al. (2016) for370

the UPCS superstructure, and we describe the equivalent adaptation in Pyosyn
for the PSG below. The P-Graph also uses MEA to determine the appropriate
connectivity for the superstructure, applying the algorithm detailed by Friedler
et al. (1993).

Pyosyn leverages the IDAES unit model library (Lee et al., 2018). Knowl-375

edge libraries (ontologies) in concert with model libraries have the potential
to automate parts of the superstructure generation procedure (Morbach et al.,
2007). However, as Pyosyn does not yet link to any such knowledge libraries,
we rely on user input for to select the appropriate library and custom super-
structure units. Using this model library and custom user models, the following380

steps describe generation of the desired PSG superstructure.

1. Generate all relevant major processing alternatives (classically, reaction
and separation units)

2. Generate all possible streams

3. Screen possible streams based on port annotations385

4. Generate supplementary conditioning alternatives (classically, heat ex-
changers, compressors, pumps, and turbines)

5. Generate necessary subsystems

First, we select all library units that describe major processing tasks needed.
We also group any top-level units that participate in mutually exclusive rela-390

tionships by nesting them in single-choice units. We then generate candidate
streams between all top-level outlet and inlet ports. Note that unit nesting
reduces the number of streams in the top-level flowsheet, as observed in the
comparison between Figure 3, with 6 top-level streams, and Figure 4, with 3
top-level streams.395

We next screen the set of candidate streams based on compatibility of the
port annotations between their outlet and inlet ports. The P-Graph approach
defines screening based on material state identities (Friedler et al., 1993). The
UPCS introduces an approach based on material species identities, defining
minimal and feasible components for each port (Wu et al., 2016). Minimal400

components are known to be present if the port exists, and feasible components
are those that are admissible, but not necessary. We generalize this approach
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based on the broader functionality of ports in the PSG representation. We
denote port annotations as general specifications placed on a port based on
species categorizations, port conditions, and port/unit identity. Other annota-405

tions may be defined, with the understanding that port existence is conditional
on satisfaction of the annotations.

For material flow ports, we define three subsets in the set of chemical compo-
nents Cp (also referred to as “species”) that may be present at a port p ∈ Pm.
An example of these classifications in use may be found later in Section 7.2.410

1. Primary (CI
p): species that must be present at the port when it is active.

An example would be the reactants for a reactor inlet port.

2. Secondary (CII
p ): species that may optionally be present in significant

concentrations, but are not critical to the proper function of a port for
its associated unit. An example would be an inert compound at a reactor415

inlet port.

3. Residual (CX
p ): species that may be present in very small concentrations

at a port, but do not serve a useful purpose for the port or its associated
unit.

We also define the set C?
p = CI

p ∪ CII
p as the set of useful species at port420

p ∈ Pm, and the set CF
p = C?

p∪CX
p as the set of feasible species at port p ∈ Pm.

Useful species at a port often serve some tangible function for the associated
unit. For example, even if an inert does not participate in a reaction, it may
function to moderate the temperature change from the heat of reaction. Infea-
sible chemical species c /∈ CF are those that should not be present in detectable425

quantities, for example, due to safety or material incompatibility concerns. Our
material port species category annotations are compatible with those given for
UPCS ports (Wu et al., 2016). We regard minimal UPCS components as pri-
mary PSG species, and feasible UPCS components are also regarded as feasible
for PSG.430

Based on these definitions, we propose the following set of port connectivity
rules for the PSG. The initial four are adapted from (Wu et al., 2016), with
additional rules added to exploit the nuance between feasible and useful species
in the PSG, and support other PSG extensions.

Rule 1. All species feasible in outlet port p ∈ Pp′ must be feasible in inlet port
p′ ∈ Pm

in, if there exists a stream connecting p and p′.

CF
p ⊆ CF

p′ , ∀(p, p′) ∈ Sm (1)

Rule 2. All primary species in inlet port p′ ∈ Pin must exist in the union of
useful species among connected outlet ports p ∈ Pp′ .

CI
p′ ⊆

⋃

p∈Pm
p′

C?
p, ∀p′ ∈ Pm

in (2)
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Rule 3. All outlet ports p ∈ Pm
p′ connected to a reactor inlet port p′ ∈ Pm

u , u ∈
{reaction units} must provide at least one of the inlet port’s useful species.

C?
p ∩C?

p′ 6= ∅, ∀p′ ∈ Pm
u ∩Pm

in,∀u ∈ reaction units,∀p ∈ Pm
p′ (3)

Rule 4. All outlet ports p ∈ Pm
p′ connected to a separator inlet port p′ ∈

Pm
u , u ∈ {separation units} must provide all primary inlet port species.

C?
p ∩CI

p′ = CI
p′ , ∀p′ ∈ Pm

u ∩Pm
in,∀u ∈ separation units,∀p ∈ Pm

p′ (4)

Rule 5. All primary components of outlet ports p ∈ Pm
p′ connected to inlet

port p′ ∈ Pm
in must be useful inlet port species.

CI
p ⊆ C?

p′ , ∀(p, p′) ∈ Sm (5)

Rule 6. Only connect material ports p ∈ Pm to other material ports.

p ∈ Pm ⇐⇒ p′ ∈ Pm, ∀(p, p′) ∈ S (6)

Rule 7. All material ports p ∈ Pm must have at least one useful species.

C?
p 6= ∅, ∀p ∈ Pm (7)

Note that Rules 1 and 3-6 primarily serve to screen out infeasible or imprac-435

tical streams, while Rules 2 and 7 screen out entire ports, and their associated
units. Rules 2 and 7 therefore primarily serve an error-checking purpose, as
incorrect or insufficient units may have been identified in Step 1 of generation.
In this work, we do not address additional rules that may govern energy ports
Pe.440

For additional error checking, note that the generality of port annotations
allows for the definition of feasible flow quantity ranges for each species. Con-
sider the extensive flow quantity, fp,c, of component c from port p. A primary
species would have a flow lower bound, fLBp,c , greater than zero in the PSG,

while a feasible component would have a flow upper bound, fUBp,c , greater than
zero. Through the use of interval arithmetic, a second screening layer is possible.
Each inlet/outlet port p ∈ P in the superstructure must satisfy the following re-
lationships in Equations (8) and (9) with respect to its corresponding connected
outlet/inlet ports p′ ∈ Pp:

fLBp,c ≤
∑

p′∈Pp

fUBp′,c , ∀p ∈ P,∀c ∈ Cp (8)

fUBp,c ≥
∑

p′∈Pp

fLBp′,c, ∀p ∈ P,∀c ∈ Cp (9)

That is, the lower bound for flow of species c at port p must be less than the
sum over the flow upper bounds for species c at its connected ports. If p is
an outlet port, this means that the maximum capacity across all of its outlet
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[0, 0] A
[0, 5] B

Figure 6: Bipartite graph representation of streams between outlet ports (on left) and inlet
ports (on right), with annotations indicating feasible flow ranges for each species.

streams must be sufficient to satisfy its minimum flow. Similarly, if p is an inlet
port, maximum capacity across inlet streams must satisfy minimum flow. As an445

illustration, consider the simple scenario depicted in Figure 6. Here, the stream
between p2,2 and p2,1 would be eliminated by Rule 1, since feasible component A
in p2,2 is not feasible for p2,1, after which applying Equation (8) on component
B for port p2,2 would flag the port as infeasible. By itself, this serves mostly
as an error-checking tool, highlighting units in the superstructure that may450

be implausible due to limitations on species flow rates. However, in concert
with simple input-output functions approximating the process units, bounds-
tightening (Puranik and Sahinidis, 2017) can be performed on the resulting
mass balance model of the superstructure as an additional screening step. Port
condition annotations are also possible, such as admissible temperature and455

pressure ranges. Enforcement of these conditions are usually deferred until
the next step, since multiple copies of conditioning unit types often occur in
a flowsheet. However, if the conditioning units are pre-specified, then these
condition ranges may also be used in the screening step. Finally, we also describe
annotations for port/unit identity specifications. These specifications hold, for460

example, that material ports should connect to other material ports, rather than
direct to energy ports.

Generation of the PSG superstructure can be implemented using the
networkx package (Hagberg et al., 2008) from graph representations in Python,
therefore facilitating easy data transfer with other Pyosyn components in465

Python. Each unit port would appear in the graph as a node, and the streams
would be arcs between the nodes. Networkx node attributes may be used to
store port annotations and the reference to a port’s parent unit. Release-quality
framework code to support use of these connectivity rules remains an open
opportunity, but provided the appropriate species classifications as input, these470

rules may be seen as sequentially applied filters on a list of valid streams.
Exclusion of a port would imply its exclusion from all of its relevant streams.

After screening, we insert temperature and/or pressure conditioning by ap-
plying MEA based on conditioning annotations of the outlet and inlet ports.
This modifies the superstructure graph, as the ports will no longer be directly475

connected; instead, they will be connected through one or more intermediate
conditioning units. The final valid candidate streams, with appropriate inser-
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tion of conditioning operations, thus form the high-level superstructure for the
process. This procedure is then recursively applied to any blocks containing
nested units.480

Note that this class of generation approaches—postulating all connections
and then screening—contains the special case of omitting the screening proce-
dure. In the interest of preserving generality of the representation in the central
trade-off, some authors prefer this approach. However, this often comes at great
cost to tractability. As a result, generality is often lost later in the design pro-485

cess, when the solution approach is unable to guarantee an implicit enumeration
over the entire design space described by the superstructure. As a result, the
generation step still often requires manual input of engineering knowledge in the
screening phase to be effective. Wu et al. (2016) introduce manually specified
“non-conditioning” streams, “single-stream” ports, and conditioning reduction490

due to these considerations. Expert systems tools can aid in screening, with the
caveat that the optimal configuration may be prematurely excluded, impact-
ing generality. And eventually, solution algorithms may advance to the point
that the screening step is no longer necessary for a broad range of problems.
Until that time, however, we also provide decision-maker flexibility to augment495

the screening stage for PSG, in addition to systematic screening based on port
annotations.

The other proposed superstructure generation approach is a hierarchical
strategy to directly use MEA to postulate a PSG superstructure. In this
strategy, we adapt levels 2-5 of the hierarchical decomposition approach given500

by Douglas (1985), and derive process data and problem specifications from user
knowledge. Rather than fixing certain choices at each decision level, we intro-
duce the described alternatives as units in the superstructure. Note that com-
mon criticisms of hierarchical decomposition still apply—this technique may not
identify integrated solutions such as reactive distillation, unless they are manu-505

ally specified. However, for systems in which decision makers are knowledgeable
of the relevant alternatives, the direct MEA approach offers a straightforward
alternative.

We demonstrate a comparison of these generation approaches in Section 7.2.
The end result of the superstructure generation phase is a graph representation,510

describing potential connections between alternative flowsheet units.

5. Logical/Algebraic model formulation

From the superstructure representation, a mathematical programming model
must be formulated to solve for the optimal flowsheet design. While the choice
of superstructure has the greatest impact on generality in terms of the central515

trade-off of process synthesis, the modeling step often involves making a trade-
off between model fidelity and tractability.

Due to the prevalence of nonlinear relationships, and both continuous and
discrete decisions variables, the process design problem is historically formulated
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as a Mixed-Integer Nonlinear Programming (MINLP) model (Trespalacios and520

Grossmann, 2014). The general form is as follows:

min obj = f(x, y)

s.t. g(x, y) ≤ 0

h(x, y) = 0

x ∈ X ⊆ Rn

y ∈ Y ⊆ Zm

(MINLP)

Here, we minimize an objective function f(x, y), subject to inequality
constraints (e.g. from process specifications) g(x, y) ≤ 0 and equality con-
straints (e.g. from material, energy balances and thermodynamic relationships)
h(x, y) = 0. Note that maximization may be achieved by minimizing the525

negative of the objective function. x are the continuous decision variables (e.g.
flows and equipment sizes), while y are the discrete decision variables, usually
corresponding to selection or omission of units and/or interconnections in the
superstructure. Long-time practitioners of modeling for superstructure synthe-
sis may be accustomed to expressing logic as an MINLP. Many legacy models530

may also exist as MINLPs. Furthermore, a wide variety of solver codes linked
to algebraic modeling platforms exist for MINLP (e.g. DICOPT (Viswanathan
and Grossmann, 1990), SBB (Bussieck and Drud, 2001), BARON (Tawarmalani
and Sahinidis, 2005), SCIP (Vigerske and Gleixner, 2018), ANTIGONE (Mis-
ener and Floudas, 2014)). As a result, Pyosyn accommodates specification of535

specific units or even the whole superstructure as an MINLP. In fact, custom
MINLP solvers, such as MindtPy (Bernal et al., 2018), may also be employed
for Pyosyn synthesis problems (see Section 6).

However, in the interest of providing high-level, intuitive representations, the
recommended modeling approach for Pyosyn is using Generalized Disjunctive540

Programming (GDP), the extension of disjunctive programming (Balas, 1985)
for nonlinear functions (Grossmann and Trespalacios, 2013; Trespalacios and
Grossmann, 2014). The general form for a GDP model can be found below:

min obj = f(x, z)

s.t. g(x, z) ≤ 0

∨

i∈Dk

[
Yik

rik(x, z) ≤ 0

]
∀k ∈ K

∨

i∈Dk

Yik ∀k ∈ K

Ω(Y ) = True

x ∈ X ⊆ Rn

Yik ∈ {True, False} ∀i ∈ Dk,∀k ∈ K
z ∈ Z ⊆ Zm

(GDP)

17



Here, we minimize an objective function f(x, z). Variables x again de-
scribe continuous decisions (e.g. flows and equipment sizes). Global constraints545

g(x, z) ≤ 0 describe specifications and physical relationships that apply for all
feasible configurations in the superstructure. However, with GDP, disjunctions
K (corresponding to logical-OR relationships) describe selection among process
alternatives. Selection of a given alternative i in disjunction k is indicated by
the Boolean variable Yik. When an alternative is selected, its corresponding550

constraints rik(x, z) ≤ 0 are enforced. In most cases, we want to select one al-
ternative within a given set of options; therefore, we can enforce a logical-XOR
relationship such that at most one disjunct Yik in each disjunction K has value
True. Finally, other types of logical relationships may be described using logical
propositions Ω(Y ) = True.555

The form of GDP that we adopt for Pyosyn also allows for auxiliary discrete
variables z, which may be used to describe the count of a particular operation
within a process unit. The impact of these variables is explored in (Chen et al.,
2020). Conveniently, this also allows us to regard MINLP as a special case of
GDP.560

Due to this expressiveness, GDP is well-suited for synthesis problems (Chen
and Grossmann, 2019). Explicit modeling of disjunctions (logical-OR relation-
ships) in GDP describe existence and absence of a superstructure unit. Further-
more, through the use of logical propositions, other logical conditions governing
unit selection may be described, for example, that selection of a particular re-565

action technology Yrxn,A implies the selection of a corresponding separation
approach Ysep,A: Yrxn,A =⇒ Ysep,A. Pyosyn utilizes Pyomo.GDP (Chen et al.,
2018, 2020) to provide a software platform with first-class support for GDP
modeling.

5.1. Modeling PSG units570

External interfaces for each PSG unit to other flowsheet units are defined
by its unit ports. Therefore, the PSG unit model must define the relationship
between its unit-facing port variables both when the superstructure unit exists,
and when it is absent from the selected flowsheet. Using GDP, a very intu-
itive formulation for the PSG unit is provided by using disjunctions. In fact,575

for process synthesis problems, the GDP model can also be expressed in the
form (GDP’).

min obj = f(x, z)

s.t. g(x, z) ≤ 0
[

Yk

rk(x, z) ≤ 0

]
∨
[
¬Yk

Bkx = 0

]
, ∀k ∈ K

Ω(Y ) = True

x ∈ X ⊆ Rn

Yk ∈ {True, False} ∀k ∈ K
z ∈ Z ⊆ Zm

(GDP’)
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Here, the disjunctions K are posed in terms of existence or absence of super-
structure elements. Yk = True can denote existence of a unit, and Yk = False
its absence. If a unit exists, the constraints rk(x, z) ≤ 0 enforce the relevant580

mass and energy balances, thermodynamics, kinetics, or other physical/chem-
ical phenomena taking place within the unit. Otherwise, constraints Bkx = 0
describe port variable relationships when the unit is absent. Two common ap-
proaches exist for modeling an absent unit: bypass and no-flow. In a bypass
model, the unit exit state is set equal to the inlet state. However, Farkas et al.585

(2005) show that this can lead to unnecessary structural redundancy. There-
fore, in Pyosyn, these constraints usually enforce no-flow; that is, extensive port
variables corresponding to the unit are set equal to zero. However, in some cir-
cumstances, the bypass model can be advantageous (see section 7.3). Therefore,
in keeping with the principle of flexibility, Pyosyn allows for both approaches.590

Note that support for nested units in Pyosyn, coupled with the use of unit
ports to define interfaces, allows a very intuitive modular construction for flow-
sheets, helping to manage complexity (Friedman et al., 2013). With clearly
defined interfaces, surrogate models are also easier to integrate, as they must
simply define the relationships between the port variables of a unit. Further-595

more, Pyosyn’s parent framework, IDAES (Miller et al., 2018), provides sev-
eral tools that generate surrogate models expressed in the Pyomo (Hart et al.,
2017) algebraic modeling language, which are therefore readily compatible with
Pyosyn models in Pyomo.GDP. Selection of the level of modeling detail is left
to the user’s discretion.600

5.2. Single-choice units

Support for nested units in Pyosyn also allows for definition of single-choice
unit. A central goal in conceptual design is the selection of the optimal pro-
cessing equipment/technology from among a set of alternatives. For example, in
Figure 4, the reaction section involves the selection of reaction technology 1 or 2.605

In most cases, it is desirable to select only one of the processing alternatives for
a given flowsheet subsection. When this is true, Kocis and Grossmann (1989)
identify ports p5,1 and p8,1 as “single-choice” interconnection nodes, facilitating
the use of linear material and energy balances at these ports. With the PSG,
we leverage support for nested units to define single-choice units (e.g. Unit 2610

in Figure 4), in which this single choice relationship governs selection among its
non-auxiliary child units. All ports on auxiliary source and sink units (units 5
and 8 in Figure 4) in the single choice unit can thus be automatically identified as
single-choice interconnection nodes. Visually, the single-choice units also make
clearer where major decision elements exist, and group together superstructure615

elements that likely have similar functions.

5.3. Modeling PSG unit ports

Unit ports in PSG act as general purpose mixers and splitters at the unit
interface. Existence or absence of the unit port pu,pn is typically logically equiv-
alent to existence or absence of its associated unit u, and thus can share the620
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same Boolean variable Yu. Handling of mixing/splitting calculations when the
port exists is included within the constraints ru(x, z) ≤ 0, and port absence in
the linear constraints Bux = 0.

For both inlet and outlet ports, we distinguish handling of intensive and
extensive flow variables. Intensive variables describe properties such as temper-625

ature and pressure, which do not vary with the rate of flow; extensive variables
such as the species molar flowrate, on the other hand, are dependent on the
flow quantity (Biegler et al., 1997). Intensive variables are easy to handle for
splitters, but may involve more complex relationships for mixers. On the other
hand, extensive variables require special handling for splitters, but are simple630

for mixers. As a result, a multi-component material balance will always involve
complexity at the mixers or the splitters, depending on the choice of flow rep-
resentation between total flow and species compositions, or species component
flows (Quesada and Grossmann, 1995).

Inlet ports represent general purpose mixers at the unit interface with other
process units. Extensive inlet port variable xe,p′ is calculated simply as the sum
of flows from all connected outlet ports, as in Equation (10).

xe,p′ =
∑

p∈Pp′

xe,p,p′ , ∀p′ ∈ Pin,∀e ∈ extensive port variables (10)

Intensive inlet port variable xi,p′ , however, must be calculated based on a general
function fi,p′ of both intensive and extensive stream variables.

xi,p′ = fi,p′(xp,p′), ∀p′ ∈ Pin,∀i ∈ intensive port variables (11)

For example, temperature must be calculated based on an energy balance that
may involve stream temperatures as well as the enthalpy of mixing. Note that an
isobaric assumption is often made for mixers in conceptual design. Equation (11)
for the pressure Pp′ of inlet port p′ would then simplify to

Pp′ = Pp, ∀p′ ∈ Pin,∀p ∈ Pp′ (12)

Outlet ports represent general purpose splitters at the unit interface with
other units. We assume that flow through the outlet port is well-mixed. There-
fore, intensive outlet port variables xi,p are equal to their corresponding flow
variables to all connected inlet ports, as in Equation (13).

xi,p = xi,p′ , ∀p ∈ Pout,∀p′ ∈ Pp,∀i ∈ intensive port variables (13)

The extensive outlet port variables xe,p, however, must be linked to the flow
variables through the use of a split fraction SFp,p′ , denoting the fraction of flow
directed towards each connected inlet port.

xe,pSFp,p′ = xe,p,p′ , ∀p ∈ Pout,∀p′ ∈ Pp,∀e ∈ extensive port variables
(14)

This split fraction must also sum to unity.
∑

p′∈P
SFp,p′ = 1 (15)
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Note that we present the component molar flow formulation with split fractions635

here, but total flow and species compositions are also supported in Pyosyn (Que-
sada and Grossmann, 1995).

5.4. Special cases

Two special cases are relevant in modeling unit ports: when only one exten-
sive flow variable exists, and when only one stream is connected to the port.640

When there exists only one extensive variable, the split fraction in Equa-
tions (14) and (15) is not necessary. Therefore, the two equations can be re-
placed by

xe,p =
∑

p′∈Pp

xe,p,p′ , ∀p ∈ Pout, e = single extensive port variable (16)

This can occur for material ports in single-component systems, for example, in
utility plant design (Bruno et al., 1998).

The second case is when only one stream is connected to the port. In this
case, because no state change occurs along PSG streams, the port variables are
simply equal to their counterparts among the stream variables.

xp = xp,p′ , ∀p ∈ Pout, p
′ ∈ Pp, |Pp| = 1

xp′ = xp,p′ , ∀p′ ∈ Pin, p ∈ Pp′ , |Pp′ | = 1
(17)

In Pyosyn, detection of these special cases can be automated through the
use of Pyomo.Network, which provides both the ability to distinguish between
intensive and extensive variables, and the ability to adjust the port model based645

on the number of connected streams.

6. Pyosyn solution strategies

Due to the presence of nonlinearities arising from physical property calcu-
lations and mixing/splitting, along with discrete flowsheet topology decisions,
advanced solution strategies are required to solve mathematical programming650

models for process synthesis. One of the most challenging characteristics of
flowsheet synthesis problems for modern optimization solvers arises from “zero
flow” singularities, discussed in further detail in Appendix A.

For process design problems, tailored algorithms can offer improved perfor-
mance compared to general purpose solution strategies; however, they may not655

always be appropriate, as commercial general purpose solvers may be better
optimized (from a software engineering perspective), allowing them to execute
more quickly. Pyosyn therefore implements a wide range of customizable solu-
tion strategies (see Figure 7).

The traditional approach is a reformulation of the GDP into an MINLP660

model, followed by the use of an MINLP solver (Trespalacios and Grossmann,
2014). Two canonical forms are described in literature: the Big-M (BM) refor-
mulation (Nemhauser and Wolsey, 1988; Raman and Grossmann, 1994) and the
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GDP to MI(N)LP
reformulations

Figure 7: Pyosyn flexible solution strategies. Figure adapted from (Chen et al., 2018).

Hull Reformulation (HR) (Grossmann and Lee, 2003). BM results in a smaller
formulation, since it does not require the introduction of additional variables,665

which may help reduce the required solution time. On the other hand, the HR
gives a tighter continuous relaxation, which may reduce the number of itera-
tions needed for a solution algorithm to converge. This comes at the expense of
additional disaggregated variables and their corresponding constraints. The ap-
propriate choice of reformulation is problem-specific, and difficult to determine670

a priori. One formulation may be tractable, while the other is not. Therefore,
Pyosyn—via Pyomo.GDP (Chen et al., 2020)—provides the capability to au-
tomatically reformulate a GDP with either BM or HR. In addition, advanced
hybrid techniques based on a cutting plane algorithm (Trespalacios and Gross-
mann, 2016) are also implemented (Chen et al., 2018).675

Once reformulated as an MINLP model, traditional mathematical program-
ming solvers may be used, including several commercial alternatives (Tawar-
malani and Sahinidis, 2005; Vigerske and Gleixner, 2018; Misener and Floudas,
2014; Viswanathan and Grossmann, 1990). However, specialized algorithms,
custom implementations, and experimental prototypes may also be directly680

used (Bernal et al., 2018; Muts et al., 2020; Mitsos et al., 2018).
Tightening reformulations in the logical space can also be preformed as a

preprocessing step to other solution paths, via an operation referred to as a
“basic step” (Ruiz and Grossmann, 2012). This brings the GDP formulation
closer to disjunctive normal form and improves its continuous relaxation, at the685

expense of increasing the number of disjuncts.
Finally, direct logic-based solution approaches are possible via the GDPopt

solver (Chen et al., 2020). GDPopt provides modern implementations of the
logic-based outer approximation (LOA) (Türkay and Grossmann, 1996) and
logic-based branch-and-bound (LBB) (Lee and Grossmann, 2000) decomposi-690

tion algorithms. For LOA, GDPopt also implements the global optimization
extension (GLOA) (Bergamini et al., 2005). These logic-based decomposition
algorithms are particularly advantageous for synthesis problems, due to their
ability to solve nonlinear subproblems in reduced space, thereby avoiding the
zero flow numerical difficulties described in Appendix A.695
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Indeed, for flowsheet synthesis problems, the LOA algorithm may be broadly
understood as the following iterative procedure:

0. Initialize: Based on the solution of NLP subproblems corresponding to
different flowsheets that “cover” all of the disjunctions, construct a linear
approximation of the full superstructure.700

1. Master problem: solve this linear approximation to determine a new can-
didate flowsheet topology (unit and stream existence).

2. Subproblem: solve a reduced space nonlinear programming model cor-
responding to only the selected candidate flowsheet, obtaining accurate
equipment sizes, operating conditions, and objective value.705

3. Cut generation: generate additional linear inequalities (cuts) based on the
subproblem solution values.

4. Iterate: repeat steps 1–3 above, adding the new cuts to the master prob-
lem, until the master problem and subproblem objective values converge.

Note that selecting the fewest number of flowsheets needed to generate the ini-710

tial linearization of the master problem can be formulated as a set covering
problem (Türkay and Grossmann, 1996). This set covering is distinct from a
complete enumeration, as we only need to evaluate each nonlinear disjunct; we
do not need to evaluate all possible combinations of the disjuncts. Alternative
initialization approaches are also possible, but not explored here. Since the com-715

plicating nonlinear “zero flow” functions are only present in the subproblems,
where complete flowsheets are optimized (and thus units should have non-zero
flow), the LOA algorithm avoids zero flow numerical difficulties. In the mas-
ter problem, when units and streams may “disappear” from the superstructure
during the solution procedure, the complicating “zero flow” functions are not720

present. This results in a more robust strategy than the full-space MINLP ap-
proach. However, for problems where zero flow issues are not as pronounced,
conventional MINLP approaches may be faster.

Therefore, given the range of solution strategies that may be preferable to
others for a particular application, Pyosyn supports a flexible and extensible725

suite of options, as shown in Figure 7. Crucially, the user can also select among
these solution strategies without needing to rewrite their GDP model, allowing
them to quickly explore different options for their specific application.

7. Case studies

In the following case studies, we illustrate the benefits of Pyosyn’s flexible730

implementation, applied to various use cases, with differing levels of customiza-
tion. Note that computational results in these case studies reflect our ability to
reproduce with Pyosyn approaches previously reported solutions by the exam-
ples’ original authors and are not the emphasis in this work.
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7.1. Eight Process Problem (8PP)735

The Eight Process Problem (8PP) is a literature case study (Duran and
Grossmann, 1986a, Example 3) involving the synthesis of a flowsheet from a
superstructure of eight potential processing units. A diagram of the original
STN superstructure can be found in (Türkay and Grossmann, 1996, Figure
3). In this case study, we use the 8PP to demonstrate the translation of an740

STN superstructure into the PSG representation, and to demonstrate logical
modeling functionality in Pyosyn.
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Figure 8: PSG superstructure for the 8PP.

We generate a custom PSG representation of the 8PP (see Figure 8), using
the original STN as a reference. Unit numbering on the PSG superstructure is
adjusted so that units 1-8 match the original eight processes. Note that the use745

of PSG highlights the single-choice relationship between processes 1 and 2, as
well as between processes 6 and 7.

Given the graph structure of PSG, we can also visualize the superstructure
as a bipartite graph of the outlet and inlet ports (see Figure 9). Notice that
most ports have degree 1 (connected to only one other port) in this superstruc-750

ture. Therefore, the automatic model simplifications implemented in Pyosyn
(see Section 5.4) are relevant here. Moreover, since the 8PP is treated as a
single-component system, with only one extensive variable per port, the other
simplification described in Section 5.4 also applies.

The logical formulation of the 8PP results in a small GDP with 44 variables
(12 Boolean, 32 continuous) and 52 constraints with 5 convex nonlinear func-
tions (Türkay and Grossmann, 1996, Appendix A). We implement this model
using the Pyomo.GDP component of Pyosyn, allowing us to directly specify
propositional logic such as Equation (18) instead of manually converting it to
algebraic form, as given in Equation (19).

(Y1 ∨ Y2) =⇒ (Y3 ∨ Y4 ∨ Y5) (18)
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Figure 9: Bipartite representation of the outlet and inlet ports in the 8PP superstructure.

−y1 + y3 + y4 + y5 ≥ 0

−y2 + y3 + y4 + y5 ≥ 0
(19)

This improves both the readability of the model and the ease with which mod-755

ifications may be made in the future. Note that modelers experienced with
building MINLP models may continue to do so from PSG representations, and
their models may be solved either directly using commercial solvers, experimen-
tal implementations (Bernal et al., 2018), or custom solvers. Code corresponding
to both GDP and MINLP models of the 8PP may be found in the examples of760

the public Pyomo Github repository (https://github.com/Pyomo/pyomo).
However, modeling in GDP also confers the advantage of a broader range of

flexible solution alternatives (see Figure 7). Table 1 shows the solution times
for the 8PP using a range of different solvers, performed on machine running
Ubuntu 16.04 LTE with 12 cores across two sockets (Intel Xeon X5650 @ 2.66765

GHz), with 128GB physical memory. All solvers converge to the optimal so-
lution in a short amount of time. DICOPT (Viswanathan and Grossmann,
1990), BARON (Tawarmalani and Sahinidis, 2005), and SCIP (Vigerske and
Gleixner, 2018) are all commercially available MINLP solvers, accessible to
Pyosyn through an programmatic interface between Pyomo and GAMS (Brook770

et al., 1988). GAMS version 30.1.0 was used in this case study. Prior to solving
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Solver Time (s)

DICOPT 0.05
BARON 0.11
SCIP 0.35
LOA 1.39
GLOA 1.53
LBB 12.92

Table 1: Solution times for the 8PP using different solution strategies.

with these, the GDP model is automatically converted to MINLP using the BM
reformulation in Pyomo.GDP. LOA (Türkay and Grossmann, 1996), GLOA (Lee
and Grossmann, 2001), and LBB (Lee and Grossmann, 2000) correspond to their
respective logic-based decomposition algorithm implementations in the GDPopt775

direct GDP solver (Chen et al., 2020). For the simple problems like the 8PP,
the commercial MINLP solver implementations perform faster than their logic-
based counterparts, since GDPopt is a meta-solver implemented in Python.
Therefore, Pyosyn offers the capability to use these solvers as part of its flexible
solution framework.780

7.2. Methanol synthesis

A common use for syngas is the production of methanol, another common
chemical intermediate. Here, we examine the methanol process synthesis prob-
lem defined in (Türkay and Grossmann, 1996, Example 3). We use the methanol
synthesis problem to demonstrate superstructure generation in Pyosyn, as well785

as the value of logic-based decomposition algorithms made available in GDPopt.
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Figure 10: Methanol synthesis from syngas (traditional view). Figure adapted from (Chen
and Grossmann, 2019, Figure 3).

The traditional STN superstructure for the methanol process is shown in
Figure 10. We first generate a custom PSG representation based on the STN (see
Figure 11). Four major structural decisions are present in the superstructure,
highlighted by the use of single-choice units 1, 2, 4, and 8. Two alternative feed790

grades of syngas are available, as well as two different reactor sizes. The options
for each set of alternatives are denoted by their relative costs as “cheap” and
“expensive”, respectively. The feed and recycle compressors can also each be
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Figure 11: Methanol synthesis from syngas

designed as single-stage or two-stage compressors. The reactor conditioning unit
is given in Figure 12, and the flash separation with product/purge conditioning795

is given in Figure 13.

24 Bypass

26

Heater

25

Cooler

27

28

3
Heat/Cool

∨

Figure 12: Single choice temperature conditioning block from methanol synthesis flowsheet

As described in Section 4, systematic generation of the methanol flowsheet
can be achieved using means-ends analysis (MEA) assisted by a unit model
library, or using an approach based on hierarchical decomposition. First, we
examine the process for unit model library-assisted generation. Step 1 involves800

the identification of major processing alternatives. Here, we identify units corre-
sponding to 2 feeds, 2 reactors, a flash separation, a product, and a purge. Since
the two feeds and reactors participate in single-choice relationships with each
other, we nest them in corresponding single-choice units. We list the resulting
units and their associated processing tasks in Table 2 (see also Figure 14). Their805

unit ports, with their associated annotations, are given in Table 3.
In Step 2, we generate all possible streams in the fully connected graph

between outlet and inlet ports, Pout×Pin. We then screen the streams in Step
3 based on connectivity rules (see Section 4) using the port annotations given
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Figure 13: Separation block from methanol synthesis flowsheet

in Table 3. Note that all four components are annotated as “primary” for the810

reactor outlet, as the reaction is equilibrium-limited. The full list of considered
streams, along with their rationale for exclusion, are given in Table 4. Note the
use of engineering judgment, denoted by “ENGR” to exclude the direct feeding
of raw material to the purge stream. The bipartite graph representation of this
step is illustrated in Figure 15.815

From the reduced set of candidate streams not excluded in Table 4, we
apply means-ends analysis to identify temperature and pressure conditioning
needs based on the annotations in Table 3. When the source and destination
ports require temperature/pressure adjustment between two ranges, then the
appropriate conditioning must be added. Of the six candidate streams, four need820

both temperature and pressure conditioning and two need only temperature
conditioning (see Table 5). Based on required temperature and pressure ranges
given by the port annotations, compressors and heaters are postulated between
the feed and the reactor (1,1 → 2,1), as well as between the flash vapor outlet
and the reactor (3,3 → 2,1). From the model library, a single-choice unit for825

compression is selected, which contains a nested decision between single- or two-
stage compression. Between the reactor and the flash (2,2 → 3,1), a valve and
cooler are postulated. Finally, as the product and purge do not have required
pressure values, and the flash outlet streams are always at the same or lower
temperature, heaters are postulated between the flash and product (3,2→ 4,1),830

and between the flash and purge (3,3 → 5,1).
A useful point is the ordering of the temperature/pressure conditioning op-

erations. In the UPCS, these are fixed to an arrangement with temperature
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Unit # Name Task

1 Single-Choice Feed Supply raw material syngas
2 Single-Choice Reactor Equilibrium-limited reaction

2H2 + CO → CH3OH
3 Flash Separate liquid CH3OH from vapor H2,

CO, CH4

4 Product Collect primary product CH3OH
5 Purge Collect purge CH4

Table 2: Methanol synthesis: identified major processing units
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∨
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Figure 14: Methanol synthesis: identified major processing units

changes preceding pressure changes (Wu et al., 2016). This can be advanta-
geous when there is a change of state required (e.g. prior to a compressor);835

however, this arrangement is not always ideal. With PSG, use of explicit con-
ditioning units allows the determination to be made based on the means-ends
analysis. For example, between the reactor outlet and the flash inlet, it may
be advantageous to allow for pressure reduction through a valve before the
cooler due to material cost and/or safety considerations. Furthermore, it may840

be advantageous to position the heater after compression for the feed and re-
cycle streams to the reactor, as the two adjacent heaters corresponding to each
stream can be identified via a graph adjacency search, and consolidated into a
single reactor pre-heater. After this step, subsystem representations in nested
blocks are generated by a similar procedure. In this case study, the auxil-845

iary inlet and outlet blocks associated with respective parent ports are simply
added to the single-choice blocks. The final superstructure generated by the
library-assisted means-ends analysis has a similar structure to that given by the
custom-generated representation presented earlier (see Figure 11).

We can also generate the methanol superstructure using hierarchical means-850

ends analysis in Pyosyn. Following the steps in Section 4, we first assess alter-
natives in the input-output structure. Here, we recognize that two grades of
feed are available, provided in two different feed streams. The two feed options
are mutually exclusive, so they are introduced as a single-choice source unit.
The desired methanol product is also added as a stream. Given the gas-phase,855
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Port Unit Type CI
p CII

p CX
p Temperature Pressure

1,1 Feed out A,B,D 300 1
2,1 Reactor in A,B,D C [423,873] [2.5,15]
2,2 Reactor out A,B,C,D [523,873] [2.25,13.5]
3,1 Flash in A,B,C,D [300,400] [0.25,13.5]
3,2 Flash (L) out C A,B,D [300,400] [0.25,13.5]
3,3 Flash (V) out A,B,D C [300,400] [0.25,13.5]
4,1 Product in C A,B,D 400 [0.25,13.5]
5,1 Purge in A,B,D C 400 [0.25,13.5]

Table 3: Methanol synthesis: unit ports with annotations. Components: A=H2, B=CO,
C=CH3OH, D=CH4. Temperature is given in Kelvin, and pressure is in MPa.
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Figure 15: Ports and generated streams for the methanol synthesis superstructure. Solid lines
indicate retained streams, while dashed streams are excluded by the described screening rules.

equilibrium-limited methanol reaction, a recycle stream and purge are postu-
lated. Next, we assess the recycle structure and reactors. Only one reaction
takes place, but two reactors alternatives are available, so they are added to the
superstructure grouped as a single-choice unit. We identify the need for feed
and recycle compression, each of which involves the choice between single-stage860

or two-stage compression. These are introduced to the superstructure as single-
choice units. In the following stage, we assess the separation system options.
Here, the separation is comparatively simple, and a flash vessel is used. We
then evaluate the other conditioning needs in the superstructure by means-ends
analysis, adding heaters/coolers and the flash valve. We do not consider heat865

integration in this problem, so the final step is not needed. Rather than impos-
ing the decisions as described by Douglas (1985), we use the steps to generate
the relevant superstructure alternatives, thus preserving more generality. The
final generated superstructure using hierarchical means-ends analysis is similar
to the original custom-generated representation given earlier.870

After generating the superstructure representation, its logic must be encoded
in mathematical form. The GDP model for the methanol problem is described
by Türkay and Grossmann (1996), with recent extensions discussed by Chen and
Grossmann (2019). We refer the reader to these papers for modeling details.
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Outlet Inlet Exclusion Rationale

1,1 2,1 –
1,1 3,1 Rule 4: outlet does not provide primary species C to separator
1,1 4,1 Rule 5: outlet species A,B,D not useful for inlet
1,1 5,1 ENGR: do not feed directly to purge streams
2,2 2,1 Rule 5: outlet species C not useful for inlet
2,2 3,1 –
2,2 4,1 Rule 5: outlet species A,B,D not useful for inlet
2,2 5,1 Rule 5: outlet species C not useful for inlet
3,2 2,1 Rule 5: outlet species C not useful for inlet
3,2 3,1 Rule 4: outlet does not provide primary species A,B,D to separator
3,2 4,1 –
3,2 5,1 Rule 5: outlet species C not useful for inlet
3,3 2,1 –
3,3 3,1 Rule 4: outlet does not provide primary species C to separator
3,3 4,1 Rule 5: outlet species A,B,D not useful for inlet
3,3 5,1 –

Table 4: Methanol synthesis: screening candidate streams between unit ports. Components:
A=H2, B=CO, C=CH3OH, D=CH4. ENGR above indicates a use of engineering judgement.

Conditioning
Source Port Destination Port Temperature Pressure
Feed 1,1 Reactor 2,1 Yes Yes

Reactor 2,2 Flash 3,1 Yes Yes
Flash L 3,2 Product 4,1 Yes No
Flash V 3,3 Reactor 2,1 Yes Yes
Flash V 3,3 Purge 5,1 Yes No

Table 5: Methanol synthesis: conditioning needs for major candidate streams

Here, we implement the model in Pyosyn using Pyomo.GDP. The methanol875

synthesis model with 285 variables (8 Boolean, 277 continuous) and 429 con-
straints is computationally challenging. DICOPT (using either the BM or HR
reformulations) is unable to provide even a feasible solution. SCIP and BARON
are both able to identify the optimal solution, but they are not able to guaran-
tee global optimality, as they have bound gaps of 81% and 145%, respectively,880

after an hour. GDPopt-LOA (using CPLEX and IPOPT as subsolvers) is able
to identify the optimal solution after only 72 seconds, though, like DICOPT,
it does not guarantee global optimality for nonconvex problems. However, it is
possible to generate rigorous linearizations in GDPopt, while still using a local
NLP solver, as was done in this case. Here, the logic-based outer approxima-885

tion provides a robust approach to quickly obtain a high quality solution to the
problem, demonstrating the value of solution flexibility in Pyosyn.
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7.3. Kaibel column

Pyosyn was also used in the conceptual design of a Kaibel column, an inten-
sified dividing wall column involving the high purity separation of four chemical890

species in a single column (Soraya Rawlings et al., 2019). The PSG superstruc-
ture for the Kaibel column is given in Figure 16, highlighting the key material
and energy flows to and from the overall system. The column itself is repre-
sented by four main units: the stripping section, the feed section, the product
section, and the rectification section.895

Detailed representations of each section are given in Figures 18a–18b, re-
spectively. The column superstructure includes both fixed trays corresponding
to specific processing tasks (e.g. feed) and conditional trays, inspired by the su-
perstructure proposed in (Barttfeld et al., 2003). The conditional trays involve
a disjunction between enforcement of mass/heat transfer if the tray exists, or a900

bypass if the tray is absent. By varying the number of conditional trays that
exist between the fixed trays, the column size and feed/side draw locations can
be adjusted simultaneously. Details on the identity and function of the fixed
trays are covered by Soraya Rawlings et al. (2019).

Based on the PSG representation, a GDP model with 3605 variables (178905

Boolean, 3427 continuous) and 5715 constraints was formulated and solved us-
ing GDPopt-LOA using a custom initialization routine, as described in (So-
raya Rawlings et al., 2019). However, even without the custom initialization,
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Figure 17: PSG representation for the feed and product sections of the Kaibel column.
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Figure 18: PSG representation for the stripping and rectification sections of the Kaibel column.

GDPopt-LOA (using CPLEX and IPOPT as subsolvers) is able to identify a
high-quality feasible solution (after 639 seconds), while MINLP full-space tech-910

niques are unable to produce a feasible solution even after an hour. Moreover,
due to the openness and flexibility of GDPopt and the Pyosyn infrastructure,
custom initialization and other modifications can be easily implemented.

8. Conclusions

In this work, we introduce the Pyosyn framework for systematic process syn-915

thesis. Premised upon the need to overcome common barriers to adoption, as
well as provide users the support and flexibility to explore different trade-offs in
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their problem formulations—including the central trade-off synthesis between
generality, fidelity, and tractability—we develop Pyosyn upon principles of in-
tuitive representations, systematic transformations to algebraic models, flexible920

solution strategies, and an open architecture.
We present the Pyosyn Graph (PSG) representation, a graph-based repre-

sentation composed of units, unit ports, and streams, including the ability to
nest flowsheet elements. We use this nested unit functionality both to support
improved representation organization through hierarchical modeling, as well as925

the concept of “single-choice” units, which aggregate and highlight mutually-
exclusive superstructure decision logic between sets of PSG units. We intro-
duce two means of generating the superstructure representation, including both
library-assisted and direct hierarchical approaches to the use of means-ends
analysis. For the library-assisted approach, we introduce the concept of port930

annotations to indicate key port compatibility characteristics for screening con-
nectivity. For material ports, we describe annotations for primary, secondary,
and residual chemical species, and we use these as the basis for seven connectiv-
ity rules to screen candidate streams. We also discuss a potential error-checking
extension making use of material port annotations describing feasible flow ranges935

for chemical species.
We then describe mathematical modeling of PSG representation elements,

including automatic simplifications that can be detected and implemented for
special cases (such as single-choice units). We construct the model in Pyomo,
allowing programmatic model construction supported by the Python high-level940

programming language. Topology and extensive-variable simplifications are im-
plemented in the open-source, graph-based Pyomo.Network tool. Pyomo.GDP
allows for direct expression of superstructure logic and access to a broader suite
of automated solution strategies, including advanced logic-based decomposition
approaches, while retaining support for conventional MINLP and MILP model-945

ing approaches via reformulation (e.g. BM and HR).
We illustrate the capabilities and flexibility of Pyosyn through a set of case

studies that make use of various Pyosyn tools.
We provide Pyosyn to the community as an open-source set of interlinked

tools and capabilities, with optional integration to commercial tools. In the950

future, we plan to continue development of a public synthesis case study library
to aid researchers and provide decision-makers with interest in synthesis capa-
bilities an up-to-date view of the state-of-the-art. Pyosyn is not the final word
on process synthesis, and opportunities for extensions and refinements remain.
In this work, we do not explicitly handle solvents and reactive agents; nor have955

we explored opportunities to define enhanced screening criteria for energy ports
and streams. We plan to continue developing new support and interfaces to in-
corporate advanced solution strategies into the Pyosyn framework. As an open
platform, we view Pyosyn as an excellent complement to more commercially-
oriented efforts, bringing exposure to new audiences for systematic synthesis960

capabilities, and serving as a basis for developing new capabilities.
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Appendix A. Zero-flow singularities

We demonstrate the “zero flow” numerical difficulty with two small examples
relevant to process synthesis.

First, we consider a mole fraction calculation that may be required to support
physical property computations for a process unit. Consider a three-component
system with species molar flows f1, f2, f3 into the unit, total molar flow F ,
and species molar fraction x1. The mole fraction computation for x1 may be
expressed as in Equation (A.1).

x1 =
f1

F
=

f1

f1 + f2 + f3
(A.1)

When the unit is absent from the flowsheet, its corresponding flows are set
to zero: f1 = f2 = f3 = F = 0. This leads Equation (A.1), and thus x1,
to become the undefined quantity 0/0. A common workaround is to impose a
small minimum value for F , denoted F . Consider the case where x1 = 0.75, x2 =
0, x3 = 0.25, and the minimum value F = F = 0.001. Equation (A.1) now yields
the correct quantity (subject to computational floating-point tolerances), giving
x1 = 0.75. However, note that the first derivative ∂x1

∂f1
, given by Equation (A.2),

is equal to 250.

∂x1

∂f1
=

f2 + f3

(f1 + f2 + f3)
2 =

0.00025

(0.001)2
= 250 (A.2)
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And its second derivative ∂2x1

∂f2
1

, given by Equation (A.3), is equal to −500, 000.

∂2x1

∂f2
1

= − 2(f2 + f3)

(f1 + f2 + f3)3
= − 0.0005

(0.001)3
= −500, 000 (A.3)

These derivatives are orders of magnitude higher than the expected range for
a molar fraction. This can result in poor scaling within modern nonlinear pro-1340

gramming solvers, which rely on first- (and sometimes second-) order derivative
information to guide the direction and size of their iterates, degrading their
performance and robustness. Note that decreasing the value of F to preserve
greater model accuracy only exacerbates this numerical stability problem. Fur-
thermore, though skilled modelers often express Equation (A.1) as Fx1 = f1 to1345

avoid division-by-zero, this does not alleviate poor derivative scaling.
A second common source of zero-flow issues arises from the use of power-law

capital cost scaling for processes and process equipment. This empirical scaling
rule, given in Equation (A.4), is a staple of process design (Biegler et al., 1997).

C = C0

(
S

S0

)γ
(A.4)

Here, the cost C of a process of size S is estimated in relation to a base process
of size S0, with cost C0. The scaling factor γ often takes a value around 0.67.
At zero flow, the size is zero, S = 0, and therefore, by Equation (A.4), the
cost is also zero, C = 0. However, note that the derivative of the power law
cost function, given in Equation (A.5), becomes undefined at S = 0, due to the
fractional exponent γ < 1.

∂C

∂S
=
C0γ

S

(
S

S0

)γ
(A.5)

Again, this “zero flow” issue would result in degraded solver performance or
even solver failure. A common workaround is to add a small value ε to the base
of the exponent, giving the approximation in Equation (A.6).

C = C0

(
S

S0
+ ε

)γ
(A.6)

Cafaro and Grossmann (2014) give an alternative approximation approach.
However, these approximations may affect solution accuracy. Note that physi-
cal property calculations involving fractional exponents would be similarly sus-
ceptible. Effective solution strategies must therefore be robust to “zero flow”1350

singularities, when they are relevant.
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