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Abstract

In this paper, we propose an optimization-based strategy to systematically evaluate

tradeo�s associated with modular alternatives for the multi-period design of a chemical

processing network. We give a general formulation as a Generalized Disjunctive Pro-

gram (GDP) and discuss a linearizing reformulation that exploits structure common

to modular design problems. By modeling the GDP in the Pyomo algebraic modeling

language, we gain access to a �exible set of automatic reformulations and solution algo-

rithms, from which the best tool may be selected to optimize a given model. We apply

the design strategy to a set of illustrative case studies, including capacity expansion,

bioethanol processing, and heat exchange network design. The results show that the

proposed design strategy is able to solve modular design problems and provide general

insights on tradeo�s between investment and transportation costs in which incorpora-

tion of modular facility constructions may or may not prove to be advantageous.

Introduction

The past few years bear witness to growing interest in modular chemical plants, which o�er

improved �exibility, quality, and schedule e�ciency characteristics over traditional plant
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constructions.1 In a modular plant, major pieces of processing equipment are assembled

as standardized modules rather than custom-designed and constructed on-site. A module

includes the processing equipment and associated control instruments, piping, valves, and

interconnection points mounted in a structural steel framework. Each module forms a self-

contained processing unit, which can be built and tested in a controlled environment at the

manufacturer's workshop. In this way, modular design can be seen as a move towards greater

standardization in the chemical process industry.

Modular design is not a new idea in manufacturing2 or chemical processing,3 but its com-

bination with the ideas of distributed manufacturing4 and process intensi�cation5,6 comprises

a compelling solution to modern chemical process industry challenges.7 However, modular

plant design may not be appropriate in all places and situations.1 Therefore, our main chal-

lenge is the assessment of modular design as a partial or complete replacement for existing

processes and the exploration of new applications that are enabled by modular design. Math-

ematical programming can be a powerful tool for this assessment. Through optimization-

based process synthesis,8 we can systematically evaluate trade-o�s between the advantages

and disadvantages of modular process design.

The �rst step of an e�ective analysis is development of the appropriate physical and cost

models. Several authors have investigated modular design as a central element of Europe's

Industry 4.0 initiative, with �exibility and time to market identi�ed as key bene�ts of mod-

ular designs.9�11 Lier and Grünewald provide a net present value (NPV) analysis of modular

versus conventional constructions, showing that for rapid market growth scenarios, modu-

lar plants can outperform conventional designs due to their �exibility and responsiveness.12

The European literature also explores the value of �exibility in providing extra value in the

presence of uncertainty.13,14 Other authors have examined modular design in conjunction

with speci�c applications. Modular chemical facilities appear well-suited to address the re-

cent issue of stranded natural gas processing.15,16 The distributed nature of gas sources in

some regions makes constructing pipelines to a traditional centralized processing facility eco-
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nomically challenging. Instead, small scale modular facilities could be sited close to active

wells and relocated based on shifting production patterns. These facilities would process the

gas into a more transportable product, extracting value that would otherwise be lost and

improving environmental performance through reduced �aring.

To consider the broad range of potential bene�ts and tradeo�s when introducing the

modular process concept to a chemical enterprise, it is desirable to design a modular pro-

cessing network with the help of an optimization framework�one that explicitly considers

time-to-market and system �exibility advantages alongside module design. The resulting

optimization problem involves not only discrete decisions in siting and allocation, but also

nonlinear relations arising from concave cost functions and process unit performance de-

scriptions. As such, it is in general a nonlinear, nonconvex discrete-continuous optimization

problem. To solve this di�cult class of problems, it is often advantageous to exploit special

structure when it exists. There is therefore a need for an optimization framework that is

able to pose and address these modular design problems.

In this paper, we develop a strategy for the simultaneous planning and design of a chem-

ical processing network to incorporate modular process units. The problem is formulated

as a multiperiod facility location, allocation, and design model which explicitly considers

the time-to-market implications of selecting a modular versus conventional construction ap-

proach. The objective is to determine the optimal facility locations, respective designs, and

transportation links for a chemical enterprise, taking into consideration raw material and

product shipping costs, modular process alternatives, and module relocation. In the remain-

der of this paper, we present the general problem statement, its formulation as a Generalized

Disjunctive Programming (GDP) model,17 and explore tailored reformulation and solution

strategies such as induced linearity18 that suit the modular design problem. We also illus-

trate through a set of case studies how the GDP model enables the investigation of a range

of modular design problems.
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Problem statement

Given is a set of time periods t ∈ T = {0, 1, 2, . . . , NT} with project life NT , a set of suppliers

i ∈ I = {1, . . . , NI}, a set of markets k ∈ K = {1, . . . , NK}, and their respective �xed

locations (xi, yi) and (xk, yk). Suppliers have a time-variant raw material availability Ψi,t and

cost Costfeedi,t while markets have their respective demand levels Φk,t and product sale values

Priceprodk,t . Given are also a set of potential processing facility sites j ∈ J = {1, . . . , NJ}. At

each site j we are able to construct a set of n ∈ Nj potential units, which may also include

modular units composed of m ∈Mn module types, in addition to conventional units.

Conventional units have a �xed cost Cf,conv
n with an additional concave cost function given

by a base cost Cs,conv
n for a default size S0

n with an exponential scaling factor γ. Modular units

feature a �xed cost Cf,mod
n with a per-unit variable cost Cm,t associated with the purchase of

each unit type having size Sm.

We explicitly consider the conventional unit construction time τc as well as a modular

setup time τm before each may start production. Modules may be repurposed or salvaged

for a fraction φm of their original purchase value. Similarly, a salvage value fraction of φc

can be ascribed to conventional facilities.

Transportation costs for raw material and product shipments are also incurred for con-

necting processing facilities with suppliers and markets, with �xed costs TCf,feed
i,j , TCf,prod

j,k

and variable costs TCfeed
t , TCprod

t for each, respectively. The transfer of modules between

sites also incurs a per mile transportation cost TCmod
m,t .

The main decisions in this problem include the locations of the potential facilities (xj, yj),

production levels pj,t at each facility for each period of time, shipment quantities of raw

material between suppliers and sites f feedi,j,t , shipment quantities of product between sites and

customer markets fprodj,k,t , and Boolean decisions such as existence or absence of sites Y site
j , of

units within sites Y unit
j,n , and conventional Y conv

j,n versus modular Y mod
j,n construction of units.

Further Boolean decisions dictate existence or absence of a transportation links between

suppliers and sites Y feed
i,j , between sites and markets Y prod

j,k , and between pairs of sites Y mod
j,j′ .
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The facility locations determine distances between suppliers and sites Di,j, sites and

markets Dj,k and between pairs of sites Dj,j′ . At each facility, the production level is a

function f(rj,t, Sj,n,t, x̂j) of the raw material supply rj,t, the facility unit sizes Sj,n,t and

internal state variables x̂j. The unit sizes at each facility are in turn determined by either

the time-invariant conventional unit size Sj,n or the number of active modules of each type

nm,j,t. In each time period, modular units may increase or decrease in size due to module

transfers between sites ntm,j,j′,t, new module purchases npm,j,t, and module sales/salvage

nsm,j,t.

In this work, we assume that payments for capital investments take place at the be-

ginning of the construction period, and that production commences only at the end of the

construction period. In general, we also assume perfect knowledge of the demand and/or

supply pro�les for the multiperiod problem. That is, we do not explicitly treat uncertainty.

However, note that accounting for uncertainty tends to move results in favor of modular

designs.14

Formulation

The overall Generalized Disjunctive Programming (GDP) formulation is given by Equations

(1)-(15).
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maxNPV =
∑
t

∑
k

∑
j

Priceprodk,t f
prod
j,k,t Product sales

+
∑
t

∑
j

∑
m

Cm,tφmnsm,j,t−τm Module sales

+
∑
j

∑
n

Cconv
j,n φcδNT

Conventional salvage

−
∑
t

∑
j

∑
i

Costfeedi,t f feedi,j,t Feed purchase

−
∑
t

∑
j

∑
i

TCfeed
t f feedi,j,t Di,j −

∑
i

∑
j

TCf,feed
i,j Feed transport

−
∑
t

∑
k

∑
j

TCprodfj,k,tDj,k −
∑
j

∑
k

TCf,prod
j,k Product transport

−
∑
j

∑
n

Cconv
j,n Conventional investment

−
∑
t

∑
m

Cm,tnpm,j,t Modular investment

−
∑
j

∑
n

Cf
j,n Unit �xed cost

−
∑
t

∑
j

∑
j′∈J\j

∑
m

TCmod
m,t ntm,j,j′,tDj,j′ Module transport

(1)

The objective is to maximize the net present value of the processing network. Revenue

arises from product sales at markets. Investment cost recovery also contributes to the pro�t

via module sales and facility salvage value at the end of the project. The primary costs

include raw material purchase costs as well as �xed and variable transportation costs and

unit construction costs. Note that prices and costs are expressed here in time-variant terms

which account for an assumed annual discount rate r such that P (t) = P0(1 + dr
nP

)−t/nP ,

where P0 is the base price/cost and nP is the number of time periods in a year. The discount

factor δt can then be calculated as the ratio of present value to base value, δt = (1+ dr
nP

)−t/nP .

Disjunctions
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(a) Selection of sites



Y site
j site selected

rj,t =
∑
i

f feedi,j,t ∀t

pj,t =
∑
k

fprodj,k,t ∀t

pj,t ≤ f(rj,t, Sj,n,t, x̂j) ∀t


∨



¬Y site
j site not selected∑

t

∑
n

Sj,n,t = 0

∑
t

pj,t = 0

∑
t

∑
m

nsm,j,t = 0


∀j ∈ J (2)

(b) Selection of units

Y site
j =⇒

Y unit
j,n unit selected

gj,n,t(x̂) ≤ 0 ∀t

∨



¬Y unit
j,n unit not selected∑

t

∑
m∈Mn

nm,j,t = 0

∑
t

∑
m∈Mn

nsm,j,t = 0

∑
t

∑
m∈Mn

npm,j,t = 0

∑
t

∑
j′∈J\j

∑
m∈Mn

ntm,j,j′,t = 0

∑
t

Sj,n,t = 0 ∀t



∀n ∈ Nj,∀j ∈ J

(3)
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Y unit
j,n =⇒





Y conv
j,n unit conventional

Sj,n,t = Sj,n ∀t

Cconv
j,n = Cs,conv

n

(
Sj,n
S0
n

)γ
Cf
j,n = Cf,conv

n∑
t

∑
m∈Mn

nm,j,t = 0

∑
t

∑
m∈Mn

nsm,j,t = 0

∑
t

∑
m∈Mn

npm,j,t = 0

∑
t

∑
j′∈J\j

∑
m∈Mn

ntm,j,j′,t = 0



∨



Y mod
j,n unit modular

Sj,n,t =
∑
m∈Mn

Smnm,j,t ∀t

Cf
j,n = Cf,mod

n

nm,j,t = nm,j,t−1

+
∑
j′∈J\j

(ntm,j′,j,t−τm − ntm,j,j′,t)

+ npm,j,t−τm

− nsm,j,t

∀m ∈Mn

Cf
j,n = Cf,mod

n





∀n ∈ Nj, j ∈ J

(4)
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(c) Selection of route


Y sup
i,j supply route exists

Di,j =
√

(xj − xi)2 + (yj − yi)2

TCf,feed
i,j = TF feed

∨

¬Y sup

i,j supply route absent

f feedi,j,t = 0 ∀t

TCf,feed
i,j = 0

 ∀i ∈ I, j ∈ J

(5)


Y mkt
j,k product route exists

Dj,k =
√

(xj − xk)2 + (yj − yk)2

TCf,prod
j,k = TF prod

∨

¬Y mkt

j,k product route absent

fprodj,k,t = 0 ∀t

TCf,prod
j,k = 0

 ∀j ∈ J, k ∈ K

(6)

 Y move
j,j′ module transfer possible

Dj,j′ =
√

(xj − xj′)2 + (yj − yj′)2

∨
¬Y

move
j,j′ no module transfer∑

t

∑
m

ntm,j,j′,t = 0

 ∀j ∈ J, j′ ∈ J \ j

(7)

(d) Flow constraints

∑
j

fprodj,k,t ≤ Φk,t ∀k, t (8)

∑
j

fprodj,k,t ≥ Φk,t ∀k, t (9)

∑
j

f feedi,j,t ≤ Ψi, t ∀i, t (10)
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(e) Logic constraints

Y site
j+1 =⇒ Y site

j ∀j (11)

Y site
j ⇐⇒

∨
i

Y feed
i,j ∀j (12)

Y site
j ⇐⇒

∨
k

Y prod
j,k ∀j (13)

¬Y site
j =⇒

∧
j′

¬Y move
j,j′ ∀j (14)

¬Y site
j =⇒

∧
j′

¬Y move
j′,j ∀j (15)

Disjunction (2) determines whether a given potential facility exists or not. For an active

site, the implication (3) gives a disjunction between whether each potential facility unit ex-

ists or not. This is logically equivalent to a nested disjunction in which the disjunction of

(3) is a statement within the Y site
j disjunct of disjunction (2). However, we present the logic

here in this expanded form due to formatting limitations. Similarly, for an active unit Y unit
j,n ,

the disjunction (4) governs selection of a conventional or modular unit construction. The

disjunctions (5) and (6) determine the existence or absence of transport links between facil-

ities to suppliers and markets, respectively. Finally, the disjunction (7) determines whether

module transfer is possible between two site pairs.

General constraints are also present to enforce mass balances and to describe logical

relations. Equation (8) enforces the maximum demand at each market. If market demand

needs to be satis�ed exactly, then equation (9) should be added to the formulation. On the

supply side, equation (10) enforces availability of raw material at each supplier.

Equation (11) is a symmetry-breaking constraint for site activation, so that activation

takes place sequentially among the set of potential sites. Note that in the special case of

�xed site locations, this constraint should not be included.

The logic constraints (12)-(15) relate the activation of sites with the transportation links
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between sites and to suppliers and markets.

Induced linearity reformulation

A central tenet of modular design is numbering up 19 rather than scaling up equipment sizes

in order to achieve e�ciencies from standardization and to expedite production scale-up.

As such, modular designs are characterized by the replacement of traditionally continuous

decisions such as unit size with selection among a discrete set of alternatives.

This change from a continuous to discrete domain for key decision variables potentially

can be exploited to improve solution performance. In the context of batch process design, it

has been shown that mixed-integer linear reformulations are possible for nonlinear programs

when continuous sizes are restricted to discrete values.20 We identify this structure and its

corresponding linear formulation as an induced linearity reformulation since the introduction

of discrete variable domains induces linearity in nonlinear constraints of the original problem.

The same induced linearity structure arises for modular design problems. Grossmann et al.18

describes a reformulation for bilinear constraints of the form h(x, v, w) ≤ 0 where

hq,r = αq,ruqvr − βq,rwr ≤ 0 (16)

αq,r 6= 0 and βq,r 6= 0 are nonzero coe�cients. vr and wr are continuous state variables. uq

are the original continuous design variables, each of which for discrete sizes take a value from

its corresponding discrete set DSq = {dq,1, dq,2, . . . , dq,Nq}. We designate these as e�ectively

discrete variables. Introducing binary variables zq,s corresponding to each potential value of

the e�ectively discrete variables, we can express these variables uq using

uq =
∑
s

dq,szq,s (17)

∑
s

zq,s = 1 ∀q (18)
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From equations (16) and (17), we can obtain

gq,r = αq,r
∑
s

dq,szq,svr − βq,rwr ≤ 0 (19)

Now, introducing auxiliary continuous variables v̂q,r,s, we can obtain a linear reformulation

for the original equation (16). The auxiliary continuous variables are de�ned as

vr =
∑
s

v̂q,r,s ∀r ∈ Rq, q ∈ Q (20)

vLr zq,s ≤ v̂q,r,s ≤ vUr zq,s ∀r ∈ Rq, s ∈ DSq, q ∈ Q (21)

where vLj and vUj are valid lower and upper bounds.

Using these auxiliary variables, it is now possible to rewrite equation (19) as the linear

constraint (22).

αq,r
∑
s

dq,sv̂q,r,s − βq,rwr ≤ 0 r ∈ Rq, q ∈ Q (22)

In that way the nonlinear inequality in (16) is replaced by the linear constraints (20)-(22).

Equivalence to GDP basic step with Hull Reformulation The induced linearity

reformulation can be seen as taking advantage of additional information from disjunction

(23), the choice among alternatives for each e�ectively discrete variable uq.

∨
s

[uq = dq,s] ∀q ∈ Q (23)

By performing an improper basic step between the equation (16) and disjunction (23),

and substituting uq = dq,s within each disjunct of the result, we obtain the disjunction (24).

The induced linearity reformulation is equivalent to the Hull Reformulation17 applied to

disjunction (24).
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∨
s

[αq,rdq,svr − βq,rwr ≤ 0] ∀q ∈ Q (24)

Flexible reformulation options Note that the induced linearity reformulation may be

applied to a nonlinear GDP model either before or after reformulation to an MINLP. The

most common use is after the reformulating the GDP into an MINLP. The resulting induced

linearity in the MILP involves more variables and inequalities than the original MINLP,

but it is often an easier problem to solve due to the reliability of commercial MILP solvers

compared to MINLP codes. For the special case that wr = 1, ∀r, a smaller reformulation

is possible.18 However, as this case is less frequently observed, we do not discuss it in the

context of this work. Note as well that when other nonlinear expressions exist in the original

MINLP, the induced linearity transformation may result in an MINLP rather than an MILP;

however, this new MINLP will have more linear structure than the original formulation.

If the induced linearity reformulation is applied before the nonlinear GDP reformulation

to MINLP, then care needs to be taken to account for logical relations within the disjunc-

tions. The result will still be a GDP, but with some nonlinear relationships replaced with

linear ones. Several solution strategies are now possible for the reformulated GDP. It can

be transformed as before into an MINLP, or it can be directly solved using logic-based

decomposition algorithms.21

Automatic detection and reformulation

To make detection and reformulation of induced linearity structure more accessible to mod-

elers, we also present an initial implementation of automatic detection and reformulation as

a contributed package in the Pyomo algebraic modeling language.22 Pyomo is an open-source

python library that provides the ability to specify sets, variables, parameters, constraints,

and higher-level modeling constructs such as disjunctions, along with interfaces to various

solvers and meta-solvers. Pyomo o�ers users a familiar interface for specifying their opti-
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mization problem and allows developers of custom reformulations the ability to manipulate

modeling components programmatically, allowing the development of automatic reformula-

tions.

Given a Pyomo model, automated induced linearity detection and reformulation can be

invoked with a single line of code:

TransformationFactory('contrib.induced_linearity').apply_to(model)

The induced linearity automatic reformulation consists of the following steps:

1. Search through all constraints to identify continuous variables uq which are involved in

linear constraints of the form uq =
∑

s′ d̃s′ , where d̃s′ are discrete variables. These con-

tinuous variables are e�ectively discrete due to these linear relationships with discrete

variables.

2. Determine for each e�ectively discrete variable uq the set of valid values DSq.

3. Find nonlinear expressions h(u, v, w) ≤ 0 in which e�ectively discrete variables partic-

ipate.

4. Apply the induced linearity reformulation, introducing auxiliary variables and con-

straints.

The code to support this capability is publicly available via the Pyomo Github repository,

and comes packaged with a standard Pyomo developer installation. Once the induced linear-

ity reformulation is applied to a Pyomo model, interfaces to Pyomo automatic reformulations

from GDP to MINLP,21 as well as commercially available MINLP codes (e.g. BARON, DI-

COPT, SCIP, see review23) and custom solvers such as MindtPy24 and GDPopt21 allow the

user to solve the corresponding MINLP or GDP problem.
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Capacity expansion case study

We present a capacity expansion case study to illustrate the applicability of the problem

formulation on a wide range of modular process design considerations.

Single market capacity expansion

For the initial case, we consider a hypothetical case involving a single facility serving a

market with time-variant demand Φk,t and a discount rate of dr = 8%. For this simple case

study, only one site exists, and it is �xed to be active. Therefore, disjunction (2) simpli�es

to enforce only the constraints in the left-hand-side disjunct. Similarly, we assume that

the facility consists of only one processing unit (conventional) or one module type, which is

always active. A monthly time period t is used with a project life of 10 years, Nt = 120. We

do not consider in this case the supplier relationship, so feed considerations are neglected.

We assume that one market exists with distance 0 from the site. Therefore, transportation-

related costs are also zero. Finally, we do not need to satisfy demand exactly here, so

equation (9) is excluded from the model.

With these assumptions, the key decision involves selection of production levels at each

time point. For the conventional case, a capacity must be selected. For the modular case,

the number of modules to be purchased or sold in each time period must be determined.

0 20 40 60 80 100 120
0

100

200

Time [months]

D
em

an
d
U
n
it
s

Growth
Dip
Decay

Figure 1: Demand pro�le scenarios for the capacity expansion case study.
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In this illustration, we assume that demand begins at a value of 40 units per month

in the �rst time period t = 0, and we evaluate three di�erent demand pro�le scenarios:

a �Growth� scenario in which demand increases monotonically to just under 250 units per

month by the end of the project life, a �Dip� scenario in which demand experiences a brief

dip before continuing to grow to around 100 units per month by the end of the project life,

and a �Decay� scenario in which demand subsides after an initial growth period (see Fig.

1). The �Growth� scenario may be viewed as the nominal outcome, with the two adverse

realizations representing potential downside market risks. The sale value of the product is

$583 per unit, adjusted over time by the discount rate. For this example, we assume that a

process with production capacity of 25 units per month is available at a cost of $1 million.

For the conventional case, we assume a scaling factor of γ = 0.6 for a larger capacity facility.

For the modular case, a single module type with a capacity of 25 units per month is available

at a cost of $1 million per module.

The problem is formulated for each demand scenario as a nonlinear GDP with 488 vari-

ables, 486 constraints, and 1 disjunction. After �xing the logical decision in the GDP model

for the conventional case, an NLP is obtained with 486 variables and 259 constraints. The

NLP is solved in less than 1 second by using the BARON 18.5.8 solver via GAMS 25.1.3.

Enforcement of the modular choice leads to a linear GDP. After automatic application of the

hull reformulation, the resulting MILP has 972 variables (363 integer) and 1337 constraints.

Gurobi solves this MILP in less than 1 second.

From the solution of their respective formulations, we obtain a NPV pro�t of $2.47

million for the modular facility compared to $3.59 million for the conventional facility in the

nominal �Growth� scenario. Under the �Dip� demand scenario net present values of $1.99 and

$2.10 million are obtained for the modular and conventional cases, respectively. Finally, the

�Decay� scenario features a NPV pro�t of $0.85 and $0.72 million for the respective modular

and conventional constructions. These results show that for a single site capacity expansion

in which demand may be reliably forecast, competing against conventional economies of scale
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presents a signi�cant challenge to modular designs in the nominal case. Even in the case of

market downturns, as in the �Dip� scenario, the conventional design slightly outperforms the

modular design. However, in the face of adverse market conditions or transient demand, as

in the �Decay� scenario, the �exibility of the modular alternative gives it the advantage.
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Figure 2: Capacity expansion case study production and capacity under Growth, Dip, and
Decay demand pro�le scenarios.

Fig. 2 illustrates how production and capacity change in relation to demand over the

project lifetime for both the modular and conventional facilities in each of the three demand

scenarios. Based on assumed construction times, the modular facility begins production in

the third month, before the conventional facility completes construction in the 12th month.

Initial modular production yields a present value revenue of $210 thousand before the comple-

tion of the conventional facility, re�ecting the time-to-market advantage a�orded by faster

module assembly and engineering. This accounts for 4% to 9% of total modular present

value revenue, depending on the demand scenario. Subsequent module purchases are made
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in the �Growth� and �Dip� scenarios to accommodate increased demand. In the �Decay�

scenario, a production module is sold before the end of the project life, freeing up unneeded

capacity. Note that in all scenarios, the optimization chooses not to fully satisfy demand,

as the marginal revenue does not outweigh the marginal cost of purchasing an additional

production module, even after accounting for salvage value.

The conventional facility features a constant capacity of 186, 73, or 65 units per month

for the Growth, Dip, and Decay scenarios, respectively, available following construction for

the remainder of the project lifetime. Note that the production pro�le for the conventional

case assumes the ability to operate the facility at production levels well below nameplate

capacity. In practice, this may introduce ine�ciencies or complexities, but for simplicity, we

do not account for these e�ects in this example.

Comparing the modular and conventional production pro�les, we notice that the con-

ventional facility exploits economies of scale to provide comparable or higher production

capacity across each scenario. Table 1 gives the revenue and cost breakdowns for each

scenario, where it can be observed that construction costs for the conventional facility are

consistently cheaper, even given its capacity advantage. Economies of mass production12

has been proposed as a means to counter this advantage in scaling up; however, it is not

considered in this work.

From the �Dip� scenario results, hints of modular advantages can be seen even though the

conventional construction yields a better overall pro�t. The modular present value revenue of

$4.14 million exceeds the conventional revenue of $3.90 million, demonstrating the advantage

of faster time-to-market in a modular construction given similar production capacities. The

salvage value of the modular facility is also higher, at $840 thousand compared to $10

thousand for the conventional facility. This is due to the higher modular salvage value

recovery fraction, assumed to be φm = 0.30 versus φc = 0.05 for the conventional plant. As

production modules are easier to re-purpose, perhaps by relocating them to another project

site, they retain more of their value at the end of the project life. Furthermore, modules may
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be sold prior to the project conclusion to enable faster value recapture. The combination of

these factors allows the modular construction to have a superior overall present value pro�t

in the �Decay� scenario.

Table 1: Capacity expansion case pro�t and cost factors

Growth Dip Decay
Factor [million $] Conv. Modular Conv. Modular Conv. Modular
Construction cost 3.33 3.96 1.90 2.99 1.78 2.00
Market Revenue 6.77 5.31 3.90 4.14 2.41 2.28
Salvage value 0.16 1.12 0.01 0.84 0.01 0.57
Total NPV 3.59 2.47 2.10 1.99 0.72 0.85

Despite the conventional facility's capacity advantage, much of it ends up under-utilized,

particularly in the �Growth� scenario. This over-sizing can present a liability. Note that the

model assumes perfect knowledge of future demand pro�les. In the presence of forecasting

uncertainty, the modular facility would be more capable of quickly adapting, giving it a

further advantage compared to the conventional case. To illustrate this more clearly, we

optimize a two-stage stochastic programming (TSSP) formulation for the conventional case,

considering the facility sizing investment decision at the �rst stage and the production pro�le

at the second stage. Given the set of scenarios θ ∈ {Growth,Dip,Decay}, we assume scenario

weights of wtGrowth = 50%, wtDip = 25%, and wtDecay = 25%. We include a copy of the

deterministic problem for each scenario, including the non-anticipativity constraint Eqn.

(25).

SGrowth
j,n = SDip

j,n = SDecay
j,n (25)

The pro�t for each scenario is given by NPV θ, with the overall objective the maximization

of Eqn. (26).

maxNPV ∗ =
∑
θ

wtθNPV
θ (26)

The combined TSSP formulation is a NLP with 365 variables and 727 constraints.

BARON 18.5.8 solves the problem in less than 1 second.

The resulting solution yields an expected NPV pro�t of $2.03 million, with a production
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Figure 3: Capacity expansion case study stochastic programming conventional facility ca-
pacity and scenario production pro�les.

capacity of 121 units per month (see Fig. 3). This capacity value is signi�cantly lower

than the nominal value of 186 units per month in the �Growth� scenario, so the solution

hedges against purchasing excess capacity; however, this is still su�cient to recover 84% of

the nominal revenue if the �Growth� scenario is realized. The cost breakdown for the TSSP

solution can be found in Table 2. Note that by assuming that all modular design decisions are

made in the second stage, the equivalent modular expected net present value is $1.95 million,

within 4% of the conventional case. If the more conservative scenario weighting is used such

that all scenarios have the same weight, the resulting expected net present value will be

$1.72 million and $1.77 million for the conventional and modular case, respectively. Under

this risk-adverse assumption, the modular option outperforms the conventional alternative.

Table 2: Capacity expansion case study stochastic programming results.

Factor [million $] Expected Value Growth Dip Decay
Construction cost 2.57 - - -
Market Revenue 4.48 5.68 4.07 2.50
Salvage value 0.12 - - -
Total NPV 2.03 3.22 1.62 0.04

Even with this simple case study, we can gain insights into the trade-o�s between modular

and conventional chemical facility construction. Modular construction is most relevant in the

presence of volatile markets where it is important to gain an early time-to-market advantage
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and to hedge against downside risks. Modular construction also bene�ts when a secondary

market exists so that modules better retain their value for re-purposing or resale past the

project lifetime. When these conditions do not exist, then it can be di�cult to recommend

a modular design due to the cost scaling advantages of conventional economies of scale.

Multiple markets with module relocation

Next, we consider a given product with multiple markets and potential facility sites. In

this case study, the objective is to minimize total system cost while enforcing satisfaction

of demand at each of �ve customer markets, subject to facility construction costs as well

as transportation costs. Here, rather than allowing the sale of modules, we allow for their

relocation between production sites, subject to a transportation cost relative to the distance

between the sites. Relocated modules also incur a transport time of 3 months, during which

they do not contribute to site production. The capital cost for conventional facilities is

assumed to be $1 million for a production capacity of 10 units per month, with a scaling

factor of γ = 0.6 for a larger capacity facility. For modular facilities, a single module type

is available with a capacity of 10 production units per month, costing $1 million each. The

transportation cost per unit of product per mile is assumed to be $17 thousand. Trans-

portation costs for module relocation are assumed to be $1 million per mile. Note that these

values are given to illustrate a scenario in which transportation costs are dominant.

The markets have �xed locations on a two-dimensional grid as illustrated in Fig. 4. The

axes denote miles from an origin point at (0, 0). The demand pro�les corresponding to each

market, as well as the total demand, are given in Fig. 5.

Note that peaks in the demand pro�les for each market location occur at di�erent times

from each other, with markets 1 and 2 initially providing the most demand, but in later

time periods, demand has shifted to market 3, then markets 4 and 5. Since demand must

be ful�lled exactly in this case study, we do not consider the product sale price, letting

Priceprodk,t = 0. We also do not consider supplier relationships here, assuming that the raw
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Figure 4: Market locations on a 2-D spatial grid.

material is readily available at any potential facility, as in the case of air separation.
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Figure 5: Demand over time at individual markets and in total.

In the conventional single-facility case, there is one site available, which necessarily is

linked to each of the market locations. The location of the site is set by the result of

the optimization to minimize costs. With these restrictions, the general GDP formulation

simpli�es to an NLP, with 735 variables and 853 constraints. Solving with IPOPT, a solution

is obtained in less than 1 second.

The conventional facility with capacity 221 units per month is constructed at coordinate

location (219, 228) at a cost of $4.2 million. Adding in product transportation costs of $42
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million, the total system cost is $46.2 million over the project scope. As seen in Fig. 6b,

the optimal solution chooses to situate the conventional facility slightly o�-center towards

market 3. This minimizes the transportation costs, which constitute the largest cost factor

in the case study.
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(a) Conventional solution
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Figure 6: Multiple markets case study solution. Conventional facility site is indicated by X.
Numbered circles are modular facility sites. Solid lines indicate product shipment routes.
Dashed line indicates module transfers from one site to another.

The modular problem is formulated as a nonlinear GDP with 2224 variables (718 integer),

1387 constraints, and 13 disjunctions. This is then automatically transformed to an MINLP

using the big-M reformulation and solved in 7 seconds using the DICOPT solver25,26 via the

Pyomo-GAMS solver interface and GAMS version 25.1.3.27

The distributed, modular case chooses to use both potential facility sites, with site 1

located at coordinate (270, 75) and site 2 at (246, 272). Site 1 supplies markets 2, 4, and

5, while site 2 supplies markets 1 and 3. Fig. 6b shows the site locations with respect

to the market sites, as well as the transportation links that exist. The placement of site

2 near market 3 rather than markets 1 and 2 may appear to be an odd decision at �rst,

but examining the cumulative demand based on Fig. 5 reveals that market 3 is dominant

over the project lifetime. Therefore, placement of a facility close to that market is more

advantageous than one close to markets 1 and 2.
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The total modular system cost is $45.2 million, of which product transportation accounts

for $26.1 million, module purchases $11.9 million, and module transfers $7.2 million. Table

3 gives a comparison between the modular and conventional system costs, showing the two

to have very similar total cost. However, it is clear that the conventional solution in this

case has lower investment cost than the modular solution, but the modular design has lower

transportation cost. Fig. 7 shows the capacity and production levels at each site over time.

Table 3: Multiple market case pro�t and cost factors

Cost [million $] Conventional Modular
Construction 4.2 11.9
Product Transportation 42.0 26.1
Module Transfer - 7.2
Total NPV 45.7 45.2
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Figure 7: Distributed modular capacity expansion production and demand

As seen in Fig. 7, the capacity of site 2 grows over time in the initial capacity expansion

phase, but then as demand falls in markets 1 and 3, modules are transferred from site 2

to site 1, increasing site 1 production closer to the more active markets. These transfers in

the modular case allow production to be more easily moved into areas of demand growth,

preserving module production value subject to transportation costs.

Fig. 7 also o�ers an indication that a better mathematical solution may exist. At times,

additional capacity is added at a site, whether via module purchase or module transfer, even
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when it is not needed to support the required production level. The solution for the modular

network in this case study was obtained using the DICOPT solver, which requires convexity

to guarantee mathematical optimality. Used on a non-convex problem such as this case

study, it may �nd good quality solutions such as the one presented, but cannot guarantee

the globally optimal solution. Application of the BARON28 global optimization solver did

not yield a feasible solution after 10 minutes.

Quarterly time periods

In order to reduce the problem complexity and seek an improved modular solution, we

aggregate the time periods for the distributed modular case into quarters rather than months.

As a result, we reduce the problem size in the time domain. Consequently, we now consider

up to a three-site modular design. Aggregation of time periods slightly modi�es the discount

rate compounding, as it takes place quarterly instead of monthly; however, this is not likely

to signi�cantly a�ect the result. Indeed, the conventional facility NPV using quarterly time

periods improves slightly to $43.1 million, but is otherwise unchanged (see Table 4). The

topology of the demand markets also remains the same from the previous case study (see

Fig. 4).

Table 4: Multiple market case pro�t and cost factors, quarterly time periods

Cost [million $] Conventional Modular
Construction 4.2 11.6
Product Transportation 38.9 6.6
Module Transfer - 2.2
Total NPV 43.1 20.4

The time-aggregated modular formulation now involves 1314 variables (486 integer), 672

constraints, and 21 disjunctions. Using BARON, the best solution obtained after 10 minutes

is presented. The total modular system cost is $20.4 million, with product transportation

costs accounting for $6.6 million, module purchases $11.6 million, and module transfers $2.2

million. Site 1 is situated at (275, 30) serving markets 1, 4, and 5. Site 2 is at (246, 273)
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with product shipments to markets 2 and 3. Finally, site 3 is located at (25, 295), serving

markets 1, 2, and 4. The resulting network structure is shown in Fig. 8.

0 50 100 150 200 250 300
0

50

100

150

200

250

300 1

2

3

4

5

1

2
3

Location x-coordinate (mi)

L
o
ca
ti
on

y
-c
o
o
rd
in
a
te

(m
i)

# Market

X Conventional Site
# Modular Site

Product Route

Module Transfer

Figure 8: Distributed modular capacity expansion production and demand, quarterly time
periods

Already, we see an improvement through the use of a more rigorous search technique.

The transportation costs are reduced, and although module purchase costs remain higher,

the module transfer costs are also decreased. Fig. 8 shows that the network behavior is more

complex, with more interconnections formed. In order to simplify the analysis, we examine

the quarterly shipments from each of the three modular facilities separately.

Fig. 9 plots the quarterly shipments corresponding to each facility. Facility 1 primarily

serves markets 4 and 5. However, earlier on, it also contributes to demand satisfaction at

market 1. Similarly, site 2 primarily serves market 3, with additional minor contributions to

markets 2. Site 3 is the simplest, serving exclusively markets 1 and 2.

The minor contributions can be seen as back�ll production provided by a more distant

modular facility, while the more proximal facility expands its capacity to meet the rising

demands. Fig. 10 shows that near the beginning, site 3 production is capacity-limited as it

is more cost-e�ective to ship in product from sites 1 and 2 to satisfy marginal demand above
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Figure 9: Quarterly shipment quantities from modular sites
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Figure 10: Quarterly production and capacity for modular sites
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site 3 capacity than it is to purchase additional modules. In later time periods, demand from

markets 1 and 2 diminishes, so modules are relocated from site 3 to aid capacity expansion

in sites 1 and 2, alleviating the need for new module purchases. Therefore, this case study

demonstrates the value that module relocation a�ords in terms of �exibility in the presence

of signi�cant transportation costs and demand variability, and the ability of the presented

design framework to support these considerations.

Bioethanol case study

We next present a bioethanol case study, adapted from literature,29 to illustrate adaptation

and use of the proposed general formulation. The original case study considers a contin-

uous location-allocation model to compare centralized versus distributed process network

arrangements.29 In this work, we propose a multi-period extension in which the potential

site locations are predetermined. This case study attempts to �nd the minimum cost network

layout and production allocation in order to satisfy market demands. To preserve feasibility

given the 12 month construction time required for the conventional facility, the demands are

modi�ed so that they are zero until month 12. After this initial period, the demand levels

at each market remain constant. However, we introduce variability in the availability of raw

material from various suppliers. Some suppliers initially have no raw material availability,

but then come online during the project life span, while others may go o�ine after a �xed

amount of time. This time-variance of the suppliers is known and �xed ahead of time. The

spatial layout of the processing network is shown in Fig. 11.

We are given a base process with a cost of $268.4 million, capable of producing 120

thousand tons of bioethanol product per year.29 For the conventional case, we allow for

continuous facility sizes at each site with a scaling factor of γ = 0.7. For the modular

case, we take this base cost and production capacity as the default module, with additional

production capacity available at each site through additional module purchases. As given
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Figure 11: Bioethanol production processing network site layout. Suppliers are indicated
by diamonds. Potential processing facilities are indicated by circles. Customer markets are
indicated by rectangles.

in the literature example, conversion of raw material to product is 0.26 on a mass basis.

With �xed supplier, facility, and market locations, the transportation distances for this case

study are predetermined. Therefore, the modular case is a linear GDP problem which is

automatically reformulated using big-M as an MILP involving 36,768 variables (504 binary,

4,320 integer) and 13,388 constraints.

After 20 minutes, Gurobi yields a solution of $4.9 billion with an optimality gap of 0.7%.

The topology of the modular process network alternative is shown in Fig. 12, involving 11

modules at 10 processing sites. Each selected site is assigned one module, except for site 1,

which hosts two modules after a purchase in the 60th month.

The conventional case is a nonconvex MINLP due to the concave cost functions for each

of the sites. It involves 36792 variables (504 binary, 4320 integer) and 10676 constraints (24

nonlinear). This problem was solved using SCIP30 via the Pyomo-GAMS interface using

GAMS 25.1.3. After 441 seconds, a solution was obtained with an optimality gap of 0.61%.

The conventional process network topology involving 10 plants is displayed in Fig. 13.
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Figure 12: Modular processing network topology for bioethanol production
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Figure 13: Conventional processing network topology for bioethanol production
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In this case study, the modular alternative gives a better solution than the conventional

option due to a combination of e�ects (see Table 5). The sum total of these di�erences leads

to a present value cost of $4.9 billion versus $4.1 billion for the conventional and modular

cases, respectively. First, note that the construction costs for the conventional and modular

cases are similar in this example. Due to the dominance of raw material transportation costs

in the case study, a centralized processing facility is not competitive. Therefore, even in the

conventional case, multiple smaller distributed facilities need to be constructed near di�erent

suppliers to minimize raw material transportation distances. This implicit size restriction

blunts the impact of traditional economies of scale and allows the modular construction, while

still more expensive, to be more competitive. Second, we assume in this case study, as in the

capacity expansion example, that the salvage value recovery fractions for the conventional

and modular facilities are φc = 0.05 and φm = 0.30, respectively. This allows the modular

design to retain more of its value at the end of the project, accounting for a $705 million

di�erence in the network present value. The ability to relocate modular production to take

advantage of transient supply or demand shifts can also be seen, with the modular network

allocating production closer to suppliers to reduce raw material transportation costs by

$372 million compared to the conventional case. In this example, the e�ect even outweighs

the conventional advantage in construction cost. The modular case also allows for delayed

capital expenditure due to faster assembly time. This decreases the NPV cost of purchasing

a modular system. However, this has only a minor impact, accounting for a $21 million

di�erence in the present value construction cost.

Table 5: Bioethanol production process network cost factors

Factor [million $] Conventional Modular
Construction cost 2684 2931
Salvage value 126 831
Raw material transport cost 2225 1853
Product transport cost 98 114
Total net cost 4881 4067
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Modular HENS case study

The general formulation also supports investigation of subsystems for potential facilities.

There has been recent31 as well as historical3 interest in the area of modular heat exchanger

networks. We present a modular heat exchanger network synthesis (HENS) case study. Here,

we are given a set of 2 hot and 2 cold streams within a potential site. The units involved are

potential matches between the hot and cold streams, which can be activated or deactivated

by Y unit
j,n . A 2-stage superstructure is used for the HENS.32 Furthermore, each potential

match may be satis�ed by a conventional exchanger or modular units. With this case study,

we also illustrate how induced linearity can be applied to the linearization of the overall heat

transfer calculation, equation (27), given discrete module sizes.

The problem data is adapted from literature,32 with stream inlet/outlet temperatures

and heat content given in Table 6. Process steam and cooling water are available at a cost

of $80 per kW and $20 per kW, respectively. The overall heat transfer coe�cient U is 1.2

kWm−1K−1 for heaters and 0.8 for all other exchangers. Conventional heat exchangers

are available with a �xed investment cost of $2000, with a subsequent concave variable

investment cost with a factor of Cs,conv
n = 1000 (1200 for heaters), base size of S0

n = 1, and

exponential scaling factor of γ = 0.6. For modular exchangers, �xed module sizes of 10,

50, and 100 square meters are available. We assume no �xed investment cost for modular

exchangers as a proxy for their relative ease of setup, but the subsequent module unit cost for

each size is determined by a higher cost factor of 1100 (1300 for heaters). Since these sizes are

determined before the optimization, the corresponding per-module costs are pre-calculated

for each size.

In this case study, we consider only a single time period, assuming that the network will

not change over the design period. We also assume that appropriate partial bypasses are

in place such that the overall heat transfer calculation, equation (27), does not need to be

satis�ed exactly. Therefore, the exchanger area at the match provides an upper limit to the

amount of heat transfer for a given temperature driving force, but can have excess capacity.
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Table 6: Stream information for HENS case study

Stream Tin [K] Tout [K] FCp [kW/K]
H1 443 333 30
H2 423 303 15
C1 293 408 20
C2 353 413 40
steam 450 450
water 293 313

This is important to allow for feasibility of the modular case, since only discrete sizes are

possible.

Q ≤ UALMTD (27)

For a modular heat exchanger network design, the available heat exchanger surface area

at a match between a hot stream and cold stream will be the sum of the discrete areas for all

modules installed for the match. Therefore, the heat exchange surface area A is e�ectively

discrete, allowing the application of induced linearity. A therefore substitutes in for uq in

equation (17), with DSq from section equal to the discrete set of possible heat exchange

surface areas at a given match q:

Aq =
∑
m

dq,mzq,m (28)

∑
m

zq,m = 1 (29)

We can use equation (28) to induce linearity in the bilinear overall heat transfer calculation,

equation (27). Here, we introduce auxiliary variables for the log mean temperature di�erence

at each stream match LMTDq, corresponding to equations (20) and (21):

33



LMTDq =
∑
m

LMTDq,m (30)

LMTDL
q zq,m ≤ LMTDq,m ≤ LMTDU

q zq,m (31)

Adding these constraints to the formulation, we can therefore rewrite equation (27) for

a given match q as the linear inequality:

Qq ≤ U
∑
m

dq,mLMTDq,m (32)

We consider a variety of di�erent cases: use of conventional exchangers, use of a single

module type, use of multiple module types, and use of a hybrid network with both con-

ventional and modular exchangers. In the conventional case, we examine the classic HENS

design with no modular exchangers. The single module case produces a heat exchanger

network design using only one standardized exchanger module size, in pursuit of increased

module standardization and economies of mass production. For the multiple module case,

we allow a mix of each possible module size. Finally, for the hybrid case, we allow each

match to be either implemented with a conventional exchanger or with modular exchangers.

The corresponding GDP model sizes for each case is shown in Table 7. Details for both the

base formulation and induced linear reformulation (ILR) of each modular case are shown.

Table 7: HENS case study GDP problem sizes

Variables Binary Integer Constraints Disjunctions
Conventional 208 24 0 250 32
Single module type 307 27 96 265 33
Single module ILR 3071 2107 0 6006 33
Multiple module types 108 36 36 262 44
Multiple module ILR 1108 324 0 1486 32
Hybrid 120 48 36 322 44
Hybrid ILR 1008 348 0 2122 44

After formulation, Pyomo o�ers multiple options for solving the GDP model. We apply
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three solvers with the HENS case study: GDPopt,21 DICOPT,25 and BARON.28 For DI-

COPT and BARON, a big-M automatic reformulation17 is applied from GDP to MINLP

prior to sending the model to the solver. For the latter two solvers, a �ve minute (300

second) time limit was set, and for GDPopt, a Python implementation of the Logic-based

Outer Approximation algorithm,33 no run exceeded the same time limit. The total system

cost results are given in Table 8, with the �nal lower bound values for BARON also reported.

Table 8: HENS case study cost minimization results, thousands $

GDPopt DICOPT BARON (LB)
Conventional 115 109 107 (106)
Single module type 166 - 135 (134)
Single module ILR 167 - -
Multiple module types 134 - 120 (66)
Multiple module ILR 109 - 109 (90)
Hybrid 119 - 102 (40)
Hybrid ILR 119 - 105 (30)

From the results, several observations may be made. First, given 300 seconds, BARON

�nd the best result in almost every instance. Though BARON is unable to close the bounds

and establish global optimality for this case study, good solutions are still obtained. However,

if the objective is to more quickly screen for good solutions, BARON may be less ideal, as it

is not as fast as the non-global options. The two non-global solvers, GDPopt and DICOPT,

give respectable solutions for the conventional case, with DICOPT slighly outperforming

GDPopt, but for modular problems, GDPopt is able to �nd feasible solution where DICOPT

is unable to. A dashed line indicates when a solver is not able to �nd a feasible solution

within the set time limit. In the case of DICOPT, the solver often terminates before the

time limit with an error message of �intermediate non-integer�. This demonstrates the value

of modeling with GDP: many di�erent solution strategies become available, with the user

able to select among them based on their e�cacy and speed.

The induced linearity reformulation was shown to improve the performance of the GDPopt

algorithm for the multiple module case, while yielding similar results for the other cases. For
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BARON, the e�ect was more mixed. In the single module type case, the increase in problem

size due to the ILR resulted in a failure to �nd a solution. However, in the case for multi-

ple module types, use of the ILR resulted in an improved solution. Therefore, as the ILR is

available as an automatic transformation in Pyomo, it has value as an optional preprocessing

step for di�cult modular process design problems.

The results show that the variable cost premium for strictly modular designs can lead to

a cost disadvantage, even when �xed costs for each match are reduced by ease of installation

in the modular case. However, the results also indicate that use of a hybrid system in which

large exchangers are combined with smaller modular exchangers can result in cost savings

beyond the base conventional case.

(a) Conventional HENS (b) Hybrid HENS

Figure 14: Heat exchanger network designs. Circles indicate conventional heat exchangers.
Box indicates modular heat exchanger. Heat transfer rate Q and exchanger area A are
indicated within each exchanger.

Here, the hybrid network (see Fig. 14b) cost of $102,000 outperforms the total cost of

$107,000 for the conventional network (see Fig. 14a).

Conclusion

This paper proposes a strategy for the design of chemical processing networks incorporating

modular unit constructions. Modular designs show great promise due to their �exibility and
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other advantages. However, they may not be the best choice in all instances. A general logi-

cal (Generalized Disjunctive Programming) formulation is presented which examines several

factors in modular design, including time-to-market considerations, module relocation, and

hybrid conventional-modular con�gurations, to systematically consider the tradeo�s involved

in selecting a modular versus conventional unit construction within a processing network.

We also identify the e�ectively discrete problem structure that is characteristic of many

modular design problems and describe the application of an induced linearity reformulation

that allows some nonlinear constraints to be exactly represented with a linear-discrete set

of equations. The applicability of the proposed general formulation is demonstrated using a

set of illustrative as well as literature case studies. We also demonstrate the implementation

of the design strategy as a set of inter-operable modeling tools within the Pyomo modeling

language. After developing an initial GDP modular design model, several solution strate-

gies are available, including automatic reformulations from GDP to MILP/MINLP, followed

by the application of a commercial MINLP code, or the use of direct logic-based solution

algorithms.

Though it would be desirable to examine more speci�c case studies, the representative

examples presented o�er a few generic insights into when the modular approach may be ad-

vantageous. When the project life is shorter, the ability of modular facilities to be assembled

more quickly can provide a time-to-market advantage. If a �rm is cash-�ow constrained, a

modular approach may realize positive cash �ows more quickly. Similarly, if supply availabil-

ity or demand pro�les experience variations or cycling, the �exibility a�orded by reallocatable

and relocatable modules becomes desirable. This �exibility also allows modules to retain a

higher salvage value when a secondary market or destination exists beyond the project life.

Finally, modular designs can be more e�ective in distributed processing networks in which

transportation costs prohibit use of a large centralized processing facility, blunting the con-

ventional economies of scale e�ect. From the HENS example, we can conclude that modular

constructions are relevant in subsystems when smaller modules allowing more e�cient phys-
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ical phenomena replace large units due to reduced �xed cost.

Despite progress in systematic modular process network design, several challenges remain.

First, we note that in most cases presented, the value of the pro�t improvements or cost

reductions is less than 10%. The conclusions are therefore sensitive to the values of the

input data for the examples. For instance, the salvage value of modular units is often a key

factor in the end result.

More work also remains to be done in quantifying the trade-o�s between modular and

conventional facilities. In practice, several factors related to modular construction such as

improved reliability, safety, and quality are often considered only in a qualitative sense. How-

ever, to systematically evaluate trade-o�s with optimization-based techniques, a quantita-

tive model is necessary. In addition, for large-scale problems, computation of good solutions

with mathematical optimality guarantees remains a signi�cant challenge. Improved model-

ing techniques and solution strategies that take advantage of problem structure will continue

to be valuable.

Nomenclature

δt Discount factor at time period t

γ Conventional unit cost exponential scaling factor

v̂ Auxiliary continuous variables

x̂j Internal state variables at site j

Q Heat transfer (kW)

LMTD Log mean temperature di�erence (K)

φc Conventional unit salvage value fraction

φm Module salvage value fraction
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Ψi,t Raw material availability at supplier i in period t

NT Project life length (periods)

τc Conventional unit construction time (periods)

τm Modular unit setup time (periods)

θ Demand pro�le scenarios

A Heat transfer surface area

Cconv
j,n Conventional capital cost for unit n at site j

Cf,conv
n Fixed installation cost for conventional unit of type n

Cf,mod
n Fixed installation cost for modular unit of type n

Cs,conv
n Base size cost for conventional unit of type n

Cm,t Purchase cost for module of type m in period t

Costfeedi,t Raw material cost at supplier i in period t

Di,j, Dj,k, Dj,j′ Distance between suppliers and sites, sites and markets, and pairs of sites,

respectively (miles)

dq,s Size of discrete element for variable q and size s

dr Annual discount rate

f(rj,t, Sj,n,t, x̂j) Production function

f feedi,j,t Shipment quantities of raw material between supplier i and site j in period t

fprodj,k,t Shipment quantities of product between site j and market k in period t

FCp Heat content of process stream p (kW/K)
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gj,n,t(x̂) Unit performance equations for unit n at site j in period t

h(u, v, w) Bilinear constraints

i ∈ I Set of suppliers

j ∈ J Set of potential processing sites

k ∈ K Set of markets

m ∈Mn Set of modular alternatives for unit of type n

n ∈ Nj Set of potential units at site j

nP Number of time periods in a year

nm,j,t Number of modules of type m at site j in period t

npm,j,t Number of modules of type m purchased for site j in period t

NPV θ Net present value of scenario θ solution

nsm,j,t Number of modules of type m sold at site j in period t

ntm,j,j′,t Number of modules of type m transferred from site j to site j′ in period t

P (t) Present value function

pj,t Production level at site j in period t

Priceprodk,t Product sale value at market k in period t

q ∈ Q Set of e�ectively discrete design variables

r ∈ Rq Set of continuous state variables multiplied with e�ectively discrete variable q

rj,t Raw material supply at site j in period t

s ∈ DSq Set of discrete sizes for variable with index q
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s′ ∈ DS ′ Set of discrete variables

Sθj,n Conventional alternative size of unit n at site j in scenario θ

S0
n Base size for conventional unit of type n

Sj,n,t Size of unit n at site j in period t

Sj,n Conventional alternative size of unit n at site j

Sm Size of module of type m

t ∈ T Set of time periods

Tin/Tout Stream inlet/outlet temperature (K)

TCf,feed
i,j Fixed transportation cost for raw material from supplier i to site j

TCf,prod
j,k Fixed transportation cost for product from site j to market k

TCfeed
t Variable transportation cost for raw material ($ per unit feed per mile)

TCmod
m,t Transportation cost for module of type m ($ per module per mile)

TCprod
t Variable transportation cost for product ($ per unit product per mile)

TF feed Fixed cost for raw material transportation route

TF prod Fixed cost for product transportation route

U Overall heat transfer coe�cient (kWm−1K−1)

u E�ectively discrete variable

v, w Continuous state variables

vLr /v
U
r Lower/upper bound for variable of index r

wtθ Scenario probability weighting
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xi, yi Spatial coordinates of supplier i

xj, yj Spatial coordinates of process site j

xk, yk Spatial coordinates of markets k

Y conv
j,n Boolean variable for selection of the conventional alternative for unit n at site j

Y feed
i,j Boolean variable for existence of a transportation link between supplier i and site j

Y mod
j,n Boolean variable for selection of a modular alternative for unit n at site j

Y move
j,j′ Boolean variable for existence of a transportation link between site j and site j′ for

transferring modules

Y prod
j,k Boolean variable for existence of a transportation link between site j and market k

Y site
j Boolean variable for existence of site j

Y unit
j,n Boolean variable for existence of unit n at site j

zq,s Binary variable for selection of size s for variable q

Acknowledgement

The authors thank Sulogna Roy of Zeton, Inc. for her helpful insights on modular design

considerations. The authors also gratefully acknowledge support by the U.S. Department of

Energy, O�ce of Fossil Energy as part of the Institute for the Design of Advanced Energy

Systems (IDAES).

References

(1) Roy, S. Consider modular plant design. Chemical Engineering Progress 2017, 113, 28�

31.

42



(2) Rogers, G. G.; Bottaci, L. Modular production systems: a new manufacturing

paradigm. Journal of Intelligent Manufacturing 1997, 8, 147�156.

(3) Stephanopoulos, G.; Westerberg, A. W. Modular Design of Heat Exchanger Networks.

Chemical Engineering Communications 1980, 4, 119�126.

(4) Shah, N. K.; Ierapetritou, M. G. Integrated production planning and scheduling op-

timization of multi-site, multi-product process industry. 21st European Symposium on

Computer Aided Process Engineering 2011, Volume 29, 1015�1019.

(5) Moulijn, J. A.; Stankiewicz, A.; Grievink, J.; Górak, A. Process intensi�cation and

process systems engineering: A friendly symbiosis. Computers & Chemical Engineering

2008, 32, 3�11.

(6) Demirel, S. E.; Li, J.; Hasan, M. M. F. Systematic Process Intensi�cation using Building

Blocks. Computers & Chemical Engineering 2017, 105, 2�38.

(7) Baldea, M.; Edgar, T. F.; Stanley, B. L.; Kiss, A. A. Modular manufacturing processes:

Status, challenges, and opportunities. AIChE Journal 2017, 63, 4262�4272.

(8) Chen, Q.; Grossmann, I. Recent Developments and Challenges in Optimization-Based

Process Synthesis. Annual Review of Chemical and Biomolecular Engineering 2017, 8,

249�283.

(9) Lier, S.; Wörsdörfer, D.; Grünewald, M. Wandlungsfähige Produktionskonzepte: Flex-

ibel, Mobil, Dezentral, Modular, Beschleunigt. Chemie Ingenieur Technik 2015, 87,

1147�1158.

(10) Brodhagen, A.; Grünewald, M.; Kleiner, M.; Lier, S. Erhöhung der Wirtschaftlichkeit

durch beschleunigte Produkt- und Prozessentwicklung mit Hilfe modularer und skalier-

barer Apparate. Chemie Ingenieur Technik 2012, 84, 624�632.

43



(11) Seifert, T.; Sievers, S.; Bramsiepe, C.; Schembecker, G. Small scale, modular and contin-

uous: A new approach in plant design. Chemical Engineering and Processing: Process

Intensi�cation 2012, 52, 140�150.

(12) Lier, S.; Grünewald, M. Net Present Value Analysis of Modular Chemical Production

Plants. Chemical Engineering & Technology 2011, 34, 809�816.

(13) Wörsdörfer, D.; Lier, S.; Crasselt, N. Real options-based evaluation model for trans-

formable plant designs in the process industry. Journal of Manufacturing Systems 2017,

42, 29�43.

(14) Mothes, H. No-Regret-Lösungen - Modulare Produktionskonzepte für komplexe, un-

sichere Zeiten. Chemie Ingenieur Technik 2015, 87, 1159�1172.

(15) Tan, S. H.; Barton, P. I. Optimal dynamic allocation of mobile plants to monetize

associated or stranded natural gas, Part I: Bakken shale play case study. Energy 2015,

93, 1581�1594.

(16) Yang, M.; You, F. Modular methanol manufacturing from shale gas: Techno-economic

and environmental analyses of conventional large-scale production versus small-scale

distributed, modular processing. AIChE Journal 2018, 64, 495�510.

(17) Grossmann, I. E.; Trespalacios, F. Systematic modeling of discrete-continuous opti-

mization models through generalized disjunctive programming. AIChE Journal 2013,

59, 3276�3295.

(18) Grossmann, I. E.; Voudouris, V. T.; Ghattas, O. In Recent Advances in Global Opti-

mization; Floudas, C., Pardalos, P., Eds.; Princeton Univ. Press, 1992; pp 475�512.

(19) Reay, D.; Ramshaw, C.; Harvey, A. Process intensi�cation engineering for e�ciency,

sustainability and �exibility ; Elsevier, 2008.

44



(20) Voudouris, V. T.; Grossmann, I. E. Mixed-integer Linear Programming Reformulations

for Batch Process Design with Discrete Equipment Sizes. Ind. Eng. Chem. Res. 1992,

31, 1315�1325.

(21) Chen, Q.; Johnson, E. S.; Siirola, J. D.; Grossmann, I. E. Pyomo.GDP: Disjunctive

Models in Python. Proceedings of the 13th International Symposium on Process Sys-

tems Engineering. San Diego, 2018.

(22) Hart, W. E.; Laird, C. D.; Watson, J.-P.; Woodru�, D. L.; Hackebeil, G. A.; Nichol-

son, B. L.; Siirola, J. D. Pyomo â�� Optimization Modeling in Python, 2nd ed.; Springer

Optimization and Its Applications; Springer International Publishing: Cham, 2017;

Vol. 67.

(23) D'Ambrosio, C.; Lodi, A. Mixed integer nonlinear programming tools: an updated

practical overview. Annals of Operations Research 2013, 204, 301�320.

(24) Bernal, D. E.; Chen, Q.; Gong, F.; Grossmann, I. E. Mixed-Integer Nonlinear Decom-

position Toolbox for Pyomo (MindtPy). Computer Aided Chemical Engineering 2018,

44, 895�900.

(25) Viswanathan, J.; Grossmann, I. E. A combined penalty function and outer-

approximation method for MINLP optimization. Computers and Chemical Engineering

1990, 14, 769�782.

(26) Duran, M. A.; Grossmann, I. E. An outer-approximation algorithm for a class of mixed-

integer nonlinear programs. Mathematical Programming 1986, 36, 307.

(27) Brook, A.; Kendrick, D.; Meeraus, A. GAMS, a user's guide. ACM SIGNUM Newsletter

1988, 23, 10�11.

(28) Tawarmalani, M.; Sahinidis, N. V. A polyhedral branch-and-cut approach to global

optimization. Mathematical Programming 2005, 103, 225�249.

45



(29) Lara, C. L.; Trespalacios, F.; Grossmann, I. E. Global optimization algorithm for ca-

pacitated multi-facility continuous location-allocation problems. Journal of Global Op-

timization 2018, 71, 871�889.

(30) Vigerske, S.; Gleixner, A. SCIP: Global Optimization of Mixed-Integer Nonlinear Pro-

grams in a Branch-and-Cut Framework ; 2016.

(31) Eilermann, M.; Post, C.; Schwarz, D.; Leufke, S.; Schembecker, G.; Bramsiepe, C.

Generation of an equipment module database for heat exchangers by cluster analysis

of industrial applications. Chemical Engineering Science 2017, 167, 278�287.

(32) Yee, T.; Grossmann, I. Simultaneous optimization models for heat integrationâ��II.

Heat exchanger network synthesis. Computers & Chemical Engineering 1990, 14, 1165�

1184.

(33) Türkay, M.; Grossmann, I. E. Logic-based MINLP algorithms for the optimal synthesis

of process networks. Computers & Chemical Engineering 1996, 20, 959�978.

46


