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ABSTRACT 

We have developed a sequential set of computational screens that may prove useful for 

evaluating analyte sets for their ability to accurately report on metabolic fluxes.  The 

methodology is problem-centric in that the screens are used in the context of a particular 

metabolic engineering problem.  That is, flux bounds and alternative flux routings are first 

identified for a particular problem, and then the information is used to inform the design of NMR 

experiments.  After obtaining the flux bounds via MILP, analytes are first screened for whether 

the predicted NMR spectra associated with various analytes can differentiate between different 

extreme point (or linear combinations of extreme point) flux solutions.  The second screen 

entails determining whether the analytes provide unique flux values or multiple flux solutions. 

Finally, the economics associated with using different analytes is considered in order to further 

refine the analyte selection process in terms of an overall utility index, where the index 

summarizes the cost-benefit attributes by quantifying benefit (contrast power) per cost (e.g. 

NMR instrument time required).  We also demonstrate the use of an alternative strategy, the 

Analytical Hierarchy Process, for ranking analytes based on the individual experimentalist’s-

generated weights assigned for the relative value of flux scenario contrast, unique inversion of 

NMR data to fluxes, etc. 
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INTRODUCTION 
13C nuclear magnetic resonance (NMR) is amongst the tools employed in metabolic engineering 

for metabolic flux identification.  Such a method is employed because extracellular 

measurements such as glucose uptake are insufficient to fully determine all the metabolic 

reaction rates.  To obtain flux information, the NMR-determined labeling pattern of specific 

metabolites derived from a labeled precursor (e.g. 1-13C glucose) in conjunction with the 

extracellular measurements are “inverted” in order to uncover the intracellular reaction rates. 

 

A related, but more focused application is using spectroscopic data for scenario discrimination.  

Here, mathematical analysis has led to a particular mutation strategy that will achieve a desirable 

flux distribution. For example, linear programming has indicated that attenuating the activity of 

pyruvate kinase will diminish acetate formation from glucose (Phalakornkule et al, 2000; Lee et 

al, 2000). However, two different flux distributions can reconcile the mutational block and acid-

reduction outcome.  The NMR spectra associated with different analytes that can help to 

discriminate between fluxes in subnetworks can be predicted. The extent to which the observed 

and predicted spectra concur will then either validate or refute the hypothesis that a particular 

flux distribution is actually used by the cells. 

 

Several problems can arise that confound the use of NMR data for flux identification. When 

inverting NMR data to fluxes using isotopomer mapping matrices (Schmidt et al, 1997 a, b), a 

non-linear optimization problem can result that is highly non-convex due to the bi-linear and tri-

linear terms present in the isotopomer balance equations. Consequently, local versus global 

solutions can be found, especially when conventional gradient-based optimizers are used.  In an 

attempt to overcome the problem of local solutions, we have recently described the use of a two-

step strategy (Ghosh et al, 2004). First, a Mixed Integer Linear Programming (MILP) 

formulation is used to provide lower and upper bounds on individual fluxes for the NMR data-to-

fluxes problem. Apart from their utility for analyzing NMR data, MILP solutions are useful to 

obtain because they provide the flux bounds for the trafficking alternatives that equally fulfill an 

objective or a set of extracellular measurements. Thus, such solutions not only indicate 

potentially different targets for metabolic engineering, the tightened flux bounds enable the 

inverse problem for spectra-to-fluxes to be solved by using a deterministic nonlinear global 
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optimization algorithm of the branch-and-bound type (BARON, Sahinidis et al, 2002, Ghosh et 

al, 2004). 

 

Another related problem is that more than one flux distribution might lead to an analyte 

exhibiting a similar NMR spectrum; hence, the data-to-fluxes problem could, in turn, generate 

alternative solutions that are not strictly local solutions. Intuitively, one would expect that as 

more data is accumulated and used (e.g. spectra from more analytes) the less likely that alternate 

solutions would arise.  Overall, when a hydrolyzed protein or cell extract sample is used, a finite 

set of metabolites or amino acids are available that can provide unique flux solutions, and it is 

desirable to identify those analytes in advance. 

 

In an attempt to address the above problems, we have developed a sequential set of 

computational screens that may prove useful for evaluating analyte sets for their ability to 

accurately report on metabolic fluxes.  The methodology is problem-centric in that the screens 

are used in the context of a particular metabolic engineering problem.  That is, flux bounds and 

alternative flux routings are first identified using METABOLOGICA (Zhu et al, 2003) for a 

particular problem, and then the information is used to inform the design of NMR experiments. 

 

The general outline of the screens is as follows.  After obtaining the flux bounds via MILP, 

analytes are first screened for whether the predicted NMR spectra associated with various 

analytes can differentiate between different extreme point (or linear combinations of extreme 

point) flux solutions.  The second screen entails determining whether the analytes provide unique 

flux values or multiple flux solutions. The screening method employed is mathematically 

different than MILP, but the outcome is similar. Our MILP formulation enumerates all feasible 

extreme point flux solutions that meet constraints and an objective (Phalakornkule et al, 2001). 

The computation performed for analyte selection similarly enumerates all flux distributions that 

can yield within a tolerance a particular NMR spectrum from a metabolite (or a set of 

metabolites).  Finally, the economics associated with using different analytes is considered in 

order to further refine the analyte selection process. 

 

In this paper, a “test” metabolic network will be first described that will enable the illustration of 

how flux scenarios are enumerated, and how NMR calculations are performed. The 
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aforementioned screens will then be illustrated in the context of the “test” network where the 

attributes of different analyte sets are calculated. The computational screening strategies will also 

be applied to the more practical case of a larger E. coli network where pyruvate kinase activity 

has been deleted to inhibit acetate by-product formation.  Economics will be addressed in two 

ways.  For the “test” problem, the intensity of analyte sample preparation will be qualitatively 

weighed against NMR attributes.  For the larger problem, abundance data will be used to in 

conjunction with screening results to infer how much NMR resource time and cost would be 

needed to acquire a usable spectrum. Finally, to illustrate an alternate means of using the 

quantitative results from the screens, the Analytic Hierarchy Process (AHP; Saaty 2000) is 

applied to the larger problem in order to rank order potential NMR analytes.   
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ABSTRACTED TEST NETWORK: FLUX BOUNDS, NMR CALCULATIONS, & 

SCREENS 

The “test” network is shown in Figure 1a, where r represents a net flux (e.g. mmol/g cell h). The 

model is based on the abstracted representation of central metabolism described by Forbes et al. 

(2001). We assume, as posed by the originators, that the extracellular fluxes r1, r2, and r9 are 

known (i.e. directly measured).  The values are {r1, r2, r9} = {1, 0.3, 0.4}. 

Determination of Flux Bounds 

To find the flux bounds, the network in Figure 1a can be formulated as a linear programming 

problem given by Equation (1) by considering the flux balances around each node in the 

network, and the three additional constraints imposed by measurements of extracellular fluxes.  

As noted earlier, such bounds greatly enable the operation of global optimization methods such 

as BARON when used to invert NMR data to fluxes.  A dummy objective of Z = 0 is provided so 

that any feasible solution to the linear program is accepted. 

 
Min  Z = 0     (1a) 

Subject to 

r1 + r2  =  r3 + r4    (1b) 

r4 + r7 = r5      (1c) 

r5 = r7 + r6                           (1d) 

r6 + r8 = r5      (1e) 

r9 = r8 + r10     (1f) 

r1 = 1      (1g) 

r2 = 0.3     (1h) 

r9 = 0.4     (1i) 

rj ≥ 0       for all j = 1,2, …, 10        (1j) 

 
One characteristic of metabolic networks is that multiple feasible flux scenarios can arise. 

Multiplicity arises when the number of experimental observations is less than the number of 

unknowns. Another source is redundancy, which can manifest when, for example, multiple 

reactions can contribute to providing a set amount of ATP or NADPH. In order to resolve the 

existence of multiple flux distributions, a recursive MILP algorithm (Phalakornkule et al., 2001) 

or a Depth-First-Search (DFS) method (Zhu et al., 2003) can be employed, and either method 
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yields the same four flux distributions shown in Table 1. These distributions correspond to the 

extreme points of the feasible region for the metabolic flux solutions. 

 

NMR Data-to-Fluxes Calculation Method 

The actual fluxes within the “test” network can be a linear combination of the four solutions 

shown in Table 1.  To determine the actual intracellular flux values, a 13C-labeled precursor is 

added to label the metabolites within the network. The relative abundance of the 2n isotopomers 

for a n-carbon analyte reflects which reaction paths and the relative rates that yielded the 

isotopomers from the labeled precursor.  

 

To briefly describe the NMR experimentation and calculations in this context, we assume that 1-
13C G is fed to the system, where G denotes a carbon source such as glucose. A sample of 

labeled intracellular metabolites is then analyzed after attaining isotopic steady state. By 

integrating the group of NMR peaks, the Isotopomer Distribution Vectors (IDV) of various 

metabolites such as A, E, C, etc. can be obtained (Schmidt et al, 1997a,b). 

 
Obtaining the fluxes from the IDV data is achieved by solving the Inverse Problem, which is 

stated in Equation 2. The objective function chosen (Z; Eqn. 2a) is the Euclidean norm for the 

error (i.e., a least-squares criterion). The constraints are comprised primarily of the Isotopomer 

Mapping Matrix (IMM) equations constructed for each intracellular metabolite. There are 10 net 

fluxes, [r1, r2, …, r10] in the system, and as noted earlier, the reaction O ↔ E is reversible. 

Equations (2b-2f) are the isotopomer balances. Also, each of the net fluxes is a convex 

combination of the four MILP/DFS solutions as required by Equations (2g)-(2i).  

 

To account for the reversible reaction (O ↔ E), an exchange coefficient variable, ε8 = (v11/v8), 

could be introduced. As an alternative, the reaction rates are split into 10 forward fluxes and one 

backward flux, [v1, v2, …,v11], and ε8 is later extracted from the calculations. By adopting this 

formulation, further bi-linearity can be prevented from being introduced into the problem. In 

order to account for the fact that 0 ≤ ε8  ≤ 1, the inequality constraint, Equation (2j), is provided. 

This constraint is based on noting that ε8 = (v11/v8), and v8 ≥ v11 follows from r8 ≥ 0 (Eqn. 1a) and 

r8 = v8 – v11.  Finally, Equations (2k) and (2l) provide the appropriate bounds to the flux 

variables to aid the branch-and-reduce algorithm for global optimization. 
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Analyte Screen 1: How Do Analyte Spectra Contrast Over Entire Feasible Flux Space? 

First, available precursor labeling and analyte options need to be considered. For the “test” 

problem, the only possible labeling scenario for G in Figure 1(a, b) is a 1-13C label, because a 

label in any other position would be immediately lost in the two products of reaction r4.  An 

inspection of the network suggests that the analyte candidates are A, C, O, E, and P.  Note that E 

and P would have equivalent NMR spectra because they are the same molecule, but only differ 

in intracellular versus extracellular localization. 

 

One indication of how well the analytes would perform over the entire flux space would be to 

establish how well they can distinguish between the four extreme point solutions obtained from 

the MILP formulation (Table 1). We will henceforth refer to the ability to distinguish between 

flux distributions as “contrast power.” To determine contrast power, the IDVs from the four 

alternatives are first determined.  One is chosen as a reference, and the spectrum associated with 

the reference is determined.  Then, the angular differences between the spectra determined from 

the other three IDVs with the spectrum reference are computed. The average angular difference 

(in radians) between the different extreme point flux scenarios with the exchange coefficients set 

at 0.5 are compared in Figure 2.  C provides the best contrast power over the entire flux space, 

while E is offers the worst.  Note that an angle difference is not presented for A.   A possesses 
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only one atom; hence, the angle difference between the vectorized spectra of A will always be 

zero.   Such an analyte omission will generally not arise in less abstracted problems because one 

carbon analytes are not prevalent (CO2 is the major one carbon species) and the lack of line 

splitting structure for small carbon compounds limits the information they provide.  

 

The discrepancy in the analytes’ contrast power can be understood by examining Table 1. Note 

that r8 is the flux connecting E to the rest of the network (Fig. 1a), and r8 = 0 in both Solutions II 

and III of the MILP (Table 1). This zero flux detaches the sub-network of Q, E, and P from the 

main metabolic network; hence, the 13C label will never be able to make it to E. Additionally, E 

is infused with unlabeled carbon from Q via r9.  E will thus tend to be not highly enriched with 
13C, which reduces the magnitude of its average difference.  

 

Analyte Screen 2: Do Analytes Invert Differently to Fluxes? 

The second screen entails determining if the labeling information possessed by an analyte reverts 

to a unique flux distribution.  Failure to revert to the correct flux distribution would indicate that 

other analytes need to be included in the set, or some analytes should be omitted based on the 

allowable flux distribution(s) and available precursor labelings.  The varying ability to revert to 

the correct flux distribution will henceforth be referred to as “resolving power.” 

 

For the “test” network and a particular problem, variable resolving power can be demonstrated 

by first assuming that a mutational strategy is hypothesized to lead to a particular flux 

distribution Ř. An example of a “hypothesized” flux distribution is shown in Table 2; it is a 

convex combination of the four extreme point solutions shown in Table 1. The experimental 

design task thus entails selecting one or more analytes that can provide information that confirms 

or refutes the hypothesis that Ř is indeed the flux distribution operating within the cell.   

 

The hypothesized flux distribution was used to generate each analyte’s IDV, and each analyte or 

set was subjected to the Inverse Problem (Eqn. 2). Table 2 shows the fluxes identified when each 

analyte or a combination of them was used. These results indicate that A and E (or even E by 

itself) can generate an accurate flux map, which also is in agreement with Forbes et al (2001).  

Thus, E is a very good choice for an NMR analyte. In contrast, the flux solution provided from C 

is vastly different from the hypothesized solution, which indicates that C has low resolving 
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power. The existence of such a solution suggests that an NMR experiment based on analyzing C 

may not help to confirm or refute the hypothesis because the spectrum of C is consistent with Ř 

or another much different flux solution.  The “uneven” performance of analytes indicates the 

need for a more structured framework that can better screen the metabolites so that accurate flux 

information is obtained.  A more structured version of a screen for resolving power is described 

next. 

 

From the results of Table 2, analyte C can be perceived to provide a “local” solution to the 

inverse problem. An operational way of viewing this is that there might exist more than one flux 

distribution (or “clone”), which would all give the same IDV of C (within the limits of the 

prescribed tolerance).  Detecting and enumerating such clones potentially provides a means for 

ascertaining how “tight” the correspondence is between an analyte’s spectrum and the flux 

distribution.  

 
This problem can be considered further with the aid of Figure 3. The function y = f(x) has a 

distinct local minimum at P. Q is the global minimum here, but the dotted rectangular regions 

around both Q and R would qualify as  global minima within the tolerance shown in Figure 3. 

This is akin to saying that all these clonal abscissas would define flux distributions that would 

give the same IDV or NMR spectra, as defined by the value of y = y0 ± δ.  Thus, to probe for 

clonal solutions, we modified the global optimization procedure (BARON, Sahinidis et al, 2002) 

so that instead of determining the global optima, a set of solutions is obtained that differ from the 

global solution within a small tolerance.  

 

Traditionally, BARON implements a deterministic global optimization procedure that relies on a 

spatial branch-and-bound method that is applied to structured problems that involve non-convex 

functions such as bi-linear, tri-linear, and concave terms. The basic idea of the method consists 

of successively partitioning the solution space using a tree enumeration search, where the lower 

and upper bounds of the continuous variables define the space. At each node of this tree, a lower 

bound on the global optimum of the objective function is computed using valid underestimators 

of the non-convex functions. An upper bound to the global optimum is computed by solving the 

original non-linear problem from a starting point that lies in the current partition. Nodes whose 

lower bound lies below the upper bound are further partitioned, while nodes whose lower bound 
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exceeds the upper bound are fathomed. The search terminates when the lower and upper bounds 

of the objective function lie within a small tolerance. The effectiveness of this global 

optimization search relies largely on the quality of the lower bound for the global optimum, 

which in turn relies on how tight the lower and upper bounds are for the variables. Although 

BARON uses a reduction strategy in an attempt to improve the variable bounds, it is very 

important to provide tight values to reduce the computational cost of the search, which otherwise 

may be substantial. Thus, having predetermined flux bounds from either a MILP or DFS solution 

is beneficial. 

 
In order to obtain multiple solutions to the Inverse Problem with the IDV of the metabolite C in 

the objective function, we changed the options file in BARON to obtain the K-best solutions of 

the model. When implemented, the (up to) K-best solutions found during every branch-and-

bound iteration are maintained, and the nodes provably worse than the Kth best solution are 

deleted (Sahinidis et al, 2002). For K = 3, the “clonal” solutions listed in Table 3 were obtained. 

Solution I lies the furthest from the desired flux distribution. The 2nd and the 3rd solutions are 

reasonably close to the correct fluxes.  A similar analysis was performed on A and E, and it was 

observed that no such alternative solutions exist within the given tolerance.  The optimization 

was performed on a Pentium IV, 1.8 GHz machine with 512 MB RAM. The network model had 

51 variables and 47 constraints, and took ~1 minute to solve with BARON. 

 
Analyte Screen 3:  Economic Considerations 
 
After establishing the resolving and contrast powers of candidate analytes, the next screen that is 

applied is economics.  Here, one may be able to determine, for example, what minimal outlay 

will yield satisfactory results. The economics of analyte selection is driven, in part, by the 

material and labor costs associated with their isolation.  Thus, at the minimum, analytes can be 

ranked in coarse (low, medium, high) expense categories that are associated with the complexity 

of their isolation.  How much NMR facility time is required is also a comparative economic 

factor.  The time component will be considered in the next case study. 

 

While the test problem is an abstracted view of metabolism, it presents some options for analyte 

isolation that can be potentially economically distinguished, and then combined with their 

contrast and resolving power attributes in order to devise different cost-benefit scenarios.  
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Metabolites C, E, and O would probably require at least a cytosolic extraction. Alternately, O 

can be viewed to be the carbon skeleton for aspartate; hence, NMR analysis of protein hydrolysis 

products would provide a source of information on how O is labeled. Thus, cell concentration, 

cell lysis, protein hydrolysis, chromatography, sample clean up (e.g. metal chelation), and 

concentration (e.g. lyophilization) would all be required.   

 

In contrast, P is excreted in the growth medium; hence, a simpler cell-liquid separation (e.g. 

centrifugation or rapid filtration) followed by cleanup (e.g. metal chelation) and concentration 

(e.g. lyophilization) would be required.  P would be especially useful if a defined minimal 

medium (e.g. glucose plus inorganic salts) was used to grow the cells, and significant 

consumption of the labeled glucose occurred. Fewer signals would appear in the sample 

spectrum that originates from naturally-labeled and abundant carbon compounds (e.g. amino 

acids in nutrient broth) as well as unconsumed labeled glucose.  The absence of such signals 

would lessen the potential for confounding the interpretation of the line splitting pattern of P. 

 

E and thus P invert reliably to the correct flux distribution.  However, C and O perform 

significantly better when the contrast power over the entire flux space is considered. Thus, one 

low expense, but effective strategy that would simultaneously maximize flux resolution and 

contrast power would be to use P (found in cell-free growth medium; high resolving power) and 

C (cytosolic extraction; high contrast power).   To envision implementing the strategy, the actual 

flux distribution would lie between the extreme points.  In a sequential approach, the data from C 

in an objective function would drive the solution towards the correct flux distribution or an 

alternate that fits C’s data well.  Data from P would then be used to determine if the correct 

solution has been found.  Using the data from C and P simultaneously would then be expected to 

locate the correct solution in one step, which has been observed (not shown). 

 

LARGER METABOLIC ENGINEERING NETWORK PROBLEM 

Network & Flux Solutions to Contrast by NMR 

The methodologies described in the prior section have been used to investigate a metabolic 

engineering problem in E. coli that involves a larger metabolic network.  The network is shown 

in Figure 4.  Through prior experimentation, it has been proposed that removing the enzyme 

pyruvate kinase, which catalyzes PEP  pyruvate, could eliminate acid by-product formation 
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(Goel et al, 1995) while preserving the wild-type’s rapid growth rate.  Subsequent network 

analysis and mutation (Lee et al, 2000; Zhu et al, 2001) confirmed the efficacy of the mutational 

strategy. More recently, Siddiquee et al (2004) have also studied the metabolic regulation of E. 

coli lacking a functional pykF gene.  They also observed low flux ratios through the lactate- and 

acetate-forming pathways, which corroborates the efficacy of the mutation strategy. 

 

Interestingly, network analysis indicates that for similar glucose uptake, there are two feasible 

extreme point flux distributions where the pyruvate kinase-catalyzed flux is zero and acid 

production is nil.  The bounds of the flux space differ mainly by the flux ratios at the G6P branch 

point (Ghosh et al, 2004).  In one case, the flux to the hexose monophosphate pathway (G6P  

Ribulose 5P) is greater than G6P isomerization to F6P, and the other extreme point exhibits the 

opposite partitioning at the branch point.  The analyte screening methodology illustrated for the 

test problem was applied to the problem of designing an NMR experiment that would resolve the 

fluxes in a pyruvate kinase-deficient mutant. This particular problem of flux scenario 

differentiation is representative of a practical problem, and the larger size of the network was 

envisioned to provide useful information on how fast computations can be performed for less 

abstracted network problems.  

 

In order to implement the analyte screening methodology, NMR data was generated using a 

linear combination of α1 = 0.4 and α2 = 0.6 of the fluxes in the two solutions. We assumed that 

resolving a “middle of the road” case (i.e. one extreme solution does not dominate) would be 

reasonably challenging. Relaxing the “middle of the road” assumption would be straightforward 

and would entail repeating the analysis for several different values of α to explore the utility of 

different analytes. 

 

Analyte Set 

The analysis limited the scope to cytosolic or protein hydrolysis-derived amino acids, which are 

commonly used in NMR experimentation.  The computational methods, however, are not limited 

to evaluating amino acid analytes.  The criteria used to select candidate amino acid analytes for 

the purpose of demonstrating the computational methods were (1) abundance and (2) metabolic 

origin.  Abundance was considered a virtue because as will be discussed in more detail later, the 

more abundant an analyte is, the less sample preparation effort and usage of NMR facility time 
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that is required, which lowers the cost of experimentation.  Metabolic origin considers whether 

all the analytes are derived from different metabolites within mainstream metabolism or if some 

of the analytes report on the same metabolite.  We attempted to keep the example set tractable 

while yet insuring that the analytes are derived from different and important metabolic nodes and 

with some redundancy. Within the Discussion section, we comment further on origin of the 

example analytes in terms of their “connectivity to metabolic nodes.” 

 

The cytosolic candidates chosen were the three most abundant amino acids: glutamate, alanine, 

and glycine (Tempest & Meers, 1970). The later amino acid analytes are synthesized from the 

central metabolites, α-ketoglutarate, pyruvate, and 3-phosphoglycerate, respectively.  For 

brevity, the top four prevalent amino acids that can be derived from protein hydrolysis were 

chosen for demonstration purposes.  They were alanine, glutamate/glutamine, 

aspartate/asparagine, and glycine.  The latter four amino acids are synthesized from pyruvate, α-

ketoglutarate, oxaloacetate, and 3-phosphoglycerate, respectively.   

 

Based on metabolic origin, alanine and glycine are somewhat redundant.  Glycine is derived 

from 3-phosphoglycerate, which maps carbon-to-carbon into alanine’s precursor, pyruvate.  

Thus, both alanine and glycine are derived from similarly labeled 3-carbon intermediates in 

glycolysis.  However, the spectra and isotopomer possibilities differ for a two (glycine) versus a 

three-carbon compound (alanine).  Overall, the analyte set can be viewed as covering the top 

three abundant amino acids in the cytosol, and all three are diverse in metabolic origin.  For the 

top four abundant amino acids in proteins, three are diverse in origin and two (alanine and 

glycine) both report on the labeling of 3-carbon compounds in glycolysis.  Thus, the screening 

results can be viewed as a report on the overall utility of different analytes as well as a means for 

differentiating between two analytes that report on the labeling of similarly labeled glycolytic 

metabolites.  There is also overlap between the cytosol- and protein hydrolysis-derived analyte 

candidates.  However, the relative abundances and thus signal strengths of each analyte will 

differ in a cytosol- versus a protein hydrolysis-derived sample.  As will be seen later, abundance 

difference can affect the utility of an analyte.  Finally, other amino acids could be included in the 

computational screens that follow such as the much less abundant aromatic amino acids that are 

synthesized from erythrose-4-phosphate. 
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Analyte Screen 1: How Do Analyte Spectra Contrast Over Entire Feasible Flux Space? 

Unlike the “test” problem, different precursor (i.e. glucose) labelings are possible.  

Quantitatively, detectable contrast is provided by high 13C enrichment (i.e. significant NMR line 

intensity) and how the allowable fluxes variably enrich different carbons in the analyte. Thus, 

glucose labeling was considered in parallel with extreme point comparisons when determining 

the contrast powers of the analytes. Singly (from 1 through 6) and uniformly labeled glucose 

were evaluated. The NMR spectra for the candidate analytes were simulated in case of the two 

extreme point solutions (corresponding to α1 = 1 and α1 = 0).  

 

For 1-13C and 2-13C labeling of glucose, it was found that the extreme point spectra were notably 

different, while the other labels provided very little contrast.  For example, glutamate spectra 

(three internal carbons) are shown in Figure 5 for when 1-13C, 2-13C, or U-13C labeled glucose is 

used. When 1-13C and 2-13C labeled glucose is used, the spectra corresponding to the extreme 

point solutions can easily be distinguished by eye.  The same occurs for the other analytes (not 

shown).  The difference between glutamate spectra is difficult to discern by eye when U-13C 

labeled glucose is used (Fig. 5), as is also the case for other analytes (not shown).  Difficult to 

differentiate glutamate spectra also arise in both of the extreme cases when 3, 4, 5, or 6-13C 

labeled glucose is used (not shown).  

 

In order to quantify the above observations, the spectra were vectorized as was previously 

described. The results are shown in Table 4.  As far as comparing extreme point spectra is 

concerned, using 1-13C labeled glucose endows glutamate, alanine, and aspartate with better 

contrast, while using 2-13C labeled glucose provides better contrast for glycine. Using U-13C 

labeled glucose, however, was found to provide nil contrast between the two extreme points for 

all the analytes considered.   

 

Label selection can be viewed from another vantage point.  The spectral strength can be defined 

as the sum of the line intensities present in the analyte’s NMR spectrum.   From this standpoint, 

U-13C glucose produces the best spectra in both the extreme cases (α1 = 0 and α1 = 1). This result 

follows intuitively from the fact that U-13C glucose yields the lowest fraction of unlabeled 

analyte; hence, greater total NMR signal will be yielded per quantity of analyte.  Moreover, more 

analyte carbons will become labeled despite the activity of CO2 evolving reactions that expel 13C 
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from the cell.  For example, when 1-13C glucose is used, the reaction 1-13C Glucose 6P  

Ribulose 5P + 13CO2 removes 13C from the system that would otherwise label amino acid 

analytes.  Thus, a trade-off exists between spectrum contrast and strength.  

 

One-way to resolve the trade-off would be to use a mixture of 1-13C and U-13C labeling (i.e. the 

winning labels in the two categories). The effect of label mixing can be quantified by computing 

the analytes’ IDVs when 1-13C or U-13C glucose is used, and then taking an average of the IDVs 

that is weighted according to the proportions of 1-13C and U-13C glucose. Based on the weighted 

IDVs and line splitting rules, a spectrum can be calculated.  Table 5 summarizes the results when 

different ratios of 1-13C:U-13C labeling are used.  The distinction between extreme points is 

better when there is a higher fraction of 1-13C label in the mixture (e.g. 0.2135 with 75% 1-13C as 

opposed to 0.0473 with 25% 1-13C in the case of glutamate). However, the spectral strength 

decreases as the fraction of 1-13C labeling grows. 

 

Based on the results in Table 5, one way to select the glucose labeling is to maximize contrast.  

Another way is to use “enough” 1-13C glucose to provide “sufficient” contrast, and add U-13C 

glucose to provide more strong and thus usable spectral features.  Using glutamate as an 

example, the different results obtained when the former and latter approaches are used are shown 

in Figures 5 (top) and 6, respectively.  Using 1-13C glucose (Fig. 5 top) results in a simple 

spectrum with a few strong features that significantly change between extreme points.  Using a 

25/75 mixture of U-13C and 1-13C glucose results in a larger number of strong features that 

significantly change between extreme points.  Both approaches could work in terms of yielding 

fluxes, but the approach that provides more “varying and above the noise data points” could be 

argued to provide to better flux results.  For example, the effect of random noise on the ratio of 

the intensity of strong and weaker lines could skew the results more when there are few line 

features to analyze.  

 

Interestingly, Fischer et al (2004) used U-13C and 1-13C labeled glucose in two separate 

experiments and concluded that a comparable 20/80 mixture of U-13C/1-13C glucose allowed one 

to resolve the metabolic network of Escherichia coli MG1655 strain with high resolution.  It is 
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also interesting to note that 1-13C and U-13C are the least expensive labelings of glucose.1  Based 

on the results (Figs. 5 (top) and 6) and prior experimental work (Fischer et al, 2004), the 

subsequent analyses focused on refining the selection of analytes when a 75/25 mixture of 1-
13C/U-13C labeled glucose is used.   

 

Note that using a 25/75 mixture of U-13C/1-13C glucose will provide high contrast power and 

spectral strength for three of the four analyte candidates. Glycine was “sacrificed” to be 

suboptimal because the chosen labeling for glucose can (1) provide high spectral strength and 

contrast power for the majority of the candidate analytes and (2) the subset majority reports on 

the labeling of different metabolites (i.e. pyruvate, α-ketoglutarate, and oxaloacetate).  Overall, 

the experimental design used here emphasizes the reporting ability of analytes derived from 

different metabolites, while retaining some contrast power and spectral strength for an analyte 

that provides redundant information on the labeling of 3-carbon compounds in glycolysis.  

Similar computations could enable the implementation of an alternative experimental design 

(Mollney et al, 1999). 

 

Analyte Screen 2: Do Analytes Invert Differently to Fluxes? 

All the candidate molecules were subjected to the “Multiple Flux Distribution from NMR data 

test.” The spectra from the signal molecules all inverted to a α1 = 0.4 and α2 = 0.6 combination of 

the extreme point flux distributions, when labeling is provided by a 75/25 mixture of 1-13C/U-13C 

label of glucose. Multiple flux distributions do not arise in this case upon the inversion of NMR 

data because even though the E. coli problem is significantly larger than the prior example, 

several extracellular measurements are available.  The degrees of freedom is reduced in the NLP 

of the inverse problem, which guides the solution to the optimal α’s. 

 

Analyte Screen 3:  Economics-Related Overall Utility Index 

While all the candidate analytes were found to yield spectra that reliably invert to fluxes, the 

analytes differ in contrast power.  The analytes also differ in abundance. Low abundance and/or 

spectral strength is problematic because signal to noise will be low, and thus little information 

for flux resolution will be provided unless effort is expended for sample concentration and/or 

many free induction decays are collected. Both add to the cost of experimentation.  Long-term 

                                                 
1 Stable Isotopes 1997-98, Cambridge Laboratories Inc. 
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data acquisition can be especially costly because signal to noise increases only with the square-

root of the number of free induction decays.  Throughput through an NMR facility is also 

lowered.  

 

To introduce the relative cost of NMR experimentation time, we assume that the inverse of NMR 

time depends on the product of analyte abundance and spectral strength.  Analyte abundance is 

now introduced as opposed to using only the spectral strength because the spectral strength was 

based on an analyte’s IDV.  An IDV records the mole fractions of isotopomers, which must sum 

to one.  Thus, the spectra (e.g. Figs. 5 top and 6) and spectral strengths (Table 5) computed from 

the information in IDVs are all on the same concentration basis.  Therefore, scaling further by 

relative analyte abundance attempts to further distinguish the analytes based on the magnitude 

scale the experimentalist would actually “see.”  An overall utility index can then be defined as 

data quality (i.e. contrast power) per experiment cost (measure of NMR instrument time 

requirement).  This index is provided by the product of the three terms:  (1) contrast power of an 

analyte, (2) spectral strength, and (3) an analyte’s relative abundance.   

 

The alternative to using linear scaling to develop an overall utility index is to contrast analtyes on 

the basis of similar signal to noise ratio (SNR).  That is, one can compare analytes by constrast 

power/time (i.e. cost) to achieve similar SNR.  As before, one would expects that as abundance 

and/or spectral strength decrease, more time (i.e. money) will be required to acquire a usable 

spectrum.  However, the statistics of signal averaging introduces a nonlinearity between SNR 

and time allotted to spectrum acquisition.  Here, SNR depends on the square-root of the number 

of free induction decays.  Because the number of free induction decays is proportional to total 

instrument time, an alternative version of the utility index is (contrast power)* {spectral strength 

* relative abundance)2.  When either version of the overall utility index is used, the same rank 

order for the analytes results. 

 

The abundance of amino acids in the cytosol of E. coli (Tempest & Meers, 1970) and within 

proteins (Lehninger) is shown in Table 6. Using the aforementioned utility index, the results in 

Table 6 indicate that glutamate emerges as the best choice for an analyte when NMR analytes are 

obtained via cytosolic extraction. Alanine is ranked second followed by glycine. In case of 
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protein hydrolysis-derived analytes, aspartate emerges as the best followed in rank order by 

glutamate, alanine, and glycine. 

 

Alternative Analyte Selection Using the Analytic Hierarchy Process 

The previously described manner of ranking analytes entailed posing a multifactor objective 

function, and then attempting to maximize the function.  Situations can conceivably arise, 

however, where different experimentalist- or problem-dependent values are placed on the various 

aspects of resolving fluxes from NMR data.  For example, NMR facilities may be scant so 

minimizing facility usage is a priority and sufficient versus maximal flux resolution is 

acceptable.  In this case, one could pose a different objective function or focus entirely on 

relative analyte abundance and spectral strength.  An alternative approach that retains all 

information while allowing different relative emphases to be introduced is provided by the 

Analytic Hierarchy Process (AHP; Saaty, 2000).  This section illustrates the use of the AHP for 

the purpose of ranking NMR analytes. 

 

AHP is based on the innate human ability to use information, experience, and/or individual 

preferences to estimate relative magnitudes through paired comparisons. These comparisons are 

used to construct ratio scales on a variety of dimensions, both tangible and non-tangible. Thus, 

the method proceeds from judgments on comparisons with respect to dominance, which is the 

generic term for expressing importance, preference or likelihood, of a property which they have 

in common, to their numerical representation according to the strength of that dominance and 

then derives a ratio scale. Arranging these dimensions in a hierarchic or network structure allows 

a systematic procedure to organize our basic reasoning and intuition by breaking down a problem 

into its smaller constituent parts. The AHP thus leads from simple pairwise comparison 

judgments to the priorities in the hierarchy. 

 

In this problem, the following criterions2 have been considered while ranking the NMR analytes: 

(i) Extreme point comparison (ExP) 

(ii) Abundance data (Abun) based on both cytosolic content (cc) and frequency in 

proteins (fP) 
                                                 
2 Multiple Global Optima Test (MGOT) has not been included as a criterion in AHP, because all the candidates 
successfully passed this test. In the event that the analytes perform differently in this test, MGOT should be included 
as a criterion with the appropriate weights. 
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(iii) Sum * abundance data. 

 

In the first step, the criterions are compared in pairs, e.g. sum*abundance data is considered 7 

times more important than ExP and 9 times more important than Abun. Once all the pair wise 

comparisons in a group are completed, a scale of relative priorities is derived from them. This 

process is repeated for all groups on all levels (i.e. the analytes). 

 

Next, each criterion is assigned a weight relative to a node in the next higher level, e.g. both 

cytosolic content and frequency in proteins are considered to contribute equally to the net 

abundance criterion. Since each of these nodes carries only its priority of the unit goal, the 

derived scale is suitably transformed through multiplication by the weights of the criteria so that 

each alternative receives its portion of the unit goal. 

 

Two separate hierarchical analyses have been considered, one considering frequency of amino 

acids in proteins (Table 7) while the other takes into account cytosolic content (Table 8). The 

extreme point criterion is, however, the same in both cases. 

 

Thus, in the final tabulation, the decision-maker judges the importance of each criterion in pair-

wise comparisons and the outcome is a prioritized ranking of each alternative. Tables 7 and 8 

show the performance of each NMR analyte according to the abovementioned criteria. Aspartate 

ranks first when considering frequency in proteins while glutamate ranks first when abundance 

in cytosolic content is taken into account. This ranking is consistent with the results of our 

structured methodology used in the previous sections. 

 

It is important to note, however, that the relative weights are subjective and are at the discretion 

of the experimenter. Hence, changing their values might lead to a change in overall ranking of 

the candidates. In this particular instance, however, glutamate and aspartate perform significantly 

well in their respective categories, so, they are unlikely to be ‘dethroned’ if the weights are 

changed. 

 

The advantage of the AHP is that the structure of the problem represented in the hierarchy can be 

easily extended to include more comparison criteria and/or more metabolites. Further, the 
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judgment process is so simple that the decision makers are in command of the problem as they 

see it. 

 

Computational Characteristics for Reversion 

Glutamate was found to provide high contrast and resolving power.  To conclude, we report on 

the computational characteristics of inverting a glutamate spectrum to fluxes using the methods 

described in this paper. A least-square like objective function (akin to Eqn. 2a) was used to 

reconcile the NMR spectra of glutamate to the fluxes.  When BARON was used for the 

optimization, the fluxes shown in Figure 7 were obtained, where the values of some important 

fluxes are indicated numerically while those with zero flux values have been removed. The 

problem had 910 variables and 897 constraints, and took ~30 minutes to solve.   
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DISCUSSION  

A structured and problem-centric framework for screening metabolites for their potential use as 

NMR analytes for flux identification has been described. The first step entails probing the 

contrast power of each analyte candidate over the whole feasible flux space. Having MILP 

solutions in-hand facilitates this step.  Such solutions provide the flux bounds a network can 

attain when varying amounts of extracellular data exist.  Moreover, the labeling of a precursor 

such as glucose can be considered in this step such that contrast and the desired data type (e.g. 

few strong lines vs. many strong spectral lines) are obtained.  Next, the analytes are evaluated on 

the ability of their NMR spectra to invert to a unique flux distribution. Here, it is of interest to 

determine in advance whether an analyte’s NMR spectrum could revert to clonal solutions that 

are characterized by highly similar values of an objective function. Determining this prospect in 

advance can facilitate how analyte sets are constructed as well as illuminate what uncertainties 

may lie within an experimental approach.   

 

Some examples of how economics can be introduced to generate cost-benefit scenarios were also 

presented.  One example sought to determine an effective yet a minimal and easily isolated 

analyte set.  Another example first found that the least expensive forms of labeled glucose 

provided significant contrast and resolving power, and then analytes could be ranked with an 

overall index that considered the NMR facility time requirement.  Finally, as an alternative to 

posing an arbitrary objective function, we presented how a relative value-based scheme, the 

Analytical Hierarchy Process, can also be used to rank analytes. 

 

When these screens were applied to the case of an E. coli mutant system, glutamate emerged as a 

highly useful NMR analyte in that it can provide high flux resolution per unit of experimental 

cost. This result is interesting from numerous standpoints.  First, glutamate has desirable NMR 

properties. Glutamate’s three central carbons have equivalent spin-lattice relaxation times and 

Nuclear Overhauser Enhancement effects.  Thus, signal magnitudes from each of the three 

internal carbons are directly comparable to one another because saturation affects each nucleus 

equally.  Secondly, glutamate is readily isolated by cytosolic extraction due to its high 

abundance.  Glutamate is also a prevalent amino acid residue in proteins.  Overall, glutamate 

provides a strong and easily interpreted signal.  For the particular E. coli problem examined, 

glutamate NMR data also inverted reliably to the correct fluxes. 
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The candidate analytes were chosen based on high abundance in the cytosol or within proteins, 

and metabolic origin.  Abundance was deemed desirable because less strenuous sample 

preparation would be required to obtain analyte spectra the exhibited significant signal to noise.  

Concerning origin, the candidate set attempted to cover most of the amino acid families as a 

starting point for demonstration.  Also, an analyte such as glutamate is often qualitatively viewed 

as lying “deep” within metabolism with the result that ample flux history is “recorded” as the 13C 

nuclei within labeled glucose traverse the branching, converging, and molecular rearranging 

reactions of glycolysis, the Krebs cycle, and other pathways.  The simple reasoning applied to 

origin could exclude some useful analytes and “deep” is a subjective notion.   

 

The recent application of the “Kevin Bacon Test” (Fell & Wagner, 2000) to the structure of the 

E. coli core metabolism suggests some potentially interesting overlaps may exist between the 

test’s conclusions and the NMR analyte selection problem.  Fell and Wagner (2000) found that 

glutamate lies at the core of E. coli metabolism as indicated by the minimum separation distance 

between it and other metabolites.  Alanine scored second in minimal separation distance.   

 

Interestingly, glutamate and alanine are first and second in abundance in the E. coli cytosol, and 

within proteins they are the top two residues when glutamine is scored as equivalent to 

glutamate.  Thus high abundance and minimal separation distance correlate.  Here, the 

correlation to abundance may reflect the development of high and coordinated mass action 

potentials that can drive connected reactions (e.g. Majewski & Domach, 1989).   

 

One speculative connection between “degree of separation” and NMR is given that glutamate 

and alanine are closely connected to all other metabolites, then the origin and thus the labeling of 

glutamate and alanine are highly representative of the network’s reaction processes.  Overall, the 

connected feature plus their abundance may underlie why glutamate and alanine score and 

perform well when used as NMR analytes.  The connected nature of glutamate and alanine may 

also suggest that the set of analytes used for demonstration purposes is a reasonable starting 

point.  Scrutinizing these possible connections further might entail editing out transaminase 

reactions from a “degree of separation analysis.” Transaminase reactions transfer amino groups 
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between different carbon skeletons as opposed to altering or building new carbon skeletons, 

which shuffles 13C and creates isotopomers.  
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Appendix: Analytic Hierarchy Process 
 
The Analytic Hierarchy Process is a framework of logic and problem-solving that provides a 

qualitative basis for organizing observations in order to systematically rank-order decisions. 

Specifically, the AHP is a multi-attribute modeling methodology which was first developed and 

applied by Saaty (). The process is based on the innate human ability to use information and 

experience to estimate relative magnitudes through paired comparisons. These comparisons are 

used to construct ratio scales on a variety of dimensions both tangible and intangible. Arranging 

these dimensions in a hierarchic or network structure allows a systematic procedure to organize 

our basic reasoning and intuition by breaking down a problem into its smaller constituent parts. 

The AHP thus leads from simple pairwise comparison judgments to the priorities in the 

hierarchy. 

 

In the physical world, ratio scales are often employed to establish relations between different 

objects or phenomena. The AHP derives ratio scales of different magnitudes of a set of elements 

by making paired comparisons. When used in a process systems engineering context, AHP can 

be a powerful tool for comparing alternative design concepts. 

 

Let us assume that we are faced with a problem where we wish to choose one out of 3 

alternatives Ci (i = 1,2,3) on the basis of 4 criteria Kj
 (j = 1,…,4). Further, criteria K2 and K3 can 

have subcriteria k2j (j = 1,2) and k3n (n = 1, 2, 3) associated with them. The various elements of 

this decision problem are organized into a hierarchy shown in Figure A1. 

 

Each level has multiple nodes with respect to which the alternatives in the next level are 

compared. The first step is to compare the elements in each level in pairs. The comparisons are 

made using judgments based on various subjective criteria to interpret data according to their 

contribution to the parent node in the level immediately above. When making a comparison, one 

chooses the smaller or lesser one of the pair as the unit and estimates the larger one as a multiple 

of that unit, based on the perceived intensity factor.  As we shall see presently, each criterion (or 

subcriterion or alternative) is assigned a weight relative to a node in the next higher level. Since 

each of these nodes carries only its priority of the unit goal, the derived scale is suitably 

transformed through multiplication by the weights of the criteria so that each alternative receives 

its portion of the unit goal. 
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Table A1 shows the judgments for comparing the criteria of the second level (Kj’s) with respect 

to the goal. The table comprises of the pairwise comparison matrix (A, say) where the number in 

the ith row and the jth column gives the relative importance of Ki as compared with Kj. The matrix 

A is square and also reciprocal (i.e. aij = 1/aji). The diagonal entries will be 1 because of the self-

comparison of the criteria. Since half of the remainder are reciprocals by virtue of the inverted 

comparisons, 6 (or more generally, n(n-1)/2, where n is the number of elements being compared) 

independent comparisons are needed. In order to express dominance of one criterion over 

another, the authors have proposed the numbers 3,5,7 and 9, corresponding to the verbal 

judgments “moderately more”, “strongly more”, “very strongly more”, and “extremely more”, 

respectively. The numbers 2, 4, 6 and 8 are used when a compromise is in order. Clearly, the 

choice of a linear scale and the maximum value is somewhat arbitrary but this is simply a 

reflection of the general problem of quantifying preferences in multi-attribute decision models 

(Dubois, 200x). It is quite reasonable to use a bounded positive evaluation scale, i.e. no infinite 

preferences are allowed. The elements of the matrix A are therefore finite and positive. The 

entries in the priorities column are the eigenvalues (λ) of the matrix. The use of eigenvalues 

consolidates the 16 relative intensity ratios of the matrix into 4 measures of intensity and also 

eliminates any numerical inconsistency that might arise due to the use of a linear scale in AHP. 

This new scale is called the derived scale. Saaty () has proposed that an easy way to get a good 

approximation to the priorities is to multiply the elements in each row together and take the nth 

root, where n is the number of elements. The column of numbers thus obtained are then 

normalized by dividing each entry by the sum of all entries. Instead of giving K1 over K2 the 

intensity a12, we use the values in the derived scale to form λ1*a12. This procedure is carried out 

for all entries in the matrix. 

 

The next step in AHP is to repeat the procedure for every criterion. The subcriteria under each 

criterion are compared as to their importance with respect to that criterion to derive their local 

priorities. Table A2 shows such as example where the subcriteria k3n are compared with respect 

to the criterion K3.  The product of the local priorities and those of the parent criteria gives the 

global priorities of the subcriteria. 
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Finally, the three alternatives, C1-3 , are compared with respect to each subcriterion (e.g. Table 

A3), or criterion (as in the case of K1 or K4, which have no subcriteria) and weighted by the 

overall priority of the subcriteria. The sum of these products taken for each alternative is the 

overall priority of that alternative. 

 

Thus, a simple comparison matrix for the subcriteria would look like Table A4. 

 

The alternatives are then ranked 1-3 according to the decreasing values of the overall rank, in 

other words, the alternative with the highest overall rank is selected. 
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Figure A1:  Overall schematic of the AHP methodology showing the different criteria and 
alternatives. Symbols in brackets indicate the priorities associated with each criterion or 
alternative. The set of equations given below the chart indicates the relationships between 
the priorities. 
 
 
Table A1: Comparison of second level criteria. The 4x4 matrix A is reciprocal. 
 

GOAL K1 K2 K3 K4 Priorities 

K1 1 a12 a13 a14 λ1

K2 1/a12 1 a23 a24 λ2
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K3 1/a13 1/a23 1 a34 λ3

K4 1/a14 1/a24 1/a34 1 λ4

 
 
Table A2: Comparison of subcriteria k3n with respect to the criteria K3. The global 
priorities are obtained by multiplying the local priorities with the priority of the parent 
criteria. 
 

K3(α3) k31 k32 k33 Priorities 
        Local Global 

k31 1 c3,12 c3,13 λ1
3 λ1

3*α3 = γ31

k32 1/c3,12 1 c3,23 λ2
3 λ2

3*α3 = γ32

k33 1/c3,13 1/c3,23 1 λ3
3 λ3

3*α3 = γ33

 
Table A3: Comparison of alternatives C1-3 with respect to subcriteria k33. 
 

k33(γ33) C1 C2 C3 Priorities 
        Local Global 

C1 1 c12 c13 λ1
33 λ1

33*γ33

C2 1/c12 1 c23 λ2
33 λ2

33*γ33

C3 1/c13 1/c23 1 λ3
33 λ3

33*γ33

 
Table A4: Final overall ranking of the alternatives. 
 

  K1 K2 K3 K4 Overall 
    k21 k22 k31 k32 k33   Rank 

C1 β1,1 β1,21 β1,22 β1,31 β1,32 β1,33 β1,4 Σβ1,i

C2 β2,1 β2,21 β2,22 β2,31 β2,32 β2,33 β2,4 Σβ2,i

C3 β3,1 β3,21 β3,22 β3,31 β3,32 β3,33 β3,4 Σβ3,i

 
 
 
 
Abbreviated example: For illustration purposes, let us assume that there are 4 objectives (which 

maybe either criteria or alternatives), X1, X2, X3 and X4. Using a 1-9 scale, we might arrive at a 

possible comparison matrix: 
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The next step is to compute the priorities. Using Saaty’s approximation, we compute the 

priorities vector by 4
7

1
3

1
5

11 ×××  for the 1st row, and so on, and finally normalizing. Thus, 

we get the priorities or weights: w = [0.0579 0.5452 0.2438 0.1531]T 

Note that, by construction, . ∑
=

=
4

1
1

i
iw

The weights w would be used in summing the measures as required in the evaluation of the AHP. 
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Table 1. Alternate Optima Obtained from the Recursive MILP Formulation 

Fluxes Solution 
I 

Solution 
II 

Solution 
III 

Solution 
IV 

r1
* 1 1 1 1 

r2
* 0.3 0.3 0.3 0.3 

r3 1.3 0 1.3 0 
r4 0 1.3 0 1.3 
r5 0.4 1.3 0 1.7 
r6 0 1.3 0 1.3 
r7 0.4 0 0 0.4 
r8 0.4 0 0 0.4 
r9

* 0.4 0.4 0.4 0.4 
r10 0 0.4 0.4 0 
*Denotes fixed fluxes. 
 
Table 2. NMR to Flux Inversion Results When Using Different Analytes 
 

Analyte v3 v4 v5 v6 v7 v8 v10 v11 ε8
hypothesized 0.43 0.87 1.19 0.87 0.32 0.78 0.08 0.46 0.59 

A & E 0.43 0.87 1.19 0.87 0.32 0.78 0.08 0.46 0.59 
C 1.3 0 0 0 0 0 0.4 0 0.12 
O 1.3 0 0 0 0 0 0.4 0 0.37 
A 1.3 0 0 0 0 0 0.4 0 0.9 
E 0.43 0.87 1.19 0.87 0.32 0.78 0.08 0.46 0.59 

 
 
 
Table 3.  Clonal Solutions Obtained with Metabolite C as the NMR Analyte 

Fluxes Actual Multiple Global Solutions from C 
  Solution I Solution II Solution III 

v1 1 1 1 1 
v2 0.3 0.3 0.3 0.3 
v3 0.43 1.3 0.37 0.47 
v4 0.87 0 0.93 0.83 
v5 1.19 0 1.27 1.13 
v6 0.87 0 0.93 0.83 
v7 0.32 0 0.34 0.3 
v8 0.78 0 0.18 0.6 
v9 0.4 0.4 0.4 0.4 
v10 0.08 0.4 0.058 0.095 
v11 0.46 0 0.15 0.3 

 
 
 
Table 4. Performance Comparison of Candidate NMR Analytes when 1-13C, 2-13C, or U-
13C Labeled Glucose is Used   
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1-13C U-13C 2-13C alpha1=1 alpha1=0 alpha1=1 alpha1=0 alpha1=1 alpha1=0
glutamate 0.486 2.70E-06 0.1629 0.2193 0.3985 0.75 0.7476 0.2063 0.2669

alanine 0.0908 9.44E-05 0.0784 0.1403 0.2428 0.9999 0.9996 0.1889 0.2498
glycine 0.046 8.50E-04 0.0886 0.1403 0.2347 0.9999 0.9986 0.1908 0.2498

aspartate 0.5536 1.90E-06 0.1564 1.0034 0.5681 1.7497 1.7483 0.1998 0.2651

Analytes
Angular Deviation of the Vectorized sum(NMR)

Extreme Point Spectra 1-13C U-13C 2-13C

 
 
 
 
Table 5.  Performance Comparison of Candidate NMR Analytes when Different Mixtures 
of 1-13C/U-13C Labeled Glucose are Used 

Analytes 1-13C:U-13C
0.25:0.75 0.5:0.5 0.75:0.25 alpha1=0 alpha1=1 alpha1=0 alpha1=1 alpha1=0 alpha1=1

glutamate 0.0473 0.1091 0.2135 0.6943 0.713 0.5885 0.6331 0.4299 0.5083
alanine 0.0335 0.0939 0.1778 0.792 0.8101 0.5794 0.6156 0.3622 0.4161
glycine 0.0342 0.0958 0.1814 0.792 0.8082 0.5794 0.612 0.3622 0.411

aspartate 0.102 0.2292 0.2987 1.5803 1.5664 1.4002 1.3625 1.2078 1.1368

Angular Deviation sum(NMR)
0.25:0.75 0.5:0.5 0.75:0.25

 
 
Table 6.  Combination of NMR Resolution & Amino Acid Abundance of Candidate 
Analytes when 75/25 1-13C/U-13C Labeled Glucose is Used*  
 

1 2
Amino acids pool-free relative frequency 

 content in proteins
glutamate 72.5000 10.8100

alanine 17.5000 13.0200
glycine 3.7500 7.8100

aspartate 0.0000 9.9000

2x3x4
extreme point combination based combination based on

4
average sum of

1x3x4

relative frequency in proteins
7.2611 1.08270.4691

NMR peaks on cytosolic content

0.2987 0.0000 3.4666

0.1778 1.2108 0.9009
0.1814 0.5477

0.3892
0.3866
1.1723

0.2630

NMR comparison
0.2135

3

 
*Abundance data obtained from Tempest et al, 1970 
 
Table 7. Implementation of the Analytic Hierarchy Process for the Selection of NMR 
Analytes (considering frequency of amino acids in proteins only) 

sum*abun ExP abun Overall Overall 
fP fP Priorities Rank

Analytes 0.772 0.1734 0.0545
glutamate 0.1875 0.3650 0.2718 0.2229 2
alanine 0.1875 0.0795 0.2718 0.1733 3
aspartate 0.5625 0.3650 0.2718 0.5124 1
glycine 0.0625 0.0314 0.1017 0.0592 4  
 
Table 8. Implementation of the Analytic Hierarchy Process for the Selection of NMR 
Analytes (considering abundance of amino acids in cytosol only) 

sum*abun ExP abun Overall Overall 
cc cc Priorities Rank

Analytes 0.772 0.1734 0.0545
glutamate 0.6430 0.3650 0.4846 0.5861 1
alanine 0.2683 0.0795 0.3360 0.2392 2
aspartate 0.0372 0.3650 0.0448 0.0945 3
glycine 0.0515 0.0314 0.0448 0.0477 4  
 

 33



Figure Legends  
 
Figure 1.  Hypothetical metabolic network used to demonstrate NMR calculations and analyte 

screens.  (a) The conversion of precursors G, S, and Q to excreted products P and R are shown 

as well as a cyclic series of reactions.  (b) Shown are the metabolic fluxes obtained from the 

optimization using synthetic NMR data. The black circles indicate 13C while the white ones are 
12C.  The grey metabolites, A and E are the NMR analytes, which are amongst the analytes that 

can be used to successfully solve the inverse NMR  fluxes problem (Equation 2). 

 

 Figure 2.  Performance of NMR signal molecules with respect to contrast power over the entire 

flux space.  Analyte C performs the best. 

 

Figure 3.  Existence of “multiple” global minima or clones of a function y = f(x). Point P is 

clearly a local minimum while Q is the global minimum. Within the prescribed tolerance, 

however, R is also a ‘global’ minimum. 

 

Figure 4. The metabolic network of E. coli.  The glycolytic, pentose phosphate pathway, malic 

enzyme, and Krebs cycle reactions are shown.  The double-ended arrows represent potentially 

reversible reactions and the solid-headed arrows depict the net directions.  Abbreviations: 

AcCoA, acetyl-CoA; CIT, citrate; DHAP, dihydroxy-acetone phosphate; E4P, erythrose-4-

phosphate; F6P, fructose-6-phosphate; FDP, fructose-1,6-bisphosphate; G6P, glucose-6-

phosphate; KG, α-ketoglutarate; OAA, oxaloacetate; PEP, phosphoenolpyruvate; PGP, 

phosphoglycerol phosphate; PG3, 3-phosphoglycerate; P2G, 2-phosphoglycerate; PYR, 

pyruvate; R5P, ribose-5-phosphate; Succ, succinyl-CoA; T3P, triose phosphate; 3PG, 3-

phosphoglycerate; MAL, malate; S7P, sedoheptulose-7-phosphate; aa, amino acids; na, nucleic 

acids. 

 
Figure 5. NMR spectra of glutamate when derived from 1-13C, 2-13C, or U-13C labeled glucose. 

Comparison of the extreme point spectra (corresponding to α1 = 0 and 1) shows that 1-13C 

glucose provides the highest contrast, followed by 2-13C glucose, while using U-13C glucose 

results in significantly more spectral lineforms, but hard to discern contrast. 

Figure 6. NMR spectra of glutamate when derived from a mixture of 75/25 1-13C and U-13C 

glucose. Comparison of the extreme point spectra (corresponding to α1 = 0 and 1) to that of 
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glutamate derived from 1-13C glucose (see Fig. 5) shows that the mixture provides more 

lineforms that change between the extreme points. 

 
Figure 7.  Metabolic Flux Map of E. coli. The numbers associated with some important fluxes 

are indicated, while pathways with zero flux values have been removed from the network. The 

abbreviations for the species can be found from the legend for Figure 4. 
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Figure 1a. 

 
Figure 1b. 
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