
A Review and Comparison of Solvers for Convex MINLP

Jan Kronqvista∗, David E. Bernalb, Andreas Lundellc, and
Ignacio E. Grossmannb

aProcess Design and Systems Engineering, Åbo Akademi University, Åbo, Finland;
bDepartment of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Avenue,

Pittsburgh, PA 15213, USA;
cMathematics and Statistics, Åbo Akademi University, Åbo, Finland;

June 3, 2018

Abstract

In this paper, we present a review of deterministic solvers for convex MINLP problems
as well as a comprehensive comparison of a large selection of commonly available solvers.
As a test set, we have used all MINLP instances classified as convex in the problem library
MINLPLib, resulting in a test set of 366 convex MINLP instances. A summary of the most
common methods for solving convex MINLP problems is given to better highlight the dif-
ferences between the solvers. To show how the solvers perform on problems with different
properties, we have divided the test set into subsets based on the integer relaxation gap,
degree of nonlinearity, and the relative number of discrete variables. The results presented
here provide guidelines on how well suited a specific solver or method is for particular types
of MINLP problems.

Convex MINLP MINLP solver Solver comparison Numerical benchmark

1 Introduction

Mixed-integer nonlinear programming (MINLP) combines the modeling capabilities of mixed-
integer linear programming (MILP) and nonlinear programming (NLP) into a versatile modeling
framework. By using integer variables, it is possible to incorporate discrete decisions, e.g., to
choose between some specific options, into the optimization model. Furthermore, by using both
linear and nonlinear functions it is possible to accurately model a variety of different phenomena,
such as chemical reactions, separations, and material flow through a production facility. The
versatile modelling capabilities of MINLP means there are a wide variety of real-world optimization
problems that can be modeled as MINLP problems, e.g., cancer treatment planning [35], design
of water distribution networks [30], portfolio optimization [23], nuclear reactor core fuel reloading
[110], process synthesis [63], pooling problems in the petrochemical industry [101], and production
planning [112]. More of MINLP applications are described by, e.g., [20, 29, 52, 118].

MINLP problems are, in general, considered as a “difficult” class of optimization problems.
However, thanks to a great effort over the years, there has been significant progress in the field
and there are several solvers available for MINLP problems available today, see [32]. Here we
will focus on convex MINLP, which is a specific subclass with some desirable properties, e.g., a
convex MINLP problem is possible to decompose into a finite sequence of tractable subproblems.
In recent years there has been significant progress within the field of MILP and NLP [3, 6] which is
also reflected onto the field of MINLP since decomposition techniques for MINLP problems often
rely on solving these types of subproblems. It is also possible to solve certain classes of nonconvex

∗Corresponding author. Email: jan.kronqvist@abo.fi

1

MINLP problems, such as problems with signomial constraints, by reformulating them into convex
MINLP problems [93, 94, 106, 108], further motivating the study of efficient methods for convex
MINLP.

The intention of this paper is to give an overview of commonly available deterministic solvers
for convex MINLP problems and to present a thorough numerical comparison of the most common
solvers. Most optimization solvers are connected to one or more of the well-established modeling
environments for MINLP optimization, such as, AIMMS [21], AMPL [55], and GAMS [31]. In
recent years, there has also been a growing interest in optimization modeling in Python and Julia
[18]; JuMP is a modeling environment for optimization embedded in Julia [42], and Pyomo is a
similar environment in Python [68].

The solvers considered in the numerical comparison are AlphaECP, Antigone, AOA, BARON,
BONMIN, COUENNE, DICOPT, Juniper, KNITRO, LINDO, Minotaur, Pajarito, SBB, SCIP,
and SHOT. These solvers in the benchmark study were chosen based on criteria like availability,
active development, and support for a file format available in MINLPLib [100]. Some of these are
global solvers and are not limited to convex problems. However, most of the global solvers have
some convexity identification techniques or manual strategy settings that can be set by the user
to allow them to more efficiently deal with convex problems. The convex solvers can also often
be used as heuristic methods without guarantee for finding the optimal solution for nonconvex
MINLP problems.

In Section 2 the convex MINLP problem is defined and a general overview over the most com-
mon algorithms for such problems are given in Section 3. Most solvers in the comparison utilize
one or more of these solution methods, as described in Section 4, which contains a summary of
the solvers considered. Section 5 describes the benchmark in detail, and the numerical results are,
finally, presented in Section 6.

2 Convex MINLP problem formulation

A convex MINLP problem can, without loss of generality, be written as

min
x,y∈N∩L∩Y

cT1 x + cT2 y, (P-MINLP)

where the sets N,L and Y are given by

N = {x ∈ Rn,y ∈ Rm | gj(x,y) ≤ 0 ∀j = 1, . . . l},
L = {x ∈ Rn,y ∈ Rm | Ax + By ≤ b},
Y = {y ∈ Zm | y

i
≤ yi ≤ yi ∀ i = 1, 2, . . . ,m}.

(1)

where L∩Y is assumed to be a compact set. The upper and lower bounds on the integer variable
yi are denoted as yi and y

i
and are assumed to be finite, thus ensuring compactness of the set

Y . Generally, problem (P-MINLP) is considered as convex if all the nonlinear functions gj are
convex in the variables x, and the relaxed integer variables y. There has recently been an interest
in nonsmooth convex MINLP, and some solution techniques have been presented see e.g., [44, 45].
However, most of the commonly available solvers only have guaranteed convergence for smooth
problems and, therefore, we limit this study to this problem type where the nonlinear functions
gj are continuously differentiable.

3 Methods

This section describes the most commonly used algorithms for convex MINLP. The methods
described are branch and bound, extended cutting plane, extended supporting hyperplane, outer
approximation, generalized Benders decomposition and LP/NLP based branch and bound. This
summary is not intended to give an in-depth analysis of the algorithms, but to better exemplify

2

the differences between the solvers. For a more detailed discussion about the algorithms see, e.g.,
[10], [64], and [52].

3.1 Branch and bound

Branch and bound (BB) was first presented as a technique for solving MILP problems by [83]. A
few years later it was noted by [38] that MINLP problems can be solved with a similar branch and
bound approach, although the paper focused on linear problems. Solving convex MINLP problems
with a BB approach was later studied by [66].

In the basic form, BB solves the MINLP problem by relaxing the integer restrictions of the
original problem and solving continuous (convex) NLP relaxations. Solving an integer relaxations
of problem (P-MINLP) results in a solution (xk,yk), which provides a valid lower bound. If all
components of yk take on integer variables, then it is also an optimal solution to the MINLP
problem. Otherwise, the continuous relaxation is divided (branched) into two new NLP subprob-
lems by adding the constraints yi ≤ byki c and yi ≥ dyki e to the relaxed problem. The branching
variable yi is a variable that takes on a fractional value and usually chosen based on some criteria,
e.g., the variable furthest away from an integer value. A new lower bound can be obtained by
solving the new subproblems (child nodes), and in case one of the subproblems returns an integer
solution it also provides a valid upper bound. The search procedure is often illustrated as a tree,
where the nodes are connected to their parent node and represent the subproblems. If one of the
nodes does not provide an integer solution, then it is branched into two new nodes creating two
new subproblems. In case one of the nodes obtains an optimum worse than the upper bound or
in case the subproblem is infeasible, then the node can be pruned off since the optimal solution
cannot exist in that part of the search space. This approach of solving convex NLP problems in
each node is often referred to as NLP-based branch and bound (NLP-BB).

Obtaining a tight integer relaxation is of great importance within BB to avoid extremely large
search trees. [115] presented a branch and cut method for convex MINLP problems that uses
cutting planes to strengthen the integer relaxation. Several techniques have been proposed for
obtaining cuts to strengthen the integer relaxation for MINLP problems, e.g., lift-and-project
cuts [5, 77, 128], Gomory cuts [36, 61], and perspective cuts [56].

Compared to BB techniques for MILP problems, NLP-BB involves computationally more de-
manding subproblems; it is often not unusual to explore more than 100,000 nodes for a modest-
sized problem! Techniques to efficiently integrate the NLP solver and not solving all subproblems
to optimality have also been proposed by [28] and [87]. Another BB approach is to solve LP
relaxations in the nodes and construct a polyhedral approximation of the nonlinear constraints. A
polyhedral branch and cut technique, solving LP relaxations in the nodes, was presented by [117].

Many important details on BB has been left out, such as branching strategies. For more details
on BB see, e.g., [26, 53].

3.2 Extended cutting plane

The extended cutting plane (ECP) algorithm was first presented by [124], and can be seen as
an extension of Kelley’s cutting plane method for convex NLP problems presented by [75]. In its
original form the ECP method is intended for convex MINLP problems, and by some modifications,
given the name generalized alpha ECP (GAECP), it can be applied to pseudoconvex problems as
shown by [125].

The ECP algorithm uses linearization of the nonlinear constraints to construct an iteratively
improving polyhedral outer approximation of the set N . The trial solutions are obtained by solving
the following MILP subproblems

(xk+1,yk+1) ∈ arg min
x,y∈N̂k∩L∩Y

cT1 x + cT2 y, (MILP-k)

3

where the set N̂k is given by

N̂k =

{
gj(x

i,yi) +∇gj(xi,yi)T
[
x− xi

y − yi

]
≤ 0, ∀i = 1, 2 . . . k, j ∈ Ai

}
. (2)

Here Ai is an index set containing the indices of either the most violated or all violated constraints
in iteration i. Set N̂k is, thus, a polyhedral approximation of set N , constructed by first-order
Taylor series expansions of the nonlinear constraints generated at the trial solutions (xk,yk). The
linearizations defining N̂k is usually referred to as cutting planes since they cut off parts of the
search space that cannot contain the optimal solution. Due to convexity, N ⊆ N̂k and therefore,
the solution of problem (MILP-k) provides a valid lower bound of problem (P-MINLP).

In the first iteration the set N̂0 can simply be defined as Rn+m. New trial solutions are then
obtained by solving subproblem (MILP-k), and the procedure is repeated until a trial solution
satisfies the constraints within a given tolerance. Once a trial solution satisfies all nonlinear
constraints it is also the optimal solution, since the solution was obtained by minimizing the
objective within a set containing the entire feasible region. For more details on the ECP algorithm
see, e.g., [124] and [125].

3.3 Extended supporting hyperplane

The extended supporting hyperplane (ESH) algorithm was presented by [80] as an algorithm
for solving convex MINLP problems. The ESH algorithm uses the same technique as the ECP
algorithm for obtaining trial solutions, but uses a different technique for generating the polyhedral
outer approximation N̂k. It has been observed that the cutting planes used to construct the
polyhedral outer approximation in the ECP algorithm are, in general, not as tight as possible, see
[80]. By using a simple procedure, the ESH algorithm is able to obtain supporting hyperplanes to
set N at each iteration, and use these to construct a polyhedral outer approximation N̂k.

First, a strict interior point (xint,yint) is obtained by solving the following convex NLP problem

min
(x,y)∈L,µ∈R

µ

s.t. gj(x,y) ≤ µ ∀j = 1, 2, . . . , l.
(3)

The interior point should preferably be as deep as possible within the interior of N , which is here
approximated by minimizing the l∞-norm of the nonlinear constraints.

Similar to the ECP algorithm, the trial solutions are obtained by solving problem (MILP-k),
and they are now denoted as

(
xkMILP,y

k
MILP

)
. The trial solutions provide a valid lower bound on

the optimal solution of problem (P-MINLP), however, they will not be used to construct the set
N̂k.

To construct the polyhedral outer approximation, we define a new function F as the point-wise
maximum of the nonlinear constraints, according to

F (x,y) = max
j
{gj(x,y)} . (4)

A new sequence of points
(
xk,yk

)
are now defined as

xk = λkxint + (1− λk)xkMILP,

yk = λkyint + (1− λk)ykMILP,
(5)

where the interpolation parameters λk are chosen such that F (xk,yk) = 0. The interpolation
parameters λk can be obtained by a simple one-dimensional root search. The points

(
xk,yk

)
are

now located on the boundary of the feasible region, and linearizing the active nonlinear constraints
at this point results in supporting hyperplanes to the set N . The set N̂k is, thus, constructed
according to eq.(2) using the points

(
xk,yk

)
.

The ESH algorithm also uses a preprocessing step to obtain supporting hyperplanes of the set
N by solving linear programming (LP) relaxations. The procedure of solving MILP subproblems

4

and generating supporting hyperplanes is repeated until a trial solution satisfies all nonlinear
constraints. The tighter polyhedral outer approximation usually gives the ESH algorithm an
advantage over the ECP algorithm. It has been shown in [45], that the ESH algorithm can also
be successfully applied to nonsmooth MINLP problems with pseudoconvex constraint functions.

3.4 Outer approximation

The outer approximation (OA) method was first presented by [43], and some further properties
for convex MINLP problems were presented by [50]. Some modifications of the OA method have
been presented to handle nonconvex problems more efficiently, see, e.g., [78, 121]. For more details
on the basic convex approach discussed in this paper see, e.g., [64].

OA is a decomposition technique, which obtains the optimal solution of the original problem
by solving a sequence of MILP and NLP subproblems. Similar to both ECP and ESH, OA also
constructs an iteratively improving polyhedral outer approximation N̂k of the nonlinear feasible
region defined by the set N . However, OA only uses the polyhedral approximation for choosing
the integer combination yk, and the corresponding continuous variables xk are chosen by solving
a convex NLP subproblem.

In each iteration, the polyhedral outer approximation is used to construct problem (MILP-k),
which is often referred to as the MILP master problem. A new integer combination yk is then
obtained by solving problem (MILP-k). Once the integer combination yk is obtained, the following
NLP subproblem is formed

(xk,yk) ∈ arg min
(x,y)∈N∩L

cT1 x + cT2 y

s.t. y = yk.
(NLP-fixed)

If problem (NLP-fixed) is feasible, a valid upper bound can be obtained from the solution (xk,yk),
and the solution is used to improve the polyhedral approximation according to Eq. (2). The
polyhedral outer approximation is updated by either linearizing all constraints or only the active
constraints.

Problem (NLP-fixed) may also be infeasible in some iteration. If yk is an infeasible integer
combination, the corresponding continuous variables can be obtained by solving the following
convex subproblem

(xk,yk, rk) ∈ arg min
(x,y)∈L,r∈R

r

s.t. y = yk,

gj(x,y) ≤ r ∀j = 1, 2, . . . , l,

(NLP-feasibility)

which minimizes the constraint violation with respect to the l∞-norm. The solution to problem
(NLP-feasibility) does not provide a lower bound. However, using the infeasible solution (xk,yk)
to update the polyhedral outer approximation according to Eq. (2), ensures that the infeasible
integer combination yk cannot be obtained again by the MILP-master problem, cf. [50].

The OA algorithm is usually initiated by solving an integer relaxation of the MINLP problem,
giving an initial lower bound and the solution can be used to construct the polyhedral approxima-
tion N̂0. It is also possible to use integer cuts to exclude specific integer combinations, as suggested
by [43]. Solving the MILP master problems (MILP-k) provides a lower bound on the optimum,
and the procedure is repeated until the upper and lower bound is within a given tolerance.

In general, OA results in tighter polyhedral outer approximations than the ECP algorithm,
and may, therefore, require fewer iterations. However since each iteration is somewhat more
computationally demanding, the two methods are difficult to compare directly in this way.

3.5 Generalized Benders decomposition

Generalized Benders decomposition (GBD) was first presented by [58] and is a generalization of
Benders decomposition, a partitioning procedure for solving MILP problems [11]. As noted by

5

[109], GBD is closely related to OA and the main difference is the derivation of the master problem.
In GBD, the master problem is projected onto the space defined by the integer variables and the
master problem is, thus, only expressed in the integer variables. Here we will not present the full
derivation of GBD, but use the same approach as [64] to derive the master problem. For more
details on GBD see, e.g., [65] or [52].

Given an integer combination yk, the corresponding continuous variables can be obtained by
solving either of the problems (NLP-fixed) or (NLP-feasibility). If problem (NLP-fixed) is feasible,
it provides a valid upper bound, as well as values for the continuous variables xk and the optimal
Lagrangean multipliers λk and µk. A valid cut is then given by

cT2 y +

l∑
j=1

λkj∇ygj(x
k,yk)T (y − yk) + (µk)TBy ≤ α, (6)

where ∇y denotes the gradient with respect to the integer variables. Note that, the left-hand
side of Eq. (6) is a first order Taylor series expansion of the Lagrangean function at the point
(xk,yk, λk, µk) with respect to the x and y variables. The cut in Eq. (6) can be shown to be a
surrogate constraint of the linearization in Eq. (2) in which the continuous variables x are projected
out, e.g., [109], and [64].

If problem (NLP-fixed) is infeasible with the integer combination yk, problem (NLP-feasibility)
is solved to obtain the continuous variables xk as well as the optimal multipliers λk and µk. A
valid cut in the integer space is then given by,

l∑
j=1

λkj
(
gj(x

k,yk) +∇ygj(x
k,yk)T (y − yk)

)
+ (µk)TBy ≤ 0. (7)

For more details on the cuts see, e.g., [109]. The master problem for obtaining new integer
combinations, is then given by

min
y∈Y,α∈R

α

s.t. cT2 y +

l∑
j=1

λkj∇ygj(x
k,yk)T (y − yk) + (µk)TBy ≤ α, ∀k ∈ Kf

l∑
j=1

λkj
(
gj(x

k,yk) +∇ygj(x
k,yk)T (y − yk)

)
+ (µk)TBy ≤ 0, ∀k ∈ K\Kf ,

where Kf contains the indices of all iterations where problem (NLP-fixed) is feasible and the index
set K contains all iterations. Solving the master problems provides a lower bound on the optimal
solution and gives a new integer combination yk+1. The procedure is repeated until the upper
and lower bounds are within the desired tolerance.

Since the cuts obtained by equations (6) and (7) can be viewed as surrogate cuts of the linear
constraints included in the OA master problem, GBD generates weaker cuts than OA at each
iteration and usually requires more iterations to solve a given problem. However, the master
problems in GBD may be easier to solve since they contain fewer variables compared to OA and
only one cut is added in each iteration.

A compromise between OA and GBD has been proposed by [109], where the continuous vari-
ables are classified into linear or nonlinear based on how they are involved in the original MINLP
problem. By projecting out the nonlinear continuous variables, one can derive a Lagrangean cut
similar as with GBD while still retaining the linear constraints involving continuous variables in
the master problem. The given method has been coined as partial surrogate cuts (PSC), and as
proved in [109], it results in a tighter linear relaxation compared to GBD while still only adding
one cut per iteration.

6

3.6 LP/NLP based branch and bound

When solving a convex MINLP problem with either ECP, ESH, GBD or OA, most of the total
solution time is usually spent on solving the MILP subproblems. The MILP problems are also
quite similar in consecutive iterations since they only differ by a few linear constraints. To avoid
constructing many similar MILP branch and bound trees, [109] presented a method which inte-
grates OA within BB, called LP/NLP based branch and bound (LP/NLP-BB). The main idea
is to only construct one branch and bound tree, where the MILP master problem is dynamically
updated.

An initial polyhedral outer approximation is constructed by solving an integer relaxation and
linearizing the constraints at the integer relaxed solution, as in OA. The polyhedral outer approx-
imation is used to construct the first MILP master problem and branch and bound procedure is
initiated, where an LP relaxation is solved in each node. Once an integer solution is obtained at
a given node, the integer combination is used as in OA. If the NLP problem (NLP-fixed) with
the given integer combination is feasible, it provides an upper bound and new linearizations are
generated. If it is infeasible, new linearizations can be obtained by solving the feasibility problem
(NLP-feasibility). The new linearizations are then added to all open nodes, and the LP relaxation
is resolved for the node which returned the integer combination. The branch and bound procedure
continues normally by solving LP relaxations, which now give a more accurate approximation of
the nonlinear constraints. Here, the search must continue down each node until either the LP
relaxation returns an integer solution that satisfies all nonlinear constraints, the LP relaxation ob-
tains an objective value worse than the upper bound, or until the LP relaxation becomes infeasible.
As in normal BB, a lower bound is provided by the lowest optimal solution of the LP relaxations
in all open nodes, and the search continues until the upper and lower bounds are within a given
tolerance. The LP/NLP-BB procedure, thus, only generates a single branch and bound tree, and
is sometimes referred to as a single tree OA.

Numerical results have shown that LP/NLP-BB technique can results in significantly fewer
nodes than the total number of nodes explored in the multiple MILP master problems in OA
[43, 85]. Implementations of the LP/NLP-BB algorithm have shown promising results, e.g., see
[1, 24] or [96].

3.7 Primal heuristics

Primal heuristics is a common term for algorithms and techniques intended to obtain good feasible
solutions quickly. The use of primal heuristics began in the field of MILP. For instance, [49] claimed
that primal heuristics were one of the most important improvements in MILP solvers within the
last decade. In recent years, there has also been an interest in primal heuristics for MINLP
problems and several algorithms have been proposed for this task. Such algorithms are, e.g.,
undercover [17], feasibility pump [25], rounding heuristics [16], and the center-cut algorithm [81].
Another technique for obtaining feasible solutions in solvers based on ECP, ESH or OA, is to
check the alternative solutions in the solution pool provided by the MILP solver [80]. A detailed
summary of several primal heuristics for MINLP problems is given by [15] and [39].

Finding a good feasible solution to an MINLP problem can improve the performance of MINLP
solvers, as shown by the numerical results in [13, 15]. Knowing a good feasible solution can, e.g.,
reduce the size of the search tree in BB based solvers, and provide a tight upper bound. Obtaining a
tight upper bound is especially important in solvers based on the ECP or ESH algorithm, because,
in their basic form neither algorithm will obtain a feasible solution before the very last iteration.

3.8 Preprocessing

Preprocessing includes various techniques for modifying the problem into a form more favorable
for the actual solver. The preprocessing procedures can result in tighter relaxations or reduce the
problem size. [10] classified MINLP presolving techniques into two major categories: housekeeping
and reformulations. Housekeeping includes techniques such as bound tightening and removal

7

of redundant constraints. Reformulations in the preprocessing can include techniques such as
improvement of coefficients in the constraints and disaggregation of constraints.

There are two main approaches for tightening the variable bounds, feasibility based bound
tightening [9, 114], and optimization-based bound tightening [89]. Feasibility based bound tight-
ening analyzes the constraints sequentially to improve the variable bounds, whereas optimization-
based bound tightening solves a sequence of relaxed problems where each variable is maximized
and minimized to obtain optimal bounds.

By reformulating the original problem, it is in some cases possible to obtain significantly
tighter relaxations. Within MILP it is well known that different problem formulations can result
in a tighter or weaker integer relaxation. The uncapacitated facility location problem is an exam-
ple where disaggregation of some constraints leads to a tighter integer relaxation [126]. Similar
techniques can also be used to obtain tighter integer relaxations for MINLP problems. Some
types of nonlinear constraints can also be disaggregated to obtain a lifted reformulation of the
problem, where the nonlinear constraint is split into several constraints by the introduction of
new variables. Such lifted reformulations were first proposed by [117], where it was shown that a
lifted reformulation results in tighter polyhedral outer approximations. In a recent paper by [82],
it was shown that the performance of several MINLP solvers, based on ECP, ESH, and OA, could
be drastically improved by utilizing a reformulation technique based on lifting. Lifted reformula-
tions of MINLP problems have also been studied by [69], and [92]. Some further reformulation
techniques for MINLP problems are also presented in [88].

4 Solvers

This section is intended as an introduction to commonly available MINLP solvers, and to describe
their main properties. Most of the solvers are not based on a single “pure” algorithm but they
combine several techniques and ideas to improve their performance. On top of this, MINLP solver
technology has evolved from two more mature and different ends, NLP and MILP solvers. This
results in most of the solvers for MINLP relying on different MILP and NLP solvers. Among
the MILP solvers, the most recognized commercial solvers are CPLEX [73], Gurobi [67], and
XPRESS [48], while the solvers GLPK [97] and CBC [54], the last one from the COIN-OR initia-
tive [91], are among the most recognized open-source solvers, all of them implementing an arsenal
of methods within a branch and cut framework. In the NLP case, solvers like CONOPT [41],
SNOPT [59], and Knitro [34] are well-known commercial options, and IPOPT [122] is a well-
known open-source solver, also part of the COIN-OR initiative. There exists more variability in
the algorithms behind NLP solvers, e.g., CONOPT implements a Generalized Reduced Gradi-
ent (GRG) method, while IPOPT and Knitro use the interior-point method, and SNOPT uses a
sequential quadratic programming (SQP) approach, see [19] for a review in NLP.

In this section, we only mention the main features of the solvers, and for more details see the
references given in the solver sections. A summary of solvers and software for MINLP problems was
previously also given by [32]. The available solvers are implemented in a variety of programming
languages, some as stand-alone libraries accessible from algebraic modeling software like GAMS,
AMPL, and AIMMS. Other solvers have been implemented directly in the same programming
languages as their modeling systems, e.g., MATLAB, Python-Pyomo, Julia-JuMP. The solvers
used in the numerical comparison are listed in alphabetical order below.

AlphaECP (Alpha Extended Cutting Plane) is a solver based on the ECP algorithm developed
by T. Westerlund’s research group at Åbo Akademi University in Finland, and implemented for
GAMS by T. Lastusilta. By using the GAECP algorithm [125] the solver also has guaranteed
convergence for pseudoconvex MINLP problems. The solver mainly solves a sequence of MILP
subproblems, but to speed-up convergence, it occasionally solves convex NLP subproblems with
fixed integer variables. To improve the capabilities of handling nonconvex problems, the algorithm
also employs some heuristic techniques, described by [84]. As subsolvers, AlphaECP can utilize all
the NLP and MILP solvers available in GAMS. An important feature of the solvers is the technique

8

used for terminating the MILP subsolver prematurely presented by [125], usually resulting in only
a small portion of the MILP subproblems to be solved to optimality and a significant reduction
in the total solution time. More details on the solver are found at www.gams.com/latest/docs/

S_ALPHAECP.html.

ANTIGONE (Algorithms for coNTinuous / Integer Global Optimization of Nonlinear Equations)
is a global optimization solver available in GAMS. The solver was developed by R. Misener
and C.A. Floudas at Princeton University. ANTIGONE uses reformulations and decomposes
the nonconvex constraints into constant, linear, quadratic, signomial, linear fractional, exponen-
tial, and other general nonconvex terms. Convex relaxations are then generated for the decom-
posed nonconvex terms and the relaxations are solved in a branch and cut framework. As a
global solver, ANTIGONE is not limited to only convex problems and is able to solve a va-
riety of nonconvex problems. ANTIGONE uses local solvers for finding feasible solutions and
uses MILP relaxations to obtain valid lower bounds, resulting in a sequence of relaxations con-
verging to the global optimum [102]. The solver can use CONOPT and SNOPT as NLP sub-
solver, and CPLEX as subsolver for MILP relaxations. More details on the solver are found at
www.gams.com/latest/docs/S_ANTIGONE.html.

AOA (AIMMS Outer Approximation) is a system module implemented in the AIMMS language
originally developed by Paragon Decision Technology [72]. As the name suggests, the solver is
based on OA and implements both normal OA and the LP/NLP-BB methods. The latter is the
recommended one for convex problems and generates linearizations as lazy constraints utilizing
MILP solver callbacks. AOA is implemented as a “white box solver”, meaning that it allows the
users to fully customize the algorithm. To improve the performance and its capabilities for solving
nonconvex problems, AOA may use nonlinear preprocessing and a multi-start technique. More de-
tails on this module can be found at aimms.com/english/developers/resources/solvers/aoa/.

BARON (Branch and Reduce Optimization Navigator) is a global optimization solver devel-
oped by N.V. Sahinidis at Carnegie Mellon University (partially at the University of Illinois) and
M. Tawarmalani at Purdue University [111, 117]. The solver is available in many different envi-
ronments such as AIMMS, AMPL, GAMS, JuMP, MATLAB and Pyomo [113]. The solver uses a
polyhedral branch and bound technique, and thus, solves LP relaxations in the BB nodes. How-
ever, BARON also uses MILP relaxations as described by [127] and [76]. Nonconvex problems are
handled by generating convex underestimators (and concave overestimators) in combination with
a spatial branch and bound technique. The solver utilizes automatic reformulations and convexity
identification to decompose nonconvex functions into simpler functions with known convex (or
concave) relaxations. The reformulations can also result in tighter lifted polyhedral outer approx-
imations as shown by [117]. BARON also uses advanced bound tightening and range reduction
techniques to reduce the search space in combination with other techniques, such as local search
techniques. In GAMS, BARON is able to use all the available NLP solvers for subproblems and
CBC, CPLEX, and XPRESS as LP/MILP subsolver. More information on BARON can be found
at http://www.minlp.com/baron.

BONMIN (Basic Open-source Nonlinear Mixed Integer Programming) is an open-source
solver for MINLP problems developed in collaboration between Carnegie Mellon University and
IBM Research, lead by P. Bonami, as a part of the COIN-OR initiative. The solver implements
several algorithms, and the user is able to choose between NLP-BB, NLP/LP-BB, OA, feasibility
pump, OA based branch and cut, and a hybrid approach. Some computational results, as well
as detailed descriptions of the main algorithms, are given by [24]. BONMIN has an interface to
Pyomo, JuMP, AMPL, GAMS, and MATLAB (through the OPTI Toolbox, cf. [37]). There is
also a commercial version of the solver, called BONMINH, in which the NLP subsolver IPOPT
may utilize additional linear solvers [71]. LP and MILP relaxations can be solved with both CBC

9

www.gams.com/latest/docs/S_ALPHAECP.html
www.gams.com/latest/docs/S_ALPHAECP.html
www.gams.com/latest/docs/S_ANTIGONE.html
aimms.com/english/developers/resources/solvers/aoa/
http://www.minlp.com/baron

and CPLEX. More details of the solver are given by [22], and detailed description of the project
and solver can be found at projects.coin-or.org/Bonmin.

Couenne (Convex Over and Under Envelopes for Nonlinear Estimation) is a global optimiza-
tion open-source solver for MINLP problems. It was developed as part of the COIN-OR initiative
in collaboration between Carnegie Mellon University and IBM Research, and the project was led
by P. Belotti. The solver implements an LB based spatial branch and bound technique as its
main algorithm, in addition to bound reduction techniques and primal heuristics [8]. Couenne is
closely integrated with BONMIN and extends it by routines for calculating valid linear outer ap-
proximations of nonconvex constraints. For solving NLP subproblems, Couenne uses IPOPT as a
subsolver. Couenne is accessible in GAMS, Pyomo, JuMP, and AMPL. A solver manual is provided
in [7], and more information about Couenne can be found at projects.coin-or.org/Couenne.

DICOPT (Discrete Continuous Optimizer) is a solver based on the OA method for MINLP,
developed by the group of I.E. Grossmann at Carnegie Mellon University. This solver implements
the equality relaxation and augmented penalty methods in combination with OA [121]. In the
equality relaxation, the nonlinear equality constraints are relaxed as inequalities using dual infor-
mation of the constraints, and the augmented penalty method relaxes the linearizations with slack
variables which are penalized in the objective of the MILP master problem of OA. Both methods
are intended as heuristics for nonconvex MINLP problems, although if the equality constraints
relax as convex inequalities, the methods become rigorous as the slacks of the augmented penalty
are driven to zero. DICOPT is only available in GAMS, and it can use any available MILP or
NLP solvers to solve the subproblems. Recently, a feasibility pump algorithm was implemented
as a primal heuristic for convex MINLP problems to improve the solver’s performance [13]. More
information about DICOPT can be found at www.gams.com/latest/docs/S_DICOPT.html.

Juniper is an open-source MINLP solver implemented in Julia. It is developed by O. Kröger, C.
Coffrin, H. Hijazi, and H. Nagarajan at Los Alamos National Laboratory. The solver implements
an NLP-BB method with branching heuristics, primal heuristics, e.g., the feasibility pump, and
parallelization options available in Julia [79]. The NLP subproblems can be solved e.g., with
IPOPT. More information about Juniper can be found at github.com/lanl-ansi/Juniper.jl.

Knitro is a commercial optimization software currently developed by Artelys [34]. Knitro im-
plements an interior-point/active-set algorithm for dealing with nonlinear continuous problems.
Although it can be used as an NLP solver, it also and solves MINLP problems by a branch and
bound approach. The solver is available in, e.g., AIMMS, AMPL, JuMP, and GAMS. More infor-
mation about Knitro is found at
www.artelys.com/en/optimization-tools/knitro.

LINDO is a global solver developed by LINDO Systems Inc. available in both GAMS, the
LINDO environment LINGO, as an add-in for Microsoft Excel, and MATLAB. LINDO includes
solvers for LP, quadratic programming (QP), NLP and conic programming [90]. For mixed-
integer problems, LINDO uses a branch and cut approach and is able to utilize both linear and
nonlinear subsolvers [74]. To fully use the global optimization capabilities in GAMS, LINDO
requires the NLP solver CONOPT. For nonconvex problems, the solver uses reformulations and
convex relaxations within a BB framework. The solver is able to recognize convex quadratic terms,
and an option for turning off the global search strategies, i.e., for convex problems, is available.
More information about the solver is found at www.lindo.com.

Minotaur (Mixed-Integer Nonlinear Optimization Toolkit: Algorithms, Underestimators,
and Relaxations) is an open-source toolkit for solving MINLP problems developed in collaboration
between Argonne National Laboratory, Indian Institute of Technology Bombay, and the University
of Wisconsin-Madison. The goals of Minotaur are to (1) provide efficient MINLP solver, (2)

10

projects.coin-or.org/Bonmin
projects.coin-or.org/Couenne
www.gams.com/latest/docs/S_DICOPT.html
github.com/lanl-ansi/Juniper.jl
www.artelys.com/en/optimization-tools/knitro
www.lindo.com

implement a variety of algorithms in a common framework, (3) provide flexibility for developing
new algorithms for exploiting special structures, and (4) reduce the burden of developing new
algorithms by providing a common software infrastructure [96]. Currently, Minotaur has two main
approaches for convex MINLP based on the NLP-BB and LP/NLP-BB algorithms. Minotaur is
able to use both filterSQP and IPOPT as NLP subsolvers and CBC, Gurobi, or CPLEX as LP
subsolver. Minotaur is available as a standalone solver, but it has also an AMPL interface. Details
about the Minotaur project can be found at wiki.mcs.anl.gov/minotaur/.

Pajarito is an open-source solver for Mixed-Integer Conic Programming (MICP) implemented
in Julia by M. Lubin and J.P. Vielma from the Massachusetts Institute of Technology. Contrary to
most of the other solvers presented in this manuscript, Pajarito can use a conic problem formulation
by a conic outer approximation algorithm. The solver implements conic OA as well as classic OA
and LP/NLP-BB algorithms. Using Disciplined Convex Programming (DCP) Pajarito can access
lifted reformulations, which leads to tighter approximations of the original feasible region when
projected back into the original variables [92]. Pajarito is currently accessible through Julia using
problem inputs in both JuMP and DCP [119]. As MILP solvers it can use any that are available
through JuMP; e.g., CPLEX, Gurobi, and CBC; and for the subproblems, it can use either
specialized conic solvers, e.g., MOSEK [4], or NLP solvers, e.g., IPOPT. More details about the
solver can be found at github.com/JuliaOpt/Pajarito.jl.

SBB (Simple Branch-and-Bound) is a solver in GAMS based on NLP-BB, developed by ARKI
Consulting and Development A/S. The solver can use any NLP solver in GAMS for solving the in-
teger relaxations. The solver uses GAMS Branch-Cut-and-Heuristic facility [57], to obtain cutting
planes and for primal heuristics. More details of the solver are given at www.gams.com/latest/

docs/S_SBB.html.

SCIP (Solving Constraint Integer Programs) was originally developed by T. Acterberg at the
Zuse Institut Berlin as a general framework based on branching for constraint and mixed-integer
programming, cf. [2]. The solver is intended to be modular and it utilizes plugins to make it
easy to modify. SCIP was extended by [120] to also solve convex and nonconvex MINLP problems
utilizing spatial branch and bound in combination with OA and primal heuristics. SCIP is open
source and free for academic use, and it is available both as a stand-alone solver and with interfaces
to GAMS, Pyomo, JuMP, and MATLAB through the OPTI Toolbox. More information about
SCIP can be found in the manual [60] or at http://scip.zib.de.

SHOT (Supporting Hyperplane Optimization Toolkit) is an open-source solver for convex
MINLP developed by A. Lundell, J. Kronqvist and T. Westerlund at Åbo Akademi University.
The solver utilizes polyhedral outer approximations, generated mainly by the ESH method, and
iteratively constructs an equivalent MILP problem. The solver is closely integrated with the MILP
solvers CPLEX and Gurobi, and uses a single-tree approach similar to the LP/NLP-BB technique.
The supporting hyperplanes are dynamically added to the search tree by utilizing callbacks and
lazy constraints, enabling the MILP solver to incorporate the new linearizations without gener-
ating a new branch and bound tree. The integration with the MILP solver enables SHOT to
fully benefit from it with regards to, e.g., cut generating procedures, advanced node selection,
and branching techniques. SHOT also includes the functionality to solve MIQP subproblems. To
obtain an upper bound to the MINLP problem SHOT utilizes several primal heuristics, including
solving fixed NLP problems. SHOT is available as a stand-alone solver, but can also be integrated
with GAMS, in which case SHOT can use any of its NLP solvers. A basic version of SHOT is also
available for Wolfram Mathematica [95]. SHOT cannot use the single tree approach with CBC as
MILP solver or in the Mathematica version, and in this case, solves a sequence of MILP relax-
ations in combination with the primal heuristics. More information about the solver is available
at http://www.github.com/coin-or/shot.

11

wiki.mcs.anl.gov/minotaur/
github.com/JuliaOpt/Pajarito.jl
www.gams.com/latest/docs/S_SBB.html
www.gams.com/latest/docs/S_SBB.html
http://scip.zib.de
http://www.github.com/coin-or/shot

Besides the solvers mentioned above, there are a few others solvers capable of solving convex
MINLP problems that the authors are aware of. It should be noted that the solvers left out
of the numerical comparison are not necessarily inferior compared to the other solvers. Some
of these solvers could not read the problem formats available on MINLPLib, and were therefore
automatically left out from the comparison.

bnb is a MATLAB implementation of NLP-BB by K. Kuipers at the University of Groningen.
The solver uses the fmincon routine in MATLAB’s Optimization Toolbox for solving the integer
relaxed subproblems. The MATLAB code for the solver can be downloaded from www.mathworks.

com/matlabcentral/fileexchange/95-bnb.

FICO Xpress Solver is a solver currently developed by FICO [47], and is available as both
standalone binaries or as a FICO Xpress-MOSEL module. The solver is based on their NLP solver
using successive linear programming (SLP) [107]. The solver includes two main algorithms as well
as some heuristics. The first algorithm is based on NLP-BB where the integer relaxations are
solved using the SLP solver, and the second algorithm is a version of OA. The solver also utilizes
some other techniques described in [47], to improve its performance for MINLP problems. More
information about FICO and its solvers can be found at http://www.fico.com/en/products/

fico-xpress-optimization.

FilMINT is an MINLP solver developed by K. Abhishek, S. Leyffer and J. Linderoth based on
the NLP/LP-BB algorithm [1]. The solver is built on top of the MILP solver MINTO [104] and
uses filterSQP [51] for solving NLP relaxations. By utilizing functionality in MINTO, FilMINT is
able to combine the NLP/LP-BB algorithm with features frequently used by MILP solvers, such
as, cut generation procedures, primal heuristics, and enhanced branching and node selection rules.
There is an AMPL interface available for FilMINT, and for more details, we refer to [1].

fminconset is an implementation of NLP-BB in MATLAB by I Solberg. The NLP subproblems
are solved with MATLAB’s fmincon routine in the Optimization Toolbox. The solver is available
to download from www.mathworks.com/matlabcentral/fileexchange/96-fminconset.

GAECP (Generalized Alpha Extended Cutting Plane) is a solver based on the GAECP al-
gorithm [125] developed by T. Westerlund. The solver also uses supporting hyperplanes as in
the ESH algorithm and is able to guarantee convergence for MINLP problems with nonsmooth
pseudoconvex functions. The solver is described in detail in [123].

MILANO (Mixed-Integer Linear and Nonlinear Optimizer) is a MATLAB based MINLP
solver developed by H. Y. Benson at Drexel University. There are two versions of the solver
available, one uses an NLP-BB technique and the other is based on OA. The NLP-BB technique
version uses an interior point NLP solver with warm-starting capabilities described in [12]. The
solver can be downloaded from http://www.pages.drexel.edu/~hvb22/milano.

MindtPy (Mixed-Integer Nonlinear Decomposition Toolbox in Pyomo) is an open-source soft-
ware framework implemented in Python for Pyomo by the research group of Ignacio Grossmann
at Carnegie Mellon University. This toolbox implements the ECP, GBD, and OA algorithms,
together with primal heuristics, all relying on the decomposition and iterative solution of MINLP
problems. It relies on Pyomo to solve the resulting MILP and NLP subproblems, allowing any of
the solvers compatible with Pyomo to be used with MindtPy [14]. The toolbox is available in the
following repository github.com/bernalde/pyomo/tree/mindtpy.

12

www.mathworks.com/matlabcentral/fileexchange/95-bnb
www.mathworks.com/matlabcentral/fileexchange/95-bnb
http://www.fico.com/en/products/fico-xpress-optimization
http://www.fico.com/en/products/fico-xpress-optimization
www.mathworks.com/matlabcentral/fileexchange/96-fminconset
http://www.pages.drexel.edu/~hvb22/milano
github.com/bernalde/pyomo/tree/mindtpy

MINLP BB was developed by S. Leyffer and R. Fletcher as a general solver for MINLP prob-
lems [86]. The solver is based on NLP-BB and uses the filterSQP for solving the integer relax-
ations. There is an interface to AMPL and the solver can also be used in MATLAB through
the TOMLAB optimization environment [70]. More information about the solver is available at
wiki.mcs.anl.gov/leyffer.

MISQP (Mixed-Integer Sequential Quadratic Programming) is a solver based on a modified
sequential quadratic programming (SQP) algorithm for MINLP problems presented by [46]. The
solver is developed by K. Schittkowski’s research group and the University of Bayreuth. MISQP
is intended for problems where function evaluations may be expensive, e.g., where some function
values are obtained by running a simulation. There is an interface in MATLAB through TOMLAB
as well as a standalone Fortran interface. A more detailed description of the solver is available at
http://tomwiki.com/MISQP.

Muriqui is an open-source MINLP solver developed by W. Melo, M. Fampa, and F. Raupp,
recently presented by [99]. The solver has several algorithms implemented, e.g., ECP, ESH, OA,
NLP/LP-BB, and NLP-BB, as well as some heuristics approaches [98]. For solving MILP and
NLP subproblems, Muriqui can use CPLEX, Gurobi, Xpress [48], Mosek [4], Glpk [97], IPOPT
and Knitro. Muriqui is written in C++ and can be integrated with AMPL. More information
about the solver is available at http://www.wendelmelo.net/software.

There are a few other deterministic solvers that the authors are aware of, capable of handling
convex MINLP problems but mainly focusing on nonconvex MINLP. These solvers are: Decogo
(DECOmposition-based Global Optimizer; [106]), POD (Piecewise convex relaxation, Outer-
approximation, and Dynamic discretization; [103]), LaGO (Lagrangian Global Optimizer; [105]).
For more details on nonconvex MINLP see, e.g., [89, 116] and [53].

5 Benchmark details

The intention of the forthcoming two sections is to compare some of the convex MINLP solvers
mentioned in the previous section by applying them on a comprehensive set of test problems.
There are some benchmarks available in literature, e.g., [1, 27, 80, 84]. However, these are limited
to only a few of the solvers considered here or used a smaller set of test problems. The goal here
is to give a comprehensive up-to-date comparison of both open-source and commercial solvers
available in different environments. The main interest has been to study how the solvers perform
on a standard desktop computer. All the benchmarks were performed on a Linux-based PC with
an Intel Xeon 3.6 GHz processor with four physical cores (and which can process eight threads
at once) and 32 GB memory. We have allowed the solvers to use a maximum of eight threads
to replicate a real-world situation where one tries to solve the problems with all the available
resources.

In the comparison, we have included three versions of BONMIN: BONMIN-OA which is based
on OA, BONMIN-BB which is based on NLP-BB, and BONMIN-HYB which is a variant of the
LP/NLP-BB algorithm. We have also included two versions of Minotaur: Minotaur-QG which is
based on the LP/NLP-BB algorithm, and Minotaur-BB which is based on NLP-BB. The different
versions were included since they represent different approaches for solving the MINLP problems,
and the results vary significantly. The solvers in the comparison are implemented in and used from
different environments (GAMS, AIMMS, and Julia/JuMP), and the subsolvers available may vary.
Where possible, we have tried to use CONOPT and IPOPT(H) as NLP solver, and CPLEX as
(MI)LP solver. A list of the solvers and subsolvers used are given in Table 1.

The termination criteria used with the solvers were the absolute and relative objective gap
between the upper and lower objective bounds. The absolute objective gap was set to 10−3 and
the limit for the relative gap was set to 0.1%. These termination criteria are supported by all
the GAMS solver. However, the AIMMS and JuMP solvers did not support termination based

13

wiki.mcs.anl.gov/leyffer
http://tomwiki.com/MISQP
http://www.wendelmelo.net/software

Table 1: The table shows which subsolvers were used with each solver, and on which platform the
solver was run on.

MINLP solver
Subsolver used Platform

MILP/LP NLP

AlphaECP 2.10.06 CPLEX 12.8 CONOPT 3.17G GAMS 25.0.3
Antigone 1.1 CPLEX 12.8 CONOPT 3.17G GAMS 25.0.3
AOA Convex CPLEX 12.8 CONOPT 3.14V AIMMS 4.53.1
BARON 17.10.16 CPLEX 12.8 CONOPT 3.17G GAMS 25.0.3
BONMINH 1.8 CPLEX 12.8 IPOPTH 3.12 GAMS 25.0.3
Couenne 0.5 CPLEX 12.8 IPOPTH 3.12 GAMS 25.0.3
DICOPT 2 CPLEX 12.8 CONOPT 3.17G GAMS 25.0.3
Juniper 0.2.0 CPLEX 12.8 IPOPT 3.12.1 JuMP 0.18.1
Knitro 10.3 CPLEX 12.8 - GAMS 25.0.3
Lindo 11.0 CPLEX 12.8 CONOPT 3.17G GAMS 25.0.3
Minotaur 05-21-2018 CPLEX 12.6.3 filterSQP20010817
Pajarito 0.5.1 CPLEX 12.8 IPOPT 3.12.1 JuMP 0.18.1
SBB CPLEX 12.8 CONOPT 3 GAMS 25.0.3
SCIP 5.0 CPLEX 12.8 IPOPTH 3.12 GAMS 25.0.3
SHOT 05-21-2018 CPLEX 12.6.3 CONOPT 3.17G GAMS 25.0.3

on the absolute gap. To make sure that the solvers did not terminate prematurely due to other
built-in termination criteria and to avoid clear solver failures, some specific solver options were
given; these are listed in Appendix B. Except for these, default settings were used for all solvers.
Furthermore, a time limit of 900 seconds was also used with all solvers. Even with the 15-minute
time limit, the total running time for the experiments was more than two weeks.

5.1 Problem sets

The problems considered here are all from the problem library MINLPLib [100], which currently
consists of 1534 instances. These instances originate from several different sources and applications
as indicated in the library. Out of the 1534 instances, we have chosen all problems that satisfy
the following criteria: classified as convex, containing at least one discrete variable, and contain
some nonlinearity (either in the objective function or in the constraints). There were in total 366
instances that satisfied the given criteria, and these constitute our master benchmark test set.
Some statistics of the problems are available in Table 2

The problems in MINLPLib represent a variety of different types of optimization problems with
different properties such as the number of variables, number of discrete variables, and number of
nonlinear terms. Some of the problems also represent different formulations of the same problems,
e.g., some problems are written with both the big-M and convex hull formulation of disjunctions.
It is therefore of interest to compare the solvers not only on the entire test set but also compare
them on different subsets of problems with specific properties. We have partitioned the test set
into groups, representing both integer and nonlinear properties, to compare both the solvers and
algorithms for the different types of problems. The following criteria were used to partition the
test problems into subsets:

Integer relaxation gap. By solving an integer relaxation of the MINLP problem and comparing
the optimal objective value of the relaxed problem with the actual optimal objective value,
we are able to determine the integer relaxation gap. To avoid differences due to scaling, we
use a relative integer relaxation gap calculated as

Relative integer relaxation gap =
|z∗ − z̄|

max {|z∗|, 0.001} · 100%, (8)

14

Table 2: Statistics of the convex MINLP instances used in the benchmark

objective function type problem count

linear objective 274
quadratic objective 66
general nonlinear objective 26

minimum mean maximum

number of discrete variables 2 93 1500
number of variables 3 913 107,223

number of constraints 0 1110 108,217
number of nonlinear constraints 0 12 112

number of nonlinear variables 1 129 45211

where z∗ denotes the optimal objective value and z̄ denotes to optimum of the integer relax-
ation. The integer relaxation gap varies significantly for the test problems: some instances
have a gap larger than 1000% and for some instances it is smaller than 1%. Based on the gap,
given by eq. (8), we have divided the test problems into two subsets: Problems with a large
gap (> 50%) and problems with a small gap (< 50%). According to this classification, there
are 151 problems with a large gap (average gap 190%) and 215 with a small gap (average
gap 7.2%).

Nonlinearity. Some of the test problems are almost linear with only a few nonlinear terms,
whereas some test problems are nonlinear in each variable. The test problems are thus
classified based on the following nonlinearity measure

Degree of nonlinearity =
nnonlin
ntot

· 100%, (9)

where nnonlin is the number of variables involved in a nonlinear term and ntot is the total
number of variables. The test problems are divided into the following two categories based on
the nonlinearity measure: Problems with high degree of nonlinearity (> 50%), and problems
with low degree of nonlinearity (< 50%). The set with high degree of nonlinearity contains
133 problems with an average nonlinearity measure of 91%, while the set with low degree of
nonlinearity contains 233 problems with an average nonlinearity measure of 14%.

Discrete density. The number of discrete variables also varies significantly in the test problems
some problems contain only a few discrete variables, while others contain only discrete
variables. To avoid a division based mainly on the problem size, we have chosen to divide
the problems based on the following measure

Discrete density =
nint + nbin

ntot
· 100%. (10)

Here nint and nbin are the number of integer and binary variables, and ntot is the total
number of variables. Again the test problems are divided into two subsets: problems with
a high discrete density (> 50%) and problems with a low discrete density (< 50%). The
first category contains 151 problems with an average discrete density of 85%, and the second
category contains 215 problems with an average density of 27%.

A list of the problems in each category is given in Appendix A, which also shows the integer
relaxation gap, degree of nonlinearity, and discrete density for each test problem.

15

5.2 Reporting

All the results were analyzed using PAVER [33], which is a tool for comparing the performance of
optimization solvers and analyzing the quality of the obtained solutions. The reports generated
by PAVER, as well as all the results obtained by the individual solvers are available at http:

//minlpcomparison.github.io.
The parameters used for generating the reports are also available within the reports. A com-

ment must be made regarding the choice of the parameter gaptol, which was set to the value
1.002 · 10−3 instead of the value used as termination criteria (1 · 10−3 = 0.1%). The small pertur-
bation is needed due to differences in how the relative gap is calculated by the solvers. Some of the
solvers calculate the relative gap by dividing the gap by the lower bound, whereas others divide
by the smallest absolute value of either the upper or lower bound. For example, BARON and
ANTIGONE would, without the small perturbation, seem to terminate prematurely on a large
number of instances and these would all be marked as failed by PAVER.

PAVER also calculate so-called virtual best and virtual worst solvers. The virtual best
solver is the best (in our graphs the fastest) successful solver selected for each individual problem
instance, and the virtual worst is then the slowest for each instance. These solvers provide a good
comparison for how good an individual solver is compared to all solvers.

Since MINLPLib also provides a list of known optimal objective values, as well as upper and
lower objective bounds, PAVER is able to compare the obtained solutions by the known bounds
in MINLPLib. PAVER is, thus, also able to calculate the so-called primal gap, i.e., the difference
between the obtained solution and the best-known integer solution, which can be used to analyze
the quality of the obtained solutions. For example, there are cases where the solver returns the
optimal solution, but it has not been able to verify optimality within the time limit. PAVER also
uses known objective bounds available in MINLPLib to check whether the solvers obtained correct
solutions and bounds for the test problems.

6 Results

The results are presented using solution profiles showing the number of individual problems that a
solver is able to solve as a function of time. Note that the profiles do not represent the cumulative
solution time, but shows how many individual problems the solvers can solve within a specific
time. We have not used performance profiles where the time is normalized with respect to best
solver [40] since these are not necessarily good for comparing several solvers as noted by [62].

In all solution profiles in this section, we have chosen to divide the solvers into two categories to
make the solution profiles more easily readable. The solvers are divided into MILP decomposition
based solvers and BB based solvers. The division is not completely straightforward since some
of the solvers could fit into both categories. However, the division is only intended to make it
easier to read the results. The solvers classified as MILP decomposition based solvers are
AlphaECP, ANTIGONE, AOA, BONMIN-OA, DICOPT, Minotaur-QG, Pajarito, and SHOT.
Solvers classified as BB based solvers are BARON, BONMIN-BB, COUENNE, BONMIN-HYB,
Juniper, Knitro, LINDO, Minotaur-BB, SBB, and SCIP. The time scales are also divided into two
parts to better highlight differences between the solvers, and it is (1) linear in the first 10 seconds,
and (2) logarithmic between 10 and 900 seconds. In each plot, the solvers in the nonactive group
are indicated with thin gray lines, while the others are as shown in the respective legends. The
same line style is used for a specific solver in all figures. In the right margin of each profile, the
solvers are ranked according to the number of solved problems (as indicated within parenthesis).
The virtual best and virtual worst solvers are shown in the figures as the top and bottom gray
lines, and the region between them is shaded.

Figures 1 and 2 show the solution profiles when applying the solvers on the complete set of
test problems. As mentioned, the solution profiles indicate the number of problems that have
been solved by the individual solvers as a function of time. Out of the branch and bound based
solvers, BARON is able to solve the most instances within the time limit followed by SCIP and

16

http://minlpcomparison.github.io
http://minlpcomparison.github.io

M
IL

P
d
e
c
o
m
p
o
si
ti
o
n

b
a
se

d
so

lv
e
rs

0
2

4
6

8
05010
0

15
0

20
0

25
0

30
0

35
0

So
lu

tio
n

tim
e

(s
)

Numberofinstancessolved

So
lu

tio
n

tim
e

(s
)

10
15

30
60

12
0

24
0

48
0

90
0A

lp
ha

E
C

P
(2

73
)

A
O

A
(3

34
)

A
N

T
IG

O
N

E
(2

41
)

B
O

N
M

IN
H

-O
A

(3
15

)

D
IC

O
PT

(3
19

)
M

in
ot

au
r-

Q
G

(3
15

)

Pa
rj

ar
ito

(2
11

)

SH
O

T
(3

42
)

A
lp

ha
E

C
P

A
O

A
A

N
T

IG
O

N
E

B
O

N
M

IN
-O

A
D

IC
O

PT
M

in
ot

au
r-

Q
G

Pa
ja

ri
to

SH
O

T

F
ig

u
re

1:
T

h
e

so
lu

ti
on

p
ro

fi
le

in
d

ic
at

es
th

e
n
u

m
b

er
of

so
lv

ed
co

n
ve

x
M

IN
L

P
in

st
a
n

ce
s

in
M

IN
L

P
L

ib
[1

0
0
]

a
s

a
fu

n
ct

io
n

o
f

ti
m

e.
A

p
ro

b
le

m
is

re
ga

rd
ed

as
so

lv
ed

if
th

e
ab

so
lu

te
ob

je
ct

iv
e

ga
p

,
as

ca
lc

u
la

te
d

b
y

P
A

V
E

R
[3

3
],

is
≤

0.
1
%

.
T

h
e

b
o
rd

er
li

n
es

o
n

to
p

/
b

el
ow

th
e

sh
a
d

ed
a
re

a
in

d
ic

a
te

s
th

e
v
ir

tu
al

b
es

t/
w

or
st

so
lv

er
.

17

B
ra

n
ch

a
n
d

b
o
u
n
d

ty
p
e
so

lv
e
rs

0
2

4
6

8
05010
0

15
0

20
0

25
0

30
0

35
0

So
lu

tio
n

tim
e

(s
)

Numberofinstancessolved

So
lu

tio
n

tim
e

(s
)

10
15

30
60

12
0

24
0

48
0

90
0B

A
R

O
N

(3
20

)
SC

IP
(3

06
)

M
in

ot
au

r-
B

B
(2

88
)

B
O

N
M

IN
H

-B
B

(2
55

)
K

ni
tr

o
(2

49
)

B
O

N
M

IN
H

-H
Y

B
(2

44
)

L
IN

D
O

(1
92

)

SB
B

(2
38

)

Ju
ni

pe
r(

20
4)

C
ou

en
ne

(1
02

)

B
A

R
O

N
B

O
N

M
IN

-B
B

B
O

N
M

IN
-H

Y
B

C
ou

en
ne

K
ni

tr
o

L
IN

D
O

Ju
ni

pe
r

M
in

ot
au

r-
B

B
SB

B
SC

IP

F
ig

u
re

2:
T

h
e

so
lu

ti
on

p
ro

fi
le

in
d

ic
at

es
th

e
n
u

m
b

er
of

so
lv

ed
co

n
ve

x
M

IN
L

P
in

st
a
n

ce
s

in
M

IN
L

P
L

ib
[1

0
0
]

a
s

a
fu

n
ct

io
n

o
f

ti
m

e.
A

p
ro

b
le

m
is

re
ga

rd
ed

as
so

lv
ed

if
th

e
ab

so
lu

te
ob

je
ct

iv
e

ga
p

,
as

ca
lc

u
la

te
d

b
y

P
A

V
E

R
[3

3
],

is
≤

0.
1
%

.
T

h
e

b
o
rd

er
li

n
es

o
n

to
p

/
b

el
ow

th
e

sh
a
d

ed
a
re

a
in

d
ic

a
te

s
th

e
v
ir

tu
al

b
es

t/
w

or
st

so
lv

er
.

18

A
lp

ha
EC

P
A

N
TI

G
O

N
E

AO
A

BA
RO

N
BO

N
M

IN
-B

B
BO

N
M

IN
-H

Y
B

BO
N

M
IN

-O
A

Co
ue

nn
e

D
IC

O
PT

Ju
ni

pe
r

K
ni

tro
LI

N
D

O
M

in
ot

au
r-B

B
M

in
ot

au
r-Q

G
Pa

ja
rit

o
SB

B
SC

IP
SH

OT

200

250

300

350

N
um

be
ro

fp
ro

bl
em

in
st

an
ce

s

Normal termination Exceeded limit Error, capability or other problem

Figure 3: The solution status returned from the solvers.

Minotaur-BB. SHOT is able to solve the most problems out of the MILP decomposition based
solvers, followed by AOA and DICOPT. SHOT and AOA are overall the fastest solvers for the
test set, and they manage to solve 342(SHOT) and 334(AOA) of the 366 test problems within
the time limit. The virtual best solver is able to solve 357 of the problems whereas the virtual
worst only manages to solve 25 problems. The virtual best and worst solvers, thus, show a huge
spread in the solvers’ performance for different problems and highlight the importance of choosing
a solver well suited for the problem type.

Figure 3 presents statistics regarding the termination of the solvers, e.g., how many errors
and timeouts occurred. These values are as reported by the solver, but verified by PAVER by
comparing the solutions returned to known values or bounds, and checking if the solver fulfilled
the time limit. If some solution returned by a solver is wrong, these instances are given the status
error; the number of such instances per solver is reported in Figure 4. Such failure may e.g., be
due to numerical issues within the solver. Figure 5 shows the number of problems where the solver
was able to obtain a solution within 0.1% and 1% of the best-known solution. The figure shows
that none of the solvers was able to obtain a solution within 1% of the best-known solution for
all of the problems, given the 900 second time limit. For example, BARON was able to obtain a
solution within 1% of the optimum for 352 problems and SHOT obtained such a solution for 350
problems.

The number of instances solved to a relative objective gap, i.e., difference between the upper
and lower bound, of 0.1% and 1%, per solver is shown in Figure 6. By comparing Figures 5 and 6,
it can be observed that some of the solvers able to obtain a solution within 0.1% of the optimum
to significantly more problems than they are able to verify as optimal. For example, AlphaECP
seems to be struggling with obtaining a tight lower bound for some of the problems, since it is
able to obtain solutions within 0.1% of the optimum in 333 problems, but only verified optimality
to a 0.1% gap for 273 instances.

Since it may be difficult to draw more detailed conclusions from the results in Figures 1 and
2, the next sections consider subsets of test problems with specific properties. A summary of the
results for the different subsets is given in section 6.5.

6.1 Impact of the integer relaxation gap

In this section, we consider two types of problems: problems with a large integer relaxation gap,
and problems with a small integer relaxation gap. Figure 7 shows the solution profiles of the solvers

19

A
lp

ha
EC

P
A

N
TI

G
O

N
E

AO
A

BA
RO

N
BO

N
M

IN
-B

B
BO

N
M

IN
-H

Y
B

BO
N

M
IN

-O
A

Co
ue

nn
e

D
IC

O
PT

Ju
ni

pe
r

K
ni

tro
LI

N
D

O
M

in
ot

au
r-B

B
M

in
ot

au
r-Q

G
Pa

ja
rit

o
SB

B
SC

IP
SH

OT

0

50

100

N
um

be
ro

fp
ro

bl
em

in
st

an
ce

s

Figure 4: The number of solutions per solver flagged as error by PAVER. Most often, the cause is
that the returned solution is not within the bounds provided in MINLPLib.

for the problems with a large gap, and Figure 8 shows the solution profiles for the problems with
a small gap. By comparing the figures, there is a clear difference for the solvers based on a BB
approach. The solvers utilizing a BB type algorithm clearly perform better on the problems with
a small gap compared to the problems with a large integer relaxation gap. For example, Knitro
is one of the most efficient solvers for the problems with a small gap, both in terms of speed and
number of solved problems, whereas it is out-performed by several solvers for the problems with
a large gap.

The NLP-BB based solvers, BONMIN-BB, Minotaur-BB, and SBB solve significantly fewer of
the problems with a large gap than the solvers based on either an ECP, ESH or OA (AlphaECP,
BONMIN-OA, DICOPT, and SHOT). Overall, the MILP decomposition based solvers seem to be
less affected by the integer relaxation gap then the BB based solvers.

6.2 Impact of nonlinearity

The problem types considered in this section are problems with a high and low degree of nonlin-
earity, and the results are shown in Figures 9 and 10. Several of the solvers use linearizations to
approximate the nonlinear functions in some steps of the solution procedure, whereas solvers using
an NLP-BB approach directly treats the nonlinearity. Most of the solvers utilizing linearizations
perform significantly better on the problems with a low degree of nonlinearity. For the problems
with a low degree of nonlinearity, BARON, BONMIN-OA, and DICOPT are among the most effi-
cient ones in terms of both speed and number of problems solved. However, for the problems with
a high degree of nonlinearity they are outperformed by the NLP-BB based solvers Minotaur-BB,
BONMIN-BB, and Knitro.

SHOT and the NLP/LP-BB based solver Minotaur-QG have quite similar behavior for both
types of problems and perform quite well in both categories. Both of the solvers rely on lineariza-
tions of the nonlinear constraints and one would, thus, expect them to be negatively affected by
the degree of nonlinearity. AOA, Minotaur-QG and SHOT all use a quite similar single-tree ap-
proach where NLP subproblems are solved in some of the nodes, which might help them to cope
with problems with a high degree of nonlinearity.

The NLP-BB based solvers seem to be most affected by the degree of nonlinearity. For problems
with a high degree of nonlinearity they performed overall well, and for the problems with a low
degree of nonlinearity they did not perform as well in comparison with the other solvers.

20

A
lp

ha
EC

P
A

N
TI

G
O

N
E

AO
A

BA
RO

N
BO

N
M

IN
-B

B
BO

N
M

IN
-H

Y
B

BO
N

M
IN

-O
A

Co
ue

nn
e

D
IC

O
PT

Ju
ni

pe
r

K
ni

tro
LI

N
D

O
M

in
ot

au
r-B

B
M

in
ot

au
r-Q

G
Pa

ja
rit

o
SB

B
SC

IP
SH

OT

100

150

200

250

300

350

N
um

be
ro

fp
ro

bl
em

in
st

an
ce

s

gap ≤ 0.1% 0.1% < gap ≤ 1% 1% < gap ≤ 10%

Figure 5: The number of instances in the benchmark with a solution within 0.1%, 1% and 10% of
the best known optimal value.

6.3 Impact of discrete density

Finally, we compare how the solvers are affected by the percentage of discrete variables, i.e.,
integer, and binary variables. Figures 11 and 12 show how the solvers perform for problems with
high and low discrete density.

The MILP decomposition based solvers perform similar for both types of problems, and no
conclusions can be drawn from the results. However, again there is a clear difference for the NLP-
BB based solvers. Surprisingly, both BONMIN-BB, Knitro, and Minotaur-BB performed better,
with respect to the other solvers, on the set of problems with a high discrete density.

Both BARON and SHOT perform well on both sets of test problems, and they perform some-
what better on the problems with a low discrete density. The OA approach seems to be well suited
for the problems with a low discrete density, where DICOPT is one of the most efficient solvers
and BONMIN-OA also manages to solve a large portion of the problems.

21

A
lp

ha
EC

P
A

N
TI

G
O

N
E

AO
A

BA
RO

N
BO

N
M

IN
-B

B
BO

N
M

IN
-H

Y
B

BO
N

M
IN

-O
A

Co
ue

nn
e

D
IC

O
PT

Ju
ni

pe
r

K
ni

tro
LI

N
D

O
M

in
ot

au
r-B

B
M

in
ot

au
r-Q

G
Pa

ja
rit

o
SB

B
SC

IP
SH

OT

100

150

200

250

300

350

N
um

be
ro

fp
ro

bl
em

in
st

an
ce

s

gap ≤ 0.1% 0.1% < gap ≤ 1% 1% < gap ≤ 10%

Figure 6: The number of instances in the benchmark with an objective gap of 0.1%, 1% and 10%.

6.4 Impact of preprocessing techniques

To illustrate the benefits of using preprocessing procedures on convex MINLP problems, we have
solved all the problems using BARON with default preprocessing and with reduced preprocessing.
BARON was chosen for this experiments since it probably has the most advanced preprocessing of
all the considered solvers, and with the default setting it is able to solve a large portion of the test
problems. BARON does not only uses bound tightening and range reduction in advance of the
solution procedure but also in the branch and bound nodes. Reducing the bound tightening and
range reduction procedures, thus, affects the entire solution procedure. However, the intention
here is mainly to illustrate the benefits of using such preprocessing techniques.

The problems are first solved using default settings and with reduced preprocessing. For the
test with reduced preprocessing we have disabled the linear- and nonlinear-feasibility-based range
reduction (LBTTDO=0), not allowed any local searches in the preprocessing (NumLoc=0) and disabled
the optimality based tightening (OBTTDo=0). More information about these settings is found in
[113].

Figure 13 shows that performance is strongly affected by the preprocessing techniques men-
tioned earlier. With the reduced preprocessing, BARON was able to solve 65 fewer problems
within the time limit. Overall the results clearly demonstrate the benefits of using well integrated
preprocessing techniques.

6.5 Summary of the results

How the solvers are affected by the integer relaxation gap, degree of nonlinearity and discrete
density is summarized in Table 3. The table shows the number of problems solved within each
category as well as an indicator of how the solvers’ performance was affected by the specific
properties. The performance indicator shows how the performance of a solver is affected by the
problem properties with respect to the other solvers. If a solver clearly performed better, with
respect to speed and number of solved problems, in a category it is indicated by ‘+’, and similarly
‘–’ indicates that solver performed worse for that category of problems. If the performance is
similar within both categories it is indicated by ‘≈’. These indicators were obtained by carefully
analyzing the performance profiles, and are not intended as a grade of the solver but to show how
it is affected by different problem properties. The results presented in Table 3 indicates that BB
based solvers seem to be more affected by the problem properties considered here compared to
the MILP decomposition based solvers.

22

MILP decomposition based solvers

0 2 4 6 8
0

20

40

60

80

100

120

140

Solution time (s)

N
um

be
ro

fi
ns

ta
nc

es
so

lv
ed

Solution time (s)

10 15 30 60 120 240 480 900

AlphaECP (98)

AOA (132)

ANTIGONE (110)

BONMIN-OA (122)
DICOPT (121)
Minotaur-QG (120)

Parjarito (65)

SHOT (139)

Branch and bound type solvers

0 2 4 6 8
0

20

40

60

80

100

120

140

Solution time (s)

N
um

be
ro

fi
ns

ta
nc

es
so

lv
ed

Solution time (s)

10 15 30 60 120 240 480 900

BARON (134)

SCIP (124)

Minotaur-BB (99)

BONMIN-BB (57)
Knitro (57)

BONMIN-HYB (79)

LINDO (36)

SBB (52)
Juniper (50)

Couenne (36)

AlphaECP AOA ANTIGONE BARON BONMIN-OA
BONMIN-BB BONMIN-HYB Couenne DICOPT Knitro
LINDO Juniper Minotaur-QG Minotaur-BB Pajarito
SBB SCIP SHOT

Figure 7: The solution profiles for problem instances with a high integer relaxation gap as indicated
in Appendix A.

23

MILP decomposition based solvers

0 2 4 6 8
0

50

100

150

200

Solution time (s)

N
um

be
ro

fi
ns

ta
nc

es
so

lv
ed

Solution time (s)

10 15 30 60 120 240 480 900

AlphaECP (175)

AOA (202)

ANTIGONE (131)

BONMIN-OA (193)

DICOPT (198)
Minotaur-QG (195)

Parjarito (146)

SHOT (203)

Branch and bound type solvers

0 2 4 6 8
0

50

100

150

200

Solution time (s)

N
um

be
ro

fi
ns

ta
nc

es
so

lv
ed

Solution time (s)

10 15 30 60 120 240 480 900

BARON (186)

SCIP (182)

Minotaur-BB (189)

BONMIN-BB (198)
Knitro (192)

BONMIN-HYB (165)
LINDO (156)

SBB (186)

Juniper (154)

Couenne (66)

AlphaECP AOA ANTIGONE BARON BONMIN-OA
BONMIN-BB BONMIN-HYB Couenne DICOPT Knitro
LINDO Juniper Minotaur-QG Minotaur-BB Pajarito
SBB SCIP SHOT

Figure 8: The solution profiles for problem instances with a low integer relaxation gap as indicated
in Appendix A.

24

MILP decomposition based solvers

0 2 4 6 8
0

20

40

60

80

100

120

140

Solution time (s)

N
um

be
ro

fi
ns

ta
nc

es
so

lv
ed

Solution time (s)

10 15 30 60 120 240 480 900

AlphaECP (101)

AOA (126)

ANTIGONE (88)

BONMIN-OA (107)
DICOPT (106)

Minotaur-QG (112)

Parjarito (86)

SHOT (121)

Branch and bound type solvers

0 2 4 6 8
0

20

40

60

80

100

120

140

Solution time (s)

N
um

be
ro

fi
ns

ta
nc

es
so

lv
ed

Solution time (s)

10 15 30 60 120 240 480 900

BARON (110)

SCIP (95)

Minotaur-BB (119)
BONMIN-BB (117)
Knitro (112)

BONMIN-HYB (82)

LINDO (105)
SBB (110)

Juniper (90)

Couenne (40)

AlphaECP AOA ANTIGONE BARON BONMIN-OA
BONMIN-BB BONMIN-HYB Couenne DICOPT Knitro
LINDO Juniper Minotaur-QG Minotaur-BB Pajarito
SBB SCIP SHOT

Figure 9: The solution profiles for problem instances with a high level of nonlinear variables as
indicated in Appendix A.

25

MILP decomposition based solvers

0 2 4 6 8
0

50

100

150

200

Solution time (s)

N
um

be
ro

fi
ns

ta
nc

es
so

lv
ed

Solution time (s)

10 15 30 60 120 240 480 900

AlphaECP (172)

AOA (209)

ANTIGONE (153)

BONMIN-OA (208)

DICOPT (213)

Minotaur-QG (203)

Parjarito (125)

SHOT (221)

Branch and bound type solvers

0 2 4 6 8
0

50

100

150

200

Solution time (s)

N
um

be
ro

fi
ns

ta
nc

es
so

lv
ed

Solution time (s)

10 15 30 60 120 240 480 900

BARON (210)
SCIP (211)

Minotaur-BB (169)

BONMIN-BB (138)
Knitro (137)

BONMIN-HYB (162)

LINDO (87)

SBB (128)
Juniper (114)

Couenne (62)

AlphaECP AOA ANTIGONE BARON BONMIN-OA
BONMIN-BB BONMIN-HYB Couenne DICOPT Knitro
LINDO Juniper Minotaur-QG Minotaur-BB Pajarito
SBB SCIP SHOT

Figure 10: The solution profiles for problem instances with a low level of nonlinear variables as
indicated in Appendix A.

26

MILP decomposition based solvers

0 2 4 6 8
0

20

40

60

80

100

120

140

Solution time (s)

N
um

be
ro

fi
ns

ta
nc

es
so

lv
ed

Solution time (s)

10 15 30 60 120 240 480 900

AlphaECP (119)

AOA (140)

ANTIGONE (109)

BONMIN-OA (123)
DICOPT (128)
Minotaur-QG (131)

Parjarito (98)

SHOT (135)

Branch and bound type solvers

0 2 4 6 8
0

20

40

60

80

100

120

140

Solution time (s)

N
um

be
ro

fi
ns

ta
nc

es
so

lv
ed

Solution time (s)

10 15 30 60 120 240 480 900

BARON (124)

SCIP (122)

Minotaur-BB (133)

BONMIN-BB (123)

Knitro (120)

BONMIN-HYB (91)

LINDO (117)
SBB (110)

Juniper (93)

Couenne (47)

AlphaECP AOA ANTIGONE BARON BONMIN-OA
BONMIN-BB BONMIN-HYB Couenne DICOPT Knitro
LINDO Juniper Minotaur-QG Minotaur-BB Pajarito
SBB SCIP SHOT

Figure 11: The solution profiles for problem instances with a high level of discrete variables as
indicated in Appendix A.

27

MILP decomposition based solvers

0 2 4 6 8
0

50

100

150

200

Solution time (s)

N
um

be
ro

fi
ns

ta
nc

es
so

lv
ed

Solution time (s)

10 15 30 60 120 240 480 900

AlphaECP (154)

AOA (195)

ANTIGONE (132)

BONMIN-OA (192)
DICOPT (191)
Minotaur-QG (184)

Parjarito (113)

SHOT (207)

Branch and bound type solvers

0 2 4 6 8
0

50

100

150

200

Solution time (s)

N
um

be
ro

fi
ns

ta
nc

es
so

lv
ed

Solution time (s)

10 15 30 60 120 240 480 900

BARON (196)
SCIP (184)

Minotaur-BB (155)

BONMIN-BB (132)
Knitro (129)

BONMIN-HYB (153)

LINDO (75)

SBB (128)
Juniper (111)

Couenne (55)

AlphaECP AOA ANTIGONE BARON BONMIN-OA
BONMIN-BB BONMIN-HYB Couenne DICOPT Knitro
LINDO Juniper Minotaur-QG Minotaur-BB Pajarito
SBB SCIP SHOT

Figure 12: The solution profiles for problem instances with a low level of discrete variables as
indicated in Appendix A.

28

Impact of preprocessing

0 2 4 6 8
0

50

100

150

200

250

300

350

Solution time (s)

N
um

be
ro

fi
ns

ta
nc

es
so

lv
ed

Solution time (s)

10 15 30 60 120 240 480 900

default (320)

reduced (255)

BARON (default preprocessing) BARON (reduced preprocessing)

Figure 13: How preprocessing affect the performance of BARON.

Comparing the global solvers (ANTIGONE, BARON, and Couenne) with the convex solvers
is not completely fair since the global solvers are able to solve a wider class of problems. Some of
these solvers do not have a convex option, and thus, they have access to less information about the
problem and might treat it as nonconvex. Other of the global solvers have a convex option which
gives them this additional information, and some of the solvers, such as SHOT, simply assume
that the problem is convex. Furthermore, we want to make a few comments on some of the solvers.

• In the comparison, Couenne does not perform as well as the other solvers. This is most
likely due to failure in identifying the problems as convex and, therefore, it treats many
of the problems as nonconvex and generates convex underestimators of the already convex
constraints. In fact, Couenne is a nonconvex extension for the convex solver BONMIN,
and there is really no reason to use it for convex problems. However, we included it in the
comparison since it is a widely used general MINLP solver.

• The performance of ANTIGONE might also be affected by the solver not being able to
identify the problems as convex. The solver might treat some of the convex functions as
nonconvex, and therefore, generate unnecessarily weak relaxations.

• BARON seems to be very efficient at identifying the problems as convex since it is able to
deal with the problems in such an efficient manner. Even if it is a global solver, capable
of handling a variety of nonconvex problems, it is also one of the most efficient solvers for
convex problems.

• Pajarito has mainly been developed to deal with MICP problems using a disciplined convex
programming (DCP) approach, which is a different modeling paradigm based on a differ-
ent problem formulation. The mixed-integer disciplinen convex programming (MIDCP)
formulation enables Pajarito to utilize lifted problem formulations, resulting in tighter ap-
proximations. Here we have not used the MIDCP problem formulation, but the standard
convex MINLP formulation. Reformulating the problems as MIDCP problems has been
shown beneficial for Pajarito [92]. However, such formulations were not considered here and

29

Table 3: The table shows how the solvers are affected by the problem properties described in
section 5.1. If a solver performs better for one of the categories it is indicated by a ‘+’ sign,
and a ‘–’ sign indicates that the solver performs worse on that specific category. If the solver
performs similarly on both categories it is indicated by ‘≈’. Furthermore, the number shows the
total number of problems that the solver was able to solve within a relative objective gap of 0.1%
within 900 seconds.

Int. relaxation Gap Nonlinearity Discrete density
MINLP solver Hi. Lo. Hi. Lo. Hi. Lo.

AlphaECP ≈ 98 ≈ 175 ≈ 101 ≈ 172 + 119 – 154
ANTIGONE + 110 – 131 ≈ 88 ≈ 153 ≈ 109 ≈ 132
AOA ≈ 132 ≈ 202 ≈ 126 ≈ 209 ≈ 140 ≈ 195
BARON ≈ 134 ≈ 186 – 110 + 210 ≈ 124 ≈ 196
BONMINH-BB – 57 + 198 + 117 – 138 + 123 – 132
BONMINH-OA ≈ 122 ≈ 193 ≈ 107 ≈ 208 ≈ 123 ≈ 192
BONMINH-HYB – 79 + 165 – 82 + 162 – 91 + 153
Couenne ≈ 36 ≈ 66 ≈ 40 ≈ 62 ≈ 47 ≈ 55
DICOPT ≈ 121 ≈ 198 - 106 + 213 ≈ 128 ≈ 191
Juniper – 50 – 154 + 90 – 114 ≈ 111 ≈ 70
Knitro – 57 + 192 + 112 – 137 + 120 – 129
LINDO – 36 + 156 + 105 – 87 + 117 - 75
Minotaur-QG ≈ 120 ≈ 195 ≈ 112 ≈ 203 ≈ 131 ≈ 184
Minotaur-BB – 99 – 189 + 119 – 169 + 133 - 155
Pajarito ≈ 65? ≈ 111 – 51 + 125 ≈ 63? ≈ 113
SBB – 52 + 186 + 110 – 128 + 110 – 128
SCIP ≈ 124 ≈ 181 - 95 + 211 ≈ 122 ≈ 184
SHOT ≈ 139 ≈ 203 ≈ 121 ≈ 221 ≈ 135 ≈ 207

Number of problems 151 215 133 233 151 215

at the moment the solver does not have to functionality to automatically reformulate the
problems.

Based on the results presented here, one should not draw any conclusions on how the solvers
perform on nonconvex problems. For example, SHOT which is the most efficient solver for this
set of test problems does not, at the moment, have any functionality for dealing with nonconvex
problems. Some of the other convex solvers may work quite well on nonconvex problems, of course
without any guarantee of finding the global solution (or even a feasible solution).

7 Conclusions

The comparisons presented within this paper are mainly intended to help the readers make in-
formed decisions about which tools to use when dealing with different types of convex MINLP
problems. In the previous sections, we have shown how 15 different solvers performed on a test set
containing 366 MINLP instances. By comparing the solvers on MINLP instances with different
properties we noticed significant differences in the solvers’ performance. For example, the solvers
based on NLP-BB were strongly affected by both the integer relaxation gap and the degree of
nonlinearity. Several of the solvers are based on the same main algorithms, although they dif-
fer significantly in terms of speed and number of problems solved. The differences are mainly
due to different degrees of preprocessing, primal heuristics, cut generation procedures, and differ-
ent strategies used by the solvers. The performance differences highlight the importance of such
techniques for an efficient solver implementation.

For the test set considered here, SHOT and AOA were the overall fastest solvers. Both of

30

the solvers are based on a single tree approach similar to LP/NLP-BB and are closely integrated
with the MILP solver by utilizing callbacks and adding the linearizations as lazy constraints. The
results show the benefits of such a solution technique and support the strong belief in the single
approach by [1] and [10]. The close integration with the MILP solver allows AOA and SHOT
to benefit from the different techniques integrated within the MILP solver, such as branching
heuristics, cut generation procedures, and bound tightening.

Overall several of the solvers performed well on the test set and were able to solve a large
portion of the problems. The most instances any solver could solve within the time limit was 342
instances, and by combining all the solvers we where able solve 357 of the 366 MINLP problems to
a 0.1% guaranteed optimality gap. However, it should be noted that many of the test instances are
quite small and simple compared to industry-relevant problems. Still today, real-world problems
must often be simplified and reduced in size to obtain tractable formulations, in the process limiting
the practical benefits of MINLP. Thus, in order to fully benefit from convex MINLP as a tool for
design and decision-making, both further algorithmic research and solver software development
are required. We also hope that this paper encourages MINLP users to submit their instances to
the instances libraries, e.g., MINLPLib [100], which would benefit both MINLP solver developers
and end users.

First, we want to thank the developers of the solvers for their support to the comparison, and
we also want to thank both AIMMS (especially M. Hunting) and GAMS (especially S. Vigerske and
M. Bussieck) for their support. D.E. Bernal and I.E. Grossmann would like to thank the Center for
Advanced Process Decision-making (CAPD) for its financial support. Finally, A. Lundell wants
to express his gratitude for the financial support from the Magnus Ehrnrooth Foundation, as well
as the Ruth and Nils-Erik Stenbck Foundation.

References

[1] Abhishek K, Leyffer S, Linderoth J (2010) FilMINT: An outer approximation-based solver
for convex mixed-integer nonlinear programs. INFORMS Journal on Computing 22(4):555–
567

[2] Achterberg T (2009) SCIP: solving constraint integer programs. Mathematical Programming
Computation 1(1):1–41

[3] Achterberg T, Wunderling R (2013) Mixed integer programming: Analyzing 12 years of
progress. In: Facets of combinatorial optimization, Springer, pp 449–481

[4] Andersen ED, Andersen KD (2000) The MOSEK optimization software. EKA Consulting
ApS, Denmark

[5] Balas E, Ceria S, Cornuéjols G (1993) A lift-and-project cutting plane algorithm for mixed
0–1 programs. Mathematical programming 58(1-3):295–324

[6] Bazaraa MS, Sherali HD, Shetty CM (2013) Nonlinear programming: theory and algorithms.
John Wiley & Sons

[7] Belotti P (2010) Couenne: a user’s manual. URL https://www.coin-or.org/Couenne/

couenne-user-manual.pdf

[8] Belotti P, Lee J, Liberti L, Margot F, Wächter A (2009) Branching and bounds tightening
techniques for non-convex MINLP. Optimization Methods and Software 24:597–634

[9] Belotti P, Cafieri S, Lee J, Liberti L (2010) Feasibility-based bounds tightening via fixed
points. In: Wu W, Daescu O (eds) International Conference on Combinatorial Optimization
and Applications, Springer, pp 65–76

[10] Belotti P, Kirches C, Leyffer S, Linderoth J, Luedtke J, Mahajan A (2013) Mixed-integer
nonlinear optimization. Acta Numerica 22:1–131

31

https://www.coin-or.org/Couenne/couenne-user-manual.pdf
https://www.coin-or.org/Couenne/couenne-user-manual.pdf

[11] Benders JF (1962) Partitioning procedures for solving mixed-variables programming prob-
lems. Numerische mathematik 4(1):238–252

[12] Benson HY (2011) Mixed integer nonlinear programming using interior-point methods. Op-
timization Methods and Software 26(6):911–931

[13] Bernal DE, Vigerske S, Trespalacios F, Grossmann IE (2017) Improving the performance of
dicopt in convex MINLP problems using a feasibility pump. Preprint, Optimization Online
URL http://www.optimization-online.org/DB_HTML/2017/08/6171.html

[14] Bernal DE, Chen Q, Gong F, Grossmann IE (2018) Mixed-integer nonlinear decomposition
toolbox for Pyomo (MindtPy). URL http://egon.cheme.cmu.edu/Papers/Bernal_Chen_

MindtPy_PSE2018Paper.pdf

[15] Berthold T (2014) Heuristic algorithms in global MINLP solvers. PhD thesis, Technische
Universitt Berlin

[16] Berthold T (2014) RENS — the optimal rounding. Mathematical Programming Computa-
tion 6(1):33–54

[17] Berthold T, Gleixner AM (2014) Undercover: a primal MINLP heuristic exploring a largest
sub-MIP. Mathematical Programming 144(1-2):315–346

[18] Bezanson J, Karpinski S, Shah VB, Edelman A (2012) Julia: A fast dynamic language for
technical computing. arXiv preprint:1209.5145

[19] Biegler LT (2010) Nonlinear programming: concepts, algorithms, and applications to chem-
ical processes. SIAM

[20] Biegler LT, Grossmann IE (2004) Retrospective on optimization. Computers & Chemical
Engineering 28(8):1169–1192

[21] Bisschop J (2006) AIMMS optimization modeling. Lulu.com

[22] Bonami P, Lee J (2007) BONMIN user’s manual. Numer Math 4:1–32

[23] Bonami P, Lejeune MA (2009) An exact solution approach for portfolio optimization prob-
lems under stochastic and integer constraints. Operations Research 57(3):650–670

[24] Bonami P, Biegler LT, Conn AR, Cornuéjols G, Grossmann IE, Laird CD, Lee J, Lodi A,
Margot F, Sawaya N, Wächter A (2008) An algorithmic framework for convex mixed integer
nonlinear programs. Discrete Optimization 5(2):186–204

[25] Bonami P, Cornuéjols G, Lodi A, Margot F (2009) A feasibility pump for mixed integer
nonlinear programs. Mathematical Programming 119(2):331–352

[26] Bonami P, Lee J, Leyffer S, Wächter A (2011) More branch-and-bound experiments in
convex nonlinear integer programming. Preprint, Optimization online URL http://www.

optimization-online.org/DB_FILE/2011/09/3191.pdf

[27] Bonami P, Kilinç M, Linderoth J (2012) Algorithms and software for convex mixed integer
nonlinear programs. In: Mixed integer nonlinear programming, Springer, pp 1–39

[28] Borchers B, Mitchell JE (1994) An improved branch and bound algorithm for mixed integer
nonlinear programs. Computers & Operations Research 21(4):359–367

[29] Boukouvala F, Misener R, Floudas CA (2016) Global optimization advances in mixed-integer
nonlinear programming, MINLP, and constrained derivative-free optimization, CDFO. Eu-
ropean Journal of Operational Research 252(3):701–727

32

http://www.optimization-online.org/DB_HTML/2017/08/6171.html
http://egon.cheme.cmu.edu/Papers/Bernal_Chen_MindtPy_PSE2018Paper.pdf
http://egon.cheme.cmu.edu/Papers/Bernal_Chen_MindtPy_PSE2018Paper.pdf
http://www.optimization-online.org/DB_FILE/2011/09/3191.pdf
http://www.optimization-online.org/DB_FILE/2011/09/3191.pdf

[30] Bragalli C, DAmbrosio C, Lee J, Lodi A, Toth P (2012) On the optimal design of water distri-
bution networks: a practical MINLP approach. Optimization and Engineering 13(2):219–246

[31] Brook A, Kendrick D, Meeraus A (1988) GAMS, a user’s guide. ACM Signum Newsletter
23(3-4):10–11

[32] Bussieck MR, Vigerske S (2010) MINLP solver software. In: Wiley encyclopedia of operations
research and management science, Wiley Online Library

[33] Bussieck MR, Dirkse SP, Vigerske S (2014) PAVER 2.0: an open source environment for
automated performance analysis of benchmarking data. Journal of Global Optimization
59(2):259–275

[34] Byrd RH, Nocedal J, Waltz RA (2006) Knitro: An integrated package for nonlinear opti-
mization. In: Large-scale nonlinear optimization, Springer, pp 35–59

[35] Cao W, Lim GJ (2011) Optimization models for cancer treatment planning. In: Wiley
Encyclopedia of Operations Research and Management Science, Wiley Online Library

[36] Çezik MT, Iyengar G (2005) Cuts for mixed 0-1 conic programming. Mathematical Pro-
gramming 104(1):179–202

[37] Currie J, Wilson DI, et al (2012) OPTI: lowering the barrier between open source optimizers
and the industrial MATLAB user. Foundations of computer-aided process operations 24:32

[38] Dakin RJ (1965) A tree-search algorithm for mixed integer programming problems. The
Computer Journal 8(3):250–255

[39] D’Ambrosio C, Frangioni A, Liberti L, Lodi A (2012) A storm of feasibility pumps for
nonconvex MINLP. Mathematical programming 136(2):375–402

[40] Dolan ED, Moré JJ (2002) Benchmarking optimization software with performance profiles.
Mathematical Programming, Series B 91(2):201–213

[41] Drud AS (1994) CONOPT — a large-scale GRG code. ORSA Journal on computing
6(2):207–216

[42] Dunning I, Huchette J, Lubin M (2017) JuMP: A modeling language for mathematical
optimization. SIAM Review 59(2):295–320

[43] Duran MA, Grossmann IE (1986) An outer-approximation algorithm for a class of mixed-
integer nonlinear programs. Mathematical Programming 36(3):307–339

[44] Eronen VP, Mäkelä MM, Westerlund T (2014) On the generalization of ecp and oa methods
to nonsmooth convex MINLP problems. Optimization 63(7):1057–1073

[45] Eronen VP, Kronqvist J, Westerlund T, Mäkelä MM, Karmitsa N (2017) Method for solving
generalized convex nonsmooth mixed-integer nonlinear programming problems. Journal of
Global Optimization 69(2):443–459

[46] Exler O, Schittkowski K (2007) A trust region SQP algorithm for mixed-integer nonlinear
programming. Optimization Letters 1(3):269–280

[47] FICO (2017) FICO Xpress-SLP manual. URL https://www.artelys.com/uploads/pdfs/

Xpress/Xpress_SLP_2795MS.pdf

[48] FICO (2017) Xpress-optimizer reference manual. URL https://www.artelys.com/

uploads/pdfs/Xpress/Xpress_Optimizer_2447PS.pdf

[49] Fischetti M, Lodi A (2011) Heuristics in mixed integer programming. In: Wiley Encyclopedia
of Operations Research and Management Science, Wiley Online Library

33

https://www.artelys.com/uploads/pdfs/Xpress/Xpress_SLP_2795MS.pdf
https://www.artelys.com/uploads/pdfs/Xpress/Xpress_SLP_2795MS.pdf
https://www.artelys.com/uploads/pdfs/Xpress/Xpress_Optimizer_2447PS.pdf
https://www.artelys.com/uploads/pdfs/Xpress/Xpress_Optimizer_2447PS.pdf

[50] Fletcher R, Leyffer S (1994) Solving mixed integer nonlinear programs by outer approxima-
tion. Mathematical Programming 66(1):327–349

[51] Fletcher R, Leyffer S (1998) User manual for filterSQP. Numerical Analysis Report NA/181,
Department of Mathematics, University of Dundee

[52] Floudas CA (1995) Nonlinear and mixed-integer optimization: fundamentals and applica-
tions. Oxford University Press

[53] Floudas CA (2000) Deterministic Global Optimization, vol. 37 of Nonconvex Optimization
and its Applications

[54] Forrest J (2005) Cbc user’s guide. URL https://projects.coin-or.org/Cbc

[55] Fourer R, Gay D, Kernighan B (1993) AMPL. Boyd & Fraser Danvers, MA

[56] Frangioni A, Gentile C (2006) Perspective cuts for a class of convex 0–1 mixed integer
programs. Mathematical Programming 106(2):225–236

[57] GAMS (2018) Branch-and-Cut-and-Heuristic Facility. URL https://www.gams.com/

latest/docs/UG_SolverUsage.html, [Accessed 18-May-2018]

[58] Geoffrion AM (1972) Generalized Benders decomposition. Journal of Optimization Theory
and Applications 10(4):237–260

[59] Gill PE, Murray W, Saunders MA (2005) SNOPT: An SQP algorithm for large-scale con-
strained optimization. SIAM review 47(1):99–131

[60] Gleixner A, Eifler L, Gally T, Gamrath G, Gemander P, Gottwald RL, Hendel G, Hojny
C, Koch T, Miltenberger M, Müller B, Pfetsch ME, Puchert C, Rehfeldt D, Schlösser F,
Serrano F, Shinano Y, Viernickel JM, Vigerske S, Weninger D, Witt JT, Witzig J (2017)
The SCIPOptimization Suite 5.0. Tech. Rep. 17-61, ZIB, Takustr. 7, 14195 Berlin

[61] Gomory RE, et al (1958) Outline of an algorithm for integer solutions to linear programs.
Bulletin of the American Mathematical society 64(5):275–278

[62] Gould N, Scott J (2016) A note on performance profiles for benchmarking software. ACM
Transactions on Mathematical Software (TOMS) 43(2):15

[63] Grossmann IE (1989) MINLP optimization strategies and algorithms for process synthesis.
Tech. rep., Carnegie Mellon University

[64] Grossmann IE (2002) Review of nonlinear mixed-integer and disjunctive programming tech-
niques. Optimization and engineering 3(3):227–252

[65] Grossmann IE, Kravanja Z (1997) Mixed-integer nonlinear programming: A survey of algo-
rithms and applications. In: Biegler LT, Coleman TF, Conn AR, Santosa FN (eds) Large-
scale optimization with applications, Springer, pp 73–100

[66] Gupta OK, Ravindran A (1985) Branch and bound experiments in convex nonlinear integer
programming. Management science 31(12):1533–1546

[67] Gurobi (2018) Gurobi optimizer reference manual. Gurobi Optimization, LLC, URL http:

//www.gurobi.com/documentation/8.0/refman.pdf

[68] Hart WE, Laird CD, Watson JP, Woodruff DL, Hackebeil GA, Nicholson BL, Siirola JD
(2012) Pyomo-optimization modeling in Python, vol 67. Springer

[69] Hijazi H, Bonami P, Ouorou A (2013) An outer-inner approximation for separable mixed-
integer nonlinear programs. INFORMS Journal on Computing 26(1):31–44

34

https://projects.coin-or.org/Cbc
https://www.gams.com/latest/docs/UG_SolverUsage.html
https://www.gams.com/latest/docs/UG_SolverUsage.html
http://www.gurobi.com/documentation/8.0/refman.pdf
http://www.gurobi.com/documentation/8.0/refman.pdf

[70] Holmström K (1999) The TOMLAB optimization environment in Matlab. AMO – Advanced
Modeling and Optimization 1(1)

[71] HSL (2018) A collection of Fortran codes for large-scale scientific computation. http://www.
hsl.rl.ac.uk

[72] Hunting M (2011) The AIMMS outer approximation algorithm for MINLP. Tech. rep.,
AIMMS B.V.

[73] IBM ILOG CPLEX Optimization Studio (2017) CPLEX Users Manual, version 12.7. IBM

[74] Inc LS (2017) LINDO User’s Manual. URL https://www.lindo.com/downloads/PDF/

LindoUsersManual.pdf

[75] Kelley JE Jr (1960) The cutting-plane method for solving convex programs. Journal of the
Society for Industrial & Applied Mathematics 8(4):703–712

[76] Kılınç MR, Sahinidis NV (2018) Exploiting integrality in the global optimization of mixed-
integer nonlinear programming problems with BARON. Optimization Methods and Software
33(3):540–562

[77] Kılınç MR, Linderoth J, Luedtke J (2017) Lift-and-project cuts for convex mixed integer
nonlinear programs. Mathematical Programming Computation 9(4):499–526

[78] Kocis GR, Grossmann IE (1988) Global optimization of nonconvex mixed-integer nonlinear
programming (MINLP) problems in process synthesis. Industrial & engineering chemistry
research 27(8):1407–1421

[79] Kröger O, Coffrin C, Hijazi H, Nagarajan H (2018) Juniper: An Open-Source Nonlinear
Branch-and-Bound Solver in Julia. arXiv preprint: 1804.07332

[80] Kronqvist J, Lundell A, Westerlund T (2016) The extended supporting hyperplane algorithm
for convex mixed-integer nonlinear programming. Journal of Global Optimization 64(2):249–
272

[81] Kronqvist J, Lundell A, Westerlund T (2017) A center-cut algorithm for solving convex
mixed-integer nonlinear programming problems. In: Computer Aided Chemical Engineering,
vol 40, Elsevier, pp 2131–2136

[82] Kronqvist J, Lundell A, Westerlund T (2018) Reformulations for utilizing separability when
solving convex MINLP problems. Journal of Global Optimization pp 1–22

[83] Land AH, Doig AG (1960) An automatic method of solving discrete programming problems.
Econometrica: Journal of the Econometric Society pp 497–520

[84] Lastusilta T (2002) GAMS MINLP solver comparisons and some improvements to the Al-
phaECP algorithm. PhD thesis, Åbo Akademi University

[85] Leyffer S (1993) Deterministic methods for mixed integer nonlinear programming. PhD
University of Dundee

[86] Leyffer S (1999) User manual for MINLP BB. Tech. rep., University of Dundee numerical
analysis report

[87] Leyffer S (2001) Integrating SQP and branch-and-bound for mixed integer nonlinear pro-
gramming. Computational optimization and applications 18(3):295–309

[88] Liberti L (2009) Reformulation techniques in mathematical programming. HDR thesis

[89] Liberti L, Maculan N (2006) Global optimization: from theory to implementation, vol 84.
Springer Science & Business Media

35

http://www.hsl.rl.ac.uk
http://www.hsl.rl.ac.uk
https://www.lindo.com/downloads/PDF/LindoUsersManual.pdf
https://www.lindo.com/downloads/PDF/LindoUsersManual.pdf

[90] Lin Y, Schrage L (2009) The global solver in the LINDO API. Optimization Methods &
Software 24(4-5):657–668

[91] Lougee-Heimer R (2003) The common optimization interface for operations research: Pro-
moting open-source software in the operations research community. IBM Journal of Research
and Development 47(1):57–66

[92] Lubin M, Yamangil E, Bent R, Vielma JP (2016) Extended formulations in mixed-integer
convex programming. In: Louveaux Q, Skutella M (eds) Integer Programming and Com-
binatorial Optimization: 18th International Conference, IPCO 2016, Springer International
Publishing, pp 102–113

[93] Lundell A, Westerlund T (2017) Solving global optimization problems using reformulations
and signomial transformations. Computers & Chemical Engineering (available online)

[94] Lundell A, Westerlund J, Westerlund T (2009) Some transformation techniques with appli-
cations in global optimization. Journal of Global Optimization 43(2-3):391–405

[95] Lundell A, Kronqvist J, Westerlund T (2017) SHOT – A global solver for convex MINLP
in Wolfram Mathematica. In: Computer Aided Chemical Engineering, vol 40, Elsevier, pp
2137–2142

[96] Mahajan A, Leyffer S, Linderoth J, Luedtke J, Munson T (2017) Minotaur: A Mixed-
Integer Nonlinear Optimization Toolkit. Preprint, Optimization Online URL http://www.

optimization-online.org/DB_FILE/2017/10/6275.pdf

[97] Makhorin A (2008) GLPK (GNU linear programming kit). URL http://www.gnu.org/

software/glpk/

[98] Melo W, Fampa M, Raupp F (2018) First steps to solve MINLP problems with Muriqui
Optimizer. URL http://www.wendelmelo.net/muriqui/manual_muriqui-ing3.pdf, [Ac-
cessed 18-May-2018]

[99] Melo W, Fampa M, Raupp F (2018) An overview of MINLP algorithms and their imple-
mentation in Muriqui Optimizer. Annals of Operations Research pp 1–25

[100] MINLPLib (2018) Mixed-integer nonlinear programming library. URL http://www.

minlplib.org/, [Accessed 27-May-2018]

[101] Misener R, Floudas CA (2009) Advances for the pooling problem: Modeling, global opti-
mization, and computational studies. Applied and Computational Mathematics 8(1):3–22

[102] Misener R, Floudas CA (2014) ANTIGONE: Algorithms for continuous/integer global op-
timization of nonlinear equations. Journal of Global Optimization 59(2-3):503–526

[103] Nagarajan H, Lu M, Wang S, Bent R, Sundar K (2017) An adaptive, multivariate partition-
ing algorithm for global optimization of nonconvex programs. arXiv preprint: 1707.02514

[104] Nemhauser GL, Savelsbergh MW, Sigismondi GC (1994) MINTO, a MIxed INTeger opti-
mizer. Operations Research Letters 15(1):47–58

[105] Nowak I, Alperin H, Vigerske S (2002) LaGO—an object oriented library for solving
MINLPs. In: International Workshop on Global Optimization and Constraint Satisfaction,
Springer, pp 32–42

[106] Nowak I, Breitfeld N, Hendrix EM, Njacheun-Njanzoua G (2018) Decomposition-based inner-
and outer-refinement algorithms for global optimization. Journal of Global Optimization pp
1–17

36

http://www.optimization-online.org/DB_FILE/2017/10/6275.pdf
http://www.optimization-online.org/DB_FILE/2017/10/6275.pdf
http://www.gnu.org/software/glpk/
http://www.gnu.org/software/glpk/
http://www.wendelmelo.net/muriqui/manual_muriqui-ing3.pdf
http://www.minlplib.org/
http://www.minlplib.org/

[107] Palacios-Gomez F, Lasdon L, Engquist M (1982) Nonlinear optimization by successive linear
programming. Management science 28(10):1106–1120

[108] Pörn R, Harjunkoski I, Westerlund T (1999) Convexification of different classes of non-convex
MINLP problems. Computers & Chemical Engineering 23(3):439–448

[109] Quesada I, Grossmann IE (1992) An LP/NLP based branch and bound algorithm for convex
MINLP optimization problems. Computers & chemical engineering 16(10-11):937–947

[110] Quist A, Van Geemert R, Hoogenboom J, Ílles T, Roos C, Terlaky T (1999) Application of
nonlinear optimization to reactor core fuel reloading. Annals of Nuclear Energy 26(5):423–
448

[111] Ryoo HS, Sahinidis NV (1996) A branch-and-reduce approach to global optimization. Jour-
nal of Global Optimization 8(2):107–138

[112] Sahinidis N, Grossmann IE (1991) MINLP model for cyclic multiproduct scheduling on
continuous parallel lines. Computers & chemical engineering 15(2):85–103

[113] Sahinidis NV (2018) BARON user’s manual. URL https://minlp.com/downloads/docs/

baron%20manual.pdf

[114] Shectman JP, Sahinidis NV (1998) A finite algorithm for global minimization of separable
concave programs. Journal of Global Optimization 12(1):1–36

[115] Stubbs RA, Mehrotra S (1999) A branch-and-cut method for 0-1 mixed convex programming.
Mathematical programming 86(3):515–532

[116] Tawarmalani M, Sahinidis NV (2002) Convexification and global optimization in continuous
and mixed-integer nonlinear programming: Theory, algorithms, software, and applications,
vol 65. Springer Science & Business Media

[117] Tawarmalani M, Sahinidis NV (2005) A polyhedral branch-and-cut approach to global op-
timization. Mathematical Programming 103:225–249

[118] Trespalacios F, Grossmann IE (2014) Review of mixed-integer nonlinear and generalized
disjunctive programming methods. Chemie Ingenieur Technik 86(7):991–1012

[119] Udell M, Mohan K, Zeng D, Hong J, Diamond S, Boyd S (2014) Convex optimization in
Julia. SC14 Workshop on High Performance Technical Computing in Dynamic Languages
1410.4821

[120] Vigerske S, Gleixner A (2018) SCIP: Global optimization of mixed-integer nonlinear pro-
grams in a branch-and-cut framework. Optimization Methods and Software 33(3):563–593

[121] Viswanathan J, Grossmann IE (1990) A combined penalty function and outer-approximation
method for MINLPoptimization. Computers & Chemical Engineering 14(7):769–782

[122] Wächter A, Biegler LT (2006) On the implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming. Mathematical programming 106(1):25–57

[123] Westerlund T (2018) Users Guide for GAECP, An Interactive Solver for Generalized Convex
MINLP-Problems using Cutting Plane and Supporting Hyperplane Techniques. URL http:

//users.abo.fi/twesterl/GAECPDocumentation.pdf

[124] Westerlund T, Petterson F (1995) An extended cutting plane method for solving convex
MINLP problems. Computers & Chemical Engineering 19:131–136

[125] Westerlund T, Pörn R (2002) Solving pseudo-convex mixed integer optimization problems
by cutting plane techniques. Optimization and Engineering 3(3):253–280

37

https://minlp.com/downloads/docs/baron%20manual.pdf
https://minlp.com/downloads/docs/baron%20manual.pdf
1410.4821
http://users.abo.fi/twesterl/GAECPDocumentation.pdf
http://users.abo.fi/twesterl/GAECPDocumentation.pdf

[126] Wolsey LA (1998) Integer Programming. Series in Discrete Mathematics and Optimization.
Wiley-Interscience New Jersey

[127] Zhou K, Kılınç MR, Chen X, Sahinidis NV (2018) An efficient strategy for the activation
of MIP relaxations in a multicore global MINLP solver. Journal of Global Optimization
70(3):497–516

[128] Zhu Y, Kuno T (2006) A disjunctive cutting-plane-based branch-and-cut algorithm for 0-
1 mixed-integer convex nonlinear programs. Industrial & engineering chemistry research
45(1):187–196

Appendix A

A table of problem names and their classifications with regards to the different benchmark sets.

relaxation nonlinearity discreteness
instance name gap cat. measure cat. measure cat.

alan 0.89 % LO 38 % LO 50 % LO
ball mk2 10 – HI 100 % HI 100 % HI
ball mk2 30 – HI 100 % HI 100 % HI
ball mk3 10 – HI 100 % HI 100 % HI
ball mk3 20 – HI 100 % HI 100 % HI
ball mk3 30 – HI 100 % HI 100 % HI
ball mk4 05 – HI 100 % HI 100 % HI
ball mk4 10 – HI 100 % HI 100 % HI
ball mk4 15 – HI 100 % HI 100 % HI
batch 9.2 % LO 48 % LO 52 % HI
batch0812 5.6 % LO 40 % LO 60 % HI
batchdes 3.9 % LO 53 % HI 47 % LO
batchs101006m 4.5 % LO 18 % LO 46 % LO
batchs121208m 3.1 % LO 15 % LO 50 % LO
batchs151208m 2.8 % LO 14 % LO 46 % LO
batchs201210m 1.7 % LO 12 % LO 45 % LO
clay0203h 100 % HI 20 % LO 20 % LO
clay0203m 100 % HI 20 % LO 60 % HI
clay0204h 100 % HI 15 % LO 20 % LO
clay0204m 100 % HI 15 % LO 62 % HI
clay0205h 100 % HI 12 % LO 19 % LO
clay0205m 100 % HI 13 % LO 63 % HI
clay0303h 100 % HI 27 % LO 21 % LO
clay0303m 100 % HI 18 % LO 64 % HI
clay0304h 100 % HI 20 % LO 20 % LO
clay0304m 100 % HI 14 % LO 64 % HI
clay0305h 100 % HI 16 % LO 20 % LO
clay0305m 100 % HI 12 % LO 65 % HI
cvxnonsep normcon20 0.34 % LO 100 % HI 50 % LO
cvxnonsep normcon20r 0.34 % LO 50 % LO 25 % LO
cvxnonsep normcon30 0.54 % LO 100 % HI 50 % LO
cvxnonsep normcon30r 0.54 % LO 50 % LO 25 % LO
cvxnonsep normcon40 0.78 % LO 100 % HI 50 % LO
cvxnonsep normcon40r 0.78 % LO 50 % LO 25 % LO
cvxnonsep nsig20 0.16 % LO 100 % HI 50 % LO
cvxnonsep nsig20r 0.16 % LO 50 % LO 25 % LO
cvxnonsep nsig30 0.11 % LO 100 % HI 50 % LO
cvxnonsep nsig30r 0.12 % LO 50 % LO 25 % LO
cvxnonsep nsig40 0.16 % LO 100 % HI 50 % LO

38

relaxation nonlinearity discreteness
instance name gap cat. measure cat. measure cat.

cvxnonsep nsig40r 0.16 % LO 50 % LO 25 % LO
cvxnonsep pcon20 0.55 % LO 100 % HI 50 % LO
cvxnonsep pcon20r 0.55 % LO 51 % HI 26 % LO
cvxnonsep pcon30 0.47 % LO 100 % HI 50 % LO
cvxnonsep pcon30r 0.47 % LO 51 % HI 25 % LO
cvxnonsep pcon40 0.39 % LO 100 % HI 50 % LO
cvxnonsep pcon40r 0.39 % LO 51 % HI 25 % LO
cvxnonsep psig20 0.08 % LO 100 % HI 50 % LO
cvxnonsep psig20r 0.09 % LO 50 % LO 24 % LO
cvxnonsep psig30 0.32 % LO 100 % HI 50 % LO
cvxnonsep psig30r 0.32 % LO 50 % LO 24 % LO
cvxnonsep psig40 0.34 % LO 100 % HI 50 % LO
cvxnonsep psig40r 0.29 % LO 50 % LO 24 % LO
du-opt 1.2 % LO 100 % HI 65 % HI
du-opt5 51 % HI 100 % HI 65 % HI
enpro48pb 6.9 % LO 19 % LO 60 % HI
enpro56pb 15 % LO 19 % LO 57 % HI
ex1223 15 % LO 64 % HI 36 % LO
ex1223a 2.0 % LO 43 % LO 57 % HI
ex1223b 15 % LO 100 % HI 57 % HI
ex4 104 % HI 14 % LO 69 % HI
fac1 0.11 % LO 73 % HI 27 % LO
fac2 23 % LO 82 % HI 18 % LO
fac3 30 % LO 82 % HI 18 % LO
flay02h 25 % LO 4.3 % LO 8.7 % LO
flay02m 25 % LO 14 % LO 29 % LO
flay03h 37 % LO 2.5 % LO 10 % LO
flay03m 37 % LO 12 % LO 46 % LO
flay04h 43 % LO 1.7 % LO 10 % LO
flay04m 43 % LO 10 % LO 57 % HI
flay05h 46 % LO 1.3 % LO 10 % LO
flay05m 46 % LO 8.1 % LO 65 % HI
flay06h 48 % LO 1.1 % LO 11 % LO
flay06m 48 % LO 7.0 % LO 70 % HI
fo7 100 % HI 12 % LO 37 % LO
fo7 2 100 % HI 12 % LO 37 % LO
fo7 ar2 1 100 % HI 13 % LO 38 % LO
fo7 ar25 1 100 % HI 13 % LO 38 % LO
fo7 ar3 1 100 % HI 13 % LO 38 % LO
fo7 ar4 1 100 % HI 13 % LO 38 % LO
fo7 ar5 1 100 % HI 13 % LO 38 % LO
fo8 100 % HI 11 % LO 38 % LO
fo8 ar2 1 100 % HI 11 % LO 39 % LO
fo8 ar25 1 100 % HI 11 % LO 39 % LO
fo8 ar3 1 100 % HI 11 % LO 39 % LO
fo8 ar4 1 100 % HI 11 % LO 39 % LO
fo8 ar5 1 100 % HI 11 % LO 39 % LO
fo9 100 % HI 10 % LO 40 % LO
fo9 ar2 1 100 % HI 10 % LO 40 % LO
fo9 ar25 1 100 % HI 10 % LO 40 % LO
fo9 ar3 1 100 % HI 10 % LO 40 % LO
fo9 ar4 1 100 % HI 10 % LO 40 % LO
fo9 ar5 1 100 % HI 10 % LO 40 % LO
gams01 97 % HI 22 % LO 76 % HI
gbd 0.00 % LO 25 % LO 75 % HI
hybriddynamic fixed 10 % LO 15 % LO 14 % LO

39

relaxation nonlinearity discreteness
instance name gap cat. measure cat. measure cat.

ibs2 0.22 % LO 100 % HI 50 % LO
jit1 0.37 % LO 48 % LO 16 % LO
m3 100 % HI 23 % LO 23 % LO
m6 100 % HI 14 % LO 35 % LO
m7 100 % HI 12 % LO 37 % LO
m7 ar2 1 100 % HI 13 % LO 38 % LO
m7 ar25 1 100 % HI 13 % LO 38 % LO
m7 ar3 1 100 % HI 13 % LO 38 % LO
m7 ar4 1 100 % HI 13 % LO 38 % LO
m7 ar5 1 100 % HI 13 % LO 38 % LO
meanvarx 0.41 % LO 20 % LO 40 % LO
meanvarxsc 0.41 % LO 20 % LO 67 % HI
netmod dol1 49 % LO 0.3 % LO 23 % LO
netmod dol2 16 % LO 0.3 % LO 23 % LO
netmod kar1 79 % HI 0.9 % LO 30 % LO
netmod kar2 79 % HI 0.9 % LO 30 % LO
no7 ar2 1 100 % HI 13 % LO 38 % LO
no7 ar25 1 100 % HI 13 % LO 38 % LO
no7 ar3 1 100 % HI 13 % LO 38 % LO
no7 ar4 1 100 % HI 13 % LO 38 % LO
no7 ar5 1 100 % HI 13 % LO 38 % LO
nvs03 49 % LO 100 % HI 100 % HI
nvs10 0.74 % LO 100 % HI 100 % HI
nvs11 0.41 % LO 100 % HI 100 % HI
nvs12 0.41 % LO 100 % HI 100 % HI
nvs15 89 % HI 100 % HI 100 % HI
o7 100 % HI 12 % LO 37 % LO
o7 2 100 % HI 12 % LO 37 % LO
o7 ar2 1 100 % HI 13 % LO 38 % LO
o7 ar25 1 100 % HI 13 % LO 38 % LO
o7 ar3 1 100 % HI 13 % LO 38 % LO
o7 ar4 1 100 % HI 13 % LO 38 % LO
o7 ar5 1 100 % HI 13 % LO 38 % LO
o8 ar4 1 100 % HI 11 % LO 39 % LO
o9 ar4 1 100 % HI 10 % LO 40 % LO
portfol buyin 3.9 % LO 47 % LO 47 % LO
portfol card 4.0 % LO 47 % LO 47 % LO
portfol classical050 1 3.2 % LO 33 % LO 33 % LO
portfol classical200 2 13 % LO 33 % LO 33 % LO
portfol roundlot 0.00 % LO 47 % LO 47 % LO
procurement2mot 37 % LO 1.5 % LO 7.5 % LO
ravempb 15 % LO 25 % LO 48 % LO
risk2bpb 1.0 % LO 0.6 % LO 3.0 % LO
rsyn0805h 5.0 % LO 2.9 % LO 12 % LO
rsyn0805m 63 % HI 1.8 % LO 41 % LO
rsyn0805m02h 3.1 % LO 2.6 % LO 21 % LO
rsyn0805m02m 160 % HI 1.7 % LO 41 % LO
rsyn0805m03h 1.7 % LO 2.6 % LO 21 % LO
rsyn0805m03m 104 % HI 1.7 % LO 41 % LO
rsyn0805m04h 0.46 % LO 2.6 % LO 21 % LO
rsyn0805m04m 57 % HI 1.7 % LO 41 % LO
rsyn0810h 3.8 % LO 5.2 % LO 12 % LO
rsyn0810m 72 % HI 3.2 % LO 40 % LO
rsyn0810m02h 4.0 % LO 4.6 % LO 21 % LO
rsyn0810m02m 298 % HI 2.9 % LO 41 % LO
rsyn0810m03h 2.8 % LO 4.6 % LO 21 % LO

40

relaxation nonlinearity discreteness
instance name gap cat. measure cat. measure cat.

rsyn0810m03m 206 % HI 2.9 % LO 41 % LO
rsyn0810m04h 0.93 % LO 4.6 % LO 21 % LO
rsyn0810m04m 113 % HI 2.9 % LO 41 % LO
rsyn0815h 6.7 % LO 8.0 % LO 12 % LO
rsyn0815m 104 % HI 5.4 % LO 39 % LO
rsyn0815m02h 4.2 % LO 6.9 % LO 21 % LO
rsyn0815m02m 277 % HI 4.7 % LO 40 % LO
rsyn0815m03h 3.1 % LO 6.9 % LO 21 % LO
rsyn0815m03m 186 % HI 4.7 % LO 40 % LO
rsyn0815m04h 1.7 % LO 6.9 % LO 21 % LO
rsyn0815m04m 230 % HI 4.7 % LO 40 % LO
rsyn0820h 7.3 % LO 10 % LO 12 % LO
rsyn0820m 239 % HI 6.5 % LO 39 % LO
rsyn0820m02h 1.2 % LO 8.2 % LO 21 % LO
rsyn0820m02m 536 % HI 5.5 % LO 41 % LO
rsyn0820m03h 3.6 % LO 8.2 % LO 21 % LO
rsyn0820m03m 335 % HI 5.5 % LO 41 % LO
rsyn0820m04h 2.4 % LO 8.2 % LO 21 % LO
rsyn0820m04m 380 % HI 5.5 % LO 41 % LO
rsyn0830h 10 % LO 12 % LO 13 % LO
rsyn0830m 380 % HI 8.0 % LO 38 % LO
rsyn0830m02h 6.1 % LO 10 % LO 21 % LO
rsyn0830m02m 674 % HI 6.5 % LO 40 % LO
rsyn0830m03h 3.0 % LO 10 % LO 21 % LO
rsyn0830m03m 470 % HI 6.5 % LO 40 % LO
rsyn0830m04h 2.0 % LO 10 % LO 21 % LO
rsyn0830m04m 392 % HI 6.5 % LO 40 % LO
rsyn0840h 8.2 % LO 14 % LO 13 % LO
rsyn0840m 753 % HI 10 % LO 37 % LO
rsyn0840m02h 5.8 % LO 12 % LO 21 % LO
rsyn0840m02m 876 % HI 7.8 % LO 40 % LO
rsyn0840m03h 2.3 % LO 12 % LO 21 % LO
rsyn0840m03m 266 % HI 7.8 % LO 40 % LO
rsyn0840m04h 2.1 % LO 12 % LO 21 % LO
rsyn0840m04m 508 % HI 7.8 % LO 40 % LO
slay04h 13 % LO 5.7 % LO 17 % LO
slay04m 13 % LO 18 % LO 55 % HI
slay05h 5.9 % LO 4.3 % LO 17 % LO
slay05m 5.9 % LO 14 % LO 57 % HI
slay06h 7.0 % LO 3.5 % LO 18 % LO
slay06m 7.0 % LO 12 % LO 59 % HI
slay07h 4.6 % LO 2.9 % LO 18 % LO
slay07m 4.6 % LO 10 % LO 60 % HI
slay08h 4.9 % LO 2.5 % LO 18 % LO
slay08m 4.9 % LO 8.7 % LO 61 % HI
slay09h 4.3 % LO 2.2 % LO 18 % LO
slay09m 4.3 % LO 7.7 % LO 62 % HI
slay10h 8.1 % LO 2.0 % LO 18 % LO
slay10m 8.1 % LO 6.9 % LO 62 % HI
smallinvDAXr1b010-011 1.8 % LO 97 % HI 97 % HI
smallinvDAXr1b020-022 0.36 % LO 97 % HI 97 % HI
smallinvDAXr1b050-055 0.10 % LO 97 % HI 97 % HI
smallinvDAXr1b100-110 0.04 % LO 97 % HI 97 % HI
smallinvDAXr1b150-165 0.03 % LO 97 % HI 97 % HI
smallinvDAXr1b200-220 0.01 % LO 97 % HI 97 % HI
smallinvDAXr2b010-011 1.8 % LO 97 % HI 97 % HI

41

relaxation nonlinearity discreteness
instance name gap cat. measure cat. measure cat.

smallinvDAXr2b020-022 0.36 % LO 97 % HI 97 % HI
smallinvDAXr2b050-055 0.10 % LO 97 % HI 97 % HI
smallinvDAXr2b100-110 0.04 % LO 97 % HI 97 % HI
smallinvDAXr2b150-165 0.03 % LO 97 % HI 97 % HI
smallinvDAXr2b200-220 0.01 % LO 97 % HI 97 % HI
smallinvDAXr3b010-011 1.8 % LO 97 % HI 97 % HI
smallinvDAXr3b020-022 0.36 % LO 97 % HI 97 % HI
smallinvDAXr3b050-055 0.10 % LO 97 % HI 97 % HI
smallinvDAXr3b100-110 0.04 % LO 97 % HI 97 % HI
smallinvDAXr3b150-165 0.03 % LO 97 % HI 97 % HI
smallinvDAXr3b200-220 0.01 % LO 97 % HI 97 % HI
smallinvDAXr4b010-011 1.8 % LO 97 % HI 97 % HI
smallinvDAXr4b020-022 0.36 % LO 97 % HI 97 % HI
smallinvDAXr4b050-055 0.10 % LO 97 % HI 97 % HI
smallinvDAXr4b100-110 0.04 % LO 97 % HI 97 % HI
smallinvDAXr4b150-165 0.03 % LO 97 % HI 97 % HI
smallinvDAXr4b200-220 0.01 % LO 97 % HI 97 % HI
smallinvDAXr5b010-011 1.8 % LO 97 % HI 97 % HI
smallinvDAXr5b020-022 0.36 % LO 97 % HI 97 % HI
smallinvDAXr5b050-055 0.10 % LO 97 % HI 97 % HI
smallinvDAXr5b100-110 0.04 % LO 97 % HI 97 % HI
smallinvDAXr5b150-165 0.03 % LO 97 % HI 97 % HI
smallinvDAXr5b200-220 0.01 % LO 97 % HI 97 % HI
smallinvSNPr1b010-011 14 % LO 99 % HI 99 % HI
smallinvSNPr1b020-022 7.9 % LO 99 % HI 99 % HI
smallinvSNPr1b050-055 2.7 % LO 99 % HI 99 % HI
smallinvSNPr1b100-110 1.2 % LO 99 % HI 99 % HI
smallinvSNPr1b150-165 0.51 % LO 99 % HI 99 % HI
smallinvSNPr1b200-220 0.53 % LO 99 % HI 99 % HI
smallinvSNPr2b010-011 11 % LO 99 % HI 99 % HI
smallinvSNPr2b020-022 10 % LO 99 % HI 99 % HI
smallinvSNPr2b050-055 1.8 % LO 99 % HI 99 % HI
smallinvSNPr2b100-110 1.3 % LO 99 % HI 99 % HI
smallinvSNPr2b150-165 0.59 % LO 99 % HI 99 % HI
smallinvSNPr2b200-220 0.59 % LO 99 % HI 99 % HI
smallinvSNPr3b010-011 28 % LO 99 % HI 99 % HI
smallinvSNPr3b020-022 7.5 % LO 99 % HI 99 % HI
smallinvSNPr3b050-055 4.2 % LO 99 % HI 99 % HI
smallinvSNPr3b100-110 1.8 % LO 99 % HI 99 % HI
smallinvSNPr3b150-165 0.70 % LO 99 % HI 99 % HI
smallinvSNPr3b200-220 0.49 % LO 99 % HI 99 % HI
smallinvSNPr4b010-011 43 % LO 99 % HI 99 % HI
smallinvSNPr4b020-022 11 % LO 99 % HI 99 % HI
smallinvSNPr4b050-055 4.0 % LO 99 % HI 99 % HI
smallinvSNPr4b100-110 1.0 % LO 99 % HI 99 % HI
smallinvSNPr4b150-165 0.78 % LO 99 % HI 99 % HI
smallinvSNPr4b200-220 0.22 % LO 99 % HI 99 % HI
smallinvSNPr5b010-011 41 % LO 99 % HI 99 % HI
smallinvSNPr5b020-022 15 % LO 99 % HI 99 % HI
smallinvSNPr5b050-055 2.2 % LO 99 % HI 99 % HI
smallinvSNPr5b100-110 1.4 % LO 99 % HI 99 % HI
smallinvSNPr5b150-165 1.0 % LO 99 % HI 99 % HI
smallinvSNPr5b200-220 0.31 % LO 99 % HI 99 % HI
squfl010-025 51 % HI 96 % HI 3.8 % LO
squfl010-040 43 % LO 98 % HI 2.4 % LO
squfl010-080 49 % LO 99 % HI 1.2 % LO

42

relaxation nonlinearity discreteness
instance name gap cat. measure cat. measure cat.

squfl015-060 58 % HI 98 % HI 1.6 % LO
squfl015-080 57 % HI 99 % HI 1.2 % LO
squfl020-040 53 % HI 98 % HI 2.4 % LO
squfl020-050 57 % HI 98 % HI 2.0 % LO
squfl020-150 59 % HI 99 % HI 0.7 % LO
squfl025-025 60 % HI 96 % HI 3.8 % LO
squfl025-030 60 % HI 97 % HI 3.2 % LO
squfl025-040 61 % HI 98 % HI 2.4 % LO
squfl030-100 66 % HI 99 % HI 1.0 % LO
squfl030-150 63 % HI 99 % HI 0.7 % LO
squfl040-080 65 % HI 99 % HI 1.2 % LO
sssd08-04 62 % HI 6.7 % LO 73 % HI
sssd12-05 61 % HI 5.3 % LO 79 % HI
sssd15-04 62 % HI 4.5 % LO 82 % HI
sssd15-06 65 % HI 4.5 % LO 82 % HI
sssd15-08 63 % HI 4.5 % LO 82 % HI
sssd16-07 63 % HI 4.3 % LO 83 % HI
sssd18-06 63 % HI 4.0 % LO 84 % HI
sssd18-08 67 % HI 4.0 % LO 84 % HI
sssd20-04 63 % HI 3.7 % LO 85 % HI
sssd20-08 62 % HI 3.7 % LO 85 % HI
sssd22-08 62 % HI 3.4 % LO 86 % HI
sssd25-04 64 % HI 3.1 % LO 88 % HI
sssd25-08 61 % HI 3.1 % LO 88 % HI
st e14 15 % LO 64 % HI 36 % LO
st miqp1 15 % LO 100 % HI 100 % HI
st miqp2 382 % HI 50 % LO 100 % HI
st miqp3 0.00 % LO 50 % LO 100 % HI
st miqp4 0.05 % LO 50 % LO 50 % LO
st miqp5 0.00 % LO 29 % LO 29 % LO
st test1 3 · 106 % HI 80 % HI 100 % HI
st test2 9.5 % LO 83 % HI 100 % HI
st test3 24 % LO 38 % LO 100 % HI
st test4 11 % LO 33 % LO 100 % HI
st test5 104 % HI 70 % HI 100 % HI
st test6 30 % LO 100 % HI 100 % HI
st test8 0.00 % LO 100 % HI 100 % HI
st testgr1 0.11 % LO 100 % HI 100 % HI
st testgr3 0.63 % LO 100 % HI 100 % HI
st testph4 3.1 % LO 100 % HI 100 % HI
stockcycle 1.7 % LO 10 % LO 90 % HI
syn05h 0.03 % LO 21 % LO 12 % LO
syn05m 37 % LO 15 % LO 25 % LO
syn05m02h 0.02 % LO 17 % LO 19 % LO
syn05m02m 19 % LO 10 % LO 33 % LO
syn05m03h 0.02 % LO 17 % LO 19 % LO
syn05m03m 20 % LO 10 % LO 33 % LO
syn05m04h 0.01 % LO 17 % LO 19 % LO
syn05m04m 20 % LO 10 % LO 33 % LO
syn10h 0.03 % LO 23 % LO 13 % LO
syn10m 58 % HI 17 % LO 29 % LO
syn10m02h 0.08 % LO 19 % LO 21 % LO
syn10m02m 104 % HI 11 % LO 36 % LO
syn10m03h 0.05 % LO 19 % LO 21 % LO
syn10m03m 103 % HI 11 % LO 36 % LO
syn10m04h 0.04 % LO 19 % LO 21 % LO

43

relaxation nonlinearity discreteness
instance name gap cat. measure cat. measure cat.

syn10m04m 103 % HI 11 % LO 36 % LO
syn15h 0.12 % LO 26 % LO 12 % LO
syn15m 97 % HI 20 % LO 27 % LO
syn15m02h 0.10 % LO 21 % LO 20 % LO
syn15m02m 66 % HI 13 % LO 35 % LO
syn15m03h 0.07 % LO 21 % LO 20 % LO
syn15m03m 74 % HI 13 % LO 35 % LO
syn15m04h 0.06 % LO 21 % LO 20 % LO
syn15m04m 91 % HI 13 % LO 35 % LO
syn20h 0.32 % LO 26 % LO 13 % LO
syn20m 221 % HI 22 % LO 31 % LO
syn20m02h 0.30 % LO 21 % LO 21 % LO
syn20m02m 179 % HI 13 % LO 38 % LO
syn20m03h 0.27 % LO 21 % LO 21 % LO
syn20m03m 178 % HI 13 % LO 38 % LO
syn20m04h 0.20 % LO 21 % LO 21 % LO
syn20m04m 179 % HI 13 % LO 38 % LO
syn30h 6.1 % LO 25 % LO 13 % LO
syn30m 932 % HI 20 % LO 30 % LO
syn30m02h 2.9 % LO 20 % LO 21 % LO
syn30m02m 677 % HI 13 % LO 38 % LO
syn30m03h 2.0 % LO 20 % LO 21 % LO
syn30m03m 593 % HI 13 % LO 38 % LO
syn30m04h 1.6 % LO 20 % LO 21 % LO
syn30m04m 613 % HI 13 % LO 38 % LO
syn40h 17 % LO 26 % LO 13 % LO
syn40m 2608 % HI 22 % LO 31 % LO
syn40m02h 2.4 % LO 21 % LO 21 % LO
syn40m02m 1072 % HI 13 % LO 38 % LO
syn40m03h 5.6 % LO 21 % LO 21 % LO
syn40m03m 1467 % HI 13 % LO 38 % LO
syn40m04h 2.0 % LO 21 % LO 21 % LO
syn40m04m 917 % HI 13 % LO 38 % LO
synthes1 87 % HI 33 % LO 50 % LO
synthes2 101 % HI 36 % LO 45 % LO
synthes3 78 % HI 35 % LO 47 % LO
tls12 98 % HI 19 % LO 82 % HI
tls2 86 % HI 16 % LO 89 % HI
tls4 79 % HI 19 % LO 85 % HI
tls5 89 % HI 19 % LO 84 % HI
tls6 91 % HI 20 % LO 83 % HI
tls7 96 % HI 16 % LO 86 % HI
unitcommit1 1.6 % LO 25 % LO 75 % HI
watercontamination0202 52 % HI 3.8 % LO 0.0 % LO
watercontamination0202r 100 % HI 48 % LO 3.6 % LO
watercontamination0303 64 % HI 4.2 % LO 0.0 % LO
watercontamination0303r 100 % HI 48 % LO 3.6 % LO

Appendix B

The options provided to the solvers (and subsolvers) in the benchmark are listed below. All other
settings are the default values as provided by the individual solvers. Note that we have not tried
to fine tune any of the solvers; however, if there is a convex strategy, or recommended convex
parameters we have used those. We have also modified limits and other parameters when it is

44

apparent that implementation issues are the cause of, for example, premature termination of a
solver on some problem instances. For example, without adding the CONOPT option specified
below, AOA, Dicopt and SBB fails to solve all the smallinv-instances in MINLPLib. Therefore,
we believe that it is motivated to use these, since this problem occurs in the subsolver.

name value description

General GAMS

MIP CPLEX uses CPLEX as MIP solver
threads 8 max amount of threads
optcr 0.001 relative termination tolerance
optca 0.001 absolute termination tolerance
nodlim 108 to avoid premature termination
domlim 108 to avoid premature termination
iterlim 108 to avoid premature termination
reslim 900 time limit

AlphaECP

ECPmaster 1 activates convex strategy

AOA

IsConvex 1 activates convex strategy
IterationMax 107 maximal number of iterations
RelativeOptimalityTolerance 0.1 relative termination tolerance
TimeLimit 900 time limit

BONMIN

bonmin.algorithm B-OA selects the main algorithm
B-HYB
B-BB

milp solver CPLEX uses CPLEX as MILP solver
bonmin.time limit 900 sets the time limit

Couenne

lp solver CPLEX uses CPLEX as LP solver

DICOPT

convex 1 activates convex strategy
stop 1 convex stopping criterion
maxcycles 108 iteration limit
infeasder 1 add cutting planes from infeasible

NLP (convex recommendation)
nlpoptfile 1 to use the CONOPT options below

Juniper

fp cpx use CPLEX for the feasibility pump
processors 8 max number of threads
time-limit 900 time limit

LINDO

usegop 0 deactivates global strategy
splex itrlmt -1 simplex iteration limit
MIP itrlim -1 MILP iteration limit

iteration limits are set as infinite to
avoid premature termination

Minotaur

45

bnb time limit 900 time limit
lp engine OsiCpx use CPLEX as MIP solver
obj gap percent 10−5 relative termination tolerance
threads 8 max amount of threads

Pajarito

cpx use CPLEX as MILP solver
processors 8 max number of threads
time-limit 900 time limit

SBB

memnodes 5 · 107 to avoid premature termination,
but not too large, since memory is
preallocated

rootsolver CONOPT.1 to use the CONOPT options below

SCIP

constraints/nonlinear/ true activates convex strategy
assumeconvex

SHOT

Dual.MIP.NumberOfThreads 8 max number of threads
Dual.MIP.Solver 0 use CPLEX as MIP solver
Primal.FixedInteger.Solver 2 to use GAMS NLP solvers
Subsolver.GAMS.NLP.Solver conopt use CONOPT as GAMS NLP

solver
Termination.ObjectiveGap. 0.001 absolute termination tolerance

Absolute
Termination.ObjectiveGap. 0.001 relative termination tolerance

Relative
Termination.TimeLimit 900 time limit

CONOPT (AIMMS)

Maximal solution of a variable 1029 to avoid problems with unbounded
variables in AOA; 1029 is the max
value

CONOPT (GAMS)

rtmaxv 1030 to avoid problems with unbounded
variables in DICOPT and SBB

46

	Introduction
	Convex MINLP problem formulation
	Methods
	Branch and bound
	Extended cutting plane
	Extended supporting hyperplane
	Outer approximation
	Generalized Benders decomposition
	LP/NLP based branch and bound
	Primal heuristics
	Preprocessing

	Solvers
	Benchmark details
	Problem sets
	Reporting

	Results
	Impact of the integer relaxation gap
	Impact of nonlinearity
	Impact of discrete density
	Impact of preprocessing techniques
	Summary of the results

	Conclusions

