
Optimal Scheduling of Copper Concentrate Operations under

Uncertainty

Pengfei Chenga,1, Pablo Garcia-Herrerosb, Mangalam Lalpuriab, Ignacio E. Grossmanna,∗

aCenter for Advanced Process Decision-Making, Department of Chemical Engineering, Carnegie Mellon
University, Pittsburgh, PA 15213, United States

bResearch, Development & Innovation Department, Aurubis AG, Hamburg 20539, Germany

Abstract

We propose a continuous-time scheduling model for the logistic and blending operations

of copper concentrates with uncertain composition. The formulation, based on the Multi-

Operation Sequencing (MOS) model, gives rise to a large-scale nonconvex mixed-integer

nonlinear programming (MINLP) model. We adopt a two-step MILP-NLP decomposition

strategy and enhance the MILP relaxation to propose schedules that significantly reduce

the optimality gaps. The bounded uncertainty in element composition of the concentrates

is addressed by an extended robust MOS model, which combines robust optimization and

flexibility analysis techniques. The effectiveness of the models and the solution strategy is

validated with an illustrative example and an industrial case study.

Keywords: scheduling, copper operations, mixed-integer nonlinear porogramming, robust

optimization

1. Introduction

Copper is used extensively throughout domestic and industrial applications because of its

excellent corrosion resistance, malleability, and thermal conductivity (Langner, 2011). For

this reason, copper demand is constantly growing due to the increasing needs on information
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technology, energy supply, manufacturing, and other copper-intensive industries. Demand5

growth has been pushing the copper industry to improve its production efficiency, creating

opportunities for mathematical programming techniques to be applied in the copper industry

to systematically improve the performance of different stages of the process.

Figure 1: Value-added chain of copper industry

In this article, we optimize the logistic and blending operations of a copper smelting

process, which is the first step of the refining process in the copper value-added chain shown10

in Figure 1. Copper concentrates are solid materials obtained from copper ores that undergo

a concentration process. The smelting process transforms the copper concentrates to copper

mattes, increasing the copper content from 25-35% to 50-70%. One important challenge in

this process is to find the best mixture of various raw concentrates and recycling materials,

such that the gross margin of the process is maximized, the environmental standards are15

met, and the quality of the products is guaranteed.

Scheduling problems are very prevalent in process industries such as chemicals, food,

pharmaceuticals, and oil and gas (Harjunkoski et al., 2014). Generally, the objective of the

scheduling problem is to maximize the profit, minimize the cost, or minimize the makespan.

The decisions in scheduling problems usually include (Maravelias, 2012):20

• selection and lot-sizing of tasks

• assigning tasks to resources (units)

• timing of tasks

• sequencing of tasks

Due to the complexity of the scheduling problem, mathematical programming approaches25

have been introduced to systematically improve the quality of the schedules. A number of

review articles summarizing diverse mathematical models for scheduling have been pub-
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lished in the past (Méndez et al., 2006; Maravelias, 2012; Harjunkoski et al., 2014). They

identify two distinctive types of models according to time representation: discrete-time and

continuous-time formulations. Discrete-time formulations divide the time horizon into uni-30

form time intervals and often lead to large-size, tight formulations. Early works in process

scheduling explored various discrete-time representations based on the State-Task Network

model (STN) (Kondili et al., 1993) and the Resource-Task Network (RTN) model (Pan-

telides, 1994). Continuous-time formulations partition the time horizon using time-points,

time intervals or event points, and the length of each time period is to be determined by35

the optimization model. These formulations are often smaller in size because they need

fewer time periods to represent the schedule, but they tend to have weaker relaxations.

Continuous-time models can be further divided into two types based on the coupling be-

tween task and unit events: single time grid (Castro et al., 2001) and multiple time grids

(unit-specific event based) (Ierapetritou and Floudas, 1998a,b).40

For the scheduling of copper concentrate operations, Song et al. (2018) used a discrete-

time formulation to model the process as an mixed-integer nonlinear programming (MINLP)

problem; they compared the performance of a split fraction model and a process network

model for the same problem. Lalpuria (2017) developed two continuous-time formulations

and demonstrated that the Multi-Operation Sequencing (MOS) model is superior to the45

Single-Operation Sequencing (SOS) model with respect to computational time. The MOS

model is a continuous-time model based on the relationship between non-overlapping op-

erations. It has proved to be efficient for crude oil scheduling problems (Mouret et al.,

2011).

An important challenge related to copper concentrate operations arises from the uncer-50

tainty in their element composition. After being mined, copper ores go through a complex

process in which they are transformed into concentrates; the process include crushing, grind-

ing, flotation, and drying. The complexity of these processes causes the element compositions

of each concentrate to fluctuate within certain ranges around their nominal value. These

fluctuations are critical for the preparation of the concentrate blend, since the copper refin-55

ing requires strict conditions on the composition of different elements. In order to comply
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with these conditions, it is important to take the variability in element composition into

account by treating it as a bounded uncertainty within the optimization framework.

Research on optimization under uncertainty has been an active area since 1970s (Gross-

mann et al., 2016). Two major uncertainty modeling techniques are robust optimiza-60

tion (Bertsimas et al., 2011) and stochastic programming (Birge and Louveaux, 2011). Ro-

bust optimization follows the idea of optimizing for the worst realization of the uncertainty

while guaranteeing the feasibility of the solution. On the other hand, stochastic program-

ming optimizes the expectation of an objective function based on the probability distribution

of the uncertain parameters. Results from robust optimization are more conservative than65

those obtained from stochastic programming. Therefore, stochastic programming is suitable

for long-term planning problems to maximize the expected profit, while robust optimization

is better suited for process scheduling under uncertainty, as the feasibility of the solution

is critical for short-term problems. Alonso-Ayuso et al. (2014) used stochastic program-

ming to consider the effect of changing copper prices on the expected profit for a five-year70

copper extraction planning problem. Li and Ierapetritou (2008) reviewed several methods

for process scheduling under uncertainty, including both robust optimization and stochas-

tic programming. In addition to these two methods, flexibility analysis (Grossmann et al.,

2014) can also be a suitable approach for scheduling under uncertainty, since it focuses on

feasibility by accounting for recourse actions. Flexibility analysis is an uncertainty modeling75

technique that was originally developed for plant design under uncertainty, and it has been

used in the process systems engineering community for more than thirty years. As shown

in a recent article by Zhang et al. (Zhang et al., 2016), flexibility analysis can yield either

identical or more rigorous results than robust optimization for linear problems, although it

is computationally more expensive.80

In this work, we propose a continuous-time scheduling formulation based on the MOS

model. The goal is to schedule the logistic and blending operations necessary to feed the

copper smelting process with suitable concentrate mixtures. The model includes robust

optimization and flexibility analysis techniques to deal with the uncertainty in element

composition of concentrates. A two-step MILP-NLP decomposition strategy is adopted and85
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enhanced to solve the scheduling models efficiently.

The remainder of this paper is organized as follows. The copper smelting process and the

challenges derived from uncertainty in element composition are described in Section 2. The

time representation and the mathematical formulation of the deterministic MOS model are

presented in Section 3. In Section 4, the robust MOS model that considers uncertainty in90

element composition is developed. Section 5 presents the solution strategy based on a two-

step MILP-NLP decomposition strategy. Finally, an illustrative example and an industrial

case study are described in Section 6; the corresponding results are shown in Section 7.

2. Problem statement

2.1. Logistic and blending operations for copper smelting95

Figure 2: logistic and blending operations of copper smelting
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The logistic and blending operations for a standard copper smelting process are repre-

sented in Figure 2. The concentrates available for smelting are located at storage facilities

near the port since many of them arrive by maritime transportation. The concentrates are

first unloaded from maritime vessels at the port and piled separately; then, they are trans-

ferred to a blending unit where an initial blend is prepared. The blends are then distributed100

to several bins, from where they are simultaneously discharged into the smelter. In addition

to concentrates, daily-arrival materials are also transferred to bins and processed at the

smelter. These daily-arrivals are a special raw material consisting mainly of process left-

overs and scraps; processing these materials improves resource utilization and contributes

to energy saving of the smelting process.105

The following six parts are treated as units in the process: (1) maritime vessels, (2) piles

at the port, (3) blending unit, (4) daily-arrival piles, (5) bins, (6) smelter. Correspondingly,

six types of operations are allowed: (1) concentrate unloading from maritime vessels to piles

at the port, (2) concentrate transfer from piles at the port to the blending unit, (3) transfer

from blending unit to bins, (4) unloading of daily-arrival materials to daily-arrival piles, (5)110

transfer from daily-arrival piles to bins, (6) final transfer from bins to the smelter.

The following operation rules are specified for the units:

1. The piles at the port, the blending unit, and the bins have unlimited capacities.

2. The piles at the port and the blending unit cannot be charged and discharged simul-

taneously.115

3. The bins and daily-arrival piles can be charged and discharged simultaneously.

4. The concentrates in all bins must be transferred to the smelter simultaneously.

5. The contribution of each bin feeding the smelter must be within specified ranges.

6. The total inventory of daily-arrival materials left in the process must be below a certain

threshold at the end of time horizon.120

The objective of the scheduling problem for the process described above is to maximize

the gross margin for processing the concentrates over a given time horizon. In this maxi-

mization problem, the assignment, sizing, sequencing, and timing of each transfer operation

need to be determined, while the specified operation rules must be followed. In addition
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to the operation rules, there are several restrictions on the element composition for the125

blends feeding the smelter. These restrictions must be satisfied to guarantee the operating

conditions necessary for the smelting and the successive downstream process.

2.2. Uncertainty in element composition

The natural variability in ore grades and small fluctuations in the concentration condi-

tions are the main sources of uncertainty in the element composition of concentrates. Since130

the smelting process is very sensitive to any changes in blend composition, this variabil-

ity must be considered in the scheduling problem to avoid sub-optimal or even infeasible

solutions yielding off-spec products.

For each concentrate, we consider a subset of elements whose composition fluctuates

within a bound relative to its nominal value. Therefore, this variability can be formulated

as a bounded symmetric uncertainty. By using fc,k to denote the mass fraction of element

k in concentrate c, the uncertainty set can be expressed as follows:

U =
{
~F
∣∣∣ fc,k ∈ [(1− δ)f̄c,k, (1 + δ)f̄c,k

]
c ∈ C, k ∈ KU

}
(1)

where f̄c,k is the nominal mass fraction value of element k in concentrate c, δ is the relative

bound of the fluctuation, and KU is the set of elements whose composition fluctuate. The135

mass fraction (fc,k) is related to various quality requirements of the process, which are

formulated as a set of linear constraints in Section 3.

3. Multi-Operation Sequencing model

We use the MOS model to formulate the deterministic scheduling problem. The MOS

model is a continuous-time, multiple-time-grid scheduling model that has been previously140

applied to crude oil scheduling (Mouret et al., 2011); it has proved to be computationally

efficient compared to other common time formulations. In this section, we first describe its

time representation, then explain the mathematical formulation in detail.
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3.1. Time representation

In the study by Mouret et al. (2011), the time representation of the MOS model is built145

on the concept of priority slot, and the computational efficiency of the model is based on

the application of cliques. However, the connection between the clique and the time repre-

sentation in the model was not explicitly presented. Here, an extensive time representation

for the MOS model is given to explain in detail the function of the cliques.

The time representation of the MOS model is based on assigning a priority slot i to150

each execution of operation v. A graphic representation of the MOS model is presented in

Figure 3, where the execution of each operation is represented by a segment labeled with a

certain priority slot. The total number of priority slots |I| is specified a priori, which implies

that each operation can be assigned to at most |I| priority slots. The time span of a certain

slot for different operations are independent of each other.155

v1

i1 i2 . . . in

v2

i1 i2 . . . in

. . . . . ....

vm
i1 i2 . . . in

0 Htime horizon

Figure 3: Time representation of MOS model

The priority slots specify the sequence in which the operations are executed. The pri-

ority mechanism works in two ways. For a single operation, the operation can be executed

several times by assigning it to multiple priority slots. Each execution does not overlap with

each other, and occurs in the order defined by the priorities. For multiple operations, the

assignment of priority slots is based on the concept of cliques.160

A clique represents a set of non-overlapping operations, i.e. operations that cannot be ex-

ecuted simultaneously, in the MOS model. In graph theory (Diestel, 2005), a clique refers to

a subset of vertices in an undirected graph such that any two distinct vertices are connected

to each other. In the MOS model, all operations can be mapped as vertices in a graph,
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and two vertices will be connected if the operations they represent are non-overlapping.165

A small example of cliques is presented in Figure 4. Both Tank 1 and Tank 2 cannot be

charged/discharged by more than one operation simultaneously, generating two sets of non-

overlapping operations ({v1, v2, v3} for Tank 1 and {v3, v4, v5} for Tank 2). Correspondingly,

there are two cliques w1 and w2 in the process.

Tank 1 Tank 2

(a)

v1

v2

v3

v4

v5
v3

(b)

w2w1

v4

v5

v1

v2

Figure 4: Clique in MOS model: (a) non-overlapping operations; (b) corresponding cliques

For all the operations in a clique, at most |I| slots can be assigned to these operations,170

and each slot can only be assigned to a single operation. These operations are executed in

the priority order, and their execution time cannot overlap with each other. As an example,

for clique w1 in Figure 4, a potential schedule is presented in Figure 5. The three non-

overlapping operations are assigned to three different priority slots, and each slot is assigned

to only one operation. This mechanism ensures that the executions of operations in the175

same clique do not overlap with each other.

v3

v1

v2

w1

v1

i1

v2

i3

v3

i2

0 Htime horizon

Figure 5: Priorities of multiple operations in one clique

For multiple operations in different cliques, each clique functions independently and the

operations from different cliques can overlap with each other. In other words, each priority

slot can be assigned to several operations from different cliques. Operations belonging to
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multiple cliques connect these cliques, creating interdependencies in the execution priorities.180

For instance, Figure 6 shows a feasible schedule that considers the interaction between both

cliques (w1 and w2) presented in Figure 4. The schedule of operations in clique w1 is covered

by blue dots, and schedule of operations in clique w2 is covered by a red block. In Figure 6,

it can be observed that 3 slots are assigned to operations v1, v2 and v3 in clique w1, and 2

slots are assigned to operations v3 and v5 in clique w2. These assignments guarantee that185

execution of operations within each clique do not overlap with each other. Since v2 and v5

belong to two different cliques, they can both be assigned to slot i3 and their execution time

overlaps with each other. In this schedule, operation v3 connects cliques w1 and w2. Notice

that in this schedule, operation v4 is not executed.

v3

v1

v2

w1

v4

v5

w2

v1

i1

v2

i3

v3

i2

v4

v5

i3

0 Htime horizon

Figure 6: Priorities of multiple operations in different cliques

Based on the cliques, the sequential relationship among non-overlapping operations is190

established. The schedule for the whole process can be seen as a combination of the schedules

of all cliques. In this way, each priority slot can be utilized by different cliques and the

non-overlapping structure is captured in the time representation, leading to an efficient

mathematical formulation.
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3.2. Mathematical formulation195

3.2.1. Assignment constraints

Binary variable Zi,v denotes whether operation v is assigned to priority slot i. In clique

W ′, at most one operation v can be assigned to slot i.∑
v∈W ′

Zi,v ≤ 1 i ∈ I,W ′ ⊂ W (2)

3.2.2. Cardinality constraints

The cardinality of operations in clique W ′ should be within its lower and upper bounds.

For example, since vessels are required to unload all concentrates exactly once, the lower

and upper bounds of cardinalities of unloading operations are both set to 1.

NW ′ ≤
∑
i∈I

∑
v∈W ′

Zi,v ≤ N̄W ′ W ′ ⊂ W (3)

3.2.3. Time constraints

The end time Ei,v of the operation v at slot i is the sum of its start time Si,v and its

duration Di,v.

Ei,v = Si,v +Di,v i ∈ I, v ∈ V (4)

If operation v is assigned to slot i, then its start time, duration and end time should be

within their lower and upper bounds respectively. Otherwise, the time variables should be

zero.

Sv · Zi,v ≤Si,v ≤ S̄v · Zi,v i ∈ I, v ∈ V (5)

Ev · Zi,v ≤Ei,v ≤ Ēv · Zi,v i ∈ I, v ∈ V (6)

Dv · Zi,v ≤Di,v ≤ D̄v · Zi,v i ∈ I, v ∈ V (7)

3.2.4. Non-overlapping constraints

The non-overlapping constraints specify the time relationship between any two operations

in a clique. In clique W ′, if slot i is assigned to an operation, then the gap between the end

time (Ej,v) of operation at an earlier slot j and the start time (Si,v) of operation at slot i

should be at least the sum of durations corresponding to all slots between i and j. According
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to the assignment constraints (2) and time constraints (5)-(7), at most one operation in the

clique W ′ can have non-zero values for the time variables (Ei,v, Si,v and Di,v) at each slot.

Equation (8) is formulated as a big-M constraint, such that if slot i is not assigned to any

operation, the time variables at slot i are all zero and the constraint is relaxed. Here, H is

the length of the time horizon and serves as a big-M parameter.∑
v∈W ′

Ej,v +
∑
v∈W ′

∑
i′∈I,
j<i′<i

Di′,v ≤
∑
v∈W ′

Si,v +H ·

(
1−

∑
v∈W ′

Zi,v

)
i ∈ I, j ∈ I, i > j,W ′ ⊂ W

(8)

In addition, it is necessary to ensure that executions of the same operation at different

priority slots do not overlap with each other. This condition is enforced with Equation (9).

Ej,v +
∑
i′∈I,
j<i′<i

Di′,v ≤ Si,v i ∈ I, j ∈ I, i > j, v ∈ V (9)

3.2.5. Mass balance constraints200

Variable Lc
i,r,c denotes the accumulated level of concentrate c in unit r at slot i, and

variable M c
i,v,c denotes the amount of concentrate c in operation v at slot i. The mass

balance constraints are based on these two variables at the concentrate level. Lc
i,r,c in unit

r at slot i equals the sum of the initial level Lc,initial
r,c , the accumulation terms from inlet

transfer operations, and the consumption terms from outlet transfer operations from all

previous slots.

Lc
i,r,c = Lc,initial

r,c +
∑
j∈I,
j<i

∑
v∈V in

r

M c
j,v,c −

∑
j∈I,
j<i

∑
v′∈V out

r

M c
j,v′,c i ∈ I, r ∈ R, c ∈ C (10)

The level of concentrate c in unit r follows the priority sequence, i.e. the level of c in

unit r is changing from Lc,initial
r,c to Lc

i1,r,c, L
c
i2,r,c, . . . , L

c
|I|,r,c. However, it is worth noting that

only M c
i,v,c follows the time representation for operation v at slot i, and there are no time

variables calculated for Lc
i,r,c. In other words, there is no specific time information about

the level variables, but only the relative sequence of them.205

A disaggregated formulation of the mass balance constraints is presented in Equation

(10′). The level of c in unit r at slot i+1 equals the sum of the original level, the accumulation
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terms and the consumption terms M c
i,v,c at slot i.

Lc
i+1,r,c = Lc

i,r,c +
∑
v∈V in

r

M c
i,v,c −

∑
v′∈V out

r

M c
i,v′,c i ∈ I, r ∈ R, c ∈ C (10′)

The final level Lc,Final
r,c equals the sum of the level, the accumulation terms and the

consumption terms at the last slot.

Lc,Final
r,c = Lc

i,r,c +
∑
v∈V in

r

M c
i,v,c −

∑
v′∈V out

r

M c
i,v′,c i = |I|, r ∈ R, c ∈ C (11)

Variable Lt
i,r denotes the total level of concentrates in unit r at slot i, and variable M t

i,v

denotes the total amount of concentrates in operation v at slot i. They equal the sum of

corresponding variables at the concentrate level, respectively.

M t
i,v =

∑
c∈C

M c
i,v,c i ∈ I, v ∈ V (12)

Lt
i,r =

∑
c∈C

Lc
i,r,c i ∈ I, r ∈ R (13)

Similarly to Equation (10), Lt
i,r can also be represented as the sum of initial total level

Lt,initial
r , accumulation terms and consumption terms from previous slots. This constraint is

a linear combination of Equation (11)-(13) and is redundant to the model, but it can help

to reduce the search space of the mixed-integer linear programming (MILP) subproblem.

Lt
i,r = Lt,initial

r +
∑
j∈I,
j<i

∑
v∈V in

r

M t
j,v −

∑
j∈I,
j<i

∑
v′∈V out

r

M t
j,v′ i ∈ I, r ∈ R (14)

Mass balances at the element level are implicitly included in the model. Since concen-

trates are solids and their element compositions remain constant through the process, the

mass balance for the amount of each element can be formulated as a linear combination

of mass balances at the concentrate level. This is different from the crude oil scheduling

problem, because crude oils are liquids and blending will introduce bilinear terms in the210

mass balance constraints.
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3.2.6. Sequencing constraints

Different from other units in the process, bins and daily-arrival piles are allowed to be

charged and discharged simultaneously, which makes the clique and Equations (2), (3), (8)

non-applicable to inlet/outlet transfer operations of these units. Therefore, new constraints215

need to be specified for the sequences of these operations.

The main rule ensures that outlet transfer operations of a particular blend are not exe-

cuted before the preceding inlet operations. In order to simplify the model, outlet transfer

operations are assigned to one slot after inlet transfer operations.

Zi,v ≥ Zi+1,v′ i ∈ I, v ∈ V in
r , v

′ ∈ V out
r , r ∈ Rbin ∪Rdapile (15)

Furthermore, the start time of outlet transfer operations should be no earlier than the

inlet transfer operations.

Si,v ≤ Si+1,v′ +H · (1− Zi+1,v′) i ∈ I, v ∈ V in
r , v

′ ∈ V out
r , r ∈ Rbin ∪Rdapile (16)

In addition, the inventory at these units must be non-negative throughout the time

horizon. At slot i, the total outlet amount until the end time of the outlet operation is

bounded by the maximum potential inlet amount, which can be calculated from the upper

bounds of incoming flowrates (F̄v′) and the end time of the outlet operation (Ei,v).∑
j≤i,
j∈I

∑
v′′∈V out

r

M t
j,v′′ ≤

∑
v′∈V in

r

F̄v′ ·Ei,v +M · (1−Zi,v) i ∈ I, v ∈ V out
r , r ∈ Rbin ∪Rdapile (17)

3.2.7. Composition constraints

The proportions of different concentrates in a blend must remain consistent in the sub-

sequent transfer operations. The fraction of a concentrate in the blend being transferred in

operation v can be represented as
M c

i,v,c

M t
i,v

; similarly, the fraction of a concentrate in the blend

being accumulated in unit r can be represented as
Lc
i,r,c

Lt
i,r

. The consistency of the proportions

can be achieved by setting these two terms equal to each other for the units and their corre-

sponding outlet transfer operations, so that these proportions stay the same along blending
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units and the downstream operations.

M c
i,v,c

M t
i,v

=
Lc
i,r,c

Lt
i,r

i ∈ I, v ∈ V out
r , r ∈ Rblender ∪Rbin, c ∈ C (18*)

To avoid singularity, the fractions can be reformulated as bilinear equations:

M c
i,v,c · Lt

i,r = Lc
i,r,c ·M t

i,v i ∈ I, v ∈ V out
r , r ∈ Rblender ∪Rbin, c ∈ C (18)

3.2.8. Capacity constraints

If operation v is assigned to slot i, then M t
i,v should be within its lower and upper bounds.

Otherwise, M t
i,v should be zero.

M t
v · Zi,v ≤M t

i,v ≤ M̄ t
v · Zi,v i ∈ I, v ∈ V (19)

If operation v is assigned to slot i, then the total flowrate of v should be within its lower

and upper bounds.

F t
v ≤

M t
i,v

Di,v

≤ F̄ t
v i ∈ I, v ∈ V (20*)

This constraint can be reformulated as the linear inequality (20). If operation v is not

assigned to slot i, both Di,v and M t
i,v must be zero.

F t
v ·Di,v ≤M t

i,v ≤ F̄ t
v ·Di,v i ∈ I, v ∈ V (20)

The total level in unit r at slot i and at the end of time horizon must be within its lower

and upper bounds.

Lt
r ≤ Lt

i,r ≤ L̄t
r i ∈ I, r ∈ R (21)

Lt
r ≤ Lt,final

r ≤ L̄t
r r ∈ R (22)

3.2.9. Element concentration constraints

As stated in previous sections, there are several quality requirements in this process,220

both for the main products and for the byproducts. These requirements are formulated as

linear constraints that set restrictions on the ratios of different key elements in final blend

feeding the smelter.
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The proportion of key elements in the final blend of concentrates transferred into the

smelter is restricted as follows:∑
v∈VFinal

∑
c∈C

fc,kM
c
i,v,c∑

v∈VFinal

M t
i,v

≤ f̄k i ∈ I, k ∈ K (23*)

where VFinal denotes the set of final operations that transfer concentrates from bins to the

smelter, the numerator denotes the total amount of element k in the final mixture, and f̄k

denotes the upper bounds of the fraction of element k in the final mixture. This constraint

can be rearranged as a linear inequality:∑
v∈VFinal

∑
c∈C

fc,kM
c
i,v,c ≤ f̄k ·

∑
v∈VFinal

M t
i,v i ∈ I, k ∈ K (23)

3.2.10. Interdependency constraints

The ratio between two key elements k and k′ can be bounded as follows:

mk,k′ ≤

∑
v∈VFinal

∑
c∈C

fc,k′M
c
i,v,c∑

v∈VFinal

∑
c∈C

fc,kM
c
i,v,c

≤ m̄k,k′ i ∈ I, (k, k′) ∈ KK ′ (24*)

This constraint can be rearranged as a linear inequality:

mk,k′·
∑

v∈VFinal

∑
c∈C

fc,kM
c
i,v,c ≤

∑
v∈VFinal

∑
c∈C

fc,k′M
c
i,v,c ≤ m̄k,k′ ·

∑
v∈VFinal

∑
c∈C

fc,kM
c
i,v,c i ∈ I, (k, k′) ∈ KK ′

(24)

Additional constraints are necessary to guarantee that the weighted proportion of a

certain element k does not exceed its upper bound UEk,∑
v∈VFinal

∑
c∈C

fc,kM
c
i,v,c ·KEk∑

v∈VFinal

∑
c∈C

∑
k′∈K

fc,k′M
c
i,v,c ·KEk′

≤ UEk i ∈ I, k ∈ K (25*)

where KEk denotes the weighting coefficient for the elements. This constraint can also be

rearranged as a linear inequality:∑
v∈VFinal

∑
c∈C

fc,kM
c
i,v,c ·KEk ≤ UEk ·

( ∑
v∈VFinal

∑
c∈C

∑
k′∈K

fc,k′M
c
i,v,c ·KEk′

)
i ∈ I, k ∈ K (25)
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3.2.11. Operation rules for daily-arrival materials225

The daily-arrival materials must be transferred to the daily-arrival piles continuously

throughout the time horizon.∑
i∈I

Di,v = H v ∈ V in
r , r ∈ Rdapile (26)

The total inventory of daily-arrival materials at the end of time horizon is restricted.

The sum of inventories of these materials in all the daily-arrival piles and bins should not

exceed a given bound L̄daily. ∑
c∈Cda

∑
r∈Rdapile∪Rbin

LFinal
r,c ≤ L̄daily (27)

3.2.12. Operation rules for bins

The concentrates in all bins must be transferred to the smelter simultaneously. Therefore,

the start time and the duration of final transfer operations (v ∈ VFinal) should be the same

in each slot i. If any final operation v is assigned to slot i, then other final operations v′

must also be assigned to the same slot i. Otherwise, Si,v′ = 0 and other final operations v′

will not be assigned to slot i.

Si,v − Si,v′ = 0 i ∈ I, v ∈ VFinal, v
′ ∈ VFinal, v 6= v′ (28)

Di,v −Di,v′ = 0 i ∈ I, v ∈ VFinal, v
′ ∈ VFinal, v 6= v′ (29)

An additional constraint is necessary to ensure that the contribution of each bin feeding

the smelter is maintained within a certain range.

rbin ≤
M t

i,v∑
v′∈VFinal

M t
i,v′

≤ r̄bin i ∈ I, v ∈ VFinal (30*)

This constraint can be rearranged as the following linear inequality:

rbin ·
∑

v′∈VFinal

M t
i,v′ ≤M t

i,v ≤ r̄bin ·
∑

v′∈VFinal

M t
i,v′ i ∈ I, v ∈ VFinal (30)
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3.2.13. Operation rules for smelter

The operation of the smelter is constrained by its processing capacity. In this context,

the total flowrate of concentrates transferred to the smelter should be below its upper bound.

∑
v′∈VFinal

M t
i,v′

Di,v

≤ F̄smelter i ∈ I, v ∈ VFinal (31*)

This constraint can be rearranged as a linear inequality:∑
v′∈VFinal

M t
i,v′ ≤ F̄smelter ·Di,v i ∈ I, v ∈ VFinal (31)

3.2.14. Symmetry breaking constraints

A general symmetry breaking constraint can be applied to the MOS model (Mouret

et al., 2011). The logic implies that an operation v should not be assigned to i if no other

non-overlapping operations v′ are assigned to i−1. This is because if the slot i−1 is empty,

then v can be assigned directly to i− 1 instead of i.

Zi,v ≤
∑
v′∈W ′

Zi−1,v′ i ∈ I, i > 1, v ∈ W ′, v 6= v′,W ′ ⊂ W (32)

3.2.15. Objective function

The objective function is to maximize the gross margin of concentrates transferred to

the smelter as presented in Equation (MOS),

max
∑
i∈I

∑
v∈VFinal

∑
c∈C

GcM
c
i,v,c (MOS)

where Gc denotes the unit price of concentrate c ($/ton).230

The complete formulation for the deterministic MOS model is obtained by maximizing

the objective function (MOS) subject to constraints (2)-(32). This model is a nonconvex

MINLP problem due to the bilinear constraint (18).

4. Robust MOS model

As mentioned earlier, there is inherent uncertainty in element composition of concentrates235

due to the upstream processes in which they are produced. This uncertainty is crucial to
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the quality requirements of the smelting process modeled with linear constraints (23)-(25).

If the MOS model is solved using the nominal values of element composition, there is a

good chance that some of the quality requirements be violated, and the solution is no longer

feasible. Therefore, it is necessary to extend the MOS model to gain robustness against the240

impact of variability in the composition of concentrates.

In our process, the element composition of concentrates is unknown through the entire

time horizon. Therefore, a static robust optimization technique, i.e. robust counterpart, is

suitable to account for the uncertainty by optimizing under its worst realization (Bertsi-

mas and Sim, 2003). In most robust optimization approaches, the value of the uncertainty245

corresponding to the worst case is usually dualized and eliminated in explicit form. Such

information is valuable for the robust model, as it can be used to verify the model validity

based on our existing knowledge of the process. In this context, the flexibility test prob-

lem (Grossmann et al., 2014) can be included in the robust framework as a complement to

reveal the values of element composition obtained in the robust counterpart.250

Since there are multiple quality requirements corresponding to different products at dif-

ferent stages of the process, it becomes impossible to satisfy all of them simultaneously when

the uncertainty range is too large, leading to violations in some of the quality requirements.

In these cases, the traditional robust model cannot obtain feasible solutions, or determine

which requirements would be violated under this circumstance. To deal with this situation,255

we build a bi-criterion robust MOS model that allows violations of quality requirements

to keep the model feasible under high uncertainty, and to quantify the violations. The

information of quantified violations should guide response actions in the real process.

In this section, we first introduce and derive the robust counterpart of our MOS model.

Then, we present the flexibility test problem. Finally, we discuss the robust MOS model260

that allows constraint violations.

4.1. Robust counterpart

The basic idea of the robust counterpart is to guarantee that the solution is feasible for

any realization in the uncertainty set, which is enforced with a deterministic equivalent of
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their worst case (Soyster, 1973). In order to avoid the solution to be overly conservative, a265

budget parameter Γ, developed by Bertismas and Sim (Bertsimas and Sim, 2003), can be

adopted in the formulation to constrain the uncertainty set.

The robust counterpart formulation is a constraint-wise method, which implies that

every constraint containing uncertainty is treated independently. Therefore, the robust

counterpart formulation for each quality requirements (Equations (23)-(25)) needs to be270

derived separately. We use the element concentration constraint (23) to show the four steps

involved in the derivation of the robust counterpart. The derivations for the other quality

requirements (Equations (24)-(25)) are presented in Appendix A.

4.1.1. Defining uncertainty set

The uncertainty set is defined in Equation (1). The original set is a box uncertainty set,

in which the worst case occurs when all uncertain parameters reach one of their extreme

values at the same time. In the smelting process, this case corresponds to the situation

in which the composition of every element in each concentrate deviates δ from its nominal

value. This case is very pessimistic and it can cause the solution to be overly conservative.

To avoid the extreme case, a budget parameter Γ is introduced with the following idea:

for certain element k, there can be at most Γ concentrates whose composition of k can

reach the worst-case values simultaneously. By normalizing the deviation of fc,k as pc,k, the

budget parameter can be implemented in the uncertainty set by requiring that the sum of

normalized deviations be less than Γ for each k:

U =


~F

∣∣∣∣∣∣∣∣∣∣
f̄c,k · (1− δpc,k) ≤ fc,k ≤ f̄c,k · (1 + δpc,k) c ∈ C, k ∈ KU

0 ≤ pc,k ≤ 1 c ∈ C, k ∈ KU

0 ≤
∑
c∈C

pc,k ≤ Γ k ∈ KU

 (33)

By adjusting Γ, the range of the uncertainty is controlled. When Γ = 0, all parameters275

in the uncertainty set stay at their nominal values, and the model is equivalent to the

deterministic model. When Γ = |C|, all parameters in the set can reach the worst-case

values at the same time, and the model is equivalent to the classical robust formulation with

the box uncertainty set.
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4.1.2. Building worst case280

The objective of the problem is to maximize the gross margin of the process, which is

a linear function of the variables M c
i,v,c that are restricted by the element concentration

constraint (23). Therefore, the worst case is that the variables in the objective functions

(M c
i,v,c) are most constrained by the uncertain parameters, resulting in a lower objective

value.285

The worst cases can be achieved by maximizing the positive terms on the left hand side

of the inequality (23). The corresponding worst case is presented in Equation (34).

max
~F∈U

( ∑
v∈VFinal

∑
c∈C

fc,kM
c
i,v,c

)
≤ f̄k ·

∑
v∈VFinal

M t
i,v i ∈ I, k ∈ KU (34)

4.1.3. Building auxiliary optimization problem

The worst case in Equation (34) transforms the model into a bi-level optimization prob-

lem. To make the model tractable, the maximized term in the inequality above can be

reformulated by building an auxiliary problem. Considering the maximization term in (34),

the reformulation for every individual inequality (i ∈ I, k ∈ KU) is given by (35):

max
~F∈U

( ∑
v∈VFinal

∑
c∈C

fc,kM
c
i,v,c

)

≡ max
~F∈U

[ ∑
v∈VFinal

∑
c∈C

f̄c,k(1 + δpc,k)M c
i,v,c

]

⇔ max
∑

v∈VFinal

∑
c∈C

f̄c,k · pc,kM c
i,v,c

s.t. 0 ≤ pc,k ≤ 1 c ∈ C∑
c∈C

pc,k ≤ Γ

(35)

4.1.4. Dualizing auxiliary problem

The auxiliary optimization problem can be dualized to transform the model back to a

single-level problem. For the auxiliary problem (35), with subscripts i ∈ I, k ∈ KU , the

corresponding maximization problem is equivalent to:290

min Γqi,k +
∑
c∈C

si,c,k (36a)
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s.t. si,c,k + qi,k ≥
∑

v∈VFinal

f̄c,kM
c
i,v,c c ∈ C (36b)

si,c,k ≥ 0 c ∈ C (36c)

qi,k ≥ 0 (36d)

where si,c,k and qi,k are dual variables corresponding to the first and the second constraints of

problem (35), respectively. By strong duality, the dual problem is bounded and the optimal

objective of the dual problem equals the optimal objective value of the auxiliary problem

(35).

Substituting the dualized problems into Equation (23), the model will automatically

minimize si,c,k, qi,k from the dualized problem. The robust counterpart formulation is then

given by Equation (37).[∑
i∈I

∑
v∈VFinal

∑
c∈C

f̄c,kM
c
i,v,c + δ

(
Γqk +

∑
c∈C

sc,k

)]
− f̄k ·

∑
i∈I

∑
v∈VFinal

M t
i,v ≤ 0 i ∈ I, k ∈ KU

(37)

Compared with the original constraint (23), the uncertainty is taken into consideration295

in the robust counterpart by adding the new terms with the dual variables (qi,k and si,c,k) in

the original constraint and including new constraints from the dualized auxiliary problem.

Similarly, the robust counterparts for Equations (24) with subscripts i ∈ I, (k, k′) ∈

KK ′, k, k′ ∈ KU are:

mk,k′ ·

[ ∑
v∈VFinal

∑
c∈C

f̄c,kM
c
i,v,c + δ

(
Γqi,k +

∑
c∈C

si,c,k

)]

≤

[ ∑
v∈VFinal

∑
c∈C

f̄c,k′M
c
i,v,c − δ

(
Γqi,k′ +

∑
c∈C

si,c,k′

)] (38)

[ ∑
v∈VFinal

∑
c∈C

f̄c,k′M
c
i,v,c + δ

(
Γqi,k′ +

∑
c∈C

si,c,k′

)]

≤ m̄k,k′ ·

[ ∑
v∈VFinal

∑
c∈C

f̄c,kM
c
i,v,c − δ

(
Γqi,k +

∑
c∈C

si,c,k

)] (39)
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The robust counterpart for Equation (25) with subscripts i ∈ I, k ∈ KU is:

KEk · (1− UEk) ·

[ ∑
v∈VFinal

∑
c∈C

f̄c,kM
c
i,v,c + δ

(
Γqi,k +

∑
c∈C

si,c,k

)]

≤ UEk ·

 ∑
v∈VFinal

∑
c∈C

∑
k′∈K,
k′ 6=k

f̄c,k′M
c
i,v,c ·KEk′ − δ

 ∑
k′∈KU ,
k′ 6=k

Γq′i,k,k′ +
∑
c∈C

∑
k′∈KU ,
k′ 6=k

s′i,c,k,k′




(40)

q′i,k,k′ + s′i,c,k,k′ ≥
∑

v∈VFinal

f̄c,k′ ·M c
i,v,c ·KEk′ c ∈ C, k′ ∈ KU , k

′ 6= k (41a)

s′i,c,k,k′ ≥ 0 c ∈ C, k′ ∈ KU , k
′ 6= k (41b)

q′i,k,k′ ≥ 0 k′ ∈ KU , k
′ 6= k (41c)

A detailed derivation of the robust counterparts above is provided in Appendix A. The

entire robust counterpart formulation includes both the deterministic MOS model and the

robust counterparts presented above:

max
∑
i∈I

∑
v∈VFinal

∑
c∈C

GcM
c
i,v,c

s.t. (2)-(32)

(36b)-(36d), (37)-(40), (41a)-(41c)

(RO-MOS)

4.2. Flexibility test problem

As presented above, the robust counterpart dualizes the uncertain parameters in the con-

straints to transform the bi-level optimization problems into single-level ones. In the final for-300

mulation, the uncertain parameter fc,k is replaced with dual variables qi,k, q
′
i,k,k′ , si,c,k, s

′
i,c,k,k′ ,

and there are no direct ways to relate these new variables to values of the uncertain param-

eters. In order to reveal which parameters are selected to fluctuate in the robust solution,

we introduce the flexibility test problem to complement the robust counterpart.

The flexibility test problem was developed to quantify the capability of a system to305

achieve feasible solutions by manipulating control/recourse variables. For a detailed review
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on flexibility analysis, see Grossmann et al. (2014). Because the uncertain parameters are

explicitly modeled as variables in this problem, it can be used to yield the value of uncertain

parameters that are most likely to cause quality requirements to be violated for the given

solution from the robust counterpart, which may correspond to the critical operating con-310

ditions in the real process. Its full formulation (FT) is given in Appendix B, in which the

uncertain parameter fc,k is modeled as variables, and the quality requirements (23)-(25) are

reformulated to check if there is any potential constraint violation with the uncertainty set

(33) for the solution from the robust counterpart. The solution of (FT) gives the value of

fc,k that corresponds to the worst case in the robust counterpart.315

4.3. Robust model framework

The robust framework is shown in Figure 7. First, the robust counterpart obtains the

optimal solution of the scheduling problem considering the worst case uncertainty in the

element compositions. Then, the values of the continuous variables M t
i,v,M

c
i,v,c are passed to

the flexibility test problem to obtain the explicit values of element composition corresponding320

to the worst case. The first step is a nonconvex MINLP model. The second step is a small

MILP model.

robust counterpart

(RO-MOS)
final solution

flexibility test
(FT)

uncertainty info
deviations of fc,k

passing continuous

variables M t
i,v,M

c
i,v,c

Figure 7: Robust model framework
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4.4. Robust MOS model allowing constraint violations

The robust model guarantees the feasibility of the solution while considering the worst

case of the uncertainty. However, when the range of the uncertainty is large, it becomes325

unavoidable that the feasibility of the solution cannot be guaranteed no matter how the vari-

ables are adjusted. This issue can be demonstrated with the following motivating example.

In the interdependency constraint (24), the ratio of amount of element k′ represented by

Q′ and amount of k represented by Q, is set to be within certain bounds [mk,k′ , m̄k,k′ ]. If the

bounds are set as [0.58, 0.64], and the element compositions for k′ fluctuate within ±10%,330

then the interdependency constraint cannot be satisfied for the complete range of Q′. As

shown in Figure 8, when Q′

Q
= 0.60, the fluctuations of composition of k will cause the actual

value of Q′

Q
to vary between 0.54 and 0.66, violating the lower and upper bounds.

Figure 8: Illustration of constraint violation

For the given uncertainty range ±10% for k′, the fluctuation of the ratio is so large that

any value within [0.58, 0.64] will violate at least one of the bounds in the extreme cases.

In other words, the violation of constraint (24) will always occur for the given uncertainty

range in the robust model. When such a case occurs, the model will be infeasible, since there

is no solution that satisfies both bounds for the ratio simultaneously. To make the problem

tractable, and to quantify the violations, the robust counterpart can be further modified.

We introduce a violation term, ε, to the robust counterpart (37)-(40) to allow violations of

these terms:[∑
i∈I

∑
v∈VFinal

∑
c∈C

f̄c,kM
c
i,v,c + δ

(
Γqk +

∑
c∈C

sc,k

)]
− f̄k ·

∑
i∈I

∑
v∈VFinal

M t
i,v ≤ ε1

i,k i ∈ I, k ∈ KU

(42)
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mk,k′ ·

[ ∑
v∈VFinal

∑
c∈C

f̄c,kM
c
i,v,c + δ

(
Γqi,k +

∑
c∈C

si,c,k

)]

≤

[ ∑
v∈VFinal

∑
c∈C

f̄c,k′M
c
i,v,c − δ

(
Γqi,k′ +

∑
c∈C

si,c,k′

)]
+ ε2

i,k,k′ i ∈ I, (k, k′) ∈ KK ′, k, k′ ∈ KU

(43)

[ ∑
v∈VFinal

∑
c∈C

f̄c,k′M
c
i,v,c + δ

(
Γqi,k′ +

∑
c∈C

si,c,k′

)]

≤ m̄k,k′ ·

[ ∑
v∈VFinal

∑
c∈C

f̄c,kM
c
i,v,c − δ

(
Γqi,k +

∑
c∈C

si,c,k

)]
+ ε3

i,k,k′ i ∈ I, (k, k′) ∈ KK ′, k, k′ ∈ KU

(44)

KEk · (1− UEk) ·

[ ∑
v∈VFinal

∑
c∈C

f̄c,kM
c
i,v,c + δ

(
Γqi,k +

∑
c∈C

si,c,k

)]

≤ UEk ·

 ∑
v∈VFinal

∑
c∈C

∑
k′∈K,
k′ 6=k

f̄c,k′M
c
i,v,c ·KEk′ − δ

 ∑
k′∈KU ,
k′ 6=k

Γq′i,k,k′ +
∑
c∈C

∑
k′∈KU ,
k′ 6=k

s′i,c,k,k′


+ ε4

i,k

i ∈ I, k ∈ KU

(45)

Although unavoidable, the total violation of quality requirements should be reduced as much

as possible so that the quality of products are less affected. This can be formulated as a

second objective function:

min ‖ε‖1 (46)

where ‖ε‖1 stands for the `1 norm of the violation terms,

‖ε‖1 =
∑
i∈I

∑
k∈KU

(
ε1
i,k + ε4

i,k

)
+

∑
(k,k′)∈KK′

(
ε2
i,k,k′ + ε3

i,k,k′

)
The new objective along with the modified quality requirements can be used to formulate a

bi-criterion robust MOS model:335
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
max

∑
i∈I

∑
v∈VFinal

∑
c∈C

GcM
c
i,v,c

min ‖ε‖1

s.t. (2)-(32)

(36b)-(36d), (41a)-(41c), (42)-(45)

The bi-criterion model can be reformulated as a single-objective problem using the ε-

constraint method (Cohon, 1978):

max
∑
i∈I

∑
v∈VFinal

∑
c∈C

GcM
c
i,v,c

s.t. ‖ε‖1 ≤ w · ‖ε̄‖1

(2)-(32)

(36b)-(36d), (41a)-(41c), (42)-(45)

(BC-RO-MOS)

in which ‖ε̄‖1 is the maximal value of ‖ε‖1 that can be obtained by solving the bi-criterion

model only with the objective of maximizing the gross margin, and w is the coefficient

that determines the upper bound of ‖ε‖1. It is obvious that the gross margin is positively340

correlated to to the violation term ‖ε‖1, as the smaller violation indicates that the solution

is more restricted by the quality requirements.

By introducing ε, the bi-criterion robust model is capable of handling large range of

uncertainty by relaxing the quality requirements. In addition, a Pareto-front between the

gross margin and the violations can be obtained by adjusting the value of w, indicating the345

trade-offs that can be achieved between these two criteria.

4.5. Remarks

1. The constraints to which the robust counterpart formulation is applied are all linear.

Although the deterministic MOS model is an MINLP model, the quality requirements

where the robust counterpart is implemented are all linear constraints.350

2. The robust counterpart formulation does not introduce any integer variables or nonlin-

earity. The increase of model size is moderate, since it only introduces dual variables,
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whose sizes are O(|I| · |C| · |KU |2 + |I| · |C| · |KK ′|).

3. The `1 norm of the violation terms can be further modified to weigh each violation

term to indicate the total economic cost of dealing with these violations.355

5. Solution strategy

5.1. Two-step MILP-NLP decomposition strategy

Solving the robust counterpart formulation directly using MINLP solvers is computa-

tionally expensive due to its size. In previous works (Mouret et al., 2009, 2011; Song et al.,

2018), a two-step MILP-NLP decomposition strategy was developed to tackle such problems.360

Its scheme is outlined in Figure 9.

MILP subproblem

(RO-MOS)/(BC-RO-MOS)

without (18)

NLP subproblem

(RO-MOS)/(BC-RO-MOS)

fixing assignment

variables Zi,v

final solution
with optimality gap

lower bound

upper bound

Figure 9: MILP-NLP decomposition strategy

The original MINLP problem ((RO-MOS) or (BC-RO-MOS)) is decomposed into an

MILP subproblem and an nonlinear programming (NLP) subproblem. The MILP subprob-

lem includes all the constraints except the nonlinear composition constraints (18). The

NLP subproblem includes all the constraints, with assignments variable Zi,v fixed. The365

MILP subproblem is solved by CPLEX. The NLP subproblem is solved by the local NLP

solver CONOPT, with fixed Zi,v.

Because the MILP subproblem is a relaxation of the original maximization problem, its

optimal objective value yields an upper bound for the original problem. With the binary

variables fixed, the locally optimal objective value of the NLP subproblem yields a lower370
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bound for the original problem. The final solution is the solution of the NLP subproblem.

The method provides an optimality gap, which is the relative difference between objective

values of MILP and NLP solutions.

It is worth noting that feasibility and optimality of the final solution are not guaranteed

with this approach. By passing the fixed assignment variables, the sequences of operations375

determined in the MILP subproblem is fixed in the NLP subproblem. These sequences may

be infeasible to the NLP subproblem if the nonlinear composition constraints (18) cannot

be satisfied. Also, since CONOPT is a local NLP solver, the NLP solution may not be the

global optimum. Even if it is the global optimum to the NLP subproblem, it may not be the

global optimum to the MINLP problem. Nevertheless, this strategy tends to give solutions380

with small or no optimality gaps with short computational time (Mouret et al., 2009, 2011;

Song et al., 2018).

5.2. Enhancement of decomposition strategy

The original MILP-NLP decomposition strategy can be further enhanced to reduce the

optimality gaps. By comparing the MILP subproblem and the NLP subproblem in Fig-385

ure 9, the presence of concentration constraints (18) is the main difference between them.

Therefore, a set of linear constraints are formulated to model in a linear fashion some of the

characteristics on NLP-feasible blends implied by composition constraints (18). Excluding

the concentration constraints from the MILP subproblem has two effects in the operations

leaving blending units: (1) inconsistent proportions of different concentrates, (2) inconsis-390

tent concentrate types in concentrate blends. These effects are illustrated in the following

example.

The schedule of the MILP solution of a small case is shown in Figure 10. In this schedule,

there are 2 batches of c1 and 2 batches of c2 at pile 1 and pile 2, respectively. Both batches

are assumed to have the same size. All batches of c1 and c2 are transferred into the blending395

unit at slot i2. Since the composition constraint is absent, the transfer of the blend from the

blending unit to the smelter can be conducted as shown in Figure 10: 2 batches of c1 and 1

batch of c2 are transferred at slot i4; later, 1 single batch of c2 transferred at slot i6. In this
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way, 2 different blends of concentrates (highlighted in blue) are transferred to the smelter

in two rounds; we assume that both of them satisfy quality requirements (23)-(25).400

pile 1 pile 2

c1 c2

blending unit smelter

i2

i4

i6

Figure 10: MILP solution

When the schedule of the MILP solution in the previous example is passed to the NLP

subproblem, the corresponding NLP schedule is shown in Figure 11. Here, the composition

constraints force the proportions of both blends to be the same, changing the amount of c1

and c2 in each blend (highlighted in red). These changes are likely to violate the quality

requirements, which are satisfied in the original MILP solution.405

pile 1 pile 2

c1 c2

blending unit smelter

i2

i4

i6

Figure 11: Scheme of inferior NLP solution

One way to enhance the decomposition strategy is to maintain the concentrate types

before and after blending to eliminate improper MILP solutions like in Figure 10. We
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introduce a new binary variable Yi,v,c to indicate if concentrate c is transferred in operation

v in slot i:

−U · (1− Yi,v,c) + ε ≤M c
i,v,c ≤ U · Yi,v,c i ∈ I, v ∈ V, c ∈ C (47)

in which ε is a sufficiently small parameter to enforce positive values.

The new binary variable has the following relationship with the original binary variable

Zi,v:

Zi,v ≥ Yi,v,c i ∈ I, v ∈ V, c ∈ C (48)

The concentrate types arriving and leaving the blending unit can be related by specifying

Yi,v,c for these two parts. There are various ways to construct such relationships. Here, we

assume that the transfer of blends to the smelter occurs exactly 2 slots after the transfer of

concentrates to the blending unit, because “2 slots” is the minimum slots needed to transfer

blends from the blending unit to the smelter (blending unit → bins → smelter). Then

the concentrate types in the former operations should be identical to those in the latter

operations. This relationship can be formulated in aggregated form as follows:∑
i′∈I,

i′≤i−2

∑
v′∈V in

r

∑
r∈Rblender

Yi′,v′,c =
∑
i′′∈I,
i′′≤i

Yi′′,v,c i ∈ I, i > 2, v ∈ VFinal, c ∈ C \Cda (49)

We also assume that the amount of each concentrate, M c
i,v,c, is the same between transfer

of concentrates to the blending unit at slot i and the transfer of blends to the smelter at

i+ 2: ∑
i′∈I,

i′≤i−2

∑
v′∈V in

r

∑
r∈Rblender

M c
i′,v′,c =

∑
i′′∈I,
i′′≤i

∑
v∈VFinal

M c
i′′,v,c i ∈ I, i > 2, c ∈ C \Cda (50)

After applying these new constraints, the previous example will have a new MILP solution

(Figure 12), in which the sole c2 mixture transferred to the smelter at slot i6 leads to an

additional transfer of c2 to the blending unit at slot i4. The new MILP solution will have

exactly the same corresponding NLP solution since there is no inconsistent proportion, thus410

eliminating the optimality gap.
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pile 1 pile 2

c1 c2

blending unit smelter

i2

i4

i4

i6

Figure 12: Scheme of MILP solution with new assignment constraints

For daily-arrival materials, a similar constraint can be formulated to maintain their

amounts between inlet and outlet operations of bins. We assume that the transfer of daily-

arrival materials to the smelter is exactly one slot after the transfer to the bins (minimum

slots needed), then the amount of c transferred to the bins at i should be no less than its

amount transferred to the smelter at i+ 1:∑
i′∈I,

i′≤i−1

∑
v∈V out

r

∑
r∈Rdapile

M c
i′,v,c ≥

∑
i′′∈I,
i′′≤i

∑
v∈VFinal

M c
i′′,v,c i ∈ I, i > 1, c ∈ Cda (51)

The new assumptions for constraints (49)-(51) together imply a specific transfer pattern

for the blending unit: the unit can be filled with new concentrates only when it is empty.

As the same amount of concentrates are required to be discharged from the blending unit to

the smelter, there will be no concentrate left in the blending unit after the outlet operations415

and before the next inlet operations. This pattern eliminates some possible ways of trans-

ferring blends from the blending unit to the smelter. This may affect the objective value

for the MILP subproblem, but will reduce optimality gap and the computational time (see

Section 7).

The scheme of the enhanced solution strategy is outlined in Figure 13 where the new420

linear constraints (47)-(51) are added to the MILP subproblem.
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MILP subproblem

(RO-MOS)/(BC-RO-MOS)

without (18),

(47)-(51)

NLP subproblem

(RO-MOS)/(BC-RO-MOS)

fixing assignment

variables Zi,v

final solution
with optimality gap

lower bound

upper bound

Figure 13: Enhanced MILP-NLP decomposition strategy

6. Case studies

We address an illustrative example and an industrial case study to evaluate the perfor-

mance of the MOS model, the robust formulations and the decomposition strategies. The

topology of the illustrative example is presented in Figure 14. This example considers 6425

types of concentrates and 4 key elements within a 10-day horizon. The process consists of

2 maritime vessels, 5 piles at the port, 1 blending unit, 1 daily-arrival pile, 3 bins, and 1

smelter. To simplify the model, interdependency constraints (24) and (25) are excluded from

the instance. The corresponding data of the process and the concentrates (profit, element

compositions, etc.) are presented in Tables C.1 and C.2 in Appendix C. The set of cliques430

W is shown in Figure C.1 in Appendix C.
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r10
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r12

r1
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blending
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daily-arrival piles

bins smelter

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13

v15

v14

Figure 14: Topology of the illustrative example
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The topology of the industrial case study is shown in Figure 15. The industrial case

study considers 14 types of concentrates with 9 key elements and a time horizon of 15 days.

The process consists of 5 maritime vessels, 11 piles at the port, 1 blending unit, 3 daily-

arrival piles, 6 bins, and 1 smelter. All daily-arrival materials in piles r25, r26 and r27 can435

be discharged to bins r21, r22, and r23. The data for the process and the set of cliques are

presented in Tables C.3 and C.4 and Figure C.2 in Appendix C.
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Figure 15: Topology of the industrial case study

Different ranges of uncertainty are set to show the effectiveness of the robust MOS model

((RO-MOS)- (FT)) and the bi-criterion robust model (BC-RO-MOS). The relative bounds

for the uncertainty are set to be ±1%,±2%,±3%,±5% and ±10% of the nominal mass440

fraction values. For the illustrative example, the uncertainty elemental set is KU = {k1, k2}

and the budget parameter Γ is set to 2. For the industrial case study, KU = {k1, k2, k3} and

Γ is set to 5. The equations involved in each case and each model are shown in Table 1.

The two cases are solved on an Intel Core i7 (6 cores) 2.60 GHz processor with 16 GB
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Table 1: Equations for each case and each model

illustrative example industrial case study

deterministic MOS model (2)-(23), (26)-(MOS) (2)-(MOS)

robust MOS model
(2)-(23), (26)-(MOS),

(37), (36b)-(36d)

(2)-(MOS), (37), (38), (39), (40),

(36b)-(36d), (41a)-(41c)

bi-criterion robust MOS model
(2)-(23), (26)-(MOS),

(42), (36b)-(36d)

(2)-(MOS), (42), (43), (44), (45),

(36b)-(36d), (41a)-(41c)

RAM, with GAMS 27.2.0 (GAMS Development Corporation, 2019) as the modeling system,445

CPLEX 12.9 as the MILP solver, CONOPT 4.12 as the local NLP solver. The relative

tolerances for CPLEX and CONOPT are set to 0.001 and 0 respectively. The number of

priority slots in all models is set to 10.

7. Computational results

7.1. Illustrative example450

The deterministic MOS model is first solved for the illustrative example with all element

compositions of concentrates at their nominal values. The statistics of the model with both

original and enhanced solution strategies are given in Table 2.

Table 2: Model statistics for the deterministic MOS model of the illustrative example

# continuous variables discrete variables equations

original solution strategy
MILP subproblem 2,571 144 5132

NLP subproblem 2,571 - 5,492

enhanced solution strategy
MILP subproblem 2,571 1,044 7,322

NLP subproblem 2,571 - 7,682

The model using the enhanced solution strategy has a significantly larger number of

discrete variables as a result of introducing the binary variable Yi,v,c. The number of equa-455

tions also increases, as the linear constraints (47)-(51) are added to reduce the optimality
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gap. However, larger model size does not necessary lead to longer computational time (see

Table 3).

Table 3: Computational results for the deterministic MOS model of the illustrative example

solution strategy enhanced original BARON

MILP obj. value (k$) 9924.198 10535.624
9383.527

NLP obj. value (k$) 9924.198 9837.614

optimality gap 0.00% 7.10% -

MILP time (s) 3.199 9.363 -

NLP time (s) 0.603 1.67 -

total time (s) 3.802 11.033 3000.860

The enhanced solution strategy yields the same objective values in the MILP and NLP

subproblems. The original solution strategy obtains a higher objective value in the MILP460

subproblem, but its objective value in the NLP subproblem is lower than the one from the

enhanced solution strategy, with a 7.10% optimality gap. The MILP subproblems takes

most of the computational time in both cases. However, the MILP and NLP subproblems

using the enhanced solution strategy are faster to solve compared with the ones using the

original solution strategy. The global MINLP solver BARON is also used to directly solve465

the model. It reaches $9383.527k after 3000 s, which is inferior to the results obtained with

the proposed MILP-NLP decomposition strategies.

The lower objective value in the MILP subproblem for the enhanced solution strategy is

due to the transfer pattern implied by the added constraints (49)-(51). This specific pattern

excludes some solutions from the MILP subproblem with a higher objective value, which470

is obtained in the original solution strategy. However, such solutions may have a larger

optimality gap and a lower value for the NLP subproblem.

The model statistics for the robust MOS model using both solution strategies are given

in Table 4. The number of continuous variables and equations in the model is slightly higher

than the ones in the deterministic model because of the addition of the robust counterparts.475

The flexibility test problem is a small MILP problem compared with the main MOS model.
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Table 4: Model statistics for the robust MOS model of the illustrative example

# continuous variables discrete variables equations

original solution strategy
MILP subproblem 2,733 144 5,274

NLP subproblem 2,733 - 5,634

enhanced solution strategy
MILP subproblem 2,733 1,044 7,464

NLP subproblem 2,733 - 7,824

flexibility test 129 40 157

The computational results for the robust model are presented in Table 5.

Table 5: Computational results for the robust MOS model of the illustrative example

δ solution strategy obj. value (k$) optimality gap total time (s)

0 (deterministic)

enhanced

9924.198 0.00% 3.802

0.01 9826.972 0.00% 5.413

0.02 9740.942 0.00% 1.665

0.03 9656.447 0.00% 5.165

0.05 9492.017 0.00% 5.357

0.1 9114.389 0.00% 5.228

0 (deterministic)

original

9837.614 7.10% 11.033

0.01 9707.546 7.39% 8.066

0.02 9638.452 7.11% 10.627

0.03 9429.985 8.42% 14.136

0.05 9424.313 6.47% 11.673

0.1 8896.029 7.93% 13.005

The enhanced solution strategy manages to obtain objective values with zero-gaps for all

cases with different values of δ. The original solution strategy achieves the objectives with

optimality gaps around 7%. The enhanced solution strategy also yields smaller computa-480

tional time for all cases compared with the original solution strategy. The MILP subproblems
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still take most of the total computational time, whereas the flexibility test problem usually

takes less than 0.1 s to solve. The objective profile is outlined in Figure 16. The enhanced

solution strategy always yields a higher gross margin than the original solution strategy. In

addition, the gross margin tends to decrease monotonically with the increase of the given485

uncertainty bounds, because the higher uncertainty makes the feasible region of the model

smaller.

Figure 16: Objective value profile for the robust MOS model of illustrative example

The values of element composition obtained from the flexibility test problem for the

case with δ = 0.1 are given in Table 6 in the form of deviation from their nominal values.

From the table, it is clear that the worst case indicated in the robust model corresponds to490

concentration of k1 increasing in c2 and c6, together with a drop in the concentration of k2

in c4 and c5. The number of deviations in each column equals 2, corresponding to the value

of the budget parameter Γ.

7.2. Industrial case

The robust MOS model is first solved for the industrial case using the enhanced solution495

strategy. The model statistics are given in Table 7. The model is much larger than the
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Table 6: Deviation of element composition for δ = 0.1 in the illustrative example

k1 k2

c1 0 0

c2 0.070 0

c3 0 0

c4 0 -0.037

c5 0 -0.026

c6 0.021 0

illustrative example, as more concentrates and operations are involved. The computational

results are presented in Table 8.

Table 7: Model statistics for the robust MOS model of the industrial case

# continuous variables discrete variables equations

MILP subproblem 13,485 5,986 33,308

NLP subproblem 13,485 - 34,988

flexibility test 653 200 788

Similar to the results of the robust model for the illustrative example, for δ = 0 ∼

0.03, the objective value decreases monotonically with the increase of δ. Interestingly, the500

enhanced solution strategy also yields zero-gaps for these cases. The uncertain case with

δ = 0.01 has a significantly larger computational time compared with the deterministic case.

However, as δ increases, the computational time drops monotonically. This may be because

the introduction of robust counterparts makes the solution process much harder at first;

then, the larger δ requires the solution to be more conservative to be robust to larger ranges505

of uncertainty, leading to smaller feasible regions and shorter computational time. The cases

with δ = 0.05 and 0.1 are infeasible, indicating there are unavoidable violations in some of

the quality requirements. In these cases, the robust MOS model cannot obtain any feasible

solutions.
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Table 8: Computational results for the robust MOS model of the industrial case

δ final obj. value (k$) optimality gap total time (s)

0 (deterministic) 15752.041 0.00% 827.597

0.01 15685.341 0.00% 4264.045

0.02 15615.281 0.00% 2170.918

0.03 15550.795 0.00% 801.466

0.05 infeasible - 32.883

0.1 infeasible - 5.525

The case with δ = 0.1 is then solved with the bi-criterion robust MOS model. The two510

extreme values of the case (maximal gross margin and minimal violation) are first calculated

(Table 9). The upper bound of the gross margin is the same as the objective value of

the deterministic case. The minimal violation is 25.128, which explains the infeasibility of

the robust MOS model. Then, a set of inner points are calculated, forming the Pareto-

front shown in Figure 17. The Pareto-front shows the trade-off between gross margin and515

constraint violations.

Table 9: Extreme points for the bi-criterion robust MOS model of the industrial case

gross margin (k$) violation ‖ε‖1 total computational time (s)

15752.041 652.506 1378.944

1141 25.128 136.907

The Gantt chart for the case with δ = 0.03 is shown in Figure 18; here, the x-axis

represents time and the y-axis represent the operations. For each operation, the bars with

different colors represents executions of the same operation at different priority slots. From

the chart, the non-overlapping features are clearly shown for operations V6-V16 against520

V17-V22. Here, V6-V16 are the inlet operations for the blending unit and V17-V22 are its

outlet operations. The inlet operations are only assigned to slots with odd indexes, whereas

the outlet operations are only assigned the slots with even indexes. These two operation
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Figure 17: Pareto front for bi-criterion robust MOS model of the industrial case

sets never overlap with each other. The final operations V23-V29 also indicate that there

are four rounds of blends being transferred to the smelter during the 15-day horizon.525

8. Conclusions

In this work, we have addressed the optimal scheduling of logistic and blending operations

for copper smelting process so that the gross margin associated to the concentrates being

processed in the smelter are maximized. This problem is very difficult to solve due to

the complexity of the process operations rules and the quality requirements for products,530

which are strongly affected by the uncertainty in element composition. We apply the MOS

model to formulate the problem as a nonconvex MINLP problem, and we include a detailed

explanation of its time representation. Based on the MOS model, we have developed a robust

model combining the robust counterpart formulation and the flexibility test problem. We

also present a bi-criterion robust model to allow constraint violations in the robust model. In535

order to solve the resulting MINLP model, we adopted and enhanced a two-step MILP-NLP

decomposition strategy that significantly reduces the optimality gap.

The deterministic MOS model, the robust MOS model and the bi-criterion robust model
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Figure 18: Gantt chart for the robust MOS model (δ = 0.03) of the industrial case

are solved for an illustrative example and an industrial case with different ranges of uncer-

tainty. The enhanced MILP-NLP decomposition strategy is shown to be superior to the540

original strategy, both in terms of computational time and solution quality. The robust

MOS model is shown to be capable of obtaining optimal solutions that are guaranteed to

satisfy quality requirements when the uncertainty is not too large. The explicit value of
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element compositions can be obtained from the flexibility test problem. When the range of

the uncertainty is large, the robust MOS model cannot obtain feasible solutions, while the545

bi-criterion robust model is able to obtain feasible solutions and determine the Pareto-front

between the gross margin and total constraint violations.
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Appendix A. Derivation of robust counterpart

The robust counterpart formulation is constraint-wise, i.e. it is different for every con-

straint containing uncertainty based on the uncertain terms. The derivation of robust coun-

terparts for constraints (24) and (25) are given here.555

Appendix A.1. Defining uncertainty set

This step is the same as the one shown in the paper. By introducing the budget param-

eter, the uncertainty set can be modified as:

U =


~F

∣∣∣∣∣∣∣∣∣∣
f̄c,k · (1− δpc,k) ≤ fc,k ≤ f̄c,k · (1 + δpc,k) c ∈ C, k ∈ KU

0 ≤ pc,k ≤ 1 c ∈ C, k ∈ KU

0 ≤
∑
c∈C

pc,k ≤ Γ k ∈ KU

 (33)

Appendix A.2. Building worst cases

The worst cases can be obtained by maximizing the positive terms and minimizing the

negative terms on the left hand side of the constraints. The corresponding worst cases are:

mk,k′·max
~F∈U

( ∑
v∈VFinal

∑
c∈C

fc,kM
c
i,v,c

)
≤ min

~F∈U

( ∑
v∈VFinal

∑
c∈C

fc,k′M
c
i,v,c

)
i ∈ I, (k, k′) ∈ KK ′, k, k′ ∈ KU

(A.1)
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max
~F∈U

( ∑
v∈VFinal

∑
c∈C

fc,k′M
c
i,v,c

)
≤ m̄k,k′·min

~F∈U

( ∑
v∈VFinal

∑
c∈C

fc,kM
c
i,v,c

)
i ∈ I, (k, k′) ∈ KK ′, k, k′ ∈ KU

(A.2)

KEk,k · (1− UEk) ·max
~F∈U

( ∑
v∈VFinal

∑
c∈C

fc,kM
c
i,v,c

)

≤ UEk ·min
~F∈U

 ∑
v∈VFinal

∑
c∈C

∑
k′∈K,
k′ 6=k

fc,k′M
c
i,v,c ·KEk,k′

 i ∈ I, k ∈ KU

(A.3)

Appendix A.3. Building auxiliary optimization problems560

To make the model tractable, the maximized and minimized terms in the inequalities

above can be reformulated by building an auxiliary optimization problem. For the maximized

term max
~F∈U

( ∑
v∈Vfinal

∑
c∈C

fc,kM
c
i,v,c

)
in (A.1) and (A.2), it is the same as the maximized term

in (34), leading to the same auxiliary problem (35).

For the minimized term min
~F∈U

( ∑
v∈Vfinal

∑
c∈C

fc,kM
c
i,v,c

)
in (A.1) and (A.2), with subindices565

(i ∈ I, (k, k′) ∈ KK ′, k, k′ ∈ KU), the corresponding maximization problem is equivalent to:

min
~F∈U

( ∑
v∈Vfinal

∑
c∈C

fc,kM
c
i,v,c

)

≡ min
~F∈U

[ ∑
v∈Vfinal

∑
c∈C

f̄c,k(1− δpc,k)M c
i,v,c

]

⇔ min
~F∈U

(
−
∑

v∈Vfinal

∑
c∈C

f̄c,kpc,kM
c
i,v,c

)

≡ −max
∑

v∈Vfinal

∑
c∈C

f̄c,k · pc,kM c
i,v,c

s.t. 0 ≤ pc,k ≤ 1 c ∈ C∑
c∈C

pc,k ≤ Γ

(A.4)
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It is worth noting that max
~F∈U

( ∑
v∈Vfinal

∑
c∈C

fc,kM
c
i,v,c

)
and min

~F∈U

( ∑
v∈Vfinal

∑
c∈C

fc,kM
c
i,v,c

)
are tran-

sormed to the same maximization problem in (35) and (A.4) respectively with opposite

signs.

For the minimized term min
~F∈U

 ∑
v∈VFinal

∑
c∈C

∑
k′∈K,
k′ 6=k

fc,k′M
c
i,v,c ·KEk,k′

 in (A.3) with subindices570

(i ∈ I, k ∈ KU), the corresponding problem is equivalent to:

min
~F∈U

 ∑
v∈VFinal

∑
c∈C

∑
k′∈K,
k′ 6=k

fc,k′M
c
i,v,c ·KEk,k′



≡ min
~F∈U

 ∑
v∈Vfinal

∑
c∈C

∑
k′∈K,
k′ 6=k

f̄c,k′(1− δpc,k,k′)M c
i,v,c ·KEk,k′



⇔ min
~F∈U

− ∑
v∈Vfinal

∑
c∈C

∑
k′∈K,
k′ 6=k

f̄c,k′pc,k,k′M
c
i,v,c ·KEk,k′


≡ −max

∑
v∈Vfinal

∑
c∈C

∑
k′∈K,
k′ 6=k

f̄c,k′pc,k,k′M
c
i,v,c ·KEk,k′

s.t. 0 ≤ pc,k,k′ ≤ 1 c ∈ C, k′ ∈ KU , k
′ 6= k∑

c∈C

pc,k,k′ ≤ Γ k′ ∈ KU , k
′ 6= k

(A.5)

Appendix A.4. Dualizing auxiliary problems

The auxiliary optimization problem can be dualized to transform the model back to

single-level problem. The auxiliary problem (A.4) has the same dualized problem as (35).

For every problem with subindices (i ∈ I, k ∈ KU), the corresponding maximization problem

is equivalent to:

min Γqi,k +
∑
c∈C

si,c,k (36a)

s.t. si,c,k + qi,k ≥
∑

v∈Vfinal

f̄c,kM
c
i,v,c c ∈ C (36b)
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si,c,k ≥ 0 c ∈ C (36c)

qi,k ≥ 0 (36d)

For the auxiliary problem (A.5) with subindices (i ∈ I, k ∈ KU), the corresponding

maximization problem is equivalent to:

min
∑
k′∈K,
k′ 6=k

Γq′i,k,k′ +
∑
c∈C

∑
k′∈K,
k′ 6=k

s′i,c,k,k′ (A.6a)

s.t. q′i,k,k′ + s′i,c,k,k′ ≥
∑

v∈Vfinal

f̄c,k′ ·M c
i,v,c ·KEk,k′ c ∈ C, k′ ∈ KU , k

′ 6= k (41a)

s′i,c,k,k′ ≥ 0 c ∈ C, k′ ∈ KU , k
′ 6= k (41b)

q′i,k,k′ ≥ 0 k′ ∈ KU , k
′ 6= k (41c)

where s′i,c,k,k′ and q′i,k,k′ are auxiliary variables of the dualized problem. By strong duality,

the optimal objective value of the dual problem is equal to the optimal objective value of

(A.5).575

Substituting the dualized problems into Equations (24) and (25), the model will automat-

ically minimizes the auxiliary variables. The robust counterpart formulations are presented

in below:

mk,k′ ·

[ ∑
v∈Vfinal

∑
c∈C

f̄c,kM
c
i,v,c + δ

(
Γqi,k +

∑
c∈C

si,c,k

)]

≤

[ ∑
v∈Vfinal

∑
c∈C

f̄c,k′M
c
i,v,c − δ

(
Γqi,k′ +

∑
c∈C

si,c,k′

)]
i ∈ I, (k, k′) ∈ KK ′, k, k′ ∈ KU

(38)[ ∑
v∈Vfinal

∑
c∈C

f̄c,k′M
c
i,v,c + δ

(
Γqi,k′ +

∑
c∈C

si,c,k′

)]

≤ m̄k,k′ ·

[ ∑
v∈Vfinal

∑
c∈C

f̄c,kM
c
i,v,c − δ

(
Γqi,k +

∑
c∈C

si,c,k

)]
i ∈ I, (k, k′) ∈ KK ′, k, k′ ∈ KU

(39)
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KEk,k′ · (1− UEk) ·

[ ∑
v∈Vfinal

∑
c∈C

f̄c,kM
c
i,v,c + δ

(
Γqi,k +

∑
c∈C

si,c,k

)]

≤ UEk ·

 ∑
v∈VFinal

∑
c∈C

∑
k′∈K,
k′ 6=k

f̄c,k′M
c
i,v,c ·KEk,k′ − δ

 ∑
k′∈KU ,
k′ 6=k

Γq′i,k,k′ +
∑
c∈C

∑
k′∈KU ,
k′ 6=k

s′i,c,k,k′




i ∈ I, k ∈ KU

(40)

Appendix B. Formulation of flexibility test problem

The full formulation of the flexibiity test problem is given below as (FT). In (FT), the

variablesM c
i,v,c,M

t
i,v in the MOS model are fixed and treated as parameters (

(
M c

i,v,c

)∗
,
(
M t

i,v

)∗
),

while the uncertain parameter fc,k is formulated as (f̄c,k + θc,k), in which θc,k denotes the

absolute deviation of the mass fraction and is treated as variables. The quality requirements580

(23)-(25) are reformulated with (f̄c,k +θc,k), slack variable sFT and u. The big-M constraints

and the constraint summing all yFT’s ensure that only one modified quality requirement is

active (sFT = 0), and the rest are relaxed (sFT = U). In this way the flexibility test problem

can determine if there is any potential constraint violation, represented by variable u, by

varying the values of θc,k within the uncertainty set. Although the uncertain parameter is585

represented and constrained in a different way, the uncertainty set in (FT) is identical to

(33) which the robust counterpart is derived from.

The solution (
(
M c

i,v,c

)∗
,
(
M t

i,v

)∗
) from the robust counterpart can be passed to the flex-

ibility test problem. As the worst cases of the uncertainty are considered in the robust

counterpart, its solution should be feasible and has no constraint violation for any real-590

ization of the uncertainty, which means that the objective u of (FT) should be less than

or equal to zero. Since u is maximized in (FT), the value of θc,k in the solution corre-

sponds to the deviation of element composition which leads to the smallest feasible region

for
(
M c

i,v,c

)∗
,
(
M t

i,v

)∗
, which is identical to the worst cases for the uncertainty in the robust

counterpart.595

max u (FT)
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s.t.
∑

v∈VFinal

∑
c∈C

(f̄c,k + θc,k) ·
(
M c

i,v,c

)∗ − f̄k ∑
v∈VFinal

(
M t

i,v

)∗
+ sFT,1

i,k = u i ∈ I, k ∈ KU

∑
v∈VFinal

∑
c∈C

(f̄c,k′ + θc,k′) ·
(
M c

i,v,c

)∗
− m̄k,k′

∑
v∈VFinal

∑
c∈C

(f̄c,k + θc,k) ·
(
M c

i,v,c

)∗
+ sFT,2

i,k,k′ = u i ∈ I, (k, k′) ∈ KK ′, k, k′ ∈ KU

mk,k′

∑
v∈VFinal

∑
c∈C

(f̄c,k + θc,k) ·
(
M c

i,v,c

)∗
−

∑
v∈VFinal

∑
c∈C

(f̄c,k′ + θc,k′) ·
(
M c

i,v,c

)∗
+ sFT,3

i,k,k′ = u i ∈ I, (k, k′) ∈ KK ′, k, k′ ∈ KU

KEk ·
∑

v∈VFinal

∑
c∈C

(f̄c,k + θc,k) ·
(
M c

i,v,c

)∗
− UEk

[ ∑
v∈VFinal

∑
c∈C

∑
k′∈K

(f̄c,k′ + θc,k′) ·
(
M c

i,v,c

)∗ ·KEk

]
+ sFT,4

i,k = u i ∈ I, k ∈ KU

sFT,1
i,k − U(1− yFT,1

i,k ) ≤ 0 i ∈ I, k ∈ KU

sFT,2
i,k,k′ − U(1− yFT,2

i,k,k′) ≤ 0 i ∈ I, (k, k′) ∈ KK ′, k, k′ ∈ KU

sFT,3
i,k,k′ − U(1− yFT,3

i,k,k′) ≤ 0 i ∈ I, (k, k′) ∈ KK ′, k, k′ ∈ KU

sFT,4
i,k − U(1− yFT,4

i,k ) ≤ 0 i ∈ I, k ∈ KU∑
i∈I

 ∑
(k,k′)∈KK′

(
yFT,2
i,k,k′ + yFT,3

i,k,k′

)
+
∑
k∈KU

(
yFT,1
i,k + yFT,4

i,k

) = 1

∑
c∈C

θ̄c,k ≤ Γ k ∈ KU

− δ · f̄c,k · θ̄c,k ≤ θc,k ≤ δ · f̄c,k · θ̄c,k c ∈ C, k ∈ KU

θ̄c,k ≥ 0 c ∈ C, k ∈ KU

Appendix C. Data for case studies
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Table C.1: Case study data for the illustrative example

Time horizon 10 days

Vessels Arrival time (day) Concentrate type Amount (ton)

r1 0 c1 11,380

r2 3 c2 10,800

Piles at the port

Unlimited capacity

Concentrate type Amount (ton)

r3 - -

r4 - -

r5 c3 5,017

r6 c4 5,009

r7 c5 4,719

Pre-blending unit Unlimited capacity
Inlet flowrate

(ton/day)
[0, 5000]

Daily arrival piles Concentrate type
Inlet flowrate

(ton/day)

Outlet flowrate

(ton/day)

r13 c6 37.34 [0, 50]

Bins Unlimited capacity

Inlet flowrate

(ton/day)
[0, 1300]

Outlet flowrate

(ton/day)
[150, 900]

[Dv, D̄v] (day) [0.05, 5] [Ev, Ēv] (day) [0, 10]

W ′ for Equation (3) {v1}, {v2} [NW ′ , N̄W ′ ] [1, 1]

F̄smelter (ton/day) 3000 L̄daily 100

[rbin, r̄bin] [0.2, 0.4] [M t
v, M̄

t
v] (ton) [0, 20000]
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Table C.2: Data for concentrates and elements for the illustrative example

Copper
concentrate

Key elements Profit
k1 k2 k3 k4 ($/ton)

c1 2.54 · 10−1 2.97 · 10−1 3.29 · 10−1 1.20 · 10−1 146
c2 7.00 · 10−1 5.07 · 10−3 1.85 · 10−1 1.10 · 10−1 1172
c3 2.50 · 10−1 2.20 · 10−1 2.70 · 10−1 2.60 · 10−1 319
c4 2.21 · 10−1 3.70 · 10−1 3.55 · 10−4 5.50 · 10−2 216
c5 2.41 · 10−1 2.55 · 10−1 3.15 · 10−1 1.89 · 10−1 264
c6 2.07 · 10−1 3.50 · 10−1 1.21 · 10−1 3.22 · 10−1 0

Upper bounds of
composition

in final mixture
0.4 0.285 0.31 1

v1 v3

v2 v4 v8

v5 v9

v6 v10

v7

v14

Figure C.1: Cliques in the illustrative example
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Table C.3: Case study data for the industrial case

Time horizon 15 days

Vessels Arrival time (day) Concentrate type Amount (ton)

r1 0 c1 11,380

r2 3 c2 12,590

r3 6 c3 10,800

r4 7 c4 15,600

r5 10 c5 183

Piles at the port

Unlimited capacity

Concentrate type Amount (ton)

r6 - -

r7 - -

r8 - -

r9 - -

r10 - -

r11 c6 5,017

r12 c7 5,009

r13 c8 4,719

r14 c9 3,543

r15 c10 2,609

r16 c11 10,000

Pre-blending unit Unlimited capacity
Inlet flowrate

(ton/day)
[0, 5000]

Daily arrival piles Concentrate type
Inlet flowrate

(ton/day)

Outlet flowrate

(ton/day)

r25 c12 37.34 [0, 50]

r26 c13 36.05 [0, 50]

r27 c14 6.26 [0, 15]

Bins Unlimited capacity

Inlet flowrate

(ton/day)
[0, 1300]

Outlet flowrate

(ton/day)
[150, 900]

[Dv, D̄v] (day) [0.05, 5] [Ev, Ēv] (day) [0, 10]

W ′ for Equation (3) {v1}, {v2}, {v3}, {v4}, {v5} [NW ′ , N̄W ′ ] [1, 1]

KK ′ for Equation (25) {(k2, k7)} [mk,k′ , m̄k,k′ ] [0.58, 0.64]

F̄smelter (ton/day) 3000 L̄daily 100

[rbin, r̄bin] [0.2, 0.4] [M t
v, M̄

t
v] (ton) [0, 20000]
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v1 v6

v2 v7

v3 v8 v17

v4 v9 v18

v5 v10 v19

v11 v20

v12 v21

v13 v22

v14

v15

v16

v29

v35

v30

v36

v31

v37

v32

v33

v34

Figure C.2: Cliques in the industrial case

Nomenclature

Indices

c Concentrates

i, j, i′, i′′ Priority slots600

k, k′ Elements

r Units

v, v′, v′′ Operations

Sets

C Concentrates605
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Cda Daily-arrival concentrates

I Priority slots

K Elements

KU Elements whose composition fluctuates

KK ′ Pairs of elements with composition interdependency610

R Units

Rbin Bins

Rblender Blending units

Rdapile Daily-arrival piles

V Operations615

V in
r Inlet operations for unit r

V out
r Outlet operations for unit r

VFinal Final operations that transfer concentrates from bins to the smelter

W ′ Clique, set of non-overlapping operations

W Set of cliques620

Parameters

f̄k Maximum mass fraction of element k in concentrate mixture

F̄smelter Upper bound of total flowrate of concentrates transferred to the smelter

f̄c,k Nominal mass fraction of element k in concentrate c

L̄daily Upper bound of total daily-arrival material inventory at the end of time horizon625

δ Relative bound of the fluctuation for the mass fraction of elements

Γ Budget parameter for modifying the uncertainty set

KEk Distribution coefficient for element k for interdependency constraint (25)

UEk Upper bound for element k for interdependency constraint (25)

Dv, D̄v Lower and upper bounds of duration of operation v630

Ev, Ēv Lower and upper bounds of end time of operation v
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F v, F̄v Lower and upper bounds of flowrate of operation v

Lt
r, L̄

t
r Lower and upper bounds of capacity of unit r

M t
v, M̄

t
v Lower and upper bounds of total amount of concentrates in operation v

mk,k′ , m̄k,k′ Lower and upper bounds of ratio between amount of element k and element k′635

NW ′ , N̄W ′ Lower and upper bounds of cardinalities of operations in clique W ′

rbin, r̄bin Lower and upper bounds of the ratio of contribution of each bin

Sv, S̄v Lower and upper bounds of start time of operation v

fc,k Mass fraction of element k in concentrate c

Gc Gross margin of concentrate c640

H Time horizon

Lc,initial
r,c Initial level of concentrate c in unit r

Lt,initial
r Initial total level of concentrates in unit r

pc,k Normalized deviation of mass fraction for element k in concentrate c

U Uncertainty set645

Variables

θ̄c,k Normalized mass fraction deviation of element k in concentrate c

θc,k Absolute mass fraction deviation for element k in concentrate c

ε1
i,k, ε

2
k, ε

3
k, ε

4
i,k Violation terms in bi-criterion robust MOS model

Di,v Duration of operation v assigned to slot i650

Ei,v End time of operation v assigned to slot i

Lc
i,r,c Accumulated level of concentrate c in unit r at slot i

Lt
i,r Total accumulated level of concentrates in unit r at slot i

Lc,Final
r,c Final level of concentrate c in unit r

Lt,Final
r Final total level of concentrates in unit r655

M c
i,v,c Amount of concentrate c in operation v at slot i

M t
i,v Total amount of concentrates in operation v at slot i
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s′i,c,k,k′ , q
′
i,k,k′ Dual variables for the dual of inner maximization problem for constraint (25)

si,c,k, qi,k Dual variables for the dual of inner maximization problem for constraint (23),(24),
(25)660

sFT,1
i,k , sFT,2

i,k,k′ , s
FT,3
i,k,k′ , s

FT,4
i,k Slack variables for flexibility test problem

Si,v Start time of operation v assigned to slot i

u Objective of flexibility test problem

yFT,1
i,k , yFT,2

i,k,k′ , y
FT,3
i,k,k′ , y

FT,4
i,k Binary variables for flexibility test problem

Yi,v,c Assignment variable to denote if concentrate c is in operation v at slot i, binary665

variable

Zi,v Assignment variable to denote if operation v is assigned to slot i, binary variable
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