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ABSTRACT

The optimization
:::::::::::
Optimization of chemical processes is challenging due to the nonlinearities aris-

ing from process physics
:::::::
chemical

:::::::::
principles and discrete design decisions. In particular,

::::
The

optimal synthesis and design of chemical processes can be posed as a Generalized Disjunctive Pro-
gramming (GDP) superstructure problem. Various solution methods are available to address these
problems , such as reformulating them as

:::::::
problem.

::::::
While

:::::::::::
reformulating

:::::
GDP

::::::::
problems

::
as

:
Mixed-

Integer Nonlinear Programming (MINLP) problems ; nevertheless, algorithms explicitly designed
to solve the GDP problem and potentially leverage its structure

:
is

::::::::
common,

:::::::::
specialized

::::::::::
algorithms

::
for

:::::
GDP

:
remain scarce. This paper presents the Logic-based

::::
study

:::::::::
introduces

::::
the

:::::::::::
Logic-Based

Discrete-Steepest Descent Algorithm (LD-SDA) as a solution method for GDP problems involv-
ing ordered Boolean variables. The LD-SDA reformulates these ordered Boolean variables into
integer decisions called external variables. The LD-SDA solves the reformulated GDP problem
using

:::::::::
transforms

:::::
these

::::::::
variables

::::
into

:::::::
external

::::::
integer

:::::::::
decisions

:::
and

:::::
uses

:
a two-level decompo-

sitionapproach where
:
:
:

the upper-level subproblem determines external variable configurations.
Subsequently, the remaining continuous and discrete variablesare solved as a subproblem only
involving those constraints relevant to the given external variable arrangement, effectively taking
advantage of the structure of the GDP problem. The advantages of

:::
sets

:::::::
external

::::::::::::
configurations,

::::
and

::
the

::::::::::
lower-level

:::::
solves

:::
the

:::::::::
remaining

::::::::
variables,

:::::::::
efficiently

:::::::::
exploiting

:::
the

::::
GDP

::::::::
structure.

:::
In

:::
the

::::
case

::::::
studies

::::::::
presented

::
in

:::
this

::::::
work,

::::::::
including

:::::
batch

:::::::::
processing,

:::::::
reactor

:::::::::::::
superstructures,

:::
and

::::::::::
distillation

:::::::
columns,

:
LD-SDA are illustrated through a batch processingcase study, a reactor superstructure,

a distillation column, and a catalytic distillation column, and its open-source implementation is
available online. The results show convergence efficiency and solution quality improvements
compared to

::::::::::
consistently

::::::::::
outperforms

:
conventional GDP and MINLP solvers

:
,
::::::::
especially

::
as

::::::::
problem

:::
size

::::::
grows,

::::
and

:::::
proves

::::::::
superior

::
in

::::::::::
challenging

::::::::
problems

:::::
where

:::::
other

::::::
solvers

::::::::
encounter

::::::::::
difficulties

::
in

::::::
finding

::::::
optimal

::::::::
solutions.
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1 Introduction

The ongoing research in modeling and optimization provides computational strategies to enhance the efficiency of
chemical processes across various time scales, e.g., design, control, planning, and scheduling [1, 2]. In addition,
optimization

::::::::::
Optimization

:
tools help develop novel processes and products that align with environmental, safety,

and economic standards, thus promoting competitiveness. Despite advances in the field, the deterministic solution
of

::::::::::::::
deterministically

::::::
solving

:
optimization problems that include discrete decisions together with nonlinearities is still

challenging. For instance,
::::::
involve

:::::::
discrete

::::::::
decisions

::::::::
alongside

:::::::::::
nonlinearities

:::::::
remains

::
a

::::::::
significant

:::::::::
challenge.

:

:
A
::::

key
::::::::::
application

:::::
where

:::::
these

:::::::::
challenges

:::::
arise

::
is the optimal synthesis and design of reactor and separation pro-

cessesmust incorporate ,
::::::
which

:::::::
requires

:::::::::::
incorporating discrete decisions to decide

::::::::
determine

:
the arrangement and sizes

of distillation sequences and reactors, as well as the non-ideal relationships required
::::::
needed to model vapor-liquid phase

equilibrium. The interactions
:::::::::
interaction between nonlinear models and discrete decisions in this problem introduce

::::::::
introduces

:
nonconvexities and numerical difficulties (e.g., zero-flows of inactive stages/units), which complicates

the direct solution of
:::
that

:::::::::
complicate

:::::::
directly

:::::::
solving

:
these problems with the traditional optimization solvers [3,

4]. The computational burden of these problems constitutes another significant limitation, impeding timely solutions,
particularly in online applications or large-scale systems. For instance, one of the main limitations in implementing
:::::::
Another

::::::::
important

::::
area

:::::
where

:::::
these

:::::::::
challenges

::::::
become

:::::::
evident

::
is

::
in economic nonlinear model predictive controlis ,

:::::
where solving optimization problems within the sampling time of the controller

:::::::
controller

::::::::
sampling

::::
time

:::::::
presents

::
a

::::::::
significant

:::::::
obstacle

:
[5]. This issue aggravates when coupling control with

::::::::
difficulty

:::::::
increases

:::::
when

:
design or schedul-

ing decisions , which adds discrete decisions into
:::
are

::::::
coupled

::::
with

:::::::
control,

::::::
adding

:::::::
discrete

:::::::
decisions

::
to
:
the formulation

[2]. Given the above, there remains a

:::
The

::::::::::::
computational

:::::::
burden

::
of

:::::
these

::::::::
problems

::::::::
presents

:
a
:::::::::
significant

:::::::::
limitation,

:::::
often

::::::::::
preventing

:::
the

::::::
ability

::
to

::::
find

:::::
timely

:::::::::
solutions,

::::::::::
particularly

::
in

::::::
online

::::::::::
applications

::
or

::::::::::
large-scale

:::::::
systems.

:::::
This

::::::::
challenge

:::::::::
highlights

:::
the

:
need for

advanced optimization algorithms capable of efficiently exploring the search space of discrete variables and handling
::::
while

:::::::::
managing nonlinear discrete-continuous variable interactions to tackle

:::::::::
interactions

::
to

::::::
address

:
relevant chemical

engineering optimization problems.

Two of the main
:::
Two

:::::
major

:
modeling approaches that incorporate

::::::
address

:::::
these

::::::
issues

::
by

::::::::::::
incorporating

:
discrete

decisions and activate or deactivate
::::::::
activating

::
or

:::::::::::
deactivating groups of nonlinear constraints in the formulation are

Mixed-Integer Nonlinear Programming (MINLP) and Generalized Disjunctive Programming (GDP).

Typically, optimization problems are posed using MINLP formulations , which
:::
that

:
incorporate both contin-

uous variables, here denoted as x = [x1, . . . , xnx
]
:::::::::::::::
x = (x1, . . . , xnx

), and discrete variables, here denoted as
z = [z1, . . . , znz

]
::::::::::::::
z = (z1, . . . , znz

). The resulting optimization problems involve the minimization of a function
f : Rnx × Znz → R subject to nonlinear inequality constraints g : Rnx × Znz → Rl. The variables

:::::::
Variables

are usually considered to be bounded, meaning they belong to a closed set
:::::::
(referred

::
to

::
as

::::::::
bounded)

:
x ∈ [x,x] and

z ∈ {z, . . . , z}, respectively.
:::::::::
Throughout

::::
this

:::::
paper,

:::
for

::
a

:::::::
variable

::
x,

:::
we

:::
use

::::::::
underbar

::
x

:::
and

:::::::
overbar

::
x

:::::::
notation

::
to

:::::
denote

:::::
lower

::::
and

:::::
upper

:::::::
bounds,

::::::::::
respectively.

:
The mathematical formulation of an MINLP is as follows:

min
x,z

f(x, z)

s.t. g(x, z) ≤ 0

x ∈ [x,x] ⊆ Rnx ; z ∈ {z, . . . , z} ⊆ Znz

(MINLP)

Problem (MINLP) belongs to the NP-hard complexity class [6], nevertheless .
::::::::

Despite
:::
the

:::::::::
challenges

:::::::::
associated

::::
with

::::::
solving

:::::::
NP-hard

:::::::::
problems, efficient MINLP solution algorithms have been developed, motivated by its various

applications [7]. These algorithms take advantage of the discrete nature of variables z to explore the feasible set of
(MINLP) to find the

:::::::
leverage

::::
both

:::::::
discrete

::::
and

:::::::::
continuous

:::::::::::
information

::
to

::::
find

:
a
:::::::
feasible

:
optimal solution(x∗, z∗).

Among the most common approaches for finding deterministic solutions to (MINLP), there exist methods based either
:::::::::
commonly

::::
used

:::::::::
approaches

:::
to

::::
solve

:::::::::
(MINLP)

::::::::::::::
deterministically

:::
are

:::::::
methods

:::::
based

:
on decomposition or on branch-

and-bound (BB) [8]. These techniques separately address the two sources of hardness of the problem (MINLP), i.e.,
::::
main

:::::::
sources

:::
of

:::::::
difficulty

:::
in

::::::::
(MINLP):

:
the discreteness of z and the nonlinearity of g. Both of these methods

::::
Both

::::::::::::
decomposition

::::
and

:::::::::::::::
branch-and-bound

:
rely on bounding the optimal objective function f(x∗, z∗) = f∗

::::
value

::::::::
f(x∗, z∗). This involves searching for values (f̂ , f̃ ) such that f̂ ≤ f∗ ≤ f̃ , and progressively tighten them. The optimal
solution is bounded from above by finding

:::
We

:::::
denote

:::
f∗

::
as

:::
an

::::::
optimal

:::::::
solution

::::::
value,

:::::::
meaning

::::
that

:::::::::::::
f(x∗, z∗) = f∗

:
if
:::
the

:::::::
(x∗, z∗)

::
is
:::
an

::::::
optimal

::::::::
solution.

:::
An

::::::
upper

:::::
bound

:::
on

::
an

:::::::
optimal

:::::::
solution

:::::
value

::
is

:::::
found

:::
by

:::::::::
identifying

:
feasible

solutions to the problem {(x̃, z̃) | g(x̃, z̃) ≤ 0, x̃ ∈ [x,x], z̃ ∈ {z, . . . , z}}, i.e., f(x∗, z∗) ≤ f(x̃, z̃) = f̃ . The
relaxations

::::::::::
Relaxations of problem (MINLP), which are optimization problems defined over a larger feasible set, have

2
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an optimal solution f̂ that is guaranteed to underestimate the
::
an optimal objective value

::
of

:::
the

::::::
original

::::::::
problem i.e.,

f̂ ≤ f∗.
The second modeling approach used in the literature is GDP, which generalizes the problem in (MINLP) by introducing
Boolean variables Y and disjunctions [ · ] into the formulation [9]. In GDP, the Boolean variable Yik indicates whether
a set of constraints hik(x, z) ≤ 0 is enforced or not. We refer to this enforcing alternative as

:::::::
condition

::
as

::
a disjunct i,

in disjunction k. Only one disjunct per disjunction is to be selected; hence
:
, we relate disjunctions with an exclusive

OR (XOR ∨) operator
:
, which can be interpreted as an Exactly(1, ·) operator when |Dk| > 2

::::
there

:::
are

:::::
more

:::
than

::::
two

:::::::
disjuncts

::
in

::
a

:::::::::
disjunction [10]. Boolean variables can be related through a set of logical propositions Ω(Y) = True by

associating them through the operators AND (∧), OR(∨), XOR (∨), negation (¬), implication (⇒) and equivalence
(⇔). Furthermore, GDP considers a set of global constraints g(x, z) ≤ 0 existing outside the disjunctions, which are
enforced regardless of the values of the Boolean variables. The mathematical formulation for GDP is as follows:

min
x,Y,z

f(x, z)

s.t. g(x, z) ≤ 0

Ω(Y) = True∨
i∈Dk

[
Yik

hik(x, z) ≤ 0

]
k ∈ K

x ∈ [x,x] ⊆ Rnx ;Y ∈ {False, True}ny ; z ∈ {z, . . . , z} ⊆ Znz

(GDP)

where ny =
∑
k∈K |Dk|. Moreover, Boolean variables may be associated with empty disjunctions and still appear in the

logical propositions Ω(Y) to model complex logic that does not involve a set of constraints h(x, z) ≤ 0
::::::::::::
hik(x, z) ≤ 0.

:::::::::
Throughout

::::
this

:::::
work,

:::
we

:::::
make

::::::
several

::::::::
important

:::::::::::
assumptions:

:::
the

:::::::
problem

::::::
(GDP)

:::
has

::
at
:::::
least

:::
one

:::::::
feasible

:::::::
solution,

::
the

::::::
search

::::::
space

:::
for

::::::::::
continuous,

:::::::
integer,

::::
and

:::::::
Boolean

::::::::
variables

:::
is

::::::::
bounded,

::::
and

:::
the

::::::::
objective

::::::::
function

:::::::
remains

:::::::
bounded

::
as

:::::
well.

::::::::::::
Additionally,

:::
the

:::::
main

:::::::
problem

::::
and

:::
the

:::::::::::
subproblems

:::::::
obtained

:::
by

:::::
fixing

::::::::
Boolean

::::::::::::
configurations

:::::
satisfy

:::
the

::::::::
necessary

:::::::::
conditions

:::
for

:::::::
standard

:::::::::
Nonlinear

:::::::::::
Programming

::::::
(NLP)

:::
and

:::::::
MINLP

:::::::::
algorithms

::
to

::::
find

:
a
:::::::
solution.

::::::::::
Specifically,

:::
the

::::::::
functions

::::
f,g,

::::
and

:::
hik:::

are
::::::::
assumed

::
to

::
be

:::::::
smooth,

:::::
with

:::::::
available

::::
first

::::
and

::::::
second

:::::::::
derivatives

:::::
when

::::::
solving

::::
NLP

:::::::::::
subproblems.

:

Different strategies are available to solve problem (GDP). The traditional approach is to reformulate the problem into
an MINLP, and the two classic reformulations are the big-M reformulation (BM) [11, 12] and the hull or extended
reformulation (HR) [13, 14]. However, there exist

:::
are algorithms specifically designed for the GDP framework that

exploit the intrinsic logic of the problem. These tailored algorithms include logic-based outer approximation (LOA)
[15] and logic-based branch and bound

::::::::::::::
branch-and-bound

:
(LBB) [16].

The GDP framework has recently been used in the optimization of chemical processes. Some modern applications in
process design include co-production plants of ethylene and propylene [17], reaction-separation processes [18], and
once-through multistage flash process [19]. Other advances in process synthesis include effective modular process
[20], refrigeration systems [21], and optimization of triple pressure combined cycle power plants [22]. Recently,
new solvent-based adhesive products [23] and optimal mixtures [24, 25] have been designed using this methodology.
Scheduling of multiproduct

:::
The

::::::::::
scheduling

::
of

:::::::::::
multi-product

:
batch production [26], blending operations [27], refineries

[28, 29], modeling of waste management in supply chains [30], and multi-period production planning [31, 32] are
some modern applications of the GDP framework in planning and scheduling. We refer the reader to the review by
Trespalacios and Grossmann [9] for other developments in GDP applications.

A common feature in many applicationsis that
::
In

:::::
many

:::::::::::
applications,

:
Boolean variables and disjunctions in GDP

formulations often represent discrete decisions with intrinsic ordering. Examples of these ordered decisions include
:::::::
selecting

:
discrete locations (e.g., feed location in a distillation superstructure),

::::::::::
determining

:
discrete points in time

(such as the starting date of a task in scheduling), or integer numbers
::::::::
specifying

::::::
integer

:::::
values

:
(as seen in the number

of units in a design problem, either in parallel or series). A
:::
key

:
characteristic of these problems is that increasing or

decreasing the value of those
::::
these discrete decisions implies an ordered inclusion or exclusion of nonlinear equations

from the model. However, Boolean variables that model these decisions in the (GDP) problem do not usually consider
::
the

::::::::
Boolean

::::::::
variables

::::
used

::
in

::::::
(GDP)

::::::::
typically

::
do

:::
not

:::::::
capture this ordered structure, failing to capture and leverage

:::::::
leverage

:::
the potential relationships between subsequent

::::::::
successive

:
sets of constraints.

To exploit this structure
:::
the

:::::::
ordered

:::::::
structure

::
in
:::::::::::

optimization
::::::::
problems, a solution strategy was recently proposed

:::::::::
introduced in the mixed-integer context to efficiently solve MINLP

:::::
solve

::::::
MINLP

:
superstructure optimization problems

. Here, the
::::
more

:::::::::
efficiently.

::
In

:::
this

:::::::::
approach, ordered binary variables are reformulated into

::
as

:
discrete variables (called

3
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external variables) to account for
::::::::
explicitly

:::::::
represent

:
their ordered structure [33]. The solution strategy lifts these

integer external variables to an upper-layer problem
::::::::::
reformulated

:::::::
problem

::
is

::::
then

::::
lifted

::
to
:::
an

:::::::::
upper-level

:::::::::::
optimization,

where a Discrete-Steepest Descent Algorithm (D-SDA) is applied. This algorithm is theoretically supported by the
principles of

:::::
based

::
on

:::::::::
principles

::::
from

:
discrete convex analysis, which establishes

:::::::
provides

:
a different theoretical

framework
:::::::::
foundation for discrete optimization [34]. The

D-SDA was applied as an MINLP algorithm to the
:::
has

:::::::::::
demonstrated

:::
its

:::::::::::
effectiveness

::
in

::::::
several

:::::::
MINLP

::::::::::
applications,

::::::::
including optimal design of equilibrium [35] and rate-based catalytic distillation columns [36]and .

::
It
:
proved to be

more efficient than state-of-the-art MINLP solvers in terms of
::::
both computational time and solution quality. The

first computational experiments that showed the application of
::::
Early

::::::::::::
computational

:::::::::::
experiments

:::::::
applying

:
D-SDA as a

logic-based solver for GDP applications also showed
:::::::::::
formulations

:::
also

:::::::
showed

:::::::::
promising improvements in solution

quality and computational time when applied to case studies involving the design of a reactor network , the designof
a
:::::::::
efficiency.

:::::
These

::::::::::
experiments

::::::::
involved

::::
case

::::::
studies

::::
such

::
as

::::::
reactor

:::::::
network

::::::
design,

:
rate-based catalytic distillation

column , and the
::::::
design,

:::
and simultaneous scheduling and dynamic optimization of network batch processes [37, 38].

This paper presents the logic-based D-SDA (LD-SDA) as a logic-based solution approach specifically designed for
GDP problems whose Boolean or integer variables follow an ordered structure. Our work builds on our previous work
in [37] and provides new information on the theoretical properties and details of the computational implementation of
the LD-SDA as a GDP solver. The LD-SDA uses optimality termination criteria derived from discrete convex analysis
[34, 39] that allow the algorithm to find local optima not necessarily considered by other MINLP and GDP solution
algorithms. This study also presents new computational experiments that showcase the performance of the LD-SDA
compared to

::
the

:
standard MINLP and GDP

:::::::
solution techniques. The novelties of this work can be summarized as

follows:

• A generalized version of the external variables reformulation applied to GDP problems is presented, thus
extending this reformulation from MINLP to a general class of GDP problems.

• The proposed framework is more general than previous MINLP approaches, allowing the algorithm to tackle a
broader scope of problems. Through GDP, the subproblems can be either NLP, MINLP, or GDP, instead of the
previous framework where only NLP subproblems were supported.

• An improved algorithm that uses external variable bound verification, fixed external variable feasibility via
Feasibility-based

::::::::::::::
Feasibility-Based

:
Bounds Tightening (FBBT), globally visited set verification

:::::::::
verification

::
of

::::::
already

::::::
visited

::::::::::::
configurations, and a reinitialization scheme to improve overall computational time.

• The
::::::::::
open-source

:
implementation of the algorithm is generalized for any GDP problem

:
, leading to an automated

methodology. Before executing the LD-SDA, the user only needs to identify the variables to be reformulated
into

:
as

:
external variables and the constraints that relate them to the problem. This implementation, formu-

lated in Python, is based on the open-source algebraic modeling language Pyomo [40] and its Pyomo.GDP
extension [41], and it can be found in an openly available GitHub repository1.

The remainder of this work is organized as follows. §2 presents a general background in both solution techniques for
GDP

::::
GDP

:::::::
solution

:::::::::
techniques

:
and in discrete-steepest optimization through discrete convex analysis. §3 illustrates the

external variable reformulation for Boolean variables. Furthermore, this section formally describes the LD-SDA and
discusses relevant properties and theoretical implications. The implementation details and

:::::
details

::
of

:::
the

:::::::::::::
implementation

:::
and

:::
the algorithmic enhancements are described in §4. Numerical experiments were conducted to assess the performance

of the LD-SDA across various test cases, including reactor networks, batch process design, and distillation columns
with and without catalytic stages. The outcomes

::::::
results of these experiments are detailed in §5. Finally, the conclusions

of the work along with future research directions are stated in §6.

2 Background

This section serves two primary objectives. Firstly, it provides an introduction to the solution methods employed in
Generalized Disjunctive Programming(GDP). Secondly, it describes the Discrete-Steepest Descent Algorithm (D-SDA)
along with its underlying theoretical framework, discrete convex analysis.

2.1 Generalized Disjunctive Programming Reformulations Into MINLP

A GDP can be reformulated into a
::
an

:
MINLP, enabling the use of specialized codes or solvers that have been developed

for MINLP problems [42, 14]. In general, the reformulation is done by transforming the logical constraints into algebraic

1https://github.com/SECQUOIA/dsda-gdp

4
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constraints and Boolean variables into binary variables [9]. Moreover, MINLP reformulations handle disjunctions by
introducing binary decision variables y ∈ {0, 1}ny , instead of Boolean (False or True) variables Y. The exclusivity
requirement of disjunctions is rewritten as the sum of binary variables adding to one, thus implying that only a single
binary variable can be active for every disjunction k ∈ K.

Y ∈ {False, True}ny → y ∈ {0, 1}ny

Ω(Y) = True→ Ay ≥ a∨
i∈Dk

[Yik]⇔ Exactly(1, [Yik i ∈ Dk])→
∑
i∈Dk

yik = 1
(GDP-MINLP)

In this section, we describe the two most common approaches to transform a GDP into a MINLP, namely the big-M (BM)
and the hull reformulations (HR). Different approaches to reformulating the disjunctions of the GDP into MINLP result
in diverse formulations. These formulations, in turn, yield distinct implications for specific problem-solving

:::::::
problem

::::::
solving [43].

The big-M reformulation uses a large
:::::::
positive constantM in an inequality such that it renders the constraint nonbinding

or redundant depending
:::
into

:::
the

::::::::::
inequalities

::
to

:::::
either

:::::::
activate

::
or

:::::
relax

:::::::::
constraints

:::::
based

:
on the values of the binary

variables. The status of constraints (
:
A
:::::::::
constraint

:::::
being active or redundant ) depends

:
is
:::::::::
dependent

:
on the values taken

by their corresponding binary variables, that is , a
:
.
::::::
When

:
a
::::::
binary

:::::::
variable

::
is

::::::
True,

:::
the

::::::::::::
corresponding

:
vector of

constraints hik(x, z) ≤ 0 is activated when Yik is True
:::::::
enforced. Otherwise, the right-hand side is relaxed by the large

value M such that the constraint is satisfied irrespective of the values of x and z, effectively ignoring the constraint
::::::
making

:::
the

::::::::
constraint

::::::::::
nonbinding. This behaviour can be expressed as hik(x, z) ≤M(1− yik) where yik is a binary

variable replacing Yik. The resulting GDP-transformed MINLP using (BM) is given by:

min
x,y,z

f(x, z)

s.t. g(x, z) ≤ 0

Ay ≥ a∑
i∈Dk

yik = 1 k ∈ K

hik(x, z) ≤Mik(1− yik) i ∈ Dk, k ∈ K
x ∈ [x,x] ⊆ Rnx ;y ∈ {0, 1}ny ; z ∈ {z, . . . , z} ⊆ Znz

(BM)

The hull reformulation (HR) uses binary variables to handle disjunctive inequalities . However, this method
disaggregates the

:::::
offers

::
an

:::::::::
alternative

::
by

::::::::
handling

:::::::::
disjunctive

:::::::::
inequalities

:::::
using

:::::
binary

:::::::::
variables,

::
but

::
it
::::
takes

::
a
:::::::
different

:::::::
approach

:::
by

::::::::::::
disaggregating

::::
both continuous and discrete variables, and a copy

:
.
:::
For

::::
each

:::::::
disjunct

::
in

:::
the

::::
GDP,

::
a

::::
copy

::
of

::::
each

:::::::
variable vik ∈ [x, x] or wik ∈ {z, . . . , z} of each variable is added

:
is

::::::
created

:
for each element i in the disjunction

Dk. By becoming zero when their
:::::
When

:::
the corresponding binary variable is 0

::
set

::
to

::::
zero, these new variables enforce

the constraintsdepending on which binary variable is 1. Only copies corresponding
::::::
become

::::
zero

::
as

:::::
well,

:::::::::
effectively

::::::::::
deactivating

::::
their

:::::::::
associated

:::::::::
constraints.

::::::::::
Conversely,

::::
only

:::
the

::::::
copies

::
of

::::::::
variables

:::::
linked

:
to binary variables equal to 1

:::
one are involved in their corresponding constraints. Furthermore

::::::::
enforcing

::
the

::::::::::
constraints.

:::::::::::
Additionally, the constraints

in each disjunct are enforced through
:::::::
governed

:::
by

:
the binary variables by their perspective reformulation evaluated

over
::::::
through

::
a
:::::::::
perspective

::::::::::::
reformulation

::::::
applied

:::
to the disaggregated variables, that is,

:
.
:::::::::::
Specifically, each disjunct

that activates a vector
:::
set of constraints hik(x, z) ≤ 0 is reformulated as yikhik(vik/yik,wik/yik) ≤ 0, where yik is a

binary variable replacing
:::
that

:::::::
replaces

:
Yik.

The difficulty in applying the HR to a GDP is that the perspective function yikhik(vik/yik,wik/yik) is numerically
unstable

::::::::
undefined

:
when yik = 0 if the constraints in the disjuncts are nonlinear. Therefore, the method potentially

causes failures in finding
:::
can

:::::::::
potentially

::::
fail

::
to

::::
find a solution to the GDP problem. This issue can be overcome

by approximating the perspective function with
::
an

:
inequality as demonstrated in [44]. The obtained

:::::::
resulting

:
GDP-

transformed MINLP using (HR) goes as:

5
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:::::
yields:

:

min
v,w,x,y,z

f(x, z)

s.t. g(x, z) ≤ 0

Ay ≥ a∑
i∈Dk

yik = 1 k ∈ K

x =
∑
i∈Dk

vik k ∈ K

z =
∑
i∈Dk

wik k ∈ K

yikhik(vik/yik,wik/yik) ≤ 0 i ∈ Dk, k ∈ K
yikx ≤ vik ≤ yikx i ∈ Dk, k ∈ K
yikz ≤ wik ≤ yikz i ∈ Dk, k ∈ K
vik ∈ [x,x] ⊆ Rnx ;wik ∈ {z, . . . , z} ⊆ Znz

x ∈ [x,x] ⊆ Rnx ;y ∈ {0, 1}ny ; z ∈ {z, . . . , z} ⊆ Znz

(HR)

The hull reformulation introduces extra
:
a

:::::
larger

::::::
number

:::
of constraints compared to the big-M method. However, it

yields a tighter relaxation in
:::
the continuous space, refining the representation of the original GDP problem. This can

potentially reduce the number of iterations required for MINLP solvers to reach the
::
an

:
optimal solution. Depending

on the solver and the problem, the trade-off between these two reformulations might result in one of them yielding
problems that are more efficiently solvable

:::::
solved

:::::
more

:::::::::
efficiently [43].

Despite MINLP reformulations being the default method to solve
:::::::
Although

:::::::
MINLP

::::::::::::
reformulations

::::
are

:::
the

:::::::
standard

:::::::
approach

:::
for

:::::::
solving GDP problems, these reformulations

:::
they

:::::
often

:
introduce numerous algebraic constraints, some

of which might not be relevant to a particular solution and might even lead to .
::::::

Some
::
of

:::::
these

:::::::::
constraints

::::
may

:::
be

::::::::
irrelevant

::
to

:
a
:::::::
specific

:::::::
solution

:::
and

:::
can

:::::
cause

:
numerical instabilities when their corresponding variables are equal to

zero. This net effect might make the problem harder to solve and extend its
:::
can

:::::::
increase

::
the

::::::::::
complexity

::
of

:::
the

:::::::
problem

:::
and solution time, opening the door for other

::::::::::
highlighting

:::
the

::::::::
potential

::
of

:::::::::
alternative GDP solution techniques that do

not transform
:::::
avoid

:::::::::::
transforming the problem into a

::
an

:
MINLP.

2.2 Generalized Disjunctive Programming Logic-based
::::::::::
Logic-Based

:
Solution Algorithms

Instead of reformulating the GDP into MINLP
::
an

:::::::
MINLP, and solving the problem using MINLP solvers, some

methods developed in the literature aim to directly exploit the logical constraints inside the GDP. Attempts to tackle
the logical propositions for solving the GDP problem are known as logic-based methods. Logic-based

::::::::::
Logic-Based

solution methods are generalizations of MINLP algorithms that apply similar strategies to process Boolean variables to
those used for integer variables in MINLP solvers. This category of algorithms includes techniques such as logic-based
outer-approximation (LOA) and logic-based branch and bound (LBB) [9].

In GDP algorithms, the (potentially mixed-integer) Nonlinear Programming (NLP)
:::::::
nonlinear

::::::::::::
programming subprob-

lems generated upon setting specific discrete combinations, which now encompass logical variables, are confined to
only those constraints relevant to the logical variables set to True in each respective combination. In logic-based
algorithms, the generated Nonlinear Programming (NLP) subproblems, which

:::::::::::
subproblems,

:::
that

:
could potentially be

mixed-integer as well, arise from fixing specific Boolean configurations. These configurations constrain the (MI)NLP
subproblems to only relevant constraints corresponding to logical variables set to True in each setting. Specifically,
when considering a given assignment for the logical variables denoted by Ŷ, the resulting subproblem is defined as:

min
x,z

f(x, z)

s.t. g(x, z) ≤ 0

hik(x, z) ≤ 0 if Ŷik = True i ∈ Dk, k ∈ K
x ∈ [x,x] ⊆ Rnx , z ∈ {z, . . . , z} ⊆ Znz

(Sub)

This formulation
:::
The

::::::::::
formulation

::
of

:::::::
Problem

:::::
(Sub)

:
represents the optimization problem under the constraints governed

by the chosen logical assignment Ŷ. In the most general case, after fixing all Boolean variables, the Problem (Sub) is a

6
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MINLP. Still, in most applications, where there are no discrete decisions besides the ones represented in the Boolean
space nz = 0, Problem (Sub) becomes an NLP. This problem avoids evaluating numerically challenging nonlinear
equations whenever their corresponding logical variables are irrelevant (i.e., “zero-flow” issues) [3]. The feasibility of
Boolean variables in the original equation (GDP) depends on logical constraints Ω(Ŷ) = True. By evaluating these
logical constraints, infeasible Boolean variable assignments can be eliminated without needing to solve their associated
subproblems.

In general, logic-based methods can be conceptualized as decomposition algorithms. At the upper level
:::::::::
upper-level

problem, these methods focus on identifying the
::
an

:
optimal logical combination Ŷ. This combination ensures that

the subproblems (Sub), when solved, converge to the
::
an

:
optimal solution of Eq. (GDP). Overall, given a Boolean

configuration, the subproblem (Sub) is a reduced problem that only considers relevant constraints, is
::
and

::
is
::::::::
therefore

numerically more stable, and yields faster evaluations than a monolithic MINLP. Consequently, unlike mixed-integer
methods, logic-based approaches can offer advantages, given they exploit the structure of the logical constraints.

A prevalent logic-based approach is the Logic-based
::::::
method

::
is
::::

the
:::::::::::
Logic-Based

:
Outer-Approximation (LOA)

algorithm, which utilizes linear relaxations of the nonlinear constraints at iterations l = 1, . . . , L and iterations
Lik = {l | Yik = True for iteration l}

::::::::
algorithm,

::::
that

::::
uses

:::::
linear

:::::::::
relaxations

:
to approximate the feasible region of

the original problem. This approach
:::::
Linear

:::::::::
relaxations

::
of

::::::::
nonlinear

::::::::
functions

:::::::
involve

::::::::
replacing

::::::::
nonlinear

:::::::::
constraints

::::
with

:::::
linear

:::::::::::::
approximations

:::::
over

:::
the

::::::::
feasible

::::::
region.

::::::
This

::::::::
approach

:::::::::
simplifies

:::::::
complex

::::::::::::
optimization

::::::::
problems

::
by

::::::::
replacing

:::::::::
nonlinear

:::::::::
constraints

:::
or

:::::::::
objectives

::::
with

::::::
linear

::::::::::::::
approximations,

:::::::
making

:::::
them

:::::
easier

:::
to

:::::
solve

:::::
while

::::::::
providing

::::::
bounds

:::
on

::
an

:::::::
optimal

:::::::
solution.

:::
By

::::::::
utilizing

:::::
linear

:::::::::::::
approximations

::
at

::::::::
iterations

::::::::::
l = 1, . . . , L

::::
and

::::::::
iterations

:::::::::::::::::::::::::::::::
Lik = {l | Yik = True for iteration l},

:::::
LOA leads to the formulation of a linearized GDP, where the

::
an

:
optimal solu-

tion provides the integer combinations necessary for problem resolution. The upper-level problem (Main l-GDP) in the
LOA method is as follows:

min
x,z,α

α

s.t. α ≥ f̄(x, z;xl, zl) ∀ l = 1, . . . , L

ḡ(x, z;xl, zl) ≤ 0 ∀ l = 1, . . . , L∨
i∈Dk

[
Yik

h̄ik(x, z;xl, zl) ≤ 0 l ∈ Lik

]
k ∈ K

Ω(Y) = True

x ∈ [x,x] ⊆ Rnx , z ∈ {z, . . . , z} ⊆ Znz , α ∈ R+

(Main l-GDP)

where f̄(x, z;xl, zl) is the linear relaxation of function f(x, z) for point {xl, zl}
:
at

:::::
point

::::::
(xl, zl). A similar definition

is given for the linear relaxations of the global constraints ḡ(x, z;xl, zl), and of the constraints inside of the disjunctions
h̄ik(x, z;xl, zl). Inspired by the outer-approximation algorithm for MINLP [45], these linear relaxations can be built
using the

:
a first-order Taylor expansion around point {xl, zl}, i.e., f̄(x, z;xl, zl) = f(xl, zl) + ∇xf(xl, zl)>(x −

xl) +∇zf(xl, zl)>(z − zl).
:
It
::

is
:::::::::
important

::
to

::::
note

:::
that

::::::
linear

:::::::::::::
approximations

:::
are

:::::::::
guaranteed

::
to

:::
be

:::::::::
relaxations

::::
only

::::
when

:::
the

:::::::::
functions

::::
f,g,

::::
and

:::
hik:::

are
:::::::
convex.

::::
For

::::::
convex

::::::::
nonlinear

:::::::::
functions,

:::::
these

:::::
linear

:::::::::::::
approximations

:::::::
provide

::::
valid

::::::
bounds

:::
on

:::
the

::::::
optimal

::::::::
solution.

Problem (Main l-GDP) is usually reformulated into a Mixed-Integer Linear Programming (MILP) problem using the
reformulations outlined in §2.1. Upon solving the main MILP problems, the logical combination Ŷ is determined,
defining the subsequent Problem (Sub) with the resulting logical combination. Expansion points for additional
constraints are then provided to solve the subproblem (Sub) within the context of (Main l-GDP). While (Main l-GDP)
yields a rigorous lower bound, the (Sub) subproblem provides feasible solutions, thus establishing feasible upper bounds.
Each iteration refines the linear approximation of (Main l-GDP), progressively tightening the constraints and guiding
the

::::::
current

:::::::
solution

::::::
towards

:::
an

::::::
optimal

:
solutiontoward the optimal of the GDP.

Gradient-based
::::::::::::
Gradient-Based

:
linearizations provide a valid relaxation for convex nonlinear constraints,

:
but do not

guarantee an outer-approximation for nonconvex ones. This limitation jeopardizes the convergence guarantees to
globally optimal solutions of LOA for nonconvex GDP problems. To address this

::::::
problem, if the linearization of

the functions defining the constraints is ensured to be a relaxation of the nonlinear constraints, LOA can converge to
global solutions in nonconvex GDP problems. These relaxations remain to be linear constraints, often constructed
using techniques such as multivariate McCormick envelopes [46]. This generalization is known as Global Logic-based
::::::::::
Logic-Based

:
Outer-Approximation (GLOA).

7
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Another important logic-based solution method is the Logic-based
::::::::::
Logic-Based

:
Branch and Bound (LBB) algorithm

that systematically addresses GDP by traversing Boolean variable values within a search tree. Each node in this tree
signifies

::::::::::
corresponds

::
to a partial assignment of these variables. LBB solves optimization problems by splitting them

into smaller subproblems with fixed logic variables and eliminating subproblems that violate the constraints through a
branch and bound technique.

The core principle of LBB is to branch based on the disjunction, enabling it to neglect the constraints in inactive
disjunctions. Furthermore, LBB accelerates the search for the

::
an optimal solution by focusing solely on logical

propositions that are satisfied. Initially, all disjunctions are unbranched, and we define this set of unbranched disjunctions
as KN . The LBB starts with the relaxation of the GDP model (node-GDP) in which all nonlinear constraints from the
disjunctions are ignored. For every node l, the set of branched disjunctions KB can be defined as KBl = K \KN l.

min
x,Y,z

f l(x, z)

s.t. g(x, z) ≤ 0

Ω(Yl) = True

hik(x, z) ≤ 0 if Ŷ lik = True, k ∈ KBl∨
i∈Dk

[
Yik

Ψik(Ŷl) = True

]
k ∈ KN l

x ∈ [x,x] ⊆ Rnx ;Y ∈ {False, True}ny ; z ∈ {z, . . . , z} ⊆ Znz

(node-GDP)

where Ψ denotes the set
::::::::
set-valued

:::::::
function of constraints relevant for the unbranched nodes KN l.

At each iteration, the algorithm selects the node with the minimum objective solution from the queue. The objective
value of each evaluated node in the queue serves as a lower bound for subsequent nodes. Eventually, the minimum
objective value among all nodes in the queue establishes a global lower bound on the GDP. Branching out all the
disjunctions, the algorithm terminates if the upper bound to the solution, determined by the best-found feasible solution,
matches the global lower bound.

As mentioned above, logic-based methods leverage logical constraints within the GDP by activating or deactivating
algebraic constraints within logical disjunctions during problem-solving

:::::::
problem

::::::
solving. In the branching process,

infeasible nodes that violate logical propositions may be found. These nodes are pruned if they do not satisfy the
relevant logical constraints Ψ(Y) = True.

The methods described in this section require access to the original GDP problem. Such an interface has been provided
by a few software packages, including Pyomo.GDP [41]. The LOA, GLOA, and LBB algorithms are evaluated in this
work through their implementation in the GDP solver in Pyomo, GDPOpt [41].

While logic-based methods offer advantages, there are still limitationsassociated with algorithms
:::::
several

::::::::::
advantages,

:::
they

::::
also

::::
have

:::::
some

:::::::::
limitations. For nonconvex GDP problems, LOA may face challenges in identifying

:::::::
struggle

::
to

::::::
identify

:
the global optimum, as the solutions to the NLP subproblems may

:::::
might not correspond to the global optimum.

Analogously, LBB requires significant
::::::::
Similarly,

:::
the

:::::
LBB

:::::::
method

:::
can

:::
be

::::::::::::::::
resource-intensive,

::::::::
requiring

:::::::::
substantial

computational time and resources, especially
:::::::::
particularly for large and complex problems [41]. More specifically, as

::
the

:
problem size increases, the number of subproblems tends to grow exponentially. Hence,

::::
Thus,

:::::
there

::
is

::
an

:::::::
ongoing

::::
need

:::
for

::::
more

:
efficient logic-based algorithms capable of leveraging

:::
that

:::
can

:::::::::
effectively

::::::::
leverage the logical structure

of GDP problemsremain needed.

:::
The

:::::::
methods

::::::::
described

::
in
::::
this

::::::
section

::::::
require

:::::
access

::
to
:::
the

:::::::
original

::::
GDP

::::::::
problem.

::::
Such

:::
an

:::::::
interface

:::
has

::::
been

::::::::
provided

::
by

:
a
::::
few

:::::::
software

::::::::
packages,

:::::::::
including

::::::::::
Pyomo.GDP

::::
[41]

:
.
:::
The

:::::
LOA,

:::::::
GLOA,

:::
and

::::
LBB

::::::::::
algorithms

::
are

:::::::::
evaluated

::
in

:::
this

::::
work

:::::::
through

::::
their

:::::::::::::
implementation

::
in

:::
the

:::::
GDP

:::::
solver

::
in

:::::::
Pyomo,

:::::::
GDPOpt

::::
[41].

:

2.3 Discrete Convex Analysis and the Discrete-Steepest Descent Algorithm

Unlike traditional MINLP and GDP solution strategies, which rely on conventional convexity theory treating discrete
functions as inherently nonconvex, the Discrete-Steepest Descent Algorithm (D-SDA) incorporates an optimality
condition based on discrete convex analysis. This framework provides an alternative theoretical foundation for discrete
optimization, defining convexity structures for discrete functions [34].

In discrete convex analysis, the solution of
:
In

::::
this

::::::
context,

:
an Integer Programming (IP) problem is considered locally

optimal when the discrete variables are optimal within a predefined neighborhood. Thus, the neighborhood choice has

8
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a direct impact on the
::::
yield

:::
the

:::::
lowest

::::::::
objective

:::::
value

:::::
within

::
a

::::::
defined

::::::::::::
neighborhood.

:::::::::::
Specifically,

:::
this

::::::
means

:::
that

:::
the

::::
point

::
z

::::
must

::::
have

:::
an

:::::::
objective

:::::
value

:::::
lower

::
or

:::::
equal

::::
than

::
all

:::
its

::::::::::
neighboring

::::::
points.

::::::::
Formally,

:::
the

::::::::::::
neighborhood

:::
Nk ::

of
:
a
:::::
point

::
z
::
is

::::::
defined

::
as

:::
all

:::
the

::::::
integer

:::::
points

::
α

::::::
(called

::::::::
neighbors

:
)
::::::
within

:
a
:::::
k-ball

:::
of

::::::
radious

:::
one

::::::::
centered

::::::
around

::
z:

Nk(z) = {α ∈ Znz : ‖α− z‖k ≤ 1}
::::::::::::::::::::::::::::::

(1)

::::
Once

:::
the

::::::::::::
neighborhood

::
of

::
a

::::
point

::
z

::
is

::::::::
identified,

:::
the

:::
set

::
of

:::::::::
directions

::::::
∆k(z)

::
to

::::
each

::
of

:::
its

::::::::::
neighboring

:::::
points

::::
can

::
be

::::::::
computed

:::::::
through

:::::
vector

::::::::::
subtraction,

::
as

::::::
shown

::
by

:::
the

::::::::
following

::::::::
equation,

:

∆k(z) = {d : α− z = d,∀ α ∈ Nk(z)}
:::::::::::::::::::::::::::::::::

(2)

:::::
which

::::::::
measures

::
of

::::
how

:::
far

::::
apart

:::
the

::::::::
neighbors

:::
are

::
in
:::
the

::::::
lattice.

:

::
In

:::
this

::::::
work,

:::
we

:::::::
consider

::::::::::
k ∈ {2,∞}

::::
and

::::::
Figure

:
1
:::::::::

illustrates
::::
both

:::::::::::::
neighborhoods

:::
for

:::
the

::::
case

::
of

::::
two

::::::::::
dimensions.

::::::::
Therefore,

::::
the

::::::
choice

:::
of

::::::::::::
neighborhood

:::::::
directly

::::::
affects

:::
the

:
local optimum obtained. Notably, local optimality

::::::::::
Importantly,

:::::
under

::::::
certain

:::::::::
conditions,

:::::
local

:::::::::
optimality

:::::
within

:::::::
specific

::::::::::::
neighborhoods

:
can imply global optimalityfor

specific neighborhoods under certain conditions. For instance.
::::
For

:::::::
example, global optimality is assured

:::::::::
guaranteed

for unconstrained integer problems with a separable convex objective function by employing
:::::
when the positive and

negative coordinates of the axis
:::
axes

:::
are

::::
used

:
as neighbors.

(a)
:::::::::::::
∞-neighborhood

:::::
(N∞) (b)

::::::::::::
2-neighborhood

::::
(N2)

Figure 1:
::::::::::
Visualization

:::
of

:::
the

::::
two

::::::::::::
neighborhoods

:::::
N∞ :::

and
:::
N2:::

on
::

a
:::::::::::
two-variable

:::::::
discrete

::::::
lattice,

::::::::
centered

::
at

:::
the

::::
point

:::::::::::
zE = (2, 2).

:::
The

:::::::::::::::
∞-neighborhood

::::::
allows

::::::::
movement

:::
to

::
all

::::::
points

:::::
within

::::::
unitary

:::::::::
Euclidean

::::::::
distance,

:::::::
offering

:
a

::::
more

:::::::
flexible

:::::
search

::::::
space,

:::::
while

:::
the

:::::::::::::
2-neighborhood

:::::::
restricts

:::::::::
movement

::
to

:::::::::
orthogonal

:::::::::
directions,

:::::::::
providing

:
a
:::::
more

:::::::::
constrained

::::::
search.

::::
This

:::::::::
illustrates

:::
how

:::
the

::::::
choice

::
of

:::::::::::
neighborhood

::::::
affects

:::
the

::::::::
directions

:::::::
explored

::::::
during

:::::::::::
optimization.

Within the discrete convex analysis framework, an important concept is the idea
:::::
notion of integrally convex objective

functions, as introduced by Favati [39]. A function is considered integrally convex
::::::::
classified

::
as

::::::::
integrally

::::::
convex

:
when

its local convex extension is convex. This extension is constructed by linearly approximating the original function
within unit hypercubes of its domain(for more details,

:
,
:::::::
allowing

:::
for

::
a

::::
more

:::::::
flexible

::::::::
approach

::
to

:::::::
defining

::::::::
convexity

::
in

::::::
discrete

::::::
spaces

:
(see Murota [34]). Integrally convex functions are

:::::::::
particularly

:
relevant because they encompass most

::::
many

:::
of

:::
the discrete convex functions found

::::::::
commonly

:::::::
studied in the literature, including separable convex functions

[47]. It is worth noting that a MINLP may be integrally convex

::
An

:::::::
MINLP

:::::::
problem

::::
may

::::::
exhibit

:::::::
integral

::::::::
convexity

:
even if it is nonconvex according to the common understanding of

convexity in MINLP optimization, i.e., a MINLP is traditionally classified as
::
by

:::::::::
traditional

:::::::
MINLP

:::::::::
standards,

:::::
where

:
a
:::::::
problem

::
is

:::::::::
considered

:
convex if its continuous relaxation is convex [38].

As a convention
:::
This

:::::::::
distinction

:::
is

::::::::
important

:::
for

:::::::::::
understanding

::::
how

:::::::
integral

::::::::
convexity

:::
can

::
be

::::::::
leveraged

::
in
:::::::::::
optimization

:::::::
problems

::::
that

:::::
might

:::::::::
otherwise

::
be

::::::::::
categorized

:::
as

:::::::::
nonconvex.

:::
In

:::::::
discrete

::::::
convex

:::::::
analysis, an optimal solution over

the infinity neighborhood (or ∞-neighborhood
:::::::
(denoted

::::
N∞) is referred to as integrally local

::::::::
integrally

:::::
local (i-

local)because ,
::::::::

meaning
:
it is globally optimal for an integrally convex objective function. Similarly, a solution

9
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optimal within the separable neighborhood (or 2-neighborhood)is called separable local
::
an

:::::::
optimal

:::::::
solution

::::::
within

:::::::::::::
2-neighborhood

:::::::
(denoted

:::::
N2),

:::::
which

::
is

:::::::::
sometimes

:::::::
referred

::
to

::
as

:::
the

::::::::
separable

::::::::::::
neighborhood,

::
is
::::::
known

:::
as

::::::::
separable

::::
local (s-local) since it is globally optimal

:
as

::
it

::::::::
represents

::
a
:::::
global

::::::::
optimum

:
for a separable convex objective function

.[33, 36]. Both neighborhoods are shown in Figure 1 for the case of two dimensions
::::::
[33, 36].

::::
This

:::::::::
distinction

:::::::
between

:::::
i-local

::::
and

::::::
s-local

::::::::
optimality

::
is
::::::::
important

:::
for

::::::::::::
understanding

::::
how

:::::::
different

:::::::::::::
neighborhoods

:::::
affect

:::
the

:::::
global

:::::::::
optimality

:::::::::
guarantees

::
for

:::::::
discrete

:::::::::::
optimization

::::::::
problems

:::::
under

:::
the

:::
lens

:::
of

::::::
discrete

::::::
convex

::::::::
analysis.

All neighbors k =∞ Single-step neighbors k = 2 Different neighborhood explorations alternatives in discrete
variables lattice.

The first extension to this theory for MINLPs was introduced
:::
The

:::::
theory

:::
of

::::::
discrete

::::::
convex

:::::::
analysis

::::
was

:::
first

::::::::
extended

::
to

::::::
MINLP

:
in [33]. This work proposed

::::
Here,

:::
the

::::::
authors

:::::::::
introduced

:
a decomposition approach

:::::::
designed

:
for problems

with ordered binary variablesthat were reformulated with ,
::::::
which

::::
were

::::::::::::
reformulated

:::::
using the external variable

method. The external variables created were then
::
In

:::
this

::::::::
approach,

:::::::
external

::::::::
variables

::::
were

:
decoupled from the rest of

the problem
::::
main

:::::::
problem

:::
and

:::::::::
addressed in an upper-level problem. Later

::::
Then, the D-SDA was applied to optimize the

external variablesin the upper-level problem where binary variables were
::::::
utilized

::
to

:::::::
optimize

:::::
these

:::::::
external

::::::::
variables,

::::
with

:::::
binary

::::::::
variables fixed accordingly. Here

::::::::::
Furthermore, the objective function values came from the solution of NLP

optimization subproblems. The main advantage of addressing superstructure optimization problems with the

:
A
:::::::::
significant

:::::::::
advantage

::
of

:::::
using D-SDA is that binary variables reformulated into external variables no longer need to

be evaluated at
::
as

:::::::
external

::::::::
variables

::
are

::::::::
evaluated

::::
only

::
at
:::::::
discrete

::::::
points.

::::
This

::::::
avoids

:::
the

::::
issue

::
of

:::::::::
evaluating fractional

solutions (e.g., a binary variable evaluated at 0.5) because
:::::
given

:::
that

:
evaluating points at discrete points is enough

::::::
suffices

:
to assess discrete optimality requirements. As a result, D-SDA avoids the potential nonconvexities introduced

by the continuous relaxation of MINLP superstructures, e.g., the multi-modal behavior found when optimizing the
number of stages in a catalytic distillation column or the number of reactors in series [33, 35]. Also, while updating and
fixing external variables successively with the D-SDA, the initialization of variables optimized in the subproblems can
be monitored and updated, allowing the application of the D-SDA

::::::::
Similarly,

:::
this

:::::::::
algorithm

:::
was

::::::::::
succesfully

::::::
applied to

highly nonlinear
::::::
MINLP problems such as the optimal design of rate-based and dynamic distillation systems [36, 48].

In contrast to the IP case studied by other authors[47, 49], when considering
:::::::::::
Guaranteeing

::::::
global

:::::::::
optimality

:::
for

MINLPs or GDPs , providing global optimality guarantees from a discrete convex analysis perspective is challenging
since the objective function value

:::::::
problems

:::::::
remains

:::::::::::
challenging.

:::::::
Unlike

:::::::::
previously

:::::::
studied

::
IP

:::::::::
problems,

::::::
where

:::::
global

:::::::::
optimality

:::
can

::::::::::
sometimes

::
be

::::::::
ensured,

:::::::
MINLP

::::::::
problems

:::::::
involve

::::::::
nonlinear

::::::::
objective

::::::::
functions

:
for each dis-

crete pointcorresponds to the solution of a subproblem, which is usually nonlinear. Thus, an inherent limitation of
applying the D-SDA to MINLP problems is that global optimality cannot be guaranteed. Nevertheless, the .

:::::
This

:::::::::
complexity

::::::
makes

:
it
:::::::
difficult

::
to

::::::::
guarantee

::::::
global

:::::::::
optimality

::::::
[47, 49]

:
.
::::
The D-SDA aims

::::
seeks

:
to find the best solution

possible by choosing neighborhoods adequately. So far,
:::::::
possible

:::::::
solution

::
by

::::::::
choosing

::::::::::
appropriate

:::::::::::::
neighborhoods,

::::
with the∞-neighborhood has been used as a reference

::::
often

::::
used for local optimality in MINLP problems. One reason

for this is the inclusiveness of this neighborhood , encompassing every discrete point
::::
This

::::::::::::
neighborhood

:::::::
includes

::
all

:::::::
discrete

:::::
points

:
within an infinity norm of the evaluated point, as depicted in Figure 1, instead of

::::::
offering

:::::
more

::::::::::::
comprehensive

::::::::
coverage

::::
than just positive and negative coordinates.

:
,
::
as

:::::::::
illustrated

::
in

:::::
Figure

::
1.
:

Additionally, when
applying the D-SDA with the∞-neighborhood to a binary optimization problem (without reformulation), a complete
enumeration over discrete variables is required. While not computationally efficient, this method offers a “brute-force”
alternative for addressing small-scale discrete optimization problems.

Motivated by those previous works, in this paper ,
:::::::
Building

::
on

:::::
these

::::::::::::
advancements,

::::
this

:::::
paper

::::::
extends

:
the D-SDA is

extended
::::::::::
methodology

:
to address more general GDP problemsin the following section by directly .

:::::
This

::::::::
extension

:::::::
involves exploring the search space of reformulated Boolean variables without

::::::
directly,

::::::::::
eliminating

:
the need for a (BM)

or (HR) reformulations step and without the need for a linearization of the original problem as
:::::::::::
reformulation

::::
step

:::
and

:::::::
avoiding

:::
the

::::::::::
linearization

::::::::
required in the LOA method.

3 The Logic-based
:::::::::::::
Logic-Based Discrete-Steepest Descent Algorithm as a Generalized

Disjunctive Programming Algorithm

This section presents Logic-based
::::::::::
Logic-Based D-SDA (LD-SDA) as a GDP algorithm. It begins with an explanation

of the reformulation process for Boolean variables into external variables, outlining the requirements necessary for
reformulation. For this, we provide a comprehensive example for demonstration. Second, the basis of the LD-SDA as a
decomposition algorithm that utilizes the structure of the external variables is elucidated. The following subsection
describes the different algorithms that compose the Logic-based

::::::::::
Logic-Based D-SDA in the context of solving a GDP

problem. The properties of LD-SDA are explained in the final subsection.

10
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Figure 2: Reformulation
:::::::::::
Visualization

:
of independent Boolean variables to

::
the

:
external variables

::::::
variable

:::::::::::
reformulation

:
for an illustrative multi-product batch scheduling example.

:::
The

::::::
figure

::::::::
explicitly

:::::::
displays

:::
the

:::::::
Boolean

:::::::
variables

:::
for

:::::::
starting

::::
time

:::::
(YS)

:::
and

::::::::::
production

:::::
order

::::::
(YOc).::::::::::

Production
::::::
begins

::
on

:::
the

:::::::
second

::::
day,

:::::::::
represented

:::
by

:::::::::::
Y S2 = True

::
in

::::::
black.

::::
The

:::::::::
production

:::::
order

::
is

::
B,

:::
A,

:::
and

:::
C,

::::::::
indicated

::
by

:::::::::::::
Y O1B = True

::::::::
(purple),

:::::::::::::
Y O2A = True

::::::
(green),

::::
and

::::::::::::
Y O3C = True

:::::
(red).

::::
The

::::::::::
maintenance

:::::::
variable

::::
YM

::
is
:::
not

:::::::::::
reformulated

::
as

::
it

::::
does

:::
not

::::
meet

:::
the

::::::::
necessary

::::::
criteria

::
for

::::
this

:::::::::::::
transformation.

3.1 GDP Reformulations Using External Variables

Consider GDP problems where a subset of the Boolean variables in Y can be reformulated into a collection
of integer variables referred to as external variables. Thus, Y in (GDP) is defined as Y = [YR,YN], where
YR = [YR1,YR2, ...,YRnR

]
::::::::::::::
Y = (YR,YN),

::::::
where

::::::::::::::::::::::::::
YR = (YR1,YR2, ...,YRnR

) contains those vectors of in-
dependent Boolean variables that can be reformulated using external variables. This means that each vector YRj will
be reformulated with one external variable, and this reformulation is applied for every j in {1, 2, ..., nR}. It is important
to note that unless explicitly stated otherwise, all indices j are referenced within the set {1, 2, ..., nR}, although the
explicit mention is omitted for notation simplicity. Finally, as a requisite to apply the reformulation, each vector YRj

::::::::::::::::::::
YRj∀ j ∈ {1, 2, ..., nR} must satisfy the following conditions:

• Requirement 1: Every Boolean variable in YRj must be defined over a finite well-ordered set Sj [50, p. 38].
This set may be different for each vector of variables; thus, it is indexed with j. In addition, variables defined
over Sj must represent ordered decisions such as finding discrete locations, selecting discrete points in time,
counting the number of times a task is performed, etc. Notably, these independent Boolean variables can have
indexes

:::::
indices

:
other than the ordered set. Also, not every Boolean variable defined over Sj is necessarily

required to be in YRj . For instance, the Boolean variables that determine the feed stage in a distillation
column are defined over the set of trays, but some trays may be excluded from YRj if needed.

• Requirement 2: Boolean variables YRj are subject to a partitioning constraint Exactly(1,YRj), i.e., exactly
1

:::
one variable within YRj is True [51]. For example, in the case where there are only two independent

Boolean variables (YRj = [Y1, Y2]
:::::::::::::
YRj = (Y1, Y2)) the constraint is equivalent to Y1 Y Y2. Note that, if

the Boolean variables are transformed into binary variables, this is equivalent to a cardinality constraint∑
i∈Sj

yi = 1 [52].

3.1.1
:::::::
External

::::::::
Variable

::::::::::::::
Reformulation:

::::::::::
Illustrative

::::::::
Example

To illustrate these requirements, consider the following example .

Example 1. There exists
:::::
where a multi-product batch reactor that produces

:::::::::::
manufactures

::::
three

::::::::
products,

:
A, B, and

Cwhere the optimal starting day for each substance needs to be determined for
:
.
:::
The

::::
goal

::
is
::
to

:::::::::
determine

::
an

:::::::
optimal

::::::
starting

::::
date

:::
for

::::
each

::::::
product

::::::
within

:
a five-day time horizon

:
. Additionally, the order in which

:::::::::
production

:::::
order

:::
for A,

B, and C are produced
::::
must

:::
be

:::::::::
established, subject to demand constraints, has to be established. Furthermore, it must

11
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be decided whether to perform maintenance or not before production starts. To formulate .
::::::::

Another
:::::::
decision

:::::::
involves

::::::
whether

:::
or

:::
not

::
to

:::::::
perform

::::::
routine

::::::::::
maintenance

::::::
before

:::::::::
production

::::::
begins.

:

::
To

::::::
model

::
this with Boolean variables, we define Y St,∀ t ∈ T = {1, 2, 3, 4, 5} to indicate the

starting time; ,
::
Y Opc,∀ c ∈ C = {A,B,C},∀ p ∈ P = {1, 2, 3} to determine

:::::::
represent

the production order, and YM to indicate the existence of routine
:::::::
decision

::::::
about

:::::::::::
performing

maintenance. The constraints of this problem dictate that there must be only one starting day
(Exactly(1,YS = [Y S1, Y S2, ..., Y S5])

:::::::::::::::::::::::::::::::::
Exactly(1,YS = (Y S1, Y S2, ..., Y S5))) and that each product must be

produced only once (Exactly(1,YOc = [Y O1c, Y O2c, Y O3c]) ∀ c ∈ C::::::::::::::::::::::::::::::::::::::::::
Exactly(1,YOc = (Y O1c, Y O2c, Y O3c)) ∀ c ∈ C).

These constraints imply that variables YS,YOA,YOB , and YOC satisfy Requirement 2. Furthermore, since
::::::::
Moreover,

::::::
since

::::
both

:
T and P are ordered sets, we conclude the aforementioned group of variables also

satisfies Requirement 1. Hence, these
:::
the

:
vectors of independent Boolean variables can be grouped as

YR = [YS,YOA,YOB ,YOC ]
::::::::::::::::::::::::::::
YR = (YS,YOA,YOB ,YOC), and reformulated with one external variable

assigned to each vector in YR. This means that zE,1 is assigned to YS, while zE,2, zE,3, and zE,4 are assigned to
YOA,YOB , and YOCrespectively. This

:
,
::::::::::
respectively.

:

:::
The

::::::::
resulting reformulation is illustrated in Figure 2 , where the values of reformulated Boolean variables and external

variables of a potential solutionare shown
:::::
which

::::::
shows

::
the

::::::::
Boolean

:::
and

:::::::
external

:::::::
variable

:::::
values

::
of

::
a
:::::::
possible

:::::::
solution.

In this possible solution, the operation starts on day
:::::::
solution,

:::::::::
production

:::::
starts

:::
on

::::
Day 2, implying Y S2 = True ⇔

zE,1 = 2, as shown
::::::::
indicated in black at the lower horizontal axis. Analogously

::::::::
Similarly, the upper horizontal axis

indicates the production order where the arrangement depicted is to produce B first, then
:
is
::::::::
produced

::::
first,

::::::::
followed

::
by

:
A, and finally

::::
then C. Such

::::
This production order is represented by the reformulation Y O1B = True⇔ zE,2 =

1, Y O2A = True ⇔ zE,3 = 2, and Y O3C = True ⇔ zE,4 = 3. Note that the remaining Boolean variable
YN = YM in this example

::::::
Finally,

::::
note

::::
that

:::
the

:::::::
Boolean

:::::::
variable

:::::
YM does not satisfy the stated requirements .

Hence, it is not reformulated. This work generalizes this external variable as discussed below.

To formally state the external variable reformulation, we
::::::::::
requirements

:::
for

::::::::::::
reformulation,

::
so

::
it

:::::::
remains

::
as

::
is.

:

3.1.2
:::::::
External

::::::::
Variable

::::::::::::::
Reformulation:

:::::::::
Extension

::::
This

::::
work

:::::::
extends

:::
the

:::::::
external

:::::::
variable

:::::::::::
reformulation

::
to
:::::::
general

:::::
cases.

:::
To

:::::::
formally

::::::::
describe

:::
this

:::::::::
approach, consider

an optimization problem in the (GDP) form
::::
form

::
of

::::::
(GDP). If the GDP problem satisfies Requirements 1 and 2 over

the vectors of independent Boolean variables YR, then one external variable can be assigned to each vector YRj .
:::::::::::::::::::::
YRj ,∀ j ∈ {1, 2, ..., nR}.:
Requirement 1 indicates that each vector YRj must be defined over a well-ordered set Sj . Since not
every Boolean variable defined over Sj is required to be in YRj , we declare subset S′j ⊆ Sj to denote the
ordered sets where Boolean variables YRj are declared. We define the vectors of independent variables as
(1,Yk),∀ k ∈ K, where vector Yk contains Boolean terms Yik,∀ i ∈ Dk. Consequently, if each disjunction k
represented an ordered decision over the well-ordered set Dk, then Requirement 1 would be directly satisfied,
allowing to reformulate a standard (GDP) problem following the guidelines in equations (3) and (4) to instead
obtain: YDk(a),k ⇐⇒ zE,k = a ∀ k ∈ K,∀ a ∈ {1, 2, ..., |Dk|} 1 ≤ zE,k ≤ |Dk| ∀ k ∈ K respectively. In this
case, there are as many external variables as disjunctions k ∈ K in the formulation, making index j interchangeable
with disjunction index k. Similarly, ordered subsets S′j correspond to disjunct setsDk. For this reason, indexes i in Yik
are replaced by ordered index Dk(a) in equation (5). In practice, not every Boolean variable in the formulation fulfills
the requirements to be reformulated with external variables as suggested by equation (5). In addition, ordered discrete
structures may appear outside disjunctions, e.g., within Ω(Y) = True. Therefore, the reformulation in equations
(3) and (4) is more general and practical than equations (5) and (6). Generalizing the reformulation established in
earlier research, our proposed reformulation is adapted to potentially be applied over variables YRj defined over an
ordered but unevenly spaced set. For this, instead of defining external variables using elements of ordered sets as in
previous

:::::::::::::::::::::
YRj ,∀ j ∈ {1, 2, ..., nR}::::

must
:::
be

::::::
defined

::::
over

:
a
:::::::::::
well-ordered

:::
set

:::
Sj .:::

Not
:::
all

:::::::
Boolean

::::::::
variables

::::::
defined

::::
over

::
Sj:::

are
::::::::
required

::
to

::::::
belong

::
to

:::::
YRj .::::

To
:::::::
account

:::
for

::::
this,

:::
we

::::::::
introduce

:::
the

::::::
subset

:::::::
S′j ⊆ Sj:::

for
:::::

each
:::::::::::::
j ∈ 1, 2, ..., nR,

::::::::::
representing

:::
the

::::::
ordered

::::
sets

::
in

:::::
which

:::
the

:::::::
Boolean

::::::::
variables

::::
YRj:::

are
::::::::
declared.

::::
The

:::::
vector

::
of

:::::::::::
independent

:::::::
variables

::
is

:::
then

::::::::::
represented

::
as

::::::::::::::::::::::::::::::::::::::
YRj = (YRj,S′

j(1)
, YRj,S′

j(2)
, ..., YRj,S′

j(|S′
j |)) :::::

where
::::
each

::::::::
YRj,S′

j(a)::
is

:
a
::::::::
Boolean

:::::::
variable

::::::
defined

:
at
::::::::

position
:
a
:::
of

:::
the

:::::::::::
well-ordered

::
set

:::
S′j::::

and
:::::::
included

::
in
::::::

vector
:::::
YRj .::

It
::

is
:::::::::

important
::
to

::::
note

::::
that

:::::::
Boolean

::::::::
variables

::::::::::::::::::::::::::::::::::::::::::
YRj,S′

j(a)
,∀ j ∈ {1, 2, ..., nR}, ∀ a ∈ {1, 2, ..., |S′j |}:::

can
:::
be

::::::
defined

::::
over

::::
other

::::
sets

::::
aside

:::::
from

:::::::::::::::::::
S′j ,∀ j ∈ {1, 2, ..., nR}.

::
In

::::
other

::::::
words,

:::::
these

:::::::
variables

::::
may

:::::
have

:::::::
multiple

::::::
indices

::
in

:::
the

::::::::
algebraic

:::::
model

:::::::::::
formulation.

:::::::::::
Requirement

::
2

:::::::
indicates

::::
that

:::::::::::::
Ω(Y) = True

:::
in

:::::::
(GDP)

:::::
must

:::::::
contain

:::::::::::
partitioning

::::::::::
constraints

:::
of

::::
the

:::::
form

::::::::::::::::::::::::::::::::
Exactly(1,YRj),∀ j ∈ {1, 2, ..., nR}.::::::::::

Combining
::::
both

:::::::::::
requirements

:::::
allows

::
to
::::::
define

:::::::
Boolean

::::::::
variables

::
in

:::
YR:::

as
:
a
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:::::::
function

::
of

:::
nR:::::::

external
:::::::
variables

:::::::::::::::::::::
zE,j ,∀ j ∈ {1, 2, ..., nR}:::

as,

YRj,S′
j(a)

⇐⇒ zE,j = a ∀ j ∈ {1, 2, ..., nR},∀ a ∈ {1, 2, ..., |S′j |}
:::::::::::::::::::::::::::::::::::::::::::::::::::::::

(3)

::::::::
effectively

::::::::::
expressing

:::
the

:::::::
external

::::::::
variables

::::
zE,j::::::

based
:::
on

:::
the

::::::
values

::
of

::::::::
Boolean

::::::::
variables

::::::::
YRj,S′

j(a)
.
::::::

From
::::

this

:::::::::::
reformulation,

::::
the

:::::
upper

:::
and

:::::
lower

:::::::
bounds

::
of

:::
the

:::::::
external

::::::::
variables

:::
can

::
be

:::::::
directly

:::::::
inferred

::::
from

:::
the

::::
sets

::
of

:::::::
ordered

:::::::
positions

:::::::::::::::::::::::::::::
{1, 2, ..., |S′j |},∀ j ∈ {1, 2, ..., nR}.::::::

These
::::::
bounds

:::
are

::::::
defined

:::
as:

:

1 ≤ zE,j ≤ |S′j | ∀ j ∈ {1, 2, ..., nR}
::::::::::::::::::::::::::::::

(4)

:::
The

:::::::
general

:::::::
external

:::::::
variable

:::::::::::
reformulation

::
is
:::::
given

:::
by

::::::::
equations

:::
(3)

::::
and

:::
(4).

:::::
Next,

:::
we

:::::::
proceed

::
to

::::::
derive

:
a
:::::::
simpler

:::::::::::
reformulation

::::
that

::::::
follows

:::::
from

:::
the

::::::
special

::::
case

:::::
when

:::
all

:::
the

::::::::::
disjunctions

:::
are

:::::::
defined

::::
over

:::::::::::
well-ordered

::::
sets.

:::::
First,

:::
note

::::
that

::::::::::::
Requirement

:
2

:
is
::::::::
naturally

:::::::
satisfied

:::
by

:::
the

::::::::::
disjunctions

::
in

:
a
::::::::
standard

::::::
(GDP)

::::::::::
formulation.

::::
This

::::::
arises

::::
from

::
the

::::
fact

::::
that

:::
the

:::::::::
exclusivity

::::::::::
requirement

:::
in

::::::::::
disjunctions

:::::::
enforces

::::::::::
constraints

::
of

:::
the

:::::
form

::::::::::::::::::::::
Exactly(1,Yk),∀ k ∈ K,

:::::
where

:::::
vector

::::
Yk :::::::

contains
:::::::
Boolean

:::::
terms

::::::::::::
Yik,∀ i ∈ Dk.

:::::::::::::
Consequently,

::
if

::::
each

:::::::::
disjunction

::
k
::::::::::
represented

::
an

:::::::
ordered

:::::::
decision

::::
over

:::
the

:::::::::::
well-ordered

:::
set

::::
Dk,

::::
then

::::::::::::
Requirement

::
1

:::::
would

:::
be

:::::::
directly

:::::::
satisfied,

::::::::
allowing

::
to

::::::::::
reformulate

::
a

:::::::
standard

::::::
(GDP)

:::::::
problem

::::::::
following

:::
the

:::::::::
guidelines

::
in

::::::::
equations

:::
(3)

:::
and

:::
(4)

::
to

::::::
instead

::::::
obtain:

:

YDk(a),k ⇐⇒ zE,k = a ∀ k ∈ K, ∀ a ∈ {1, 2, ..., |Dk|}
:::::::::::::::::::::::::::::::::::::::::::::::

(5)

1 ≤ zE,k ≤ |Dk| ∀ k ∈ K
::::::::::::::::::::::

(6)

::::::::::
respectively.

::
In

::::
this

::::
case,

:::::
there

::
are

:::
as

::::
many

:::::::
external

::::::::
variables

::
as

::::::::::
disjunctions

::::::
k ∈ K

::
in

:::
the

:::::::::::
formulation,

::::::
making

:::::
index

:
j
:::::::::::::
interchangeable

::::
with

::::::::::
disjunction

:::::
index

::
k.

:::::::::
Similarly,

:::::::
ordered

:::::::
subsets

::
S′j::::::::::

correspond
::
to

:::::::
disjunct

::::
sets

::::
Dk.

:::
For

::::
this

::::::
reason,

::::::
indices

:
i
::
in

::::
Yik :::

are
:::::::
replaced

::
by

:::::::
ordered

:::::
index

::::::
Dk(a)

::
in

:::::::
equation

::::
(5).

::
In

::::::::
practice,

:::
not

:::::
every

:::::::
Boolean

:::::::
variable

::
in

:::
the

::::::::::
formulation

::::::
fulfills

:::
the

:::::::::::
requirements

::
to

:::
be

:::::::::::
reformulated

::::
with

:::::::
external

::::::::
variables

::
as

:::::::::
suggested

::
by

::::::::
equation

:::
(5).

::
In

:::::::
addition,

:::::::
ordered

:::::::
discrete

::::::::
structures

::::
may

::::::
appear

:::::::
outside

:::::::::::
disjunctions,

::::
e.g.,

:::::
within

:::::::::::::
Ω(Y) = True.

::::::::::
Therefore,

:::
the

:::::::::::
reformulation

::
in

::::::::
equations

:::
(3)

:::
and

:::
(4)

::
is

:::::
more

::::::
general

:::
and

::::::::
practical

::::
than

::::::::
equations

:::
(5)

:::
and

::::
(6).

::::::::::
Generalizing

::::
the

::::::::::::
reformulation

:::::::::
established

:::
in

:::::::
previous

::::::::
research,

::::
we

:::::
adapt

:::
the

::::::::
proposed

::::::::::::
reformulation

:::
to

::::::
handle

:::::::
variables

:::::
YRj:::::::

defined
::::
over

::::::::
ordered,

:::
but

::::::::
unevenly

::::::
spaced

::::
sets

:::::::::::::::::
∀ j ∈ {1, 2, ..., nR}.::::::::

Instead
::
of

::::::::
defining

:::::::
external

:::::::
variables

:::::
based

:::
on

:::
the

:::::::
elements

::
of

::::
these

:::::::
ordered

::::
sets

::
Sj:::

as
::
in

:::::
earlier

:
works [33], we propose defining external vari-

ables with respect to
::::
based

:::
on

:
the positions in ordered sets. In this case, the

:::
the

::::::
ordered

::::
sets

:::
S′j .::::

For
:::::
each

::
j,

:::
the

::
set

::
of

::::::::
positions

::
is
:::::::
denoted

::
as

::::::::::::
1, 2, . . . , |S′j |,:::::

where
:::
the

:
distance between consecutive elements in the set of positions

{1, 2, ..., |S′j |} is equal to 1. Consequently,
:::
one.

::::
This

::::::
change

::::::
avoids

::::::::
potential

:::::
issues

::::
with solutions defined by isolated

discrete elementswill not negatively affect the LD-SDA search, whose iterations are based on a ,
:::::
since

:::
the

:
nearest-

neighborhood exploration over external variables
:::::
search

::
in
:::
the

::::::::
LD-SDA

::
is

::::
now

:
defined over positions . To illustrate

this potential issue, consider , for example,
:::::
instead

:::
of

::::::::
elements.

::
To

::::::::
illustrate

::
the

:::::::
problem

::::
that

::::
may

::::
arise

:::::
when

::::::::::
considering

::
the

::::::::::::
reformulation

::
in

:::::
terms

::
of

::::::::
elements,

:::::::
consider

:
an unevenly

spaced set S′1 = {0, 1, 2, 7, 10}, and its corresponding Boolean variables YR1 = [YR1,0, YR1,1, YR1,2, YR1,7, YR1,10],
where

::::::::::::::::::::::::::::::::::::
YR1 = (YR1,0, YR1,1, YR1,2, YR1,7, YR1,10),

::::
with

:::
the

::::::::::
partitioning

:::::::::
constraint Exactly(1,YR1) = True. Sup-

pose the incumbent point is zE,1 = 4(,
:
which corresponds to YR1,7 = True), thus its nearest neighbors are .

:::
A

:::::::::::
neighborhood

::::::
search

::::::
around

:::
the

:::::::::
incumbent

:::::
would

:::::::
explore zE,1 = 3 and zE,1 = 5. This stems from starting at 4 and

searching its immediate neighboring points i.e., 3 and 5. For those neighbors, the definitions from previous work [33]
would set one of their respective Boolean variables to True (

::::::::
According

::
to

:::::::
previous

:::::::::
definitions

::::
[33]

:
,
:::
this

::::::
search

:::::
would

::::::
attempt

::
to

:::
set YR1,3 = True or YR1,5 = True) and the rest of

:
,
:::::
while

::::::::
assigning

:::
the

::::::::
remaining

:
Boolean variables in YR1

to False. Given that
:::::
Since 3 /∈ S′1 and 5 /∈ S′1, both zE,1 = 3 and zE,1 = 5 would be declared as infeasible. Thus, the

current incumbent zE,1 = 4 would be interpreted
:::::::::
neighboring

::::::
points

:::::
would

::
be

::::::
treated

::
as

:::::::::
infeasible,

:::::::
causing

::
the

::::::
search

::
to

:::
stop

:::::::::::
prematurely,

::::::::::
identifying

::::::::
zE, 1 = 4

:
as a local optimum, and the neighbor search will stop at this point. This

problematic can be avoided using the proposed definition , where the reformulation is performed in terms of
:
.
::::
Our

:::::::
proposed

::::::::
definition

:::::::
resolves

::::
this

::::
issue

:::
by

:::::::::
conducting

:::
the

::::::::::::
reformulation

::::
over set positions. In our the example, the new

definition would interpret
:::
this

::::
case,

::::
the

::::::::::
neighboring

:::::
points

:
zE,1 = 3 and zE,1 = 5 as

:::::
would

::::::::::
correspond

::
to

:
positions

over YR1. This means ,
::::::::
meaning that either YR1,2 or YR1,10 would be set to True, instead of YR1,3 or YR1,5, and the

discrete exploration would proceed
:
.
::::
This

::::::
allows

:::
the

::::::
discrete

::::::
search

::
to

:::::::
continue

:::::::
without

::::::::::
prematurely

::::::::
declaring

::
a

::::
local

:::::::
optimum.

13
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3.2 GDP Decomposition Using External Variables

The reformulation presented in the previous section allows to express some of the Boolean variables in the problem
in terms of the external variables as YR = YR(zE), where zE is a vector of nR external variables. The core idea of
the LD-SDA is to move these external variables to an upper-level problem (Upper) and the rest of the variables to a
subproblem (7). This decomposition allows taking advantage of the special ordered structure of the external variables
by using a Discrete-Steepest Descent Algorithm (D-SDA) in the upper level

::
in

:::
the

::::::::::
upper-level problem to explore

their domain as explained in §3.3. Once an external variable configuration is determined by D-SDA, a subproblem is
obtained by only considered

:::::::::
considering

:
the active disjuncts of that specific zE configuration. The formal definition of

both problems is given as:
min
zE

fsub(zE)

s.t. zE ∈ {zE, . . . , zE} ⊆ ZnzE (From Eq. (4))
(Upper)

s(zE) =



fsub(zE) = minx,YN,z f(x, z)

s.t. YR = YR(zE) (Fixed as shown in Eq. (3))
g(x, z) ≤ 0

Ω(Y) = True∨
i∈Dk

[
Yik

hik(x, z) ≤ 0

]
k ∈ K

x ∈ [x,x] ⊆ Rnx ;Y ∈ {False, True}ny ; z ∈ {z, . . . , z} ⊆ Znz

(7)

In problem (Upper), a value for the objective function fsub(zE) is obtained by the optimization of subproblem (7). Thus,
fsub(zE) is defined as the

::
an

:
optimal objective function value found by optimizing the subproblem s(zE), obtained

by fixing external variables fixed at zE. If the subproblem (7) is infeasible, fsub(zE) is set to as
::::::
positive

:
infinity by

convention. Notably, the subproblems are reduced formulation given that they only consider the relevant constraints for
the relevant external variable configuration zE.

A novel feature of the LD-SDA is its ability to handle various types of subproblems, extending previous versions [33],
which

:::
that

:
solely supported NLP subproblems. In its most general form, the lower-layer

:::::::::
lower-level problem (7) is a

(GDP) with continuous (x), discrete (z) and non-reformulated Boolean (YN) variables. Consider the scenario where
every Boolean variable can be reformulated (e.g., as shown in equations (5) and (6)) or every non-reformulated variable
YN is equivalently expressed in terms of YR. Note that the later

::::
latter situation may occur if all Boolean variables

YN are determined within the subproblem upon fixing YR, implying that logic constraints Ω(Y) = True establish
YN as functions of YR. In such a scenario, the resulting subproblem becomes an (MINLP) with continuous (x) and
discrete variables (z), or an NLP if there are no discrete variables (z) in the formulation. In the following subsection,
we introduce the LD-SDA as a decomposition algorithm that leverages the external variable reformulation and bi-level
structure depicted so far.

3.3 Logic-based
:::::::::::
Logic-Based Discrete-Steepest Descent Algorithm

The Logic-based
::::::::::
Logic-Based

:
Discrete-Steepest Descent Algorithm(LD-SDA), as described in Algorithm 1, solves a

series of subproblems (7) until a stopping criterion is satisfied. The LD-SDA can only start once the external variable
reformulation of the problem has been performed. The external variables zE are handled in an upper optimization layer
::::
level where the algorithm is performed. To initialize, this method requires an initial fixed value of external variables
zE,0, the value of the variables of its corresponding feasible solution (x0,Y0, z0), and its respective objective function
value fsub(zE,0). Finding a starting feasible solution is beyond the scope of this work; however, it would be enough to
have zE,0 and solve the subproblem s(zE,0) to find the rest of the required initial solution. Note that problem-specific
initialization strategies have been suggested in the literature, e.g., see [48].

The LD-SDA explores a neighborhood within the external variable domain; hence, the user must to determine the type
of neighborhood k that will be studied. In this paper

::
As

:::::::::
mentioned

::
in

::::
§2.3, we only consider k ∈ {2,∞} as shown in

Figure 1
:::
(see

::::::
Figure

::
1); nevertheless, other types of discrete neighborhoods can be considered [34]. Once k has been

selected, the neighborhood Nk of a given
:::
the

::::::
current point zE is defined as Nk(zE) = {α ∈ ZnzE : ‖α− zE‖k ≤ 1}

::
as

:::::
given

::
by

::::::::
Equation

::
1. Similarly, the set of distances

::::::::
directions ∆k from the point zE to each neighbor α is be

calculated as ∆k(zE) = {d : α− zE = d,∀ α ∈ Nk(zE)}
:
as

::::::::
dicatated

::
by

::::::::
Equation

::
2.
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Figure 3:
:::::::::::
Visualization

::
of

:::
the

:
LD-SDA with k =∞

::::::::
algorithm

:::::
using

::::
N∞ ::

in
:
a
:::::::::::

two-variable
:::::::
discrete

:::::
lattice

::::::::
example.

First,
::
In

:::
this

:::::::
example

:::
we

::::::::
initialize

:
the algorithm is initialized in [2, 2]

:::::
begins

:::
at

:::
the

:::::
initial

:::::
point

:::::
(2, 2). Neighbor

:
A

::::::::::::
Neighborhood Search in

::::::
within the neighborhood N∞([2, 2]) (

::::::::::
N∞((2, 2)),

:
represented with

::
by blue arrows) finds ,

:::::::
identifies

:
the best neighbor is [3, 3]; hence

::
as

:::::
(3, 3),

:::::::
resulting

::
in the steepest descent direction d∗ is [1, 1]

::::::::::
d∗ = (1, 1).

Then,
::
A

:
Line Search(represented ,

::::::::
depicted with black arrows) is performed up to ,

:::::::
follows

::::
this

:::::::
direction

:::::
until

:::::::
reaching

:
point [5, 5] and stopped there because fsub([5, 5]) < fsub([5, 5] + d∗)

:::::
(5, 5),

::::::
where

::
it

:::::
stops

:::::
given

::::
that

::::::::::::::::::::::::::
fsub((5, 5)) < fsub((5, 5) + d∗). A second Neighbor

:::::::::::
Neighborhood

:
Search in N∞([5, 5]) is performed (represented

in
::::::::::
N∞((5, 5)),

::::::
shown

::::
with red arrows) and concludes that point [5, 5]

:
,
:::::::::
determines

:::::
(5, 5) is integrally local; therefore,

:::::::::
terminating

:
the algorithmterminates.

The next step is to perform Neighbor
::::::::::::
Neighborhood Search (see Algorithm ??), which

:::
2),

:::
that

:
consists of a local search

within the defined neighborhood. Essentially, this algorithm solves s(α) ∀ α ∈ Nk(zE) and compares the solutions
found with the best incumbent solution fsub(zE). If, in a minimization problem, fsub(zE) ≤ fsub(α) ∀ α ∈ Nk(zE)
then, the current solution in zE is a discrete local minimum (i-local or s-local depending on the value of k); otherwise,
the steepest descent direction d∗ = α∗ − zE is computed, the algorithm moves to the best neighbor by letting zE = α∗

and performs a Line Search in direction d∗. Note that for a neighbor to be considered the best neighbor α∗, it must
have a feasible subproblem,

:
and a strictly better objective than both the incumbent solution and its corresponding

neighborhood.

The Line Search (see Algorithm 3) determines a point in the direction of steepest descent β = zE + d∗ and evaluates it.
If the subproblem s(β) is feasible and fsub(β) < fsub(zE) then, let zE = β and perform the Line Search again until
the search is unable to find a better feasible solution in direction d∗. Once this occurs, the general algorithm should
return to calculate Nk(zE) and ∆k(zE) to perform the Neighbor

::::::::::::
Neighborhood Search again in a new iteration.

The LD-SDA will terminate once the Neighbor
::::::::::::
Neighborhood Search is unable to find a neighbor α with a feasible

subproblem s(α) that strictly improves the incumbent solution as fsub(α) < fsub(zE) ∀ α ∈ Nk(zE). In that case, the
point is considered a discrete i-local or s-local minimum, and the algorithm will return the values of both variables
(x,Y, z, zE) and the objective function f∗sub of the solution found. The stopping criterion employed indicates that the
current point has the best objective function amongst its immediate discrete neighborhood mapping [34]. In rigorous
terms, the integrally local optimality condition can only be guaranteed after an N∞ exploration given that this is
the neighborhood that considers the entire set of immediate neighbors (i-local optimality). Therefore, when using
neighborhood N2, it is up to the user to choose if the final solution ẑE is to be certified as integrally local by checking
its N∞(ẑE) neighborhood.

Figure 3 illustrates and explains the LD-SDA executed in its entirety on a 6×6 lattice of two external variables. For this
example, the∞-neighborhood is utilized and two different Neighbor

::::::::::::
Neighborhood Searches are required. Furthermore,

a detailed pseudo-code for the LD-SDA is presented below.
:
in

:::
the

:::::::::
following

::::::
section

::::
(see

:::::::::
Algorithm

::
1).

:
Additional

efficiency improvements and other implementation details are presented in §4.
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Algorithm 1: Logic-based
::::::::::
Logic-Based

:
Discrete-Steepest Descent Algorithm (LD-SDA)

Input: k ∈ {2,∞} ; An external variable feasible solution zE,0
Data: Variable values associated with feasible solution x0,Y0, z0
/* Initialize */

1 Set x← x0; Y ← Y0; z← z0; zE ← zE,0
2 Solve subproblem: f∗sub ← fsub(zE)
3 Set neighborSearching← True
4 Generate initialization: γinit ← {x,Y, z, zE} // Optional
5 Initialize set of explored point in lattice as G← {zE} // Optional
/* This cycle performs Neighborhood Search either when the algorithm starts (after

initialization) or when Line Search does not improve the incumbent solution */
6 while neighborSearching is True do

/* Find the current neighborhood Nk(zE) and directions ∆k(zE) to execute Neighborhood Search
*/

7 Compute Nk(zE) = {α ∈ ZnzE : ‖α− zE‖k ≤ 1}
8 Compute ∆k(zE) = {d : α− zE = d,∀ α ∈ Nk(zE)}

/* Perform the Neighborhood Search by evaluating an comparing every fsub(α) */
9 f∗sub ; zE ; d∗ ; improvedDuringNS ; γinit ← Neighbor

::::::::::::
Neighborhood

Search(f∗sub, zE, Nk(zE),∆k(zE))
/* Check for improvement during Neighborhood Search */

10 if improvedDuringNS is True then
/* If so, perform Line Search in direction d∗ until the incumbent does not improve */

11 Set lineSearching← True
12 while lineSearching is True do
13 f∗sub ; zE ; improvedDuringLS ; γinit ← Line Search(f∗sub, zE,d

∗)
/* Check if the current solution was not improved during Line Search */

14 if improvedDuringLS is False then
/* If so, stop Line Search */

15 Set lineSearching← False

16 else
/* If not, stop Neighborhood Search to terminate the algorithm and return the solution */

17 Set neighborSearching← False

Output: f∗sub ; x ; Y ; z ; zE

3.3.1 Neighbor
::::::::::::
Neighborhood Search and Line Search

In this subsection we present detailed pseudo-codes and intuitions on implementing the Neighbor Search and the Line
Search algorithms as presented in Algorithm ?? and Algorithm 3, respectively.

In a general sense, the Neighbor
::::::::::::
Neighborhood Search algorithm is a local search around the immediate neighborhood of

discrete variables from a starting point zE. Therefore, the neighborhood Nk(zE) and the set of distances corresponding
to each neighbor ∆k(zE) must be computed before starting the exploration. This algorithm solves the subproblems
s(α) ∀ α ∈ Nk(zE) and compares their objective function; if feasible, with the best incumbent solution found by
Neighbor

::::::::::::
Neighborhood Search fNSsub so far.

Neighbor Search
:::
The

::::::::::::
Neighborhood

::::::
Search

::::::::
algorithm

:
determines whether a new neighbor α improves

::::
upon

:
the current

solution zE based on two criteria, which can be evaluated in relative or absolute terms. The first criterion employs
a strict less

:::
than

:
(<) comparison and is utilized

::::::
applied

:
when no neighbor has yet improved upon

:::::::::::
outperformed the

current solution. This ensures the algorithm does not transition
:::::
avoids

:::::::::::
transitioning

:
to a neighbor with an identical

objective , thereby
:::::
value,

:
preventing cycling between points with identical objective functions. Further discussion

::
the

::::
same

::::::::
objective

:::::::
function.

:::::::
Further

::::::
details on the non-cycling properties of the LD-SDA is provided

:::
are

::::::::
discussed in §3.4.

The second criterion ,

::::
Once

::
a

:::::::
neighbor

::
α

::::::::
improves

:::
the

::::::::
incumbent

::::::::
solution,

:
a
::::::
second

:::::::
criterion

::
(employing a less-than-or-equal-to (≤) compar-

ison, becomes active once a single neighbor α improves upon the incumbent solution. This enables
:
)
::
is

:::::::
utilized.

::::
This

:::::
allows

:
the algorithm to consider multiple

::::::::
neighbors

:
α’s with the same objective . Consequently, if

::::
value.

::
If
:
more than

one neighbor shares the best current
:::::::
achieves

:::
the

::::
best solution, a

:::::::::
tie-breaking

:::::::
strategy

:::::
based

:::
on

:
a
:
maximum Euclidean
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distance lexicographic heuristic may be employed as a tie-break criterion. This heuristic calculates the Euclidean
distance

:
is
:::::
used.

::::
The

::::::::
Euclidean

::::::::
distance

:
is
:::::::::
computed as dist = ‖α − zE‖2 ∀ α ∈ Nk(zE), favoring the first-found

"most diagonal" routes. Such routes, absent
::::
path.

:::::
These

::::::::
diagonal

::::::
routes,

:::::
which

:::
do

:::
not

:::::
exist in N2 neighborhoods,

have proven effective in previous versions of the D-SDA [33, 35, 36].

Algorithm 2: Neighbor
:::::::::::
Neighborhood

:
Search

Input: f∗sub ; zE ; Nk(zE) ; ∆k(zE)
/* Initialize */

1 Relative tolerance ε
2 Set improvedDuringNS← False; d∗ ← 0; fNSsub ←∞
3 Set dist∗ ← 0 // Optional
4 for every αi ∈ Nk(zE) do

/* Optional: Check if the neighbor was already evaluated in a previous iteration */
5 if αi ∈ G then
6 Go to line 4 with αi+1

7 else
8 Append αi to G

/* Optional: Check if the neighbor is within external variable domain */
9 if αi /∈ ZE = {1, . . . , zE} then

10 Go to line 4 with αi+1

/* Create fixed subproblem */
11 Create subproblem and fix with external variables s(αi)
12 Initialize s(αi) using γinit // Optional

/* Optional: Check feasibility of fixed external variables in s(αi) with FBBT */
13 if FBBT of s(αi) detects infeasibility then
14 Go to line 4 with αi+1

/* Solve subproblem */
15 Solve s(αi)
16 if s(αi) is feasible then
17 Set fNSsub ← fsub(αi)
18 Set disti ← ‖αi − zE‖2 // Optional

/* Check if the algorithm has already improved the starting solution to choose the
corresponding minimum improvement criterion */

19 if improvedDuringNS is False then
/* Check if minimum improvement criterion is satisfied */

20 if fNSsub < f∗sub or (f∗sub − fNSsub )/(|f∗sub|+ 10−10) > ε then
/* Update with new best solution */

21 Set f∗sub ← fNSsub ; d∗ ← ∆k(zE)i; zE ← αi

22 Set improvedDuringNS← True
23 Set dist∗ ← disti // Optional
24 Generate initialization: γinit ← {x,Y, z, zE} // Optional

25 else
/* Check if minimum improvement criterion is satisfied. There is an additional

condition that implements the maximum Euclidean distance heuristic */
26 if (fNSsub ≤ f∗sub or (f∗sub − fNSsub )/(|f∗sub|+ 10−10) ≥ ε) and disti ≥ dist∗ then

/* Update with new best solution */
27 Set f∗sub ← fNSsub ; d∗ ← ∆k(zE)i; zE ← αi

28 Set improvedDuringNS← True
29 Set dist∗ ← disti // Optional
30 Generate initialization: γinit ← {x,Y, z, zE} // Optional

Output: f∗sub ; zE ; d∗ ; improvedDuringNS ; γinit

The Line Search algorithm is a search in the steepest descent direction, determined by the direction of the best neighbor
d∗ = α∗ − zE. This approach generates a point in the steepest descent direction β = zE + d∗ and solves the
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optimization subproblem s(β) to obtain fLSsub. The algorithm moves to the point β if and only if, s(β) is feasible and
fLSsub < f∗sub, adhering to the strict less-than

:::
less

::::
than

:
(<) improvement criterion. This criterion prevents revisiting

previous points, thereby accelerating and ensuring convergence. Again, more insights into the convergence properties
of the LD-SDA are stated in §3.4. The Line Search process continues until there is no feasible point in the direction d∗

that improves upon the incumbent solution.

Algorithm 3: Line Search
Input: f∗sub ; zE ; d∗

/* Initialize */
1 Relative tolerance ε
2 Set improvedDuringLS← False; β ← zE + d∗; fLSsub ←∞
/* Optional: Check if the moved point β was already evaluated in a previous iteration */

3 if β ∈ G then
4 Terminate algorithm
5 else
6 Append β to G
/* Optional: Check if the moved point is within the external variable domain */

7 if β /∈ ZE = {1, . . . , zE} then
8 Terminate algorithm
/* Create fixed subproblem */

9 Create subproblem and fix with external variables s(β)
10 Initialize s(β) using γinit // Optional

/* Optional: Check feasibility of fixed external variables in s(β) with FBBT */
11 if FBBT of s(β) detects infeasibility then
12 Terminate algorithm

/* Solve subproblem */
13 Solve s(β)
14 if s(β) is feasible then
15 Set fLSsub ← fsub(β)

/* Check if minimum improvement criterion is satisfied */
16 if fLSsub < f∗sub or (f∗sub − fLSsub)/(|f∗sub|+ 10−10) > ε then

/* Update with new best solution */
17 Set f∗sub ← fLSsub; zE ← β
18 Set improvedDuringLS← True
19 Generate initialization: γinit ← {x,Y, z, zE} // Optional

Output: f∗sub ; zE ; improvedDuringLS ; γinit

3.4 Logic-based
:::::::::::
Logic-Based Discrete-Steepest Descent Algorithm Properties

The LD-SDA algorithm is guaranteed not to cycle, i.e., it will not re-evaluate
:::::::
meaning

::
it

::::::
avoids

:::::::::::
re-evaluating the same

solution candidates when searching for the
::::
while

:::::::::
searching

::
for

:::
an optimal solution. This is avoiding revisiting

:::::::
achieved

::
by

:::::::
avoiding

::::::::::
revisitation

::
of

:
previously solved subproblems, and it can be accomplished carefully evaluating

:::::::
carefully

:::::::
deciding

:
when to move to a next incumbent . In both Neighbor

:::
the

::::
next

:::::::::
incumbent

::::::::
solution.

:::::
Both

::::::::::::
Neighborhood

Search (Algorithm ??
:
2) and Line Search (Algorithm 3) , the algorithms ensure improvement in the solution of the next

discrete point by following
::::::
adhere to a minimum improvement criterion . As established

::
to

::::::
ensure

:::::::
progress

::::::
toward

:
a
:::::
better

::::::::
solution.

:::
As

::::::::
discussed

:
in §3.3.1, this criterion is satisfied if and only if a strict

:::
less

::::
than

:
(<) improvement

is obtained. Consequently, if this criterion
::::
Once

:::
this

:
is met, the algorithms update the incumbent with the new best

solutiondiscovered during the searches, ensuring
:::::
newly

:::::
found

::::::::
solution,

:::::::
ensuring

::::
that only strictly better solutions are

considered. It is important to note that this criterion
:::::::
accepted.

:::
An

:::::::::
important

:::::
aspect

::
of

::::
this

::::::::
approach

:
is
::::
that

:
it
:
excludes

points with the same objective value
:::::::
identical

::::::::
objective

:::::
values

:
as the incumbent, thereby

::::::::
effectively preventing cycling

between points with identical objectives
::
the

:::::
same

::::::::
objective. By avoiding revisiting

::
the

:::::::::::
reevaluation

::
of

:
points in the

lattice, the algorithms prevent the steepest descent from retracing its steps in either the Neighbor or Line Search steps.
This verification not only

::::
both

::::::::
Neighbor

:::
and

:::::
Line

::::::
Search

:::::
avoid

:::::::
retracing

::::::
steps,

:::::
which

:
guarantees convergence to a

discrete local minimum but also saves computational time , as the algorithm never re-evaluates the
::::
while

::::
also

::::::
saving

:::::::::::
computational

::::
time

:::
by

:::
not

:::::::::::
re-evaluating

:::
the same point.
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The primary advantage of the LD-SDA over previous iterations of the D-SDA lies in its utilization of
::
in

:::
how

::
it
::::::::
leverages

the structure of ordered Boolean variables for external variable reformulation, as opposed to
:::::
rather

::::
than ordered binary

variables. In the LD-SDA, the solution to the upper-level problem is the same as the one used in the D-SDA, involving
a series of Neighbor and Line searches over the external variable lattice. However, the key distinction is that each lattice
point in the LD-SDA upper-level problem corresponds to a reduced space GDP or (MI)NLP, obtained by fixing Booleans
:::::::
Boolean

::::::::
variables, and thereby disjunctions (see §3.2). This approach results in

:::::
leads

::
to a reduced subproblem that

considers only
::::
only

::::::::
considers relevant constraints, effectively circumventing

:::::::
avoiding zero-flow issues and improving

::::
both numerical stability and computational tractability

::::::::
efficiency. In contrast, previous versions of the D-SDA fixed

binary variables to obtain NLP subproblems, which
:::
that

:
could potentially contain irrelevant constraints with respect to

the current configuration of the Boolean variables yielding and ill-posed behavior
::::::
problem. Furthermore, additional

algorithmic improvements with respect to previous versions of the D-SDA were added to the LD-SDA as discussed in
§4.

3.5 Equivalence to Other Generalized Disjunctive Programming Algorithms

While LD-SDA exhibits different features compared to other GDP algorithms, certain aspects of it remain equivalent
to them. Notably, akin to other logic-based approaches, LD-SDA addresses (MI)NLP subproblems containing only
the constraints of active disjunctions, thereby excluding irrelevant nonlinear constraints. Each method employs a
mechanism for selecting the subsequent (MI)NLP subproblem, typically based on a search procedure. In LOA, this
mechanism involves solving a MILP problem subsequent to reformulating Problem (Main l-GDP). On the other hand,
LBB determines a sequence of branched disjunctions for each layer

:::
level

:
l, KBl, based on a predetermined rule known

as branching rule. In contrast, LD-SDA utilizes Neighbor and Line Search algorithms to make this decision, solving
Problem (Upper) locally.

The LD-SDA employs an external variable reformulation to map Boolean variables into a lower-dimensional represen-
tation of discrete variables. While LD-SDA solves the upper-level problem through steepest descent optimization, this
problem essentially constitutes a discrete optimization problem without access to the functional form of the objective.
Hence, in principle, this problem could be addressed using black-box optimization methods. Moving

:::::
When

:::::::::::
transitioning from one point to another within

:
in

:
the discrete external variable lattice involves changing the

configuration of Boolean variables in the original problem, often modifying multiple Boolean variables simultaneously.
Consequently, the LD-SDA can be viewed as a variant of LBB, where Neighbor and Line Searches act as sophisticated
branching rules for obtaining Boolean configurations to fix and evaluate. Additionally

::::::::::
Furthermore, improvements

to this problem could be achieved by leveraging information from the original GDP problem. For instance, linear
approximations of the nonlinear constraints of the GDP could be provided, although this would necessitate employing a
::
an MILP solver. By constructing such linearizations around the solutions of the subproblem (7), one could recover
Problem (Main l-GDP) from LOA.

4 Implementation Details

The LD-SDA, as a solution method for GDP, was implemented in Python using Pyomo [40] as an open-source algebraic
modeling language. Pyomo.GDP [41] was used to implement the GDP models and use their data structures for the
LD-SDA. The code implementation allows the automatic reformulation of the Boolean variables in the GDP into
external variables and provides an efficient implementation of the search algorithms over the lattice of external variables.

4.1 Automatic Reformulation

In contrast to previous works for MINLP models [33], the reformulation in (3) and (4) provides a generalized framework
that is automated in the Python implementation developed in this work. Minimal user input is required for the
reformulation process, with only the Boolean variables in Y defined over ordered sets Sj ,∀ j ∈ {1, 2, ..., nR} needing
specification. This reformulation allows fixing Boolean variables based on the values of external variables. Moreover,
additional Boolean variables can be fixed based on the values of the external variables, as users can specify those
Boolean variables in YN that are equivalent to expressions of the independent Boolean variables YR through logic
constraints Ω(Y) = True.

4.2 Algorithmic Efficiency Improvements

This section presents the four major efficiency improvements
:::
that

:
are included in the algorithm and are indicated

throughout the pseudo-codes in §3.3 as Optional.
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4.2.1 Globally Visited Set Verification

Due to the alternating dynamic between Line Search and Neighbor
::::::::::::
Neighborhood Search, the LD-SDA often queues

discrete points that were previously visited and evaluated. An example of this issue can be observed in Figure 3 where
the second Neighbor Search in N∞([5, 5])

:::::::::::
Neighborhood

::::::
Search

::
in

::::::::::
N∞((5, 5)), depicted in red, visits points [4, 4] and

[6, 6]
:::::
(4, 4)

:::
and

:::::
(6, 6)

:
that had already been evaluated during Line Search (shown in black). The number of reevaluated

::::::::::
re-evaluated points depends on how close to the Neighbor

::::::::::::
Neighborhood Search the Line Search stops, increasing

proportionally with the number of external variables.

Although re-evaluating points does not affect the convergence of the algorithm as discussed in §3.4, it results in
unnecessary additional computation that can be avoided. This redundant evaluation existed in the previous versions
of the D-SDA [33, 35, 36] and can be rectified by maintaining a globally visited set G (line 5 of Algorithm 1).
Now

::::::::::
Furthermore, before solving the optimization model for a particular point α (lines 5 to 8 of Algorithm ??

:
2) or β

(lines 3 to 6 of Algorithm 3), the algorithm verifies if the point has already been visited. If so, the algorithm disregards
that point and either proceeds to the next α in the Neighbor

:::::::::::
Neighborhood

:
Search or terminates the Line Search

algorithm.

4.2.2 External Variable Domain Verification

All external variables must be defined over a constrained box ZE = {1, . . . , zE} (as shown in Eq. (4)) that depends on
the problem. For superstructure problems, this domain is bounded by the size of the superstructure, such as the number
of potential trays in a distillation column,

:
or the maximum number of available parallel units in a process. Similarly, for

scheduling problems, the external variable domain can be given by the scheduling horizon.

External variables with non-positive values or exceeding the potential size of the problem, resulting in a lack of physical
sense, should not be considered in the explorations. To prevent unnecessary presolve computations, the algorithm
verifies if the incumbent point (α or β) belongs to ZE before solving the optimization model, effectively avoiding
consideration of infeasible subproblems. If during Neighbor

::::::::::::
Neighborhood Search α /∈ ZE, the neighbor α can

be ignored,
:
and the algorithm proceeds to explore the next neighbor. Similarly, if β /∈ ZE while performing the

Line Search, the algorithm should return to zE = β − d∗ and terminate. Returning to the example shown in Figure
3, note that, for instance, N∞([1, 6]) = {[2, 6], [2, 5], [1, 5]}

:::::::::::::::::::::::::::::
N∞((1, 6)) = {(2, 6), (2, 5), (1, 5)}

:
given that points

{[1, 7], [2, 7], [0, 5], [0, 6], [0, 7]}
::::::::::::::::::::::::::::
{(1, 7), (2, 7), (0, 5), (0, 6), (0, 7)}

:
can be automatically discarded and considered

infeasible since zE,1, zE,2 ∈ {1, 2, ..., 6}.

4.2.3 Fixed External Variable Feasibility Verification via FBBT

The existence of external variables zE within their respective bounds does not ensure feasibility in the subproblem
s(zE). While external variables can encode a physical interpretation of the problem by representing specific positions
within a well-ordered set, constraints concerning the rest of the problem must align with spatial information to achieve
a feasible subproblem. For instance, consider the distillation column (discussed in §5.2) that has two external variables:
one determining the reflux position zE,R and another determining the boil-up position zE,B . The problem has an
implicit positional constraint zE,B < zE,R, indicating that the boil-up stage must be above the reflux stage when
counting trays from top to bottom.

Throughout the algorithm, this type of discrete positional constraint, which relates external variables, is frequently
violated when a particular zE is fixed in a subproblem s(zE). This violation arises because these constraints are specified
in the original GDP model in terms of Boolean variables. Consequently, after the external variable reformulation, fixed
points in the discrete lattice may overlook the original logical constraints.

In previous works [33, 35, 36], users were tasked with manually re-specifying these constraints in the domain of external
variables. However, this work aims to automate this requirement. Instead of solving infeasible models that consume
computation time and may generate errors terminating

:::
that

::::::::
terminate

:
the algorithm, we used Feasibility-based Bound

Tightening (FBBT), which is
::
the

:::::::::::::::
Feasibility-Based

::::::
Bound

:::::::::
Tightening

:::::::
routine available in Pyomo. FBBT rapidly

verifies feasibility over the fixed Boolean constraints, enabling the algorithm to identify subproblem infeasibility without
executing a more resource-intensive MINLP or GDP presolve algorithm. Now, if FBBT determines that a subproblem
s(zE) is infeasible, the point zE can be instantly disregarded.

4.2.4 Re-initialization
::::::::::::::
Re-Initialization

:
Scheme

The LD-SDA method incorporates an efficiency improvement that involves reinitializing from the best solution
γinit = {x,Y, z, zE}. Effective model initialization is crucial for achieving faster convergence, particularly as
problems increase in size and complexity. Initiating a discrete point with the solution of a neighboring point is
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Figure 4: Reactor series
:::::::::::
Visualization

::
of

:
a
:
superstructure withNT ::::::::

consisting
:::
of

:
R
:
potential

::::::::::
continuously

::::::
stirred

::::::
reactor

::::
tanks

::::::::
(CSTRs).

::::
The

:
reactors

::
are

:::::::::
numbered

::::::
starting

::::
from

:::
the

:::::::
product

::::::
stream

:::
and

:::::::
counted

::
in

:::::::
reverse.

:::
At

::::
each

:::::::
position,

:
a
::::::
reactor

:::
can

:::::
either

:::
be

::::::
present

::
or
::::::::

replaced
::
by

::
a
::::::
bypass.

::::
The

:::::::::::
configuration

:::::
must

::
be

::::::::::
continuous,

::::::::
meaning

::
no

::::::::
bypasses

::
are

:::::::
allowed

:::::::
between

::::
two

:::::
active

:::::::
reactors.

intuitively reasonable. Since points in the external variable lattice are derived from Boolean configurations following
ordered sets, adjacent points are expected to yield very similar subproblems (e.g., adding an extra tray in a distillation
column or starting a process one time step later). Therefore, initializing from an adjacent neighbor can offer an
advantage of discrete-steepest descent optimization over black-box methods that search the lattice.

During Neighbor
::::::::::::
Neighborhood

:
Search with α ∈ Nk(zE), all subproblems are initialized using the solved variable

values from the best incumbent solution s(zE). Similarly, in Line Search each subproblem from the moved point s(β) is
initialized with the variable values of the best incumbent solution s(zE = β−d∗). This reinitialization

::::::::::::
re-initialization

methodology proved very efficient when integrated into the MINLP D-SDA in the rigorous design of a catalytic
distillation column using a rate-based model [36].

5 Results

The LD-SDA is implemented as an open-source code using Python. The case studies, such as reactors, chemical batch
processing, and binary distillation column design, are modeled using Python 3.7.7 and Pyomo 5.7.3 [40]. The catalytic
distillation column design case study was modeled using GAMS 36.2.0. All the solvers used for the subproblems are
available in that version of GAMS and were solved using a Linux cluster with 48 AMD EPYC 7643 2.3GHz CPU
processors

::::
base

:::::
clock

::::::::
frequency

:
and 1.0 TB RAM.

::::::::
Although

:::
the

::::::::::::
Neighborhood

::::::
Search

:::
can

:::
be

:::::::
trivially

::::::::::
parallelized,

:::
this

:::::
study

::::::
limited

::::::::::
experiments

:::
to

:
a
:::::
single

::::::
thread.

:
All the codes are available at https://github.com/SECQUOIA/

dsda-gdp. The solvers used for the MINLP optimization are BARON [53], SCIP [54], ANTIGONE [55], DICOPT
[56], SBB [57], and KNITRO [58]. KNITRO, BARON, and CONOPT [59]

:
,
:::
and

::::::
IPOPT

:::::
[60] are used to solve the NLP

problems. The GDP reformulations and algorithms are implemented in GDPOpt [41].

5.1 Series of Continuously Stirred Tank Reactors (CSTRs)

Consider a reactor network adapted from [33], consisting of a superstructure of NT ::
R reactors in series (depicted in

Figure 4), where NT :
R
:
represents the total number of potential reactors to install. The objective is to minimize the sum

of reactor volumes. The network involves an autocatalytic reaction A+B → 2B with a first-order reaction rate, along
with mass balances and reaction equations for each reactor. Logical constraints define the recycle flow location and the
number of CSTRs in series to install. All installed reactors must have the same volume and a single recycle stream
can feed any of them. Interestingly, as the number of reactors increases and the recycle is placed in the first reactor,
the system approximates to a plug-flow reactor, minimizing the total volume and providing an asymptotic analytical
solution. We investigate this feature by varying the number of potential reactors NT :

R. For a detailed formulation of the
reactor series superstructure, refer to Appendix

::::::::::::
Supplementary

::::::::
Material A.1.

The external variables zE = [zE,1 : No. of reactors (related with Y F ), zE,2 : Recycle position (related with Y R)]

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
zE = (zE,1 : No. of reactors (related with YF), zE,2 : Recycle position (related with YR)) as shown in Figure 5 are
the result of a complete reformulation of logic variables into external integer variables (detailed in Appendix
::::::::::::
Supplementary

::::::::
Material B.1). This figure shows the binaries associated with the values of the ordered Boolean

variables and their corresponding external variable mapping for an illustrative feasible solution, effectively indicating
the reformulation Y F4 = True⇔ zE,1 = 4 and Y R2 = True⇔ zE,2 = 2.
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Figure 5: Reformulation
:::::::::::
Visualization

::
of

:
a
::::::::
potential

:::::::::::
configuration for an illustrative feasible

:::
the

:::::
CSTR

::::::::::::
superstructure

::::
with

::::::
R = 6.

::::
The

:::::
figure

::::::::
explicitly

:::::::
displays

:::
the

:::::::
Boolean

::::::::
variables

:::
for

:::
the

:::::::
position

::
of

:::
the

::::
feed

:::::
(YF)

:::
and

:::::::
recycle

:::::
(YR)

:::::::
streams.

::
In

::::
this

:
configuration

:
,
:::
the

::::
feed

::::::
enters

::
at

:::
the

:::::
fourth

:::::::
reactor,

:::::::
meaning

:::::::::::::
Y F4 = True,

::::::::
indicating

:::
the

::::::::
presence

of
::::
four

::::::
reactors

:::
in the

::::::::::::
superstructure.

::::
The

::::::
recycle

::::::
stream

::
is

:::::::::
positioned

::::::
before

:::
the

::::::
second reactorseries with NT = 6,

:::::::
meaning

::::::::::::
Y R2 = True .

We analyze the paths and solutions generated by the LD-SDA under varying neighborhood selections, as depicted in
Figure 6. Given NT ::

R series of potential reactors, the problem is initialized with one reactor and its recycle flow. This
initialization is represented in the integer variables lattice as a single reactor with a reflux position immediately behind
it (zE = [1, 1]).

:::::::::::
zE = (1, 1)).

For LD-SDA employing a k = 2 neighborhood search, the algorithm identifies [2, 1]
::::
(2, 1)

:
is locally optimal and

proceeds with the line search in the d∗ = [1, 0]
:::::::::
d∗ = (1, 0)

:
direction. The algorithm continues the line search until [5, 1]

as [6, 1]
::::
(5, 1)

::
as

:::::
(6, 1)

:
exhibits a worse objective. It searches among its neighbors, eventually moving and converging

to the
:
a
:
local optimal solution [5, 1]

:::::
(5, 1). In contrast, with LD-SDA utilizing a k = ∞ neighborhood search, the

algorithm finds that both [2, 1] and [2, 2]
:::::
(2, 1)

:::
and

:::::
(2, 2)

:
yield the best solution within the first neighborhood explored.

Employing the maximum Euclidean distance heuristic as a tie-breakcriterion selects [2, 2]
:
,
:::
this

:::::::
criterion

::::::
selects

:::::
(2, 2)

as the new incumbent. Subsequently, a line search in the steepest direction d∗ = [1, 1]
::::::::::
d∗ = (1, 1) proceeds until

reaching [NT , NT ]
::::::
(R,R), representing the global optimal solution as it approximates the plug-flow reactor.

For a reactor series superstructure with NT = 30
::::::
R = 30, we performed external variable reformulation and fully

enumerated the discrete points in a 30×30 lattice. Notably, only the lower right
:::::::::
lower-right

:
triangle of the lattice

is depicted, as points outside this region yield infeasible Boolean configurations. More specifically, these points
indicate superstructures that have their recycle previous to an uninstalled reactor. Local optimality was verified with
both neighborhoods, revealing local minima for k = 2 neighborhood at [5, 1], [5, 3] and [N,N ]

:::::
(5, 1),

:::::
(5, 3)

::::
and

::::
(r, r)

:
∀ N ∈ {5, . . . , 29}

:::::::::::::
r ∈ {5, . . . , 29}, whereas the only locally optimal point for k = ∞ was [30, 30]

:::::::
(30, 30).

Figure 6 illustrates the LD-SDA process for the 30 CSTR series, showing trajectories and local minimum points for all
neighborhoods. The presence of multiple local optima with respect to both the 2-neighborhood and the∞-neighborhood
suggests that this problem is neither separably convex

:
, nor integrally convex.

For the CSTR series, various solver approaches are applied across different numbers of potential reactors (NT ::
R

ranging from 5 to 30). The solution approaches include MINLP reformulations, LBB, LOA, GLOA, and LD-SDA with
two different neighborhoods. Figure 7 illustrates the comparison of solution times for each reactor superstructure size
with different solvers. Notably,

LD-SDA with k = 2 neighborhoods failed to achieve optimal solutions within 0.1% of the global optimum for any
superstructure size, converging instead to the [5, 1]

::::
(5, 1)

:
solution, as explained above. In contrast, methods that

employed k =∞ attained the global minimum. KNITRO was computationally more efficient than BARON when using
k =∞, as BARON, being a global solver, incurred higher in

::::::
greater computational costs certifying global optimality

for each NLP subproblem. Interestingly
::::::::::
Remarkably, even when using local solvers like KNITRO for the subproblem,

k =∞ allowed LD-SDA to converge to global optimal solutions.

Among the logic-based methods in GDPopt, LBB for NT = 5
:::::
R = 5

:
achieved the global optimum. GLOA reached

globally
:::::
global

:
optimal solutions up to NT = 14

::::::
R = 14,

:
but only when paired with the global NLP solver BARON.

Comparing MINLP reformulations, HR outperformed BM, with KNITRO being the most efficient subsolver. While
some MINLP reformulations exhibited faster solution times for smaller superstructures (up to 9

:::
nine

:
reactors), LD-SDA,

particularly with KNITRO, surpassed them for larger networks (from 15 reactors onwards). This trend suggests
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Figure 6: Paths
:::::::::::
Visualization

::
of

:::
the

:::::
paths

:::::::
traversed

:::
by

::::::::
LD-SDA and

::
the

:
solutions found by the LD-SDA

::::
using

::::
both

::::::::::::
neighborhoods for a NT = 30 CSTR series;

:::::::::::
superstructure

::::
with

:::::::
R = 30

:::::::
CSTRs. LD-SDA with k = 2

::
N2:

converged
on [5, 1] which is the local optimal point

:
to

:::::
(5, 1),

::
a
:::::::
discrete

::::::
s-local

:::::::
optimum

:
in the lattice;

:
.
::
In

:::::::
contrast,

:
LD-SDA with

k =∞ proceeded
:::
N∞:::::::::

continued to [30, 30]
:::::::
(30, 30),

:::::::::
achieving

::
the

::::::
global

:::::::
optimal

:::::::
solution.

:::
This

:::::
figure

:::::::::
highlights

:::
the

::::::::
difference

::
in

:::::::::::
convergence

:::::::
behavior

:::::::
between

:::
the

::::
two

:::::::::::
neighborhood

:::::::::
strategies.

that LD-SDA methods are particularly well-suited for solving larger optimization problems, where solving reduced
subproblems offers a significant advantage over monolithic GDP-MINLP approaches.

Figure 8 compares different algorithmic alternatives derived from LD-SDA. These include the algorithm discussed
so far (referred in this example as NLP LD-SDA) where Boolean variables are fixed from external variables, leading
to NLP subproblems considering only relevant constraints. Another approach, which we refer to as MIP LD-SDA,
is where inactive disjunctions are retained in subproblems, and mixed-binary reformulations (e.g., HR or BM) are
applied to unresolved disjunctions, resulting in MINLP subproblems. The third alternative is Enumeration, which
involves reformulating external variables, fixing (or not) Boolean variables, and enumerating all lattice points instead of
traversing them via steepest descent optimization.

LD-SDA and Enumeration methods exhibited faster performance when the mixed-binary reformulation was omitted.
The inclusion of MIP transformations led to additional solution time, emphasizing the efficiency of solving GDP
problems directly where reduced subproblems with solely relevant constraints are considered. As anticipated, the
Enumeration of external variables coupled with a proficient

::
an

:::::::
efficent local solver like KNITRO achieved the global

optimum. However, employing LD-SDA yielded the same result in significantly less time, showcasing the importance
of navigating the lattice intelligently, like via discrete-steepest descent.

Among the LD-SDA approaches, 2-neighborhood search methods were only effective when the tolerance gap between
solutions was 10%, while∞-neighborhood search methods performed consistently across both gap thresholds. The
LD-SDA using k = 2 neighborhood converges to a local minimum , which

:::
that is more than 0.1% away from the

global optimal solutionand, ,
:::
and

:
for larger instances, is beyond the 10% optimality gap. Although LD-SDA with the

k =∞ neighborhood search required more time compared to k = 2, it consistently converged to the global optimal
point regardless of the superstructure size.
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Figure 7: Computational time
::::::
solution

:::::
times

:
for different sizes of reactor network NT for various

::::
GDP

:
solution strate-

gies
:::
and

::::::
solvers

::
as

:::
the

::::
size

::
of

:::
the

::::::::::::
superstructure

::
R

::::::::
increases. Solutions

:::
The

:::::
figure

:::::::
includes

:
only accounted for being

the analytically guaranteed
:::::::
solutions

::::
that

:::::::
achieved

::
a global optimal solution (equivalent

:::::::
optimum,

::::::
which

::::::::::
corresponds

to the installing NT reactors since the minimum
::::
total volume corresponds to PFR = limNT→∞ CSTR)

::
of

:::
the

::::::::::::
superstructure,

::::::::::
analytically

::::::
derived

::
as

:::
the

:::::::
volume

::
of

:
a
::::
plug

::::
flow

:::::::
reactor

::
as

:::::::
R→∞.

:
It
::::
can

::
be

::::::::
observed

:::
that

::::::::
LD-SDA

::::
with

:::
N∞:::::

using
::::::::
KNITRO

::::::::::
consistently

:::::::
reaches

:::
the

:::::
global

::::::::
optimum

:::
the

:::::
fastest

:::
for

::::::::
instances

::::
with

:::::
more

::::
than

::
15

:::::::
CSTRs.

5.2 Distillation Column Design for a Binary Mixture

We consider the single-unit operation design of an example distillation column in Ghouse, Chen, Zamarripa, Lee,
Burgard, Grossmann, and Miller [61], which

:::
that implements the simplified model provided by Jackson and Grossmann

[62]. The objective is to design a distillation column to separate Toluene and Benzene while minimizing cost. There is ,
:::::
which

::::::
include

::::
both

:
a fixed cost associated with

::
for

:
tray installation and an operational cost related to

:::::::::
operational

:::::
costs

::
for

:
the condenser and reboilerduties. The feed conditions are

:
.

:::
The

:::::::
column

::::::::
processes 100 mol

::::
gmol/s of an equimolar benzene-toluene mixture, with

:::::
aiming

:::
to

::::::
achieve

:
a minimum

mole fraction of 0.95
::
for benzene in the distillate and 0.95

:::
for toluene in the bottom . The constraints are the

::::::
product.

::
To

:::::
meet

::::
these

::::::::::::
requirements,

:::
the

:::::
design

:::::
must

::::::
satisfy mass, equilibrium, summation, and heat (MESH) equations for

each tray. Each column stage is modeled with thermodynamic
::::
stage

::
of

:::
the

:::::::
column

::
is

:::::::
modeled

:::::
using

:::::::::::::
thermodynamic

::::::::
principles and vapor-liquid equilibriumvia

:
,
:::::::
applying

:
Raoult’s law and Antoine ’s equation.

:::::::
equation.

:

The continuous variables of this model are
::
in

::
the

::::::
model

::::::
include

:
the flow rates of each component in

::::
both the liquid and

vapor phase and the temperatures in
:::::
phases,

:::
the

:::::::::::
temperatures

:::
of each tray, the reflux and boil-up ratio

:::::
ratios, and the

:::
heat

::::::
duties

::
of

:::
the condenser and reboilerheat duties. The logical variables are

::::::
account

:::
for the existence of trays and

the position of the
:::::::
positions

::
of

:
reflux and boil-up flows. Furthermore, the existence of trays expressed only in terms of

the position of the reflux and boil-up flows can be posed with a logical constraint. The reformulation of the Boolean
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Figure 8: Solution
::::::::::::
Computational

:::::::
solution times for CSTR superstructures using

:::::::
different

:::::::
solution

::::::::::
approaches

::::::
derived

::::
from

:
LD-SDA and Enumeration

:::::::::
(including

:::::::
external

:::::::
variable

:::::::::::
enumeration)

:::::
using

:::::::
various

::::::
solvers

::
as

::::
the

:::
size

:::
of

:::
the

:::::::::::
superstructure

::
R
:::::::::
increases.

:::
The

::::
left

:::::::
subfigure

::::::
shows methods at different

:::
that

:::::::
achieved

::
a

::::::
discrete

:::::
local

::::::::
minimum

::::
with

:
a
::::
10% optimality gap: (left) 10%, (

::::
while

:::
the right ) 0.1%)

:::::::
subfigure

::::::
shows

:::::::
methods

:::
that

:::::::
reached

::
an

::::::::::
analytically

::::::
proven

:::::
global

::::::::
optimum.

:::::::
LD-SDA

::::
with

:::
N2::::

and
:::
the

::::::::
KNITRO

:::::
solver

::
is

:::
the

::::::
fastest

::::::
method

:::
for

::::::
smaller

:::::::::::::
superstructures

:::
but

::::
fails

::
to

::::
meet

:::
the

::::
10%

:::::::::
optimality

::::
gap

:::
for

::::::::
structures

:::::
larger

::::
than

:::
13

:::::::
CSTRs.

::::
For

:::::
larger

:::::::::::::
superstructures,

::::::::
LD-SDA

::::
with

::::
N∞

:::
and

::::::::
KNITRO

::::::::::
consistently

:::::::
achieves

::
a

:::::
global

::::::::
optimum

:::
and

::::::::
becomes

:::
the

:::::
fastest

::::::::
approach

::::::
among

::::::::
LD-SDA

::::::::
methods.

variables to external variables is described in the figure shown in Appendix B.2,
:::::

with
:::
tray

::::::::
existence

::::::::
modeled

:::::
using

:::::
logical

::::::::::
constraints

::::::
related

::
to

::::
these

::::
flow

::::::::
positions. Previous studies from the literature [61] set a maximum number of

17 potential trays and provide the initial position of the feed tray in the ninth stage (tray number 9
:::
nine).

The distillation column optimization uses the LD-SDA method with different neighborhoods for the search. The
problem is initialized with a column that has the reflux at tray 16 (top to bottom numbering, condenser being tray 17
and the reboiler being tray 1) and the boil-up at the second tray, which we represent as [15, 1]

::::::
(15, 1). The configuration

for initialization is shown in Figure 9a, which corresponds to all possible trays being installed.

For the 2-neighborhood, the LD-SDA converges to external variable configuration [12, 3]
:::::
(12, 3), with an objective value

of $19, 450 in only 6.3 seconds using KNITRO as subsolver, resulting in the design shown in Figure 9b. Note this is the
exact same solution reported by the GDP model from the literature [61], which

:::
that was solved using the LOA method.

Regarding the ∞-neighborhood, the algorithm terminates at [13, 4]
::::::
(13, 4) with an objective of $19, 346 after 8.6

seconds using KNITRO as subsolver, yielding the column design shown in Figure 9c. In this case, the LD-SDA found
the best-known solution to this problem, also found through a complete enumeration over the external variables, which
:::
that took 42.7 seconds using KNITRO as a subsolver. The same best-known solution could be found using GLOA with
KNITRO as the NLP subsolver, but after 161.6 seconds. In our results of the binary mixture distillation column design,
we successfully identified a better solution by applying the LD-SDA to the GDP model, surpassing the optimal values
previously documented

:::::::
reported in the literature. This achievement highlights the efficacy of our approach, especially

considering the limitations of the NLP formulation in guaranteeing global optimality, which we effectively navigated by
employing the GDP framework.

The trajectories traversed by the LD-SDA with both neighborhoods mentioned are depicted in Figure 10. Similarly,
Table 1 summarizes the previous design from the literature as well as the different columns obtained by the LD-SDA.

5.3 Catalytic Distillation Column Design

Consider a catalytic distillation column design for the production of Ethyl tert-butyl ether (ETBE) from isobutene and
ethanol. In this work, two models are considered: one that uses equilibrium-based modeling in each of the separation
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(a) Initial solution for the Distillation
Column

:::::
column

:::::::::::
configuration

:::
of

:::
the

::::
initial

:::::::
solution.

(b) Distillation Column Solution by
:::::
column

:::::::::::
configuration

::::::::
obtained

::::
with

LD-SDA k = 2. Reference
:::
and

:::
N2,

::::
which

:::::::
matches

::
the

:
solution by

::::::
reported

:
in
:
[61]using GDP model.

(c) Distillation Column Solution by
:::::
column

:::::::::::
configuration

::::::::
obtained

::::
with

LD-SDA k = ∞
:::
and

::::
N∞,

::::
which

:::::
yields

:
a
:::
new

::::
best

::::::
solution

::
for

:::
the

:::::::
problem.

Figure 9: Distillation Column design comparison between
::::::::::
Visualization

:::
of

:
the

::::::::
distillation

::::::::
columns

:::::::
obtained

:::::
from

::
the

:
initial

:::::::
solution, local

::
the

:::::::
solution

:::::
found

:::::
using

::::::::
LD-SDA

::::
with

:::
N2, and global solutions

::
the

:::::::
solution

:::::
using

::::::::
LD-SDA

::::
with

::::
N∞.

:::
The

::::
feed

::::
tray

::
is

:::::
fixed

::
at

:::::
stage

::::
nine,

::::
with

:::::::
existing

:::::
trays

::::::::
displayed

::
in
:::::

white
::::

and
::::::::
bypassed

:::::
trays

::::::
shaded

::
in

::::
gray.

::::
The

::::::
boil-up

:::::::
position

::
is

::::::::::
highlighted

::
in

:::
red,

:::::
while

:::
the

:::::
reflux

:::::::
position

::
is
:::::::
marked

::
in

::::
blue.

:::::
Each

::::::::
subfigure

::::::
shows

::
its

:::::::::::
corresponding

::::::::
objective

::::::::
function.

Figure 10: Algorithmic steps
:::::::::::
Visualization of

::
the

:::::
paths

::::::::
traversed

::
by

:
LD-SDA when solving

:::
and

:::
the

::::::::
solutions

:::::
found

::::
using

:::::
both

::::::::::::
neighborhoods

:::
for

:::
the

:::::::::
distillation

:
column example

::::::::::::
superstructure.

:::
The

::::::
lattice

::::::
shows

:::::
points

::::::
proven

::
to
:::

be
::::::::
infeasible

::::
with

::
a

:::::
global

::::::
solver

::::::
(black

:::::::
triangle)

::::
and

:::::
points

::::::
where

:::
no

:::::::
feasible

:::::::
solution

::::
was

:::::
found

::::::
before

::::::
timing

:::
out

:::
(red

::::::
circle).

:::::
Both

::::::::
solutions

::::
were

:::::::::
initialized

::::
with

:::
the

::::::
largest

::::::
column

::::::::::::
configuration.

::::::::
LD-SDA

::::
with

:::::
k = 2

:::::::::
converged

::
to

::::::
(13, 3),

:
a
:::::::
discrete

::::::
s-local

:::::::
optimal

::::
point

::
in

:::
the

::::::
lattice.

::::::::::
Meanwhile,

::::::::
LD-SDA

::::
with

::::::
k =∞

::::::::
advanced

::
to
:::::::
(13, 4),

:::::::
yielding

::
the

::::::::::
best-known

:::::::
solution

:::
for

:::
the

::::::::
problem.
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Table 1: Comparison of the optimal solution with
:::::::
solutions

:::::
found

::
in
:
the literatureresults

:
,
:::::
using

::::::::
LD-SDA

::::
with

:::
N2

and
:::::::
LDSDA

::::
with

::::
N∞.

::::
The

::::::::
LD-SDA

::::
with

:::
N2 ::::::::

identified the
::::
same

:::::::::::
configuration

::
as

:::::::::
previously

:::::::
reported

::
in

:::
the

::::::::
literature

::::
(with

::
a

:::::
minor

::::::::
numerical

:::::::::
difference

::
in

:::
the

::::::::
objective).

:::
In

:::::::
contrast,

:::
the LD-SDA

:::
with

::::
N∞:::::::::

discovered
::
a

:::
new

::::
best solution,

::::::::
effectively

:::::::::
improving

:::::
upon

::
the

:::::::
existing

::::::
results

::
in

:::
the

:::::::
literature.

::::
This

::::
table

::::::::
illustrates

:::
the

::::::::::::
improvements

::::::
gained

::
by

:::::
using

::::
more

::::::::
expansive

:::::::::::::
neighborhoods

::
in

::::::::
LD-SDA.

Solution Method LOA [61]
:::::::
Ghouse

::
et

::
al.

::::
[61] LD-SDA k = 2 LD-SDA k =∞

Objective [$] 19,450 19,449 19,346

Number of Trays 10 10 10

Feed Tray 6 6 5

Reflux ratio 2.45 2.45 2.01

Reboil ratio 2.39 2.39 2.00

Table 2: Execution time
::::::::::
Comparison

:
of catalytic distillation

::
the

:
optimal design

:::::::
solutions

:
and

::::::::
respective

::::::::::::
computational

::::
times

:::::
using

::::::::
KNITRO

:::
for the

:::::::
catalytic

:::::::::
distillation

:::::::
column

:::
and rate-based model presented

::::::
catalytic

:::::::::
distillation

:::::::
column

:::
case

:::::::
studies,

:::::
using

:::::::
D-SDA

:::::
(from

:::
the

:::::::::
literature)

:::
and

::::::::
LD-SDA

:::::
with

::::
both

:::
N2::::

and
::::
N∞.

::::
For

:::
the

::::::::
catalytic

:::::::::
distillation

::::::
column

::::
case,

:::::
both

::::::::::::
neighborhoods in Liñán, Bernal, Gómez, and Ricardez-Sandoval [36]

:::::::
LD-SDA

:::::::::::
successfully

:::::
found

::
the

:::::
same

:::::::
optimal

:::::::
solution

::
as

::::::
D-SDA

:::
but

::
in

::::::::
one-third

::
of

:::
the

::::::::::::
computational

:::::
time.

::
In

:::
the

:::::::::
rate-based

:::::::
catalytic

:::::::::
distillation

::::::
column

::::
case,

:::::::
D-SDA

:::
was

::::::
unable

::
to

::::
find

:
a
:::::::
solution,

:::::
while

:::::::::
LD-SDA, using KNITRO

::::
both

:::::::::::::
neighborhoods,

:::::
found

::::::
distinct

::::::
optimal

::::::::
solutions.

Catalytic Distillation Column Rate-Based Catalytic Distillation Column
Solution Method D-SDA: [36] LD-SDA: This work D-SDA: [36] LD-SDA: This work

Neighborhood k = 2 k =∞ k = 2 k =∞ k = 2 k =∞ k = 2 k =∞
Objective [$/year] 22,410 22,410 22,410 22,410 – – 23,443.2 23,443.2

Time [s] 12.49 12.52 4.29 4.25 – – 1089.31 1061.18

and reactive stages
:
, and another one that includes a rate-based description of the mass and energy transfer in all the

stages [35]. These models maximize an economic objective by determining the position of separation and catalytic
stages along the column, together with a Langmuir-Hinshelwood-Hougen-Watson kinetic model for the chemical
reaction, MESH equations for each one of the stages, and hydraulic constraints for the column operation. The goal is to
determine optimal operational variables such as reboiler and condenser heat duties and reflux ratio. Similarly, design
variables such as column diameter, tray height, and downcomer specifications need to be defined. Finally, discrete
design choices, meaning feed locations and positions of catalytic stages, must be selected. A detailed description of the
models is given in [36, 63].

Previously in the literature, the economic annualized profit objective maximization of a catalytic distillation column to
produce ETBE from butenes and ethanol was solved using a D-SDA [36]. Here, the authors demonstrated the difficulty
of this design problem as several traditional optimization methods fail even to obtain

:
to

::::::
obtain

::::
even

:
a feasible solution

[33, 35]. In these papers, the D-SDA was used to solve the problem as a
::
an

:
MINLP by fixing binary variables and

including constraints of the form yikhik(x) ≤ 0 to enforce the logic constraints. In this work, we demonstrate that
approaching the problem disjunctively and employing LD-SDA leads to a faster solution of subproblems (as in Eq.
(Sub)) as our method neglects the irrelevant and numerically challenging nonlinear constraints.

These
:::
The

:
models were implemented in GAMS, hence,

:
.
::::::
Hence, for this problem, the reformulation and implementa-

tions of the algorithms were custom-made, as they did not rely on our implementation of LD-SDA in Python. Given
that only the relevant constraints were included for each problem, we could more efficiently obtain the same solution to
each subproblem. More specifically, as shown in Table 2, the proposed LD-SDA method leads to speedups of up to 3x
::::::::
three-fold in this problem when using KNITRO as a subsolver. D-SDA was unable to even initialize the rate-based
catalytic distillation column with KNITRO, while LD-SDA could find the

::
an optimal solution. Moreover, note that the

previous results using the D-SDA were already beating state-of-the-art MINLP solution methods, further demonstrating
the advantages of the LD-SDA.

An important distinction for the LD-SDA is that it does not include all the constraints in each iteration, given that
subproblems are reduced after

::
the disjunctions are fixed. This implies that not all variables are present in all iterations,

27



Logic-based Discrete-Steepest Descent: A Solution Method for Process Synthesis GDP A PREPRINT

(a) Catalytic column superstructure.

(b) LD-SDA
:::::::
Catalytic

::::::::
distillation

::::::
column

::::::::::
configuration

::::::::
obtained

:::
with k = 2

solution
::::::
LD-SDA

:::
and

:::
N2.

(c) LD-SDA
::::::
Catalytic

:::::::::
distillation

::::::
column

::::::::::
configuration

::::::::
obtained

::
with k = ∞

solution
::::::
LD-SDA

:::
and

::::
N∞.

Figure 11: Solution design comparison
::::::::::
Visualization

:
of the catalytic distillation column problem between

:::::::
columns

:::::::
obtained using the LD-SDA

:::
with

:::
N2:::

and
::::
N∞.

:::
The

::::
feed

:::::
trays

:::
for

::::::
Ethanol

::::
and

::::::
Butane

:::
are

::::::
shaded

::
in

::::
blue,

::::
with

:::::::
existing

::::
trays

::::::
shown

::
in

::::::
white,

:::::
while

::::::
bypass

::::
trays

::::
are

::::::
shaded

::
in

:::::
gray.

::::
The

::::::
boil-up

:::::::
position

::
is
:::::::

marked
::
in

::::
red,

::::
and

:::
the

:::::
reflux

::::::
position

::
is
::::::::
depicted

::
in

::::
blue.

preventing a complete variable initialization as the algorithm progresses. These missing values for the variables
might make converging these complex NLP problems challenging, explaining

:::::
which

::::::::
explains why the D-SDA and

the LD-SDA sometimes yield different solutions. Moreover, the solver KNITRO reported that the initial point was
infeasible for the more complex NLP problem involving rate-based transfer equations. Using that same initialization,
yet using the logic-based D-SDA, the model could not only be started

:
, but it converged to the same optimal solution

reported in [35].

5.4 Optimal Design for Chemical Batch Processing

Consider an instance of the optimal design for chemical batch processing from Kocis and Grossmann [64] formulated as
a GDP. This is a convexified GDP that aims to find the

::
an optimal design for multiproduct batch plants that minimizes

the sum of exponential costs. In our example, the process has 3
::::
three

:
processing stages where fixed amounts of qi

of 2
:::
two products must be produced. The goal of the problem is to determine the number of parallel units nj , the

volume vj of each stage j, the batch sizes bi, and the cycle time tli of each product i. The given parameters of the
problem are the time horizon h, cost coefficients αj , βj for each stage j, size factors sij , and processing time tij
for product i in stage j. The optimization model employs Boolean variables Ykj to indicate the presence of a stage,
potentially representing three unit types: mixers, reactors, and centrifuges. The formulation of the model can be
found in Appendix A.3

::::::::::::
Supplementary

::::::::
Material

::::
A.3, and the external variable reformulation of the Boolean variables is

described in Appendix
::::::::::::
Supplementary

:::::::
Material B.4.

The problem was initialized by setting the maximum number of units, i.e., [3, 3, 3]
:::::::
(3, 3, 3), for the number of mixers,

reactors, and centrifuges, respectively. The algorithm terminates on a solution with objective $167, 427 with external
variables [2, 2, 1]

::::::
(2, 2, 1)

:
for both k = 2 or k =∞ neighborhood alternatives in LD-SDA. The trajectories taken by

both searches of the LD-SDA for the small batch problem are shown in Figure 12. This solution corresponds to the
:
a

global optimal solution of the problem, hinting
::::::::
suggesting

:
that convergence to global optimal solutions in convex GDP

might be achieved even with k = 2 in the Neighbor
::::::::::::
Neighborhood Search step. For this small problem, the solution
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Figure 12: LD-SDA
:::::::::::
Visualization

::
of

:::
the

:
paths to optimal solution in

:::::::
traversed

::
by

::::::::
LD-SDA

::::
and the

::::::::
solutions

:::::
found

::::
using

::::
both

:::::::::::::
neighborhoods

:::
for

::
the

:
small batch scheduling case study.

:::
The

::::::
lattice

:::::::
includes

:::::
points

::::::
proven

::
to

:::
be

::::::::
infeasible

::::
with

:
a
:::::
solver

::::::
(black

::::::::
triangle).

::::
Both

::::::::
solutions

::::
were

:::::::::
initialized

::::
with

:
a
:::::::::::
configuration

:::::::::
containing

:::
all

::::::
mixers,

::::::::
reactors,

:::
and

:::::::::
centrifuges.

::::::::
LD-SDA

::::
with

::::
both

::::::
k = 2

:::
and

::::::
k =∞

:::::::::
converged

::
to

:::
the

:::::
same

:::::::
solution

:::::::
(2, 2, 1),

::::::::::::
corresponding

::
to

:
a
::::::
global

::::::
optimal

::::::::
solution.

::::
This

:::::::
example

::::::::
highlights

:::::::::::
convergence

::
to

:::
the

:::::
same

:::::::
solution

::
in

:
a
::::::
convex

:::::
GDP

:::::::
problem

:::::
using

:::::::
different

::::::::::::
neighborhoods.

times were negligible (< 2
:::
less

::::
than

:::
two

:
seconds). Still, this example is included to observe convergence to the same

solution in a convex GDP problem using different neighborhoods.

6 Conclusions and Final Remarks

This work presented the Logic-based
:::
has

::::::::
presented

:::
the

:::::::::::
Logic-Based Discrete-Steepest Descent Algorithm (LD-SDA) as

an optimization method for GDP problems with ordered Boolean variables, which often appear in process superstructure
and single-unit design problems. The unique characteristics of the LD-SDA are highlighted, and its similarities with
other existing logic-based methods are discussed. To verify the performance of the LD-SDA, we solved various
GDP problems with applications in process systems engineering, such as reactor series volume minimization, binary
distillation column design, rate-based catalytic distillation column design, and chemical batch process design. The
LD-SDA

:::
has demonstrated an efficient convergence toward high-quality solutions that outperformed state-of-the-art

MINLP solvers and GDP solution techniques .
::
for

:::
the

::::::::
problems

:::::::
studied.

:
The results show that LD-SDA is a valuable

tool for solving GDP models with ordered Boolean variables.
::::::::
problems

::::
with

:::
the

::::::
special

::::::
ordered

::::::::
structure

:::::::::
considered

::
in

:::
this

:::::
work.

:::::::::::
Nonetheless,

:::
the

::::::::
scalability

:::
of

::
the

::::::::
LD-SDA

::::
still

:::::
needs

::
to

::
be

::::::::
evaluated

:::
for

:::::
larger

::::::::::::
superstructure

::::::::
problems,

:::
e.g.,

:::::
those

::::::::
resulting

::
in

:::::
more

::::
than

:
7
:::::::
external

:::::::::
variables.

::::
The

:::::::::
limitations

::
of

:::
the

::::::::
LD-SDA

::::::
include

:::
the

::::
lack

:::
of

::::::::
guarantee

::
for

::
a
:::::::
globally

:::::::
optimal

:::::::
solution

:::
due

::
to

:::
its

::::
local

::::::
search

::::::
nature.

:::::::::::
Additionally,

:::
the

::::::::::
exponential

::::::
growth

::
of

:::::::::
neighbors

::::
with

::::::::
increasing

:::::::::::
reformulated

::::::::
variables

:::
can

:::::
make

:::::::::::
neighborhood

:::::::::
evaluation

:::::::::::
prohibitively

::::::::
expensive

:::
for

:::::::::
large-scale

::::::::
problems.

Future research directions include utilizing the LD-SDA to solve larger and more challenging ordered GDPs. Similarly,
we propose exploring theoretical convergence guarantees of the LD-SDA method, with a special focus on convex GDP
problems and their relation to integrally convex problems in discrete analysis. Moreover, part of the future work

:::::
future

::::
work

::::
also involves the integration of the LD-SDA into the GDPOpt solver in Pyomo.GDP, making it available to more

practitioners
:::
this

::::::::
algorithm

::::::::
available

::
to

:
a
:::::
wider

::::::::
audience. Finally, we will study the parallelization of NLP solutions

in the neighborhood search. The neighbor search
::::::::::::
Neighborhood

::::::
Search can be faster by dividing the computation
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involved in solving NLP problems into multiple tasks that can be executed simultaneously, eventually improving
LD-SDA performance

:::
the

::::::::::
performance

:::
of

:::
the

:::::::
LD-SDA.
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The appendices show how the

::::::::::::::::
Supplementary

:::::::::
Material

:::
The

::::::::::::
supplementary

:::::::
material

::::::::
provides

:::::::
detailed

::::::::::
formulations

:::
of GDP models, such as

::::::::
including reactors and chemical

batch processing , are formulated. The
:::::::
systems.

::
It

::::::
outlines

:::
the

:
objective functions and their

::::::
presents

::::
both

:::
the

:
algebraic

and logical constraints are described for the model. Also, the reformulations of the Boolean Variables into External
variables for the models are given in this section. There are some models which are described as figures

:::
for

::::
each

::::::
model.

::::::::::::
Additionally,

::::
this

::::::
section

:::::::
explains

::::
how

::::::::
Boolean

::::::::
variables

:::
are

:::::::::::
reformulated

:::
into

::::::::
external

::::::::
variables.

:::::::
Several

::::::
models

:::
are

:::
also

:::::::::
illustrated

:::::::
through

::::::
figures

::
for

::::::
clarity.

A Generalized Disjunctive Programming formulations

This appendix includes the formulations of the examples of the problems solved in this manuscript as Generalized
Disjunctive Programs(GDP).

A.1 Series of Reactors

Set of components (index i)
I = {A,B} (8)

Set of units in the superstructure (index n, j)
N = {1, ..., NT} (9)

Existence of an unreacted feed in unit n

Y Fn ∈ {True, False} ∀ n ∈ N
If Y Fn = True =⇒ There is unreacted feed in reactor n

(10)

Existence of a recycle flow in unit n

Y Rn ∈ {True, False} ∀ n ∈ N
If Y Rn = True =⇒ There is recycle in reactor n

(11)

Unit operation in n: If at the current unit n every unit after it (from 1
:::
one

:
to n) is not an unreacted feed or if the current

unit n has the unreacted feed, then the unit is a CSTR (the opposite is also true)

Y Pn ⇐⇒

 ∧
j∈{1,2,..n}

¬Y Fj

 ∨ Y Fn ∀ n ∈ N
If Y Pn = True =⇒ Unit n is a CSTR

If Y Pn = False =⇒ Unit n is a bypass

(12)

The unit must be a CSTR to include a recycle at n

Y Rn =⇒ Y Pn ∀ n ∈ N (13)

There is only one unreacted feed ∨
n∈N

Y Fn (14)

There is only one recycling stream. ∨
n∈N

Y Rn (15)

Unreacted feed unit: Partial mole balance

0 = F0i + FRi,NT − Fi,NT + ri,NTVNT ∀ i ∈ I (16)

33



Logic-based Discrete-Steepest Descent: A Solution Method for Process Synthesis GDP A PREPRINT

Unreacted feed unit: Continuity
0 = QF0 +QFR,NT −QNT (17)

Reactor Sequence: Partial mole balance

0 = Fi,n+1 + FRi,n − Fi,n + ri,nVn ∀ n ∈ N \ {NT},∀ i ∈ I (18)

Reactor Sequence: Continuity

0 = Qn+1 +QFR,n −Qn ∀ n ∈ N \ {NT} (19)

If unit n is a CSTR or a bypass
Y Pn

rA,nQ
2
n = −kFA,nFB,n
rB,n = −rA,n
cn = Vn

∨


¬Y Pn
FRi,n = 0 ∀ i ∈ I
ri,n = 0 ∀ i ∈ I
QFR,n = 0

cn = 0

 ∀ n ∈ N (20)

If there is recycle in before reactor n Y Rn
FRi,n = Ri ∀ i ∈ I

QFR,n = QR

∨ ¬Y Rn
FRi,n = 0 ∀ i ∈ I

QFR,n = 0

∀ n ∈ N (21)

Splitting point: Partial mole balance
0 = Fi,1 − Pi −Ri ∀ i ∈ I (22)

Splitting point: Continuity
0 = Q1 −QP −QR (23)

Splitting point: Additional constraint
0 = PiQ1 − Fi,1QP ∀ i ∈ I (24)

Product specification constraint
0.95QP = PB (25)

Volume constraint
Vn = Vn−1 ∀ n ∈ N \ {1} (26)

Objective Function: Total reactor network volume

fOBJ = min
∑
n∈N

cn (27)

A.2 Distillation Column Design

Set of trays (index t)
T = {2, 3, . . . , 16} (28)

Set of composition (index c)
C = {Benzene, Toluene} (29)

Existence of tray t
Yt ∈ {True, False} ∀ t ∈ T

If Yi = True =⇒ There exist a tray in stage t
(30)

Existence of boil-up flow in tray t

Y Bt ∈ {True, False} ∀ t ∈ T
If Y Bt = True =⇒ There is a boil-up flow in tray t

(31)
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Existence of reflux flow in tray t

Y Rt ∈ {True, False} ∀ t ∈ T
If Y Ri = True =⇒ There is a reflux flow in tray t

(32)

There is only one boil-up flow in the distillation column.∨
t∈T

Y Bt (33)

There is only one reflux flow in the distillation column.∨
t∈T

Y Rt (34)

Tray t is an equilibrium stage or a bypass, where g1(x) contains equilibrium mass and energy balances, while g2(x)
contains a bypass material balance [

Yt
g1(x) = 0
yt,active = 1

]∨[ ¬Yt
g2(x) = 0
yt,active = 0

]
, ∀ t ∈ T (35)

If the reflux flow is on or above tray t and the boil-up flow is on or below tray t, then tray t is an equilibrium stage (the
opposite is also True).( ∨

∀ τ ∈ {t, t+ 1, . . . , 16}
Y Rτ

)
∧

( ∧
∀ τ ∈ {t, t+ 1, . . . , 16}

¬Y Bτ ∨ Y Bt

)
⇐⇒ Yt, ∀ t ∈ T (36)

The reflux flow stage is not below the feed tray. ∧
∀ t ∈ {2, 3, . . . , 8}

¬Y Rt (37)

The boil-up flow is not above the feed tray. ∧
∀ t ∈ {10, 11, . . . , 17}

¬Y Bt (38)

The column has at least eight active trays. ∑
t∈T

yt,active ≥ 8 (39)

Tray 1 (reboiler), tray 9 (feed), and tray 17 (condenser) are equilibrium stages.

Y1 = True, Y9 = True, Y17 = True, (40)

Benzene concentration constraint (distillate product)

XD,Benzene ≥ 0.95 (41)

Toluene concentration constraint (bottom product)

XB,Toluene ≥ 0.95 (42)

Bounds imposed over the reflux ratio RF
0.5 ≤ RF ≤ 4 (43)

Bounds imposed over the Reboil ratio RB
1.3 ≤ RB ≤ 4 (44)
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Objective Function: Sum of the capital cost (number of active trays) and operating cost (reboiler and condenser duty),
where QR is the reboiler duty, QC is the condenser duty, and the sum term over binary variables yt,active represents the
total number of active trays.

fOBJ = min
RF,RB,feedtray,Ntrays

103

(QR +QC) +

Ntrays∑
t∈T

yt,active

 (45)

A.3 Small Batch Problem

Set of components (index i)
I = {A,B} (46)

Set of stages (index j)
J = {mixer, reactor, centrifuge} (47)

Set of potential number of parallel units for each stage (index k)

K = {1, 2, 3} (48)

Existence of the parallel units for each stage j

Ykj ∈ {True, False} ∀ k ∈ K, j ∈ J
If Ykj = True =⇒ There are k parallel units in stage j

(49)

Only one of the parallel unit existence is True ∨
j∈J

Ykj ∀ k ∈ K (50)

Volume requirement in stage j
vj ≥ ln(sij) + bi ∀ i ∈ I, j ∈ J (51)

Cycle time for each product i
nj + tLi ≥ ln(tij) ∀ i ∈ I, j ∈ J (52)

Constraint for production time(horizon constraint)∑
i∈I

Qi exp (tLi − bi) ≤ H (53)

Relating number of units to 0− 1 variables

nj =
∑
k∈K

γkj ∀ j ∈ J (54)

If only k parallel units exist in stage j[
Ykj

γkj = ln (k)

]∨[ ¬Ykj
γkj = 0

]
∀ k ∈ K, j ∈ J (55)

Objective Function: the investment cost for setting the small batch system [$]

fOBJ = min
∑
j∈J

αj(exp(nj + βjvj)) (56)

B External variable reformulation for example problems

This appendix presents the external variable reformulation of the Boolean variables in the examples considered in this
manuscript.
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B.1 Series of Reactors Problem

Y Fn =

{
True, zE,1 = n

False, otherwise
∀ n ∈ N (B.1.57)

Y Rn =

{
True, zE,2 = n

False, otherwise
∀ n ∈ N (B.1.58)

X1 =

{
zE ∈ Z2 :

1 ≤ zE,1 ≤ NT
1 ≤ zE,2 ≤ NT

}
(B.1.59)

X2 =
{
zE ∈ Z2 : zE,2 − zE,1 ≤ 0

}
(B.1.60)

X = X1 ∩X2 =

xE ∈ Z2 :

1− zE,1 ≤ 0

zE,1 −NT ≤ 0

1− zE,2 ≤ 0

zE,2 − zE,1 ≤ 0

 (B.1.61)

B.2 External Variable Reformulation for Distillation Column Problem

Figure 13: Example of distillation column external variable reformulation

Y Rt =

{
True, zE,reflux = t− 1

False, otherwise
∀ t ∈ T (B.2.1)

Y Bt =

{
True, zE,boil-up = t− 1

False, otherwise
∀ t ∈ T (B.2.2)

X1 =

{
zE ∈ Z2 :

1 ≤ zE,reflux ≤ 15

1 ≤ zE,boil-up ≤ 15

}
(B.2.3)
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B.3 Catalytic Distillation Column Problem

The external variable reformulation is equivalent to the one presented in [35] with Boolean variables instead of binary
variables. We highlight in Figure 14 how these external variables are interpretable as relative positions of the ethanol
feed, the butene feed, the catalytic stages and the boil-up.

Figure 14: Example of catalytic distillation column external variable reformulation

B.4 Small Batch Problem

Yk,mixer =

{
True, zE,mixer = k

False, otherwise
∀ k ∈ K (B.4.1)

Yk,reactor =

{
True, zE,reactor = k

False, otherwise
∀ k ∈ K (B.4.2)

Yk,centrifuge =

{
True, zE,centrifuge = k

False, otherwise
∀ k ∈ K (B.4.3)

X1 =

zE ∈ Z3 :

1 ≤ zE,mixer ≤ K
1 ≤ zE,reactor ≤ K

1 ≤ zE,centrifuge ≤ K

 (B.4.4)
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