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Impact of Reliability Formulations on the Optimal
Planning and Operation of Power Systems

Seolhee Cho, Javier Tovar-Facio, Ignacio E. Grossmann

Abstract—This study analyzes four expansion planning models
with different reliability formulations, such as a reserve margin
model, a N-k reliability model, and a probabilistic model using the
probability of failures, as well as the reference model without re-
liability. Two reliability criteria, loss of load expectation (LOLE)
and expected energy not served (EENS), are used to evaluate
the power system reliability. A reliability evaluation strategy
is proposed for a valid comparison of the four models with
different objective functions and constraints. The effectiveness of
the four models is verified with two case studies: an illustrative
example and a San Diego County example. The results show
that while the models that rigorously estimate reliability (i.e.,
models using N-k reliability or probabilistic constraint) require
higher investment and operating costs, they can secure higher
reliability than the models using simplified reliability constraints
(i.e., reserve margin).

Index Terms—Power systems, Expansion planning, Reliability,
Probability of failure

I. INTRODUCTION

POWER system reliability assessment involves two key
aspects, security and adequacy. Security refers to the

ability of power systems to maintain stable operation despite
unplanned outages, reflecting their response to disturbances
during operation. Adequacy ensures sufficient generation,
transmission, and distribution capacity to meet load demand
and operational constraints under normal operating condi-
tions [1], [2]. In particular, adequacy can be evaluated using
two approaches: a deterministic approach and a probabilistic
approach. There are two deterministic approaches, such as
reserve margin and N-k reliability, and two probabilistic ap-
proaches, such as Monte Carlo simulation and Analytic method
using probability of failure. The reserve margin method refers
to installing a larger capacity than required by a certain level
to prevent power shortages. This method has been commonly
used in expansion planning models due to its computational
simplicity. On the other hand, N-k reliability expands the
capacity of power systems to withstand k unit failures. While
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N-2, N-3, ..., and N-k reliability methods consider multiple
unit failures, the N-1, which only focuses on one unit failure,
is commonly favored in expansion planning due to its relative
simplicity [3]. Several expansion planning studies of power
systems using the deterministic approach have been reported.
Ochoa-Barragán et al. [4] propose an optimization model
for expansion planning of power generation and transmission
systems, accounting for the degradation and replacement of
energy storage systems. Lara et al. [5] and Li et al. [6]
propose mixed-integer linear programming (MILP) models
and algorithms that optimize long-term investment and hourly
operation decisions. In particular, reserve margin reliability
constraints are applied to both models for reliability. Castelli
et al. [7] propose a two-stage stochastic MILP model that
determines design decisions as first-stage variables and op-
eration strategies as second-stage variables. In particular, the
authors evaluate two cases, with and without N-1 reliability
requirement. Despite multiple studies, one limitation of the
deterministic approach is that it does not properly capture
random failures of generators.

A probabilistic approach is more rigorous and accurate
than the deterministic approach because it explicitly includes
multiple failure scenarios (or states) to predict power system
reliability, and can account for the inherent features of in-
dividual components [8]. Monte Carlo simulation generates
failure scenarios and assesses the reliability using probability
distribution functions associated with the components involved
in each scenario [9]. In contrast, analytical methods evaluate
the reliability through mathematical models, including state
space methods using Markov processes, network reduction
methods, conditional probability methods, and cut-set or tie-
set methods [10], [11]. Many works integrating probabilis-
tic approaches into expansion planning have been reported.
Choi et al. [12] present a new methodology to evaluate the
reliability of power generation systems using Monte Carlo
simulation. Tekiner et al. [13] propose a two-stage stochastic
optimization model for power system expansion planning
that minimizes cost and greenhouse gas emissions by using
Monte Carlo simulation. Lei et al. [14] propose a novel
reliability assessment approach for transmission expansion
planning to efficiently estimate reliability enhancement. By
categorizing contingencies into three scenarios, the approach
reduces computational complexity. Cho et al. [15] develop
a Generalized Disjunctive Programming model for long-term
capacity expansion planning of reliable power generation sys-
tems. In particular, the analytical method using the probability
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of equipment failures and capacity failure states is used to
rigorously estimate the power system reliability. Dehghan
et al. [16] propose a reliability-constrained robust expansion
planning model and a tri-level decomposition algorithm that
addresses uncertainties in electricity demand, wind power
generation, and equipment availability. Jooshaki et al. [17]
present an MILP model for multistage distribution network ex-
pansion planning that effectively incorporates reliability. The
proposed model leverages an efficient reliability evaluation
technique and accounts for radial operation and reliability-
related costs, such as incentive schemes and revenue loss
from undelivered energy. Heylen et al. [18] present a modular
framework for transmission systems operators to evaluate
and compare power system reliability criteria in operational
planning and real-time decision-making. By using a probabilis-
tic approach, the framework demonstrates improvements in
both cost and reliability. While various studies using different
reliability formulations have been performed, to the best of
our knowledge, a comprehensive comparison of the various
reliability methods in capacity expansion planning has not
been conducted. Therefore, the main goal of this paper is to
analyze the impact of each reliability assessment model on the
optimal design and operation of power systems.

II. BACKGROUND: RELIABILITY EVALUATION AND
BACKUP SYSTEM

A. Probabilistic methods for reliability evaluation

Securing reliability is important, but it is also critical to
know how to evaluate it quantitatively. Loss of load expec-
tation (LOLE) and expected energy not served (EENS) are
common reliability evaluation criteria [19]. Both criteria are
evaluated based on the probability of failure (also known
as forced outage rate). While LOLE indicates the expected
number of hours or days that the power demand is not satisfied
[20], EENS stands for the expected power demand that is not
satisfied due to failures of power systems [21]. In particular,
LOLE ≤ 0.1days/year (corresponding to 2.4hours/year) is
the most common reliability target used throughout North
America’s ISOs and RTOs, such as Midcontinent Independent
System Operator (MISO), Electric Reliability Council of Texas
(ERCOT), and California ISO (CAISO) [22]. Moreover, each
ISO and RTO has different costs for the EENS (technically
called in the literature as the value of loss load), such as MISO
(∼ $3.5/kWh-$10.0/kWh) [23], ERCOT (∼ $5.0/kWh) [24],
and CAISO (∼ $12.0-29.5/kWh) [25]. The detailed method
for calculating LOLE and EENS can be found in Appendix A
of Supplementary Materials.

B. The role of backup generators for reliability

The analytic method more accurately predicts the required
capacity to meet the reliability as it enumerates all possible ca-
pacity failure states and estimates the probability of each state
using the probability of failures. Since the number of capacity
failures increases exponentially as the number of generators (or
transmission lines) increases, this approach has been known
to be mathematically challenging. One way to improve power
system reliability in the analytical method is to add backup

generators in parallel, allowing power plants to operate when
failures occur [26]. In this paper, backup generators refer
to reduced-sized generators installed in power plants, which
can be used in emergencies. This approach, adding backup
facilities in parallel, is known as a ‘reliability-based design
optimization (RBDO)’ approach in reliability engineering [27].
However, the RBDO approach has not been actively used in
the expansion planning of power systems. In some previous
studies, it is assumed that backup generators can only be used
when the main generators fail [28]. However, in our previous
work [15], [29], it is allowed for the backup generators to have
a dual role; they can either remain as backups, or else operate
to produce additional electric power. Although the amount of
electricity produced by power plants increases as the main
and backup generators are operated, the power plant in this
operation mode is less likely to constantly satisfy the required
power output because no available generators can be used in
emergencies. Therefore, it is critical to evaluate the impact of
the dual role of parallel generators on the optimal design and
operation of reliable power systems.

III. PROBLEM STATEMENT

This paper aims to evaluate expansion planning models
with different reliability considerations. In particular, this
paper examines three expansion planning models with dif-
ferent reliability constraints: reserve margin, N-k reliability,
and analytical method using the probability of failure. An
expansion planning model without reliability consideration
is also used as a reference. Four optimization models are
developed using Generalized Disjunctive Programming (GDP)
[30]. The objective is to minimize the total cost, including
capital expenditure, operating expenses, and penalties. Rel-
evant inputs, such as demand profile, available capacity for
generators and transmission lines, the probability of failure of
generators and lines, and capital and operating cost parameters,
are given. The following design and operation variables are
to be determined: number/size of generators and transmission
lines, power flow between nodes, and reliability level (LOLE
and EENS values). The following assumptions are made: i)
Unit commitment is not included in the model, ii) a simple
network flow model is used for transmission lines, and iii)
only dispatchable generators are considered.

IV. OPTIMIZATION MODEL

Sets, parameters, and variables defined in this model can be
found in the Nomenclature of the Supplementary Materials.

A. Model 1: Expansion planning model without reliability

The expansion planning model without reliability can be
formulated as follows:

min Φ
∑
t∈T

[(∑
i∈I

∑
k∈KPN

IC i,k,t +
∑
l∈LPN

IC l,t

)
+(∑

i∈I

∑
k∈K

βk,tC
av
i,k,t +

∑
l∈L

βl,tC
av
l,t

)
+

∑
n∈N

∑
b∈B

ηnϱb

(∑
i∈I

∑
k∈K

γk,tPi,k,t,n,b +
∑
l∈L

γl,tFl,t,n,b

)] (1)
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s.t.

 Y in
i,k,t

φk ≤ C in
i,k,t ≤ φk

IC i,k,t = αk,tC
in
i,k,t

 ∨

 ¬Y in
i,k,t

C in
i,k,t = 0

IC i,k,t = 0


∀i ∈ I, k ∈ KPN, t ∈ T

(2)

 Y in
l,t

φl ≤ C in
l,t ≤ φl

IC l,t = αl,tC
in
l,t

 ∨

 ¬Y in
l,t

C in
l,t = 0

IC l,t = 0

 ∀l ∈ LPN, t ∈ T (3)

C av
i,k,t =

{
ωi,k ∀k ∈ KEX∑
tq∈[1,t]

C in
i,k,t ∀k ∈ KPN

}
∀i ∈ I, t ∈ T (4)

C av
l,t =

{
ωl ∀l ∈ LEX∑
tq∈[1,t]

C in
l,t ∀l ∈ LPN

}
∀t ∈ T (5)

θkC
av
i,k,t ≤ Pi,k,t,n,b ≤ θkC

av
i,k,t

∀i ∈ I, k ∈ K, t ∈ T , n ∈ N , b ∈ B
(6)

Pi,k,t,n,b − Pi,k,t,n,b−1 ≤ κUk C
av
i,k,t

∀i ∈ I, k ∈ K, t ∈ T , n ∈ N , b > 1, b ∈ B
(7)

Pi,k,t,n,b−1 − Pi,k,t,n,b ≤ κDk C av
i,k,t

∀i ∈ I, k ∈ K, t ∈ T , n ∈ N , b > 1, b ∈ B
(8)

− C av
l,t ≤ Fl,t,n,b ≤ C av

l,t ∀l ∈ L, t ∈ T , n ∈ N , b ∈ B (9)

∑
k∈K

Pi,k,t,n,b +
∑
l∈Lin

i

Fl,t,n,b ≥ Ψi,t,n,b +
∑

l∈Lout
i

Fl,t,n,b

∀i ∈ I, t ∈ T , n ∈ N , b ∈ B
(10)

Eqn. (1) represents the objective function that includes in-
vestment costs, fixed operating costs, and variable operating
costs. Eqns. (2)-(3) ensure that when a generator k and a
transmission line l are installed in year t, the corresponding
installed capacity and the investment cost are determined.
Eqns. (4)-(5) calculate the capacity of the generator k and
the transmission line l that are available in year t. Eqn. (6)
represents the operation of the dispatchable generator k. Eqns.
(7)-(8) represent the ramp-up and ramp-down constraints of the
dispatchable generator k. The power flow of the transmission
line l is constrained by its capacity, as seen in Eqn. (9), and
the power balance is represented by Eqn. (10).

B. Model 2: Expansion planning model with reserve margin
constraint

The reserve margin is the simplest method of considering
reliability in the expansion planning model. Reserve margin
refers to a capacity that is installed but not used under normal
operation. This capacity is assumed to be used when demand
unexpectedly increases or the operating generators fail. New
continuous variables for operation and reserve capacity of
generators (C op

i,k,t,n,b and C rv
i,k,t,n,b) are introduced. The cor-

responding GDP model is given as follows:

min Φ Eqn. (1)

s.t. Eqn. (2)− (5), (9)− (10)

C av
i,k,t = C op

i,k,t,n,b + C rv
i,k,t,n,b

∀i ∈ I, k ∈ K, t ∈ T , n ∈ N , b ∈ B
(11)

θkC
op
i,k,t,n,b ≤ Pi,k,t,n,b ≤ θkC

op
i,k,t,n,b

∀i ∈ I, k ∈ K, t ∈ T , n ∈ N , b ∈ B
(12)

Pi,k,t,n,b − Pi,k,t,n,b−1 ≤ κUk C
op
i,k,t,n,b

∀i ∈ I, k ∈ K, t ∈ T , n ∈ N , b > 1, b ∈ B
(13)

Pi,k,t,n,b−1 − Pi,k,t,n,b ≤ κDk C op
i,k,t,n,b

∀i ∈ I, k ∈ K, t ∈ T , n ∈ N , b > 1, b ∈ B
(14)

∑
k∈K

C rv
i,k,t,n,b ≥ χΨi,t,n,b ∀i ∈ I, t ∈ T , n ∈ N , b ∈ B (15)

Eqn. (11) determines the available capacity from the operation
capacity and reserve capacity. The electricity generated by the
generator k during subperiod b of the representative day n
in year t is constrained by the operation capacity, as shown
in Eqn. (12). Eqns. (13)-(14) correspond to the ramp-up and
ramp-down constraints, which are constrained by the operation
capacity. Eqn. (15) states that the reserve capacity should be
greater than a certain level (χ) of the load demand.

C. Model 3: Expansion planning model with N-k reliability
constraint

N-k reliability ensures that the power systems have sufficient
capacity to satisfy the load demand even if k number of
components fail. A new set, failure scenario sc ∈ SC, is
introduced. Operation constraints such as nodal power balance
and power flow must be satisfied in every failure scenario
sc. All parameters and variables related to the operation
constraints are updated by adding the set of failure scenarios
sc. The corresponding GDP model is given as follows:

min Φ
∑
t∈T

{(∑
i∈I

∑
k∈KPN

IC i,k,t +
∑
l∈LPN

IC l,t

)
+

∑
n∈N

∑
sc∈SC

ηnεsc

[(∑
i∈I

∑
k∈K

βk,tC
sv
i,k,t,n,sc +

∑
l∈L

βl,tC
sv
l,t,n,sc

)
+

∑
b∈B

ϱb

(∑
i∈I

∑
k∈K

γk,tPi,k,t,n,b,sc +
∑
l∈L

γl,tFl,t,n,b,sc

)]}
(16)

s.t. Eqn. (2)− (5)

C sv
i,k,t,n,sc = ξi,k,t,n,scC

av
i,k,t

∀i ∈ I, k ∈ K, t ∈ T , n ∈ N , sc ∈ SC
(17)

C sv
l,t,n,sc = ξl,t,n,scC

av
l,t ∀l ∈ L, t ∈ T , n ∈ N , sc ∈ SC (18)

θkC
sv
i,k,t,n,sc ≤ Pi,k,t,n,b,sc ≤ θkC

sv
i,k,t,n,sc

∀i ∈ I, k ∈ K, t ∈ T , n ∈ N , b ∈ B, sc ∈ SC
(19)

Pi,k,t,n,b,sc − Pi,k,t,n,b−1,sc ≤ κUk C
sv
i,k,t,n,sc

∀i ∈ I, k ∈ K, t ∈ T , n ∈ N , b > 1, sc ∈ SC
(20)

Pi,k,t,n,b−1,sc − Pi,k,t,n,b,sc ≤ κDk C sv
i,k,t,n,sc

∀i ∈ I, k ∈ K, t ∈ T , n ∈ N , b > 1, sc ∈ SC
(21)
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− C sv
l,t,n,sc ≤ Fl,t,n,b,sc ≤ C sv

l,t,n,sc

∀l ∈ L, t ∈ T , n ∈ N , b ∈ B, sc ∈ SC
(22)

∑
k∈K

Pi,k,t,n,b,sc +
∑
l∈Lin

i

Fl,t,n,b,sc ≥ Ψi,t,n,b +
∑

l∈Lout
i

Fl,t,n,b,sc

∀i ∈ I, t ∈ T , n ∈ N , b ∈ B, sc ∈ SC
(23)

Eqn. (16) represents the modified objective function, including
investment costs, fixed operating costs, and variable operating
costs. The fixed and variable operating costs are calculated
for each failure scenario sc. Eqns. (17)-(18) determine the
available capacity of the generator and the transmission line
at each failure scenario sc (C sv

i,k,t,n,sc and C sv
l,t,n,sc), in which

ξi,k,t,n,sc and ξl,t,n,sc indicate whether or not the generator
k and the transmission line l operate in the failure scenario
sc. It is assumed that the failed generator or transmission line
on a particular day n at a certain failure scenario sc will be
fully repaired within one day. As stated in Eqns. (19)-(21), the
power output from the generator is determined by the capacity
available in each scenario sc. Likewise, the power flow of the
transmission line is also constrained by the capacity available
in each scenario sc (Eqn. (22)). Eqn. (23) requires that the
demand always be satisfied in each failure scenario sc.

D. Model 4: Expansion planning model using the probability
of failure

As explained in Appendix A of Supplementary Materials, all
possible capacity failure states should be enumerated to use the
analytical method and the corresponding probability of failure
states should be estimated using the failure rates. A new set,
capacity failure state st ∈ ST , is introduced. As opposed to
Models 1-3, Model 4 has another investment option, adding
backup generators to the main generator to improve reliability.
It should be noted that the N-k reliability considers the failure
of k unit failures at each failure scenario, and the load demand
should be satisfied in all scenarios (i.e., load shedding is not
allowed). On the other hand, the analytical method using the
probability of failure calculates the optimal capacity based on
the reliability penalty (such as LOLE and EENS penalties),
while considering from a single failure up to all failures, and
allowing for load shedding. The corresponding GDP model is
given as follows:

min Φ
∑
t∈T

{∑
i∈I

∑
k∈KPN

IC i,k,t +
∑
i∈I

∑
k∈K

ICB
i,k,t+∑

l∈LPN

IC l,t +
∑
i∈I

∑
k∈K

βB
k,tC

B
i,k,t+

∑
st∈ST

δst

[∑
i∈I

∑
k∈K

βk,tC
sv
i,k,t,st +

∑
l∈L

βl,tC
sv
l,t,st+∑

n∈N

∑
b∈B

ηnϱb

(∑
i∈I

∑
k∈K

γk,tPi,k,t,n,b,st + γk,tP
B
i,k,t,n,b,st+

∑
l∈L

γl,tFl,t,n,b,st +
∑
i∈I

ψOi,t,n,b,st +
∑
i∈I

σEENSi,t,n,b,st

)]}
(24)

s.t. Eqn. (2)− (5) Y B
i,k,t

φB
k ≤ CBn

i,k,t ≤ φB
k

ICB
i,k,t = αB

k,tC
Bn
k,t

 ∨

 ¬Y B
i,k,t

CBn
i,k,t = 0

ICB
i,k,t = 0


∀i ∈ I, k ∈ KPN, t ∈ T

(25)

CB
i,k,t =

{
ωB
i,k ∀k ∈ KEX∑

tq∈[1,t]

CBn
i,k,t ∀k ∈ KPN

}
∀i ∈ I, t ∈ T

(26)

CB
i,k,t ≤ C av

i,k,t ∀i ∈ I, k ∈ K, t ∈ T (27)

C sv
i,k,t,st = υMi,k,stC

av
i,k,t ∀i ∈ I, k ∈ K, t ∈ T , st ∈ ST (28)

CBsv

i,k,t,st = υBi,k,stC
B
i,k,t ∀i ∈ I, k ∈ K, t ∈ T , st ∈ ST (29)

C sv
l,t,st = υLl,stC

av
l,t ∀l ∈ L, t ∈ T , st ∈ ST (30)

θkC
sv
i,k,t,st ≤ Pi,k,t,n,b,st ≤ θkC

sv
i,k,t,st

∀i ∈ I, k ∈ K, t ∈ T , n ∈ N , b ∈ B, st ∈ ST
(31)

Pi,k,t,n,b,st − Pi,k,t,n,b−1,st ≤ κUk C
sv
i,k,t,st

∀i ∈ I, k ∈ K, t ∈ T , n ∈ N , b > 1, st ∈ ST
(32)

Pi,k,t,n,b−1,st − Pi,k,t,n,b,st ≤ κDk C sv
i,k,t,st

∀i ∈ I, k ∈ K, t ∈ T , n ∈ N , b > 1, st ∈ ST
(33)

θkC
Bsv

i,k,t,st ≤ PB
i,k,t,n,b,st ≤ θkC

Bsv

i,k,t,st

∀i ∈ I, k ∈ K, t ∈ T , n ∈ N , b ∈ B, st ∈ ST
(34)

PB
i,k,t,n,b,st − PB

i,k,t,n,b−1,st ≤ κUk C
Bsv

i,k,t,st

∀i ∈ I, k ∈ K, t ∈ T , n ∈ N , b > 1, st ∈ ST
(35)

PB
i,k,t,n,b−1,st − PB

i,k,t,n,b,st ≤ κDk CBsv

i,k,t,st

∀i ∈ I, k ∈ K, t ∈ T , n ∈ N , b > 1, st ∈ ST
(36)

− C sv
l,t,st ≤ Fl,t,n,b,st ≤ C sv

l,t,st

∀l ∈ L, t ∈ T , n ∈ N , b ∈ B, st ∈ ST
(37)

∑
k∈K

(
Pi,k,t,n,b,st + PB

i,k,t,n,b,st

)
+

∑
l∈Lin

i

Fl,t,n,b,st+

LS i,t,n,b,st = Ψi,t,n,b +
∑

l∈Lout
i

Fl,t,n,b,st + Oi,t,n,b,st

∀i ∈ I, t ∈ T , n ∈ N , b ∈ B, st ∈ ST

(38)


Zi,t,n,b,st

LS i,t,n,b,st ≤ 0
LOLEi,t,n,b,st = 0
EENSi,t,n,b,st = 0

 ∨


¬Zi,t,n,b,st

LS i,t,n,b,st ≥ 0
LOLEi,t,n,b,st = ϱb

EENSi,t,n,b,st = LS i,t,n,b,st


∀i ∈ I, t ∈ T , n ∈ N , b ∈ B, st ∈ ST

(39)∑
i∈I

∑
n∈N

∑
b∈B

∑
st∈ST

ηnδstLOLEi,t,n,b,st ≤ νt ∀t ∈ T (40)

δst =
∏

k∈KO
st

(1− λk)
∏

l∈LO
st

(1− λl)
∏

k∈KF
st

λk
∏

l∈LF
st

λl

∀st ∈ ST
(41)
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Eqn. (24) represents the modified objective function, which
includes investment costs, fixed and variable operating costs,
over-generation penalty, and the EENS penalty. Investment
constraints such as the installation of main generators and
transmission lines are applied using Eqns. (2)-(5). Another
investment constraint related to the installation of backup gen-
erators is shown in Eqns. (25)-(26). It should be noted that as
the backup generators are assumed to be auxiliary generators
for reliability, the capacity of backup generators should be
less or equal than that of the main generators, as shown in
Eqn. (27). The available capacity of the main generator, the
backup generator, and the transmission line at each capacity
failure state st (C sv

i,k,t,st, CBsv

i,k,t,st, and C sv
l,t,st) is estimated

using the parameters indicating whether the generator k and
the transmission line l are active in the failure state st, (i.e.,
υMi,k,st, υ

B
i,k,st and υLl,st), as stated in Eqns. (28)-(30). Eqns.

(31)-(36) constrain the power outputs from the main generator
k and the backup generator parallel to the main generator k.
Eqn. (37) states the power flow of the transmission line l is
constrained by the capacity available at the failure state st. As
mentioned before, the power balance (Eqn. (38)) is modified
as load shedding (LS i,t,n,b,st) is allowed. However, as shown
in Eqn. (39), there will be LOLE and EENS if there is load-
shedding at the capacity failure state st; otherwise, there will
be zero LOLE and EENS. While EENS is penalized in the
objective function as seen in Eqn. (24), LOLE is specified as
a constraint as shown in Eqn. (40), in which νt is a target
LOLE (i.e., 2.4 hours/year). The probability of each failure
state (δst) is calculated as shown in Eqn. (41), where KO

st and
LO
st are the sets of active generator k and transmission line

l at each capacity failure state st. KF
st and LF

st are the sets
of failed generator k and transmission line l at each capacity
failure state st, and λk and λl are the probability of failure of
generator k and transmission line l, respectively.

V. EVALUATION STRATEGY

As the four optimization models (Models 1-4) in section 4
have different objective functions and constraints, the objective
function values cannot be directly compared. Therefore, in
this paper, we propose the following evaluation strategy to
effectively compare the four models. Models 1-3 involve a
two-step procedure, as seen in Figure 1. In the first step,
Models 1-3 determine the optimal design, such as the number
and capacity of generators and transmission lines, and the
optimal operation solutions, such as power production from
each generator and power flow of transmission lines, without
considering over-generation, LOLE, and EENS. After obtain-
ing the optimal design results, in the second step, investment
variables in Model 4 are fixed to the optimal design results in
Models 1-3. The capacity failure states from one facility failure
up to all facility failures are enumerated for the fixed design
results, and the probability of each failure state is calculated
using the probability of failure of the selected generators
and transmission lines. By running Model 4 with the fixed
design variables from Models 1-3, LOLE and EENS for the
fixed design variables are calculated. The impact of different
formulations on the reliability of power systems can then be
evaluated by comparing the LOLE and EENS of each model.

TABLE I
METHOD GENERATION

Label Model used Feature

M1 Model 1 No reliability
M2 Model 2 Reserve margin (i.e., 25%)
M3-a Model 3 One generator failure scenarios (N-1)
M3-b Two generators failure scenarios (N-2)
M4-a Model 4 Dual role of backup generators is not allowed
M4-b Dual role of backup generators is allowed

VI. CASE STUDIES

Pyomo.GDP is used as the optimization modeling software
[31], and Gurobi is selected as the MILP solver [32]. All
cases are implemented on a Linux server running Ubuntu with
1TB of RAM and 4 Intel(R) Xeon(R) Gold 6234 CPUs (3.30
GHz) with 8 cores each. Python 3.10.12, Pyomo 6.6.2, and
Gurobi 10.0.2 are used; the Big-M reformulation is chosen to
reformulate the GDP model into the MILP model [33]. This
work proposes six methods using the four models, as seen in
Table I. M1 uses Model 1 without reliability consideration.
M2 uses Model 2 with the reserve margin constraint; in
particular, the reserve margin rate is assumed to be 25%. M3-
a and M3-b use Model 3, but M3-a only considers single
generator failure scenarios (i.e., N-1), whereas M3-b considers
two generator failure scenarios (i.e., N-2). M4-a and M4-b
employ the analytical method using the probability of failure
and can add backup generators for reliability. However, M4-
a assumes that the added backup generator can only be used
when the main generator fails (i.e., the dual role of backups
is not allowed). In contrast, M4-b assumes the backup can
be used with the main generator to increase power production
(i.e., the dual role of backups is allowed).

A. Case 1: Illustrative example

As shown in Figure B.1 in Supplementary Materials, the
illustrative example has three nodes, each with one natural gas
combined cycle (NGCC) power plant. The proposed example
is a 3-year planning problem with four representative days
(i.e., average demand day from each season) and 24 operating
hours. While Nodes 1 and 2 are assumed to be supply and
demand nodes (marked in orange), Node 3 is assumed to
be a supply-only node (marked in green). The NGCC and
transmission lines (i.e., the lines that connect the nodes) can
be installed and expanded during the planning horizon to meet
the demand. All technical and economic data used for this case
study can be found in Table B.1 of Supplementary Materials.

37 N-1 and 37 N-2 failure scenarios are generated for M3-a
and M3-b, respectively. A normal operation scenario where all
three generators are available is included in both N-1 and N-2
failure scenarios. For N-1 method, 36 scenarios are generated,
assuming one generator fails on a representative day in the
planning year. Likewise, 36 two generator failure scenarios
are generated for N-2 method. The failures of transmission
lines are not considered when generating failure scenarios.
Similarly, 8 capacity failure states are generated for M4-
a and M4-b from all available to all failures. The failure
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Fig. 1. Reliability evaluation strategy (two-step scheme for Models 1-3, and one-step for Model 4)
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Fig. 2. The optimal configuration and a snapshot operation result during the peak demand hour on the last representative day in the last year of Case 1

of transmission lines is not considered either, but the load
shedding is allowed.

1) Optimal design, operation, and reliability results: Figure
2 depicts the optimal configuration of the generators and lines
in the last year, and a snapshot operation result during the peak
demand hour. M1 and M2 install two generators in Nodes 1
and 2. Transmission lines are not installed, and Node 3 is not
used. Contrary to M1 and M2, the results of M3-a and M3-
b show that generators are distributed throughout all nodes
rather than centralizing two nodes to avoid the entire failure
of the power systems. Three transmission lines are added to
connect all nodes. As M3-b considers more extreme failure
situations, such as a simultaneous failure of two generators,
the generation capacity of M3-b is 2 times larger than that
of M3-a (i.e., M3-a: 1,833MW; M3-b: 3,669MW). M4-a has
the same main generator capacity as M1; however, in M4-
a, backup generators are added to the main generators rather
than expanding the capacity of the main generators to avoid the
failure of the power systems. On the other hand, the generation
capacity of M4-b is smaller than M4-a due to the dual role of
backup generators, but the transmission capacity is larger than
M4-a. Due to the flexible role of backup generators in M4-
b, more transmission lines are required to transmit electricity

between nodes.

Figure 3 depicts the average EENS and LOLE values for
all six methods. As explained earlier, the LOLE and EENS of
four methods (from M1 to M3-b) are calculated after fixing
design variables in Model 4 with the optimal design results
obtained from the original Models 1-3. First, it is observed
that M1 has the highest LOLE (1,340 hours/year), whereas
M4-a has the lowest LOLE (0.5 hours/year). In M1 and
M2, it is difficult to respond flexibly to the generator failure
due to a lack of generation and transmission capacity. As a
result, both methods have very large LOLE and EENS values
(LOLE: 1,226 ∼ 1,340hours/year; EENS: 394,010MWh/year),
meaning that 7% of the annual load demand cannot be fulfilled
for approximately 51 to 56 days due to the generator failure.
As shown in the results of M3-a and M3-b, both LOLE
and EENS are significantly improved when more advanced
reliability models are used. However, the target LOLE value
is still not satisfied because only limited failure scenarios
(one generator or two generator failures) are considered. M4-
a does not consider the dual role of the backup generators; it
means the backup generators can only be used when the main
generators fail. Because of this limited role, M4-a requires
more backup generators than M4-b (i.e., M4-a: 1,224MW; M4-
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Fig. 3. LOLE and EENS values of all methods in Case 1

b: 958MW), resulting in the highest reliability of M4-a. On
the other hand, in M4-b, over-installation of backup generators
is prevented as backup generators can be used along with
the main generators; however, this results in a small decrease
in reliability. It should be mentioned that even if the use of
backup generators decreases reliability, the target LOLE can
still be achieved.

2) Cost and computational results: Table II shows the cost
summary of all six methods, including capital expenditure
(CAPEX), operating expenses (OPEX), and penalties. The de-
tailed cost results are in Table C.1 in Supplementary Materials.
As explained earlier, the over-generation and EENS penalties
of the four methods (from M1 to M3-a) are calculated after fix-
ing design variables in Model 4 with the optimal design results
obtained from the original Models 1-3. While M1 requires
the least CAPEX and OPEX ($436.4M), M3-b requires the
highest CAPEX and OPEX ($780.5M). Among the methods
using the probabilistic approach (from M3-a to M4-b), M3-a
has the least CAPEX and OPEX ($537.6M), whereas M3-b
has the highest CAPEX and OPEX. As previously analyzed,
since M1 and M2 do not significantly reflect reliability in the
design and operation stages, they require less CAPEX and
OPEX due to their smaller system capacity. However, this
means that in the event of a generator failure, it cannot be
effectively managed, resulting in a very large EENS penalty.
M3-a and M3-b have higher CAPEX and OPEX due to their
increased capacity than M1 and M2. However, this increases
reliability, significantly reducing the EENS penalty (M1 and
M2: $10,638M; M3-a: $692M; M3-b: $46M). M3-b, which
considers scenarios involving the failure of two generators,
has a lower EENS penalty than M3-a, which only considers
the failure of one generator. Interestingly, M4-a and M4-
b exhibit much lower EENS penalties despite having less
generation and transmission capacity than M3-b. This result
shows that increasing capacity and the deployment of the
expanded capacity, the use of backup generators, and operation
strategies can lead to reliability improvements. The total cost
results confirm that the expansion planning model using the
probability of failure, which also allows backup generators to
have dual roles (i.e., M4-b), can simultaneously improve the
system’s cost and reliability.

Table C.2 in Supplementary Materials shows the compu-

TABLE II
COST SUMMARY OF CASE 1

M1 M2 M3-a M3-b M4-a M4-b

CAPEX (M$) 122 148 203 396 269 213
OPEX (M$) 314 321 335 384 315 337
PEN (M$) 10,638 10,638 692 46 0 3
Total cost (M$) 11,075 11,107 1,227 941 584 554

tational results of Case 1. Due to the LOLE and EENS
constraints and capacity state enumeration, M4-a and M4-
b have more binary variables (i.e., # binary variables of
M1 to M3-b: 36; # binary variables of M4-a and M4-b:
13,878). While M1 to M3-b could find the optimal solution
at the root node, M4-a and M4-b require more branching to
find the optimal solution, which increases the computational
time. In particular, when considering the dual role of backup
generators, a longer computational time is needed compared
to the other methods.

B. Case 2: San Diego County example

Figure B.2 in Supplementary Materials represents the status
of existing and potential generators and transmission lines
in San Diego County [34], [35]. This example is a 10-year
planning problem with 2-year intervals. Four representative
days are selected, and 24 operating hours with a 2-hour interval
(a total of 12 operation periods) are used. As seen in Figure
B.2, there are four nodes and five lines. Nodes 1 and 4
have existing power plants with different types and capacities.
Potential power plants could be installed in all nodes, and
parallel backup generators can be added to these potential
power plants. Nodes 1 and 4 are already connected through
an existing line (solid line), and potential lines can be added
to connect the other nodes (dotted lines). The assumptions
used in this case study are as follows: i) New NGCC can
be installed in all nodes during the planning horizon to meet
the demand; ii) backup generator can be added to potential
power plants when they are installed; iii) existing power plants
cannot expand its capacity or be retired; iv) only potential
power plants are considered when generating failure scenarios
(for M3-a and M3-b), and capacity failure states (for M4-a
and M4-b); v) the distance between nodes is estimated by
measuring the distance between centers of each node. San
Diego County is actually interconnected to other counties in
California as a part of California ISO; therefore, in actual
emergencies, other areas can function as backups. However,
in this case study, we do not consider these interconnections.
81 N-1 operating scenarios and 121 N-2 operating scenarios
are generated for M3-a and M3-b, respectively. The method
of generating scenarios is the same as in Case 1. Technical
and economic data for this case can be found in Table B.2 of
Supplementary Materials.

1) Optimal design and reliability results: Figure 4 shows
the optimal configurations of the generators and transmission
lines in the last year of the planning horizon for the six
methods. It is observed that M3-b and M4-a have the largest
generation capacity (i.e., 4,692MW), whereas M1 has the
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Fig. 4. The optimal configuration in the last year of the planning horizon of Case 2

smallest generation capacity (i.e., 3,370MW). Likewise, M3-b
has the largest transmission capacity (i.e., 1,487MW), whereas
M1, M2, and M4-a have the smallest transmission capacity
(i.e., 300MW). As seen in Figure 4, M1 and M2 install two
power plants in Nodes 1 and 4 and expand their capacity to
satisfy the local electricity demand. Transmission lines are not
installed, and Nodes 2 and 3 are not used. The total generation
capacity of M2 is 16% larger than that of M1 due to the reserve
margin rate (i.e., M1: 3,370MW; M2: 3,897MW). Contrary to
M1 and M2, M3-a and M3-b have a distributed configuration;
power plants are distributed throughout all nodes rather than
centralizing two nodes to avoid the entire failure of the power
systems. The difference between M3-a and M3-b is that M3-
b has one more transmission line to connect Nodes 1 and 3.
As M3-b considers more extreme failure situations, such as a
simultaneous failure of two generators, the generation capacity
of M3-b is 1.2 times larger than that of M3-a (i.e., M3-a:
3,811MW; M3-b: 4,692MW). The transmission capacity of
M3-b is also 1.4 times larger than that of M3-a to satisfy
the demand even if two generators fail (i.e., M3-a: 1,049MW;
M3-b: 1,487MW). It is interesting to note that M3-b and M4-
a have the same generation capacity, including both the main
and backup generators (i.e., 4,692MW); however, in M4-a,
backup generators are added to the main power plants rather
than installing new main power plants and connecting other
nodes through transmission lines. This indicates that when
the dual role of backup generators is not allowed, installing
additional parallel generators in the same nodes is a more
reliable operation strategy than transmitting electricity from
other nodes. On the other hand, the generation capacity of
M4-b is smaller than M4-a due to the dual role of backup
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Fig. 5. LOLE and EENS values of all methods in Case 2

generators. When backup generators perform a dual role,
they can produce power alongside the main power plants,
reducing the need for over-designed power generation systems.
Therefore, M4-b has smaller capacity of both main and backup
generators than M4-a (i.e., main - M4-a: 3,511MW; M4-
b: 2,938MW, backup - M4-a: 1,181MW; M4-b: 890MW).
However, due to the flexible role of backup generators in M4-
b, more transmission lines are needed to transmit electricity
between nodes, resulting in a larger transmission capacity
in M4-b (i.e., transmission lines - M4-a: 300MW; M4-b:
794MW).

Figure 5 depicts the average EENS and LOLE values for
all six methods. As explained earlier, the LOLE and EENS
of four methods (from M1 to M3-b) are calculated after
fixing design variables in Model 4 with the optimal design
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results obtained from the original Models 1-3. Similar to the
results of Case 1, it is observed that M1 has the highest
LOLE (678.3 hours/year), whereas M4-a has the lowest LOLE
(1.6 hours/year). When reliability is not considered (i.e., M1),
responding flexibly to generator failures is challenging due
to insufficient generation and transmission capacity. Conse-
quently, it exhibits high LOLE and EENS values (LOLE:
678.3 hours/year; EENS: 128,910 MWh/year). This indicates
that approximately 0.86% of the annual load demand remains
unmet for about 28.3 days due to generator failures. As shown
in the results of M2, using the reserve margins model improves
LOLE and EENS compared to M1, although it fails to meet
the target LOLE values. As shown in the results of M3-a
and M3-b, both LOLE and EENS are significantly improved
when using more advanced reliability models. However, the
target LOLE value is still not satisfied because only limited
failure scenarios (one generator or two generator failures) are
considered. Since the backup generators can only be used in
emergencies, M4-a has the highest reliability (correspondingly
to the lowest EENS and LOLE) compared to other models. On
the other hand, as shown in the results of M4-b, simultaneous
use of backup generators reduces reliability as it reduces
flexibility to respond to emergencies. It should be mentioned
that even if the use of backup generators decreases reliability,
the target LOLE can still be achieved.

2) Cost and computational results: Table III shows the cost
summary of all six methods, including capital expenditure
(CAPEX), operating expenses (OPEX), and penalties. The de-
tailed cost results are in Table C.3 in Supplementary Materials.
As explained earlier, the over-generation and EENS penalties
from M1 to M3-b are calculated after fixing design variables
in Model 4 with the optimal design results obtained from the
original Models 1-3. While M1 requires the least CAPEX
and OPEX ($1,471M), M3-b requires the highest CAPEX and
OPEX ($2,189M). Among the methods using the probabilistic
approach (from M3-a to M4-b), M3-a has the least CAPEX
and OPEX ($1,758M), whereas M3-b has the highest CAPEX
and OPEX. As previously analyzed, M1 does not account for
reliability during the capacity planning and operation stages,
leading to lower CAPEX and OPEX. However, this also means
that in the event of a generator failure, the power demand
cannot be constantly supplied, resulting in a significantly
large EENS penalty (approximately 5 times the CAPEX and
OPEX). M3-a and M3-b have higher CAPEX and OPEX due
to their increased capacity than M1 and M2. However, this
increases reliability, significantly reducing the EENS penalty
(M1: $5,777M; M2: $5,317M; M3-a: $301M; M3-b: $29M).
M3-b, which considers scenarios involving the failure of two
generators, has a lower EENS penalty than M3-a, which only
considers the failure of one generator. This indicates that
M3-b has higher flexibility in handling failures than M3-
a. Interestingly, M4-a and M4-b exhibit much lower EENS
penalties than M3-b. This result shows that not only increasing
capacity but also the deployment of the expanded capacity, the
use of backup generators, and effective operation strategies
can lead to reliability improvements. As seen in Table D.1,
the results of the total cost, including CAPEX, OPEX, and
penalties, confirm that the expansion planning model using the

TABLE III
COST SUMMARY OF CASE 2

M1 M2 M3-a M3-b M4-a M4-b

CAPEX (M$) 446 628 678 1,025 973 716
OPEX (M$) 1,025 1,082 1,080 1,164 1,029 1,085
PEN (M$) 5,778 3,608 301 29 2 11
Total cost (M$) 7,247 5,317 2,059 2,218 2,004 1,812

probability of failure, which also allows backup generators to
have dual roles (i.e., M4-b), can simultaneously improve the
system’s cost and reliability.

Table C.4 in Supplementary Materials shows the computa-
tional results of all methods for Case 2. Due to the LOLE
and EENS constraints and capacity state enumeration, M4-
a and M4-b have a larger number of binary variables than
other methods, which increases the computational time (i.e.,
# binary variables of M1 to M3-b: 80; # binary variables of
M4-a and M4-b: 30,840). Using Model 4 allows for more
accurate and robust reliability analysis, but it has the drawback
of requiring longer computational times. To apply this method
to larger examples, it will be necessary to develop effective
decomposition methods in the future.

VII. CONCLUSIONS

This paper has compared the impact of different reliability
formulations on the optimal planning and operation of power
systems. In particular, four expansion planning models with
different reliability constraints are analyzed: i) a model without
reliability, ii) a model with reserve margin constraint, iii) a
model with N-k reliability constraint, and iv) a model with
a probabilistic constraint using the probability of failures.
Two reliability criteria, loss of load expectation (LOLE) and
expected energy not served (EENS), are used to evaluate the
reliability of the optimal solution of all proposed models. A
reliability evaluation strategy is proposed to enable a valid
comparison among four models with different objective func-
tions and constraints. The four proposed models have been
applied to two case studies, the illustrative and the San Diego
County cases. Major findings of this paper are as follows:

• The reserve margin reliability model tends to install
generators in each area to satisfy the local demand. On the
other hand, N-1 and N-2 reliability models tend to select
decentralized power generation facilities throughout all
available areas and add transmission lines rather than
installing generators in certain areas to avoid the entire
failure of power systems. Probabilistic methods that allow
adding backup generators tend to select designs that
ensure sufficient backup facilities to enhance reliability.

• When reliability is not considered or a simplified re-
liability model is used, such as reserve margin, lower
CAPEX and OPEX are required due to their smaller sys-
tem capacity. However, these methods cannot effectively
manage generator failures, resulting in high reliability-
related penalties. Advanced reliability models, such as
probabilistic methods, require larger CAPEX and OPEX
because they expand the capacity considering reliability.
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However, such a proactive design plan allows the power
systems to promptly react to failures, resulting in low
reliability-related penalties.

• While N-k reliability or probabilistic models that rigor-
ously estimate reliability are computationally challenging,
they can secure higher reliability than the models that use
simplified reliability constraints (i.e., reserve margin).

• The reliability of the power system is influenced not only
by the expansion of generation capacity, but also by the
deployment of the expanded transmission capacity, the
use of backup generators, and the operation strategies.
Therefore, a decision-making tool must be developed that
considers all these aspects simultaneously.

• The performances of the four proposed expansion plan-
ning models vary depending on the characteristics of ex-
amples being solved, such as the dataset and assumptions.
Therefore, it is important to choose a proper reliability
formulation for a valid capacity expansion planning.

Although probabilistic methods can provide more reliable
design and operation results than other methods, they require
longer computational time. In future work, effective decom-
position methods that can efficiently solve the probabilistic
models must be developed to solve these large-scale problems.
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