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ABSTRACT

Fhe-optimization-Optimization of chemical processes is challenging due te-the-nonlinearities aris-
ing from precess—physies—chemical principles and discrete design decisions. In—particutar;"The

optlmal synthesis and des1gn of chemlcal processes can be posed asa Generahzed D1s_]unctlve Pro-
gramming (GDP) su m S r-meth o able

pfob}ems—suehﬂs—fefoffﬂul—a%mgthemﬂ& roblem Whlle reformulatln GDP roblems as Mlxed-
Integer Nonlinear Programming (MINLP) problems ;-neverthelessalgorithms-explieitly-designed
tese%ve—ﬁwGBllpfob}emﬂﬂépofeﬂﬂaH}Hevef&geﬁs—stmetufel common, specialized algorithms

for GDP remain scarce. This paperpresents—the-Logie-based-study introduces the Logic-Based
Discrete-Steepest Descent Algorithm (LD-SDA) as a solution method for GDP problems involv-

mg ordered Boolean Varlables %LD SDA fefefmulates—ﬂ&es&ofdefedeBoo}eaﬂ—vaﬂab}eHﬂte

usmgransforms these varlables into external integer de(:1s10ns and uses a two- level decompo—
s1t10n&ppfeaehﬂvvhef& the upper level subpfeb}em—deteﬂﬁﬂ%eﬁeﬂﬁ}%ﬂab}e—eeﬁﬁgtw&eﬁf

W@W@Mx&&%ﬁ%@m
studies presented in this work, including batch processing, reactor superstructures, and distillation
%LDSDA ustra

eempafed—tmonsmtentl out erforms convent10nal GDP and MINLP solvers es e01a11 as roblem
size grows, and proves superior in challenging problems where other solvers encounter difficulties
in finding optimal solutions.

Keywords Superstructure Optimization - Optimal Process Design - Generalized Disjunctive Programming - MINLP -
Process Intensification
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1 Introduction

The ongoing research in modeling and optimization provides computational strategies to enhance the efficiency of
chemical processes across various time scales, e.g., design, control, planning, and scheduling [!, 2]. Tr-additien;
epﬂﬂar%a&efrggg\r/r\nNmMzatwnvtools help develop novel processes and products that align with environmental, safety,
and economic standards, thus promoting competitiveness. Desprte advances in the field, the—detefmﬂﬁsﬁeselu&eﬁ
of-deterministically solving optimization problems that i ¢ S

challenging—Forinstanee-involve discrete decisions alongside nonlinearities remains a significant challenge.

A key application where these challenges arise is the optimal synthesis and design of reactor and separation pro-
cessesmustineorporate-, which requires incorporating discrete decisions to deeide-determine the arrangement and sizes
of distillation sequences and reactors, as well as the non-ideal relationships required-needed to model vapor-liquid phase
equilibrium. The interactions-interaction between nonlinear models and discrete decisions in this problem introduce
introduces nonconvexities and numerical difficulties (e.g., zero-flows of inactive stages/units), which-complicates
th&dﬁeeﬁelu&owe%mwmhg}hese problems w1th th&tradrtronal optrmrzatron solvers [w

Another im ortant area Where these challen es becorne evrdent is in economic nonlrnear model predrctrve controlt&
where solving optimization problems within the s&mphﬁgtﬁﬁeof—theeeﬁtrelleecontroller sampling time presents a

Wﬁ] This issue-aggravates-when-~coupling-contrel-with-difficulty increases when design or schedul-
ing decisions which-adds-discrete-deeisions-into-are coupled with control, adding discrete decisions to the formulation

[2]. Giventhe-abovethererematnsa

The computational burden of these problems presents a significant limitation, often preventing the ability to find

timely solutions, particularly in online applications or large-scale systems. This challenge highlights the need for
advanced optrmrzatron algorithms capable of efficiently exploring the search space of discrete variables and-handling

while managing nonlinear discrete-continuous variable-interactions-to-tackle-interactions to address relevant chemical
engineering optimization problems.

Fwo-of-the-main-Two major modeling approaches that incorporate-address these issues by incorporating discrete
decisions and aetivate-or-deactivate-activating or deactivating groups of nonlinear constraints in-the-formulation-are

Mixed-Integer Nonlinear Programming (MINLP) and Generalized Disjunctive Programming (GDP).

Typically, optimization problems are posed using MINLP formulations ;—whieh—that incorporate both contin-
uous variables, here denoted as x={#r——#71x = (£1....,%,,), and discrete variables, here denoted as
z—="tsr——5212 = (21,. .., 2n.)- The resulting optimization problems involve the minimization of a function
f : R™ x Z"= — R subject to nonlinear inequality constraints g : R™ x Z"= — R!. Fhe-variablesVariables
are usually considered to be-bounded;-meaning-they-belong to a closed set (referred to as bounded) x € [x,X] and

z € {z,...,Z}, respectively. Throughout this paper, for a variable x, we use underbar z and overbar T notation to
denote lower and upper bounds, respectively. The mathematical formulation of an MINLP is as follows:

min f(x,z)
X,z

st.g(x,z) <0 (MINLP)
x €[x,X] CR";z€{z,...,z2} CZ"*

Problem (MINLP) belongs to the NP-hard complexity class [0];-nevertheless—. Despite the challenges associated
with solving NP-hard problems, efficient MINLP solutlon algor1thrns have been developed mot1vated by its various
applications [7]. These algorithms ta
Mmmwmwwmommﬂ solutlon(x 2 )
Among the most h g § § vHINEP

%MWWWWWMNM decomposmon or o branch-

and-bound (BB) [8]. These techniques separately address the two sourees-of-hardness-of-the-problem-(MINEPR) e
main sources of difficulty in (MINLP): the discreteness of z and the nonlinearity of g. Both-ef-these-methods-

Both decomposition and branch-and-bound rely on bounding the optimal objective funetion—{x*2z*)=F"*value
f(x*,2z*). This involves searching for values (f, f) such that f < f* < f, and progressively tighten them. fliheepﬂfﬂal
solttﬁoﬁﬂ&beﬁﬂded—fromﬂbeve—bﬁméﬁgWe denote f* as an optimal solution value, meaning that f(x*, z*

is an optimal solution. An upper bound on an optimal solution value is found by identifyin feasrble

solutions to the problem {(X,%) | g(X,%z) < 0,% € [x,X],% € {z,...,2}}, e, f(x*,2*) < f(X,2) = f. The
relaxations-Relaxations of problem (MINLP), which are optimization problems defined over a larger feasible set, have
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an optimal solution f that is guaranteed to underestimate the-an optimal objective value of the original problem i.e.,
f<r.

The second modeling approach used in the literature is GDP, which generalizes the problem in (MINLP) by introducing
Boolean variables Y and disjunctions +—}into the formulation [9]. In GDP, the Boolean variable Y;j, indicates whether
a set of constraints h;,(x,z) < 0 is enforced or not. We refer to this enforcing alternative-as-condition as a disjunct i,
in disjunction k. Only one disjunct per disjunction is to be selected; hence, we relate disjunctions with an exclusive
OR (XOR V) operator , which can be interpreted as an Exactly(1, -) operator when 57F=2-there are more than two
disjuncts in a disjunction [10]. Boolean variables can be related through a set of logical propositions Q(Y) = True by
associating them through the operators AND (A), OR(V), XOR (V), negation (—), implication (=-) and equivalence
(&). Furthermore, GDP considers a set of global constraints g(x,z) < 0 existing outside the disjunctions, which are
enforced regardless of the values of the Boolean variables. The mathematical formulation for GDP is as follows:

0o
stg( )

(GDP)

X € [x,X] CR";Y € {False, True}"v;z € {z,...,z} CZ"

where n, = >, . i | Di|. Moreover, Boolean variables may be associated with empty disjunctions and still appear in the
logical propositions £2(Y') to model complex logic that does not involve a set of constraints h{se;z<-8h,; (x,z) < 0.

Throughout this work, we make several important assumptions: the problem (GDP) has at least one feasible solution,
the search space for continuous, integer, and Boolean variables is bounded, and the objective function remains
bounded as well. Additionally, the main problem and the subproblems obtained by fixing Boolean configurations
satisfy the necessary conditions for standard Nonlinear Programming (NLP) and MINLP algorithms to find a solution.

Specifically, the functions f, g, and h;; are assumed to be smooth, with available first and second derivatives when
solving NLP subproblems.
Different strategies are available to solve problem (GDP). The traditional approach is to reformulate the problem into

an MINLP, and the two classic reformulations are the big-M reformulation (BM) [1 1, 12] and the hull or extended
reformulation (HR) [13, 14]. However, there exist-are algorithms specifically designed for the GDP framework that

exploit the intrinsic logic of the problem. These tailored algorithms include logic-based outer approximation (LOA)
[15] and logic-based branch-and-bound-branch-and-bound (LBB) [16].

The GDP framework has recently been used in the optimization of chemical processes. Some modern applications in
process design include co-production plants of ethylene and propylene [17], reaction-separation processes [ 8], and
once-through multistage flash process [19]. Other advances in process synthesis include effective modular process
[20], refrigeration systems [21], and optimization of triple pressure combined cycle power plants [22]. Recently,
new solvent-based adhesive products [23] and optimal mixtures [24, 25] have been designed using this methodology.
Seheduling of multiproduet The scheduling of multi-product batch production [26], blending operations [27], refineries
[28, 29], modeling of waste management in supply chains [30], and multi-period production planning [31, 32] are
some modern applications of the GDP framework in planning and scheduling. We refer the reader to the review by
Trespalacios and Grossmann [9] for other developments in GDP applications.

A-commen-feature-in-many-apphicationsis—that-In_many applications, Boolean variables and disjunctions in GDP

formulations often represent discrete decisions with intrinsic ordering. Examples of these ordered decisions include
selecting discrete locations (e.g., feed location in a distillation superstructure), determining discrete points in time
(such as the starting date of a task in scheduling), or integernumbers-specifying integer values (as seen in the number
of units in a design problem, either in parallel or series). A key characteristic of these problems is that increasing or
decreasing the value of fhesethese drscrete decrsrons 1mp11es an ordered 1nclu51on or exclusron of nonhnear equatrons
from the model. However, Boolean ble model-these-de As-t-th m i

the Boolean variables used in GDP t icall do not capture thls ordered structure fallmg to e&p%ureﬁmeHever&ge
leverage the potential relationships between subsequent-successive sets of constraints.

To exploit this-strueture-the ordered structure in optimization problems, a solution strategy was recently proposed
introduced in the mixed-integer context to efficiently-solve-MINEP-solve MINLP superstructure optimization problems

—Here, the more efficiently. In this approach, ordered binary variables are reformulated inte-as discrete variables (called
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external variables) to aceeunt-for-explicitly represent their ordered structure -[33]. The selution-—strategytifts—these

integer-external-variables-to-anupper-tayerproblemreformulated problem is then lifted to an upper-level optimization,
where a Discrete-Steepest Descent Algorithm (D-SDA) is applied. This algorithm is theereticallysupported-by-the

prineiples—of-based on principles from discrete convex analysis, which establishes—provides a different theoretical
framewerk-foundation for discrete optimization [34]. Fhe-

D-SDA was-applied-as-an-MINEP-algorithm-to-the-has demonstrated its effectiveness in several MINLP applications,
including optimal design of equilibrium -[35] and rate-based catalytic distillation columns [36]and-, It proved to be

more efficient than state-of-the-art MINLP solvers in terms-of-both computational time and solution quality. The
ﬁf%eempueaﬁeﬂakexpeﬂmeﬂ{%tha%%hewed—ﬂaeapphe&&eﬁeﬁEaﬂ computational experiments applying D-SDA as a
logic-based solver for GDP &pphc—&ﬂeﬂﬁ}seﬁheweekformulatlons also showed romisin 1mprovements in solutlon

quality and computational

a-efficiency. These experiments mvolved case studles such as reactor network des1 n, rate- based catalytlc dlstlllatlon
column s-and-the-design, and simultaneous scheduling and dynamic optimization of network batch processes [37, 38].

This paper presents the logic-based D-SDA (LD-SDA) as a logic-based solution approach specifically designed for
GDP problems whose Boolean or integer variables follow an ordered structure. Our work builds on our previous work
in [37] and provides new information on the theoretical properties and details of the computational implementation of
the LD-SDA as a GDP solver. The LD-SDA uses optimality termination criteria derived from discrete convex analysis
[34, 39] that allow the algorithm to find local optima not necessarily considered by other MINLP and GDP solution
algorithms. This study also presents new computational experiments that showcase the performance of the LD-SDA
compared to the standard MINLP and GDP solution techniques. The novelties of this work can be summarized as
follows:

* A generalized version of the external variables reformulation applied to GDP problems is presented, thus
extending this reformulation from MINLP to a general class of GDP problems.

* The proposed framework is more general than previous MINLP approaches, allowing the algorithm to tackle a
broader scope of problems. Through GDP, the subproblems can be either NLP, MINLP, or GDP, instead of the
previous framework where only NLP subproblems were supported.

* An improved algorithm that uses external variable bound verification, fixed external variable feasibility via

Feasibility-based-Feasibility-Based Bounds Tightening (FBBT), globally-visited-set-verification-verification
of already visited configurations, and a reinitialization scheme to improve overall computational time.

* The open-source implementation of the algorithm is generalized for any GDP problem, leading to an automated
methodology. Before executing the LD-SDA, the user only needs to identify the variables to be reformulated
into-as external variables and the constraints that relate them to the problem. This implementation, formu-
lated in Python, is based on the open-source algebraic modeling language Pyomo [40] and its Pyomo.GDP

extension [41], and itcan be found in an openly available GitHub repository'.

The remainder of this work is organized as follows. §2 presents a general background in both s
GBP-GDP solution techniques and in discrete-steepest optimization through discrete convex analysis. §3 111ustrates the
external variable reformulation for Boolean variables. Furthermore, this section formally describes the LD-SDA and
discusses relevant properties and theoretical implications. The implementation-detatts-and-details of the implementation
and the algorithmic enhancements are described in §4. Numerical experiments were conducted to assess the performance
of the LD-SDA across various test cases, including reactor networks, batch process design, and distillation columns
with and without catalytic stages. The euteomesresults of these experiments are detailed in §5. Finally, the conclusions
of the work along with future research directions are stated in §6.

2 Background

This section serves two primary objectives. Firstly, it provides an introduction to the solution methods employed in
Generalized Disjunctive Programming¢GBP). Secondly, it describes the Discrete-Steepest Descent Algorithm (B-SPA)
along with its underlying theoretical framework, discrete convex analysis.

2.1 Generalized Disjunctive Programming Reformulations Into MINLP

A GDP can be reformulated into a-an MINLP, enabling the use of specialized codes or solvers that have been developed
for MINLP problems [42, 14]. In general, the reformulation is done by transforming the logical constraints into algebraic

'https://github.com/SECQUOIA/dsda-gdp


https://github.com/SECQUOIA/dsda-gdp

Logic-based Discrete-Steepest Descent: A Solution Method for Process Synthesis GDP A PREPRINT

constraints and Boolean variables into binary variables [9]. Moreover, MINLP reformulations handle disjunctions by
introducing binary decision variables y € {0, 1}"v, instead of Boolean (False or T'rue) variables Y. The exclusivity
requirement of disjunctions is rewritten as the sum of binary variables adding to one, thus implying that only a single
binary variable can be active for every disjunction k € K.

Y € {False, True}™ —y € {0,1}™
AY)=True - Ay > a

\/ [Yik] < Exactly(l, [Yir i € Di]) — Z Yir =1

1€Dy, 1€Dy,

(GDP-MINLP)

In this section, we describe the two most common approaches to transform a GDP into a MINLP, namely the big-M (BM)
and the hull reformulations (HR). Different approaches to reformulating the disjunctions of the GDP into MINLP result
in diverse formulations. These formulations, in turn, yield distinct implications for specific preblem-solvingproblem

solving [43].

The big-M reformulation uses a large positive constant M in-an-ineguality such-thatitrenders-the-constraint nonbinding
or redundant-depending-into the inequalities to either activate or relax constraints based on the values of the binary
variables. Fhe-status-of-constraints{A constraint being active or redundant y-depends-is dependent on the values taken
by their corresponding binary variables;—thatis—a-. When a binary variable is True, the corresponding vector of
constraints h;;(x,z) < 01is activated-when¥-is-Trweenforced. Otherwise, the right-hand side is relaxed by the large
value M such that the constraint is satisfied irrespective of the values of x and z, effectively tgﬂefmgfh&eeﬂsﬁam{
making the constraint nonbinding. This behaviour can be expressed as h;(x,z) < M(1 — y;,) where y;, is a binary
variable replacing Y;x. The resulting GDP-transformed MINLP using (BM) is given by:

min f(x,z)
xX,¥,z

s.t.g(x,z) <0
Ay > a
(BM)

S yn=1 kek

i€Dy

hik(X,Z) < Mik(l _yik) 1€ Dk,k’ e K

x € [x,X] CR"™;y € {0,1}";z € {z,...,z} CZ"

The hull reformulation (HR)

mwggegﬁe%eoffers an alternative b handhn d1s unctlve ine uahtles usin bmar varlables but it takes a dlfferen

roach by disaggregating both continuous and discrete variables;-and-aeepy-. For each disjunct in the GDP, a copy of
W vik € [z,7] or wir € {2, ..., 7} ofeach-variable-is-added-is created for each element i in the disjunction

Dk By—beeefnmg—zefe—wheﬂ—fhetﬁWhen the correspondmg b1nary var1able 1s Bgevtvtgvzvegg these new variables enforee

nding-on ng-become zero as well, effectively
QWWMMW%WO binary variables equal to +
one are involved in theircorrespondingconstraints—Furthermoreenforcing the constraints. Additionally, the constraints
in each disjunct are enforeed-through-governed by the binary variables by-theirperspeetivereformulation-evaluated
over-through a perspective reformulation applied to the disaggregated variables;-that-is;-. Specifically, each disjunct
that activates a veetorset of constraints h;; (x,z) < 0 is reformulated as y;, ik (Vik /Yik, Wik /yix) < 0, where y;;, is a

binary variable replacing-that replaces Yjs.

The difficulty in applying the HR to a GDP is that the perspective function y;;h;. (Vik /Yik, Wik /yir) is numerically
unstable-undefined when y;;, = 0 if the constraints in the disjuncts are nonlinear. Therefore, the method petentiathy
causes—fathures—infindingcan potentially fail to find a solution to the GDP problem. This issue can be overcome
by approximating the perspectlve function with an inequality as demonstrated in [44]. The ebtained-resulting GDP-
transformed MINLP using (HR) goes-as—
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min  f(x,2)
V,W,X,y,Z

s.t.g(x,z) <0
Ay > a

Syn=1 kek
1€Dy
X = Z vik keK
1€ Dy (HR)
z = Z wir kekK
i€Dy
Yirhir (Vik /Yik, Wi /yix) <0 i€ Dy, ke K
YieX <Vik SyikX 1€ D, ke K
YikZ < Wi <Yz 1€ D,k e K
vik € [x,X] CR"™;wy, € {2,...,2} CZ"*
x € [x,X] CR";y €{0,1}";z € {z,...,z2} CZ"™

The hull reformulation introduces extra-a larger number of constraints compared to the big-M method. However, it
yields a tighter relaxation in the continuous space, refining the representation of the original GDP problem. This can
potentially reduce the number of iterations required for MINLP solvers to reach the-an optimal solution. Depending
on the solver and the problem, the trade-off between these two reformulations might result in one of them yielding

problems that are m&efﬁetenﬂy@eha&eimm [43].

pite MIN 0 2 e sotve-Although MINLP reformulations are the standard
wg@vfggvsglw&GDP problems %Sefefwnﬂ%mwmntroduce numerous algebraic constramts%eme
%mwimwmnumencal 1nstab111tles when thelr correspondmg variables are eqﬂal—te
zero. This neteffect-might-make-the-problem-harder-to-solve-and-extend-ts-can increase the complexity of the problem

and solution time, opening-the-deor-for-other-highlighting the potential of alternative GDP solution techniques that de
ﬂ@%&ﬁ&ﬂ%f@fmggg@vggggmthe problem into a-an MINLP.

2.2 Generalized Disjunctive Programming Logie-based-Logic-Based Solution Algorithms

Instead of reformulating the GDP into MINEP-an MINLP, and solving the problem using MINLP solvers, some
methods developed in the literature aim to directly exploit the logical constraints inside the GDP. Attempts to tackle
the logical propositions for solving the GDP problem are known as logic-based methods. fegte-based-Logic-Based
solution methods are generalizations of MINLP algorithms that apply similar strategies to process Boolean variables to
those used for integer variables in MINLP solvers. This category of algorithms includes techniques such as logic-based

outer-approximation E0A3-and logic-based branch and bound (EBB-{9].

In GDP algorithms, the (potentially mixed-integer) NonlinearProgramming-(NEPynonlinear programming subprob-
lems generated upon setting specific discrete combinations, which now encompass logical variables, are confined to

only those constraints relevant to the logical variables set to True in each respective combination. In logic-based

algorithms, the generated Nonlinear Programming (NE=P)-subproblems;-whieh-subproblems, that could potentially be
mixed-integer as well, arise from fixing specific Boolean configurations. These configurations constrain the (MI)NLP

subproblems to only relevant constraints corresponding to logical variables set to T'rue in each setting. Specifically,
when considering a given assignment for the logical variables denoted by Y, the resulting subproblem is defined as:

min f(x,z)

s.t.g(x,z) <0
hi,(x,2) <0 if Vi, = True i€ Dy, ke K
x € [x,X|]CR"™, z€{z,..., 2} CZ"

(Sub)

Thisformulation-The formulation of Problem (Sub) represents the optimization problem under the constraints governed
by the chosen logical assignment Y. In the most general case, after fixing all Boolean variables, the Problem (Sub) is a
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MINLP. Still, in most applications, where there are no discrete decisions besides the ones represented in the Boolean
space n, = 0, Problem (Sub) becomes an NLP. This problem avoids evaluating numerically challenging nonlinear
equations whenever their corresponding logical variables are irrelevant (i.e., “zero-flow” issues) [3]. The feasibility of
Boolean variables in the original equation (GDP) depends on logical constraints Q(Y) = T'rue. By evaluating these
logical constraints, infeasible Boolean variable assignments can be eliminated without needing to solve their associated
subproblems.

In general, logic-based methods can be conceptualized as decomposition algorithms. At the upperdevel-upper-level

problem, these methods focus on identifying the-an optimal logical combination Y. This combination ensures that
the subproblems (Sub), when solved, converge to the-an optimal solution of Eq. (GDP). Overall, given a Boolean
configuration, the subproblem (Sub) is a reduced problem that only considers relevant constraints, is-and is therefore
numerically more stable, and yields faster evaluations than a monolithic MINLP. Consequently, unlike mixed-integer
methods, logic-based approaches can offer advantages, given they exploit the structure of the logical constraints.

A prevalent loglc based appfeaeh—ﬁ—me—lsege-baseekmethod is the Lo 1c Based Outer- Approx1mat10n éb@A%

ton- qWWsesMeawrtho approx1mate the fea51ble region of

the original problem Mwmmmmm

with linear approximations over the feasible region. This approach simplifies complex optimization problems

by replacing nonlinear constraints_or objectives with linear approximations, making them easier to _solve while

providing bounds on an optimal solution. By utilizing linear approximations at iterations [ = 1,.. .., L and iterations

Yir = T'rue for iteration [}, LOA leads to the formulation of a linearized GDP, where the-an optimal solu-

tion provides the integer combinations necessary for problem resolution. The upper-level problem (Main I-GDP) in the
LOA method is as follows:

min «
X,Z,0

st.a> f(x,z;x,2") Vi=1,...,L
g(x,z;x',2z) <0 Vi=1,...,L
Yii (Main 1-GDP)
_ ke K
2B, hip(x,2;x,2') <0 1€ Ly
AY) =True
x€[x,X]CR"™, z€{z,...,z2} CZ", a c Ry

where f(x,z;x!,2!) is the linear relaxation of function f(x, z) #ereiﬁ{—{%lﬁzl—}@\W A similar definition
is given for the linear relaxations of the global constraints g(x, z; x', z), and of the constraints inside of the disjunctions
h;;,(x,z; %', z!). Inspired by the outer-approximation algorithm for MINLP [45], these linear relaxations can be built

using the-a ﬁrst order Taylor expansion around point {x!,z'}, i.e., f(x,z;x',2!) = f(x!,2!) + V. f(x!,2z)) " (x —

x') + V. f(x!,2") T (z — 2'). It is important to note that linear approximations are guaranteed to be relaxations onl

when the functions , and h;;. are convex. For convex nonlinear functions, these linear approximations provide
valid bounds on the optimal solution.

Problem (Main 1-GDP) is usually reformulated into a Mixed-Integer Linear Programming (MILP) problem using the
reformulations outlined in §2.1. Upon solving the main MILP problems, the logical combination Y is determined,
defining the subsequent Problem (Sub) with the resulting logical combination. Expansion points for additional
constraints are then provided to solve the subproblem (Sub) within the context of (Main 1-GDP). While (Main 1-GDP)
yields a rigorous lower bound, the (Sub) subproblem provides feasible solutions, thus establishing feasible upper bounds.
Each iteration refines the linear approximation of (Main I-GDP), progressively tightening the constraints and guiding

the current solution towards an optimal solutionteward-the-optimal-of-the-GDP.

Gradient-based-Gradient-Based linearizations provide a valid relaxation for convex nonlinear constraints, but do not
guarantee an outer-approximation for nonconvex ones. This limitation jeopardizes the convergence guarantees to
globally optimal solutions of LOA for nonconvex GDP problems. To address this problem, if the linearization of
the functions defining the constraints is ensured to be a relaxation of the nonlinear constraints, LOA can converge to
global solutions in nonconvex GDP problems. These relaxations remain to be linear constraints, often constructed
using techniques such as multivariate McCormick envelopes [40]. This generalization is known as Global Legie-based
Logic-Based Outer-Approximation (GLOA).
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Another important logic-based solution method is the Eegie-based-Logic-Based Branch and Bound (EBB)-algorithm
that systematically addresses GDP by traversing Boolean variable values within a search tree. Each node in this tree
stgnifies-corresponds to a partial assignment of these variables. LBB solves optimization problems by splitting them
into smaller subproblems with fixed logic variables and eliminating subproblems that violate the constraints through a
branch and bound technique.

The core principle of LBB is to branch based on the disjunction, enabling it to neglect the constraints in inactive
disjunctions. Furthermore, LBB accelerates the search for the-an optimal solution by focusing solely on logical
propositions that are satisfied. Initially, all disjunctions are unbranched, and we define this set of unbranched disjunctions
as K N. The LBB starts with the relaxation of the GDP model (node-GDP) in which all nonlinear constraints from the
disjunctions are ignored. For every node [, the set of branched disjunctions K B can be defined as K B! = K \ KN'.

g, feee)

s.t.g(x,2z) <0
QYY) = True
hi(x,2) <0 if Y} =True, ke KB! (node-GDP)
\/ Yig
vy —
= U (Y") = True

x € [x,X] CR";Y € {False, True}"v;z € {z,...,z} CZ"

ke KN!

where W denotes the set-set-valued function of constraints relevant for the unbranched nodes K N'.

At each iteration, the algorithm selects the node with the minimum objective solution from the queue. The objective
value of each evaluated node in the queue serves as a lower bound for subsequent nodes. Eventually, the minimum
objective value among all nodes in the queue establishes a global lower bound on the GDP. Branching out all the
disjunctions, the algorithm terminates if the upper bound to the solution, determined by the best-found feasible solution,
matches the global lower bound.

As mentioned above, logic-based methods leverage logical constraints within the GDP by activating or deactivating
algebraic constraints within logical disjunctions during preblem-selvingproblem solving. In the branching process,
infeasible nodes that violate logical propositions may be found. These nodes are pruned if they do not satisfy the
relevant logical constraints U(Y) = True.

While logic-based methods offer a%gﬁm&%mmﬂﬂmﬁgmm
they also have some limitations. For nonconvex GDP problems, LOA may ﬁaeeehaﬂeﬂges—m«}deﬂﬂfymggtvrggglggg
identify the global optimum, as the-solutions to the NLP subproblems may-might not correspond to the global optimum.
Analogousty, EBB-requires signifieant-Similarly, the LBB method can be resource-intensive, requiring substantial
computat10nal time and resources, espeetally-particularly for large and complex problems [41]. More specifically, as
the problem size increases, the number of subproblems tends to grow exponentially. Henee;-Thus, there is an ongoing

need for more efficient logic-based algorithms eapable-of-leveraging-that can effectively leverage the logical structure
of GDP problemsremainneeded.

The methods described in this section require access to the original GDP problem. Such an interface has been provided
by a few software packages, including Pyomo.GDP . The LOA, GLOA, and LBB algorithms are evaluated in this
work through their implementation in the GDP solver in Pyomo, GDPOpt .

2.3 Discrete Convex Analysis and the Discrete-Steepest Descent Algorithm

Unlike traditional MINLP and GDP solution strategies, which rely on conventional convexity theory treating discrete
functions as inherently nonconvex, the Discrete-Steepest Descent Algorithm B-SBAj-incorporates an optimality
condition based on discrete convex analysis. This framework provides an alternative theoretical foundation for discrete
optimization, defining convexity structures for discrete functions [34].

Mserefeeeﬁveﬁﬁ&yﬁs—me—semﬂeﬁ—eﬂman Integer Programmmg (IP) problem is con51dered locally

optimal when the discrete variables 4
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a-direetimpaect-on-the-yield the lowest objective value within a defined neighborhood. Specifically, this means that the
oint z must have an objective value lower or equal than all its neighboring points. Formally, the neighborhood NV, of
a point z is defined as all the integer points « (called neighbors) within a k-ball of radious one centered around z:

Nafe) = {2 sl <) W

Once the neighborhood of a point z is identified, the set of directions Ax(z) to each of its neighboring points can be
computed through vector subtraction, as shown by the following equation

Ap(z)={d: a—z=d,Va e Ng(2)} 2)

which measures of how far apart the neighbors are in the lattice.

In this work, we consider & € {2, 0o} and Figure 1 illustrates both neighborhoods for the case of two dimensions.

Therefore, the choice of neighborhood directly affects the local optimum obtained. Netably,—lecal-eptimality
Im; ortantl under certain COIIdlthIlS local 0 tlmaht W1th1n specific neighborhoods can imply global optimalityfer

. For example, global optimality is assured-guaranteed
for unconstrained 1nteger problems with a separable convex objective function by-employing-when the positive and
negative coordinates of the axis-axes are used as neighbors.

ngz
A
\ 4
ZEéz
A
4
v

— ® 5] — ® 9
1 2 3 1 2 3
ZE 1 Zr1
(@) cc-neighborhood (Vo). (5) 2-neighborhood (N2)

Figure 1: Visualization of the two neighborhoods /N, and /N, on a two-variable discrete lattice, centered at the

oint zg = (2, 2). The co-neighborhood allows movement to all points within unitary Euclidean distance, offering a
more flexible search space, while the 2-neighborhood restricts movement to orthogonal directions, providing a more
constrained search. This illustrates how the choice of neighborhood affects the directions explored during optimization.

Within the discrete convex analysis framework, an important concept is the idea-notion of integrally convex objective

functions, as introduced by Favati [39]. A function is eensidered-integratby-convex classified as integrally convex when
its local convex extension is convex. This extension is constructed by linearly approximating the original function

within unit hypercubes of its domain{fer-mere-details;-, allowing for a more flexible approach to defining convexity in
discrete spaces (see Murota [34]). Integrally convex functions are particularly relevant because they encompass mest
many of the discrete convex functions feund-commonly studied in the literature, including separable convex functions

[47]. Bis-werth-neting-that-a MINEP-may-be-integrally-econvex-

An MINLP roblem may exhlblt mte ral convex1t even 1f it is nonconvex ¢

by traditional MINLP standards, where
a problem is considered convex if its continuous relaxation is convex [38].

As-a-conventionThis distinction is important for understanding how integral convexity can be leveraged in optimization
roblems that might otherwise be categorized as nonconvex. In discrete convex analysis, an optimal solution over

the infinity neighborhood (or-oo-neighborhood (denoted N;) is referred to as integralty toeal-integrally local (i-
local)beeatise—, meaning it is globally optimal for an integrally convex objective function. Similarly, a—sehition
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MM@M&V%MwMWMWW
local (s local) ﬁﬁeeﬂﬁsgleballyep&makzwpremmwglpbal\pmjor a separable convex objective function

local and S- local optimality is important for understandm how dlfferent nei hborhoods affect the global optimalit
uarantees for discrete optimization problems under the lens of discrete convex analysis.

;zrificlb es I'if{lee.

a

Thefirstextensionto-this-theeryfor MINEPs-was-intredueed-The theory of discrete convex analysis was first extended
to MINLP in [33]. This-werk-propesed-Here, the authors introduced a decomposition approach designed for problems

with ordered binary variablesthat-were—reformulated—with—, which were reformulated using the external variable
method. Fhe-external-variables-ereated-were-then-In this approach, external variables were decoupled from the rest-ef
the—pfeblemmam roblem and addressed in an upper level problem EaterThen, the D-SDA was applied-to-optimize-the

v y were utilized to optimize these external variables,
with brnar varlable fixed accordrngly Herelfurthermpre the obJectrve function values came from the solutron of NLP

optimization subproblems.

A significant advantage of using D-SDA is that binary variables reformulated into-external-variables-no-longerneed-to
beevaluated-atas external variables are evaluated only at discrete points. This avoids the issue of evaluating fractional
solutions (e.g., a binary variable evaluated at 0.5) beeause-given that evaluating points at discrete points is-enotugh
suffices to assess discrete optimality requirements. As a result, D-SDA avoids the potential nonconvexities introduced
by the continuous relaxation of MINLP superstructures, e.g., the multi-modal behavior found when optimizing the
number of stages 1n a catalyt1c d1st1llatron column or the number of reactors in serres [’» 3 ﬁ] A—lse—wmleﬂpdatmg—aﬁd

& -mon an a ne-the-application e Srm1larl th1s al or1thm was succesfull a hed to
h1ghly nonlinear MINLP problems “such as the optimal de51gn of rate-based and dynamic distillation systems [36, 48].

ing uaranteem lobal 0 trmalrt fo

smee—th&ebjeeﬁve—fuﬂeﬁeﬂ—valu& roblems remains challen ing. Unlike rev1ousl stud1ed IP roblems Wher
lobal o) trmalrt can sometimes be ensured MINLP roblems 1nvolve nonlrnear objective functrons for each d1s—

g-heig : WMQM&MMM
W1th the 00- ne1ghb0rh00d has—beeﬂ—used—as—a—refefeneeowftgrusgd for local opt1malrty in MINLP problems. Onereason

i very at-This neighborhood includes
JLMMWHhm an 1nﬁn1ty norm of the evaluated pomt a&elepreted—rﬁl:tgure—l—tﬂsteadeff(j\ﬁgr\n}gvr\ng\rm

comprehensive coverage than just positive and negative coordinates-—, as illustrated in Figure 1. Additionally, when
applying the D-SDA with the co-neighborhood to a binary optimization problem (without reformulation), a complete

enumeration over discrete variables is required. While not computationally efficient, this method offers a “brute-force”
alternative for addressing small-scale discrete optimization problems.

Metivated by those previous works; in-this paper - Building on these advancements, this paper extends the D-SDA is
extended-methodology to address more general GDP problemsin-the-foHowing-seetion-by-direetly-,_This extension
involves explonng the search space of reformulated Boolean var1ables wrtheu{edwgggtvly;vevlrm\rlnz\lftrngthe need for a (BM)
or (HR) re 3 3 mrasreformulation step and
MQMM@&QM&QIH the LOA method

3 The Logie-based Logic-Based Discrete-Steepest Descent Algorithm as a Generalized
Disjunctive Programming Algorithm

This section presents Logie-based-Logic-Based D-SDA (LD-SDA) as a GDP algorithm. It begins with an explanation
of the reformulation process for Boolean variables into external variables, outlining the requirements necessary for
reformulation. For this, we provide a comprehensive example for demonstration. Second, the basis of the LD-SDA as a
decomposition algorithm that utilizes the structure of the external variables is elucidated. The following subsection
describes the different algorithms that compose the Legie-based-Logic-Based D-SDA in the context of solving a GDP
problem. The properties of LD-SDA are explained in the final subsection.

10
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Production order
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Figure 2: Reformulation—Visualization of independent—Boolean—variables—to—the external wvariables—variable
reformulation for an illustrative multi-product batch scheduling example. The figure explicitly displays the Boolean

variables for starting time (YS) and production order (YO,). Production begins on the second day, represented b
Y So = True in black. The production order is B, A, and C, indicated by Y O15 = True (purple), Y Oo4 = True

reen), and Y Oz~ = True (red). The maintenance variable Y M is not reformulated as it does not meet the necessar

3.1 GDP Reformulations Using External Variables

Consider GDP problems where a subset of the Boolean variables in Y can be reformulated into a collection
of integer variables referred to as external variables. Thus Y in (GDP) is defined as ¥={¥gr¥n}—where

Yr=PrrYrr——Yri- Y = (Yr. YnN), where Y Yr.Y LY contains those vectors of in-

nr
dependent Boolean variables that can be reformulated using external vanables ThlS means that each vector Yg ; will

be reformulated with one external Vanable and this reformulatlon is applied for every ] in {1 2,..,m R} {Hﬁmpefmm

: Fmally, as a requisite to apply the reformulatlon each vector ¥R—

YrVje{l,2 .. ng}t mustsatisfy the following conditions:

* Requirement 1: Every Boolean variable in Yr ; must be defined over a finite well-ordered set S; [50, p. 38].
This set may be different for each vector of variables; thus, it is indexed with j. In addition, variables defined
over S; must represent ordered decisions such as finding discrete locations, selecting discrete points in time,
counting the number of times a task is performed, etc. Notably, these independent Boolean variables can have
indexes-indices other than the ordered set. Also, not every Boolean variable defined over S; is necessarily
required to be in Yg ;. For instance, the Boolean variables that determine the feed stage in a distillation
column are defined over the set of trays, but some trays may be excluded from Yg if needed.

* Requirement 2: Boolean variables Yg ; are subject to a partitioning constraint Exact1y(1, Yr; ), i.e., exactly
+one variable within Yg; is True [51]. For example, in the case where there are only two independent

Boolean variables (%—H%%M&JM) the constraint is equivalent to Y7 ¥ Y5. Note that, if

the Boolean variables are transformed into binary variables, this is equivalent to a cardinality constraint
ZZESJ' Yi = 1 [37]

3.1.1 External Variable Reformulation: Illustrative Example

To illustrate these requirements, consider the following example —

Example% T—hefe—eﬂsfc&where a mult1 product batch reactor that WMMWS&A B, and

i i - The goal is to determine an optimal
mg%m ﬁve day tlme hOI‘lZOIl Addltlonally, the erder-in-whieh-production order for A,
B, and C are-producedmust be established, subject to demand constraints-has-to-be-established- Furthermore, it must

11
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ate-,_Another decision involves

whether or not to perform routine marntenance before roductron be ins.

To _model this with Boolean variables, we define Y S,V t € T = {1,2,3,4,5} to indicate the
starting time:—, YO,V ¢ € C = {ABC}HLY p € P = {1,2,3} to determine—represent
the production order, and Y M to indicate the eﬂﬁenee—ef—feﬂﬂﬂe;dggs@\ubgytwp/g\ﬁ)rwrngng
maintenance. The constraints of this problem dictate that there must be only one starting day

Exactly(l,YS = (Y 5.Y 9, ....Y.S5))) and that each product must be

producedonly once (m@ﬁ#@—%@%@%@ﬁﬁeeé xactl 1, YO YO0..,.YO5., YO Vece ).
These constraints imply that variables YS, YO 4, YOp, and YO¢ satisfy Requlrement 2. Fﬂrthefmere—smc—e

Moreover, since both T' and P are ordered sets, we conclude the aforementioned group of variables also
satisfies Requirement 1. Hence, these—the vectors of independent Boolean variables can be grouped as

¥R—[§LS—¥OHGB¥% YS YO, YOpR,YOr), and reformulated with one external variable

assigned to each vector in YR. Thrs means that zg ; is assigned to YS, while zg 2, 2g 3, and zg 4 are assigned to
YO,4,YOp, and YOCfespeeﬁvely—Thism

The resulting reformulation is illustrated in Figure 2 --where

mmwmmmwmwww

In this pesabl&sehﬂ%—%h&epemﬁemmr%o&daysg@t@w@ygggnw2 implying Y .So = True <

zp,1 = 2, as shewn-indicated in black at the lower horizontal axis. AnalegouslySimilarly, the upper horizontal axis

indicates the production order where the-arrangement-depicted-is-to-produee-B ﬁfst—fheffwgggm

VYNA and finally-then C. Sueh-This production order is represented by the reformulation YO1p = True & zg 2 =
1,YO24 = True & zp3 = 2, =72, and YO3c = True & zga4 = 3.

Nete«tbat—fhe«refnammgl%eeleaﬂ—vaﬂable
¥N—l4}\q’—m4hwe*ampl&Frnall note that the Boolean varlable Y M does not satrsfy the stated-requirements—

To-formally-state-the-external-vartable refermulations-werequirements for reformulation, so it remains as is.

3.1.2  External Variable Reformulation: Extension

This work extends the external variable reformulation to general cases. To formally describe this approach, consider
an optimization problem in the {GBP)fermform of (GDP). If the GDP problem satisfies Requirements 1 and 2 over

the vectors of independent Boolean variables Yr, then one external variable can be assigned to each vector ¥g5-

Yr..Vje{l,2,....npt.
Requlrement 1 1ndlcates that each Vector Mst—b&deﬁned—over—&—weﬂ-erdered—set%—&nee—ﬂot

prev&eﬂs V € l must be deﬁned over a Well ordered set S N ot all Boolean Var1ables deﬁned over

S, are required to belong to Y To account for this, we introduce the subset S’ C S, for each j € 1,2, . )

representing the ordered sets in which the Boolean variables Y g ; are declared. The vector of independent variables is

nother words, these Vanables may have multiple indices in the algebraic model formulation.
Requirement 2 indicates that (Y) = True in (GDP) must contain partitioning constraints of the form

Exactly(1,Yr.),Vj € {1, 2, ....np}. Combining both requirements allows to define Boolean variables in YR as a

12
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function of n g external variables zg ;,V 7 € {1.2,....nr} as,

YRj,S’;(a) <~ ZEj=20a Vj € {1727-'-7nR}ava € {132a ey |S§|} 3)

effectively expressing the external variables zp ; based on the values of Boolean variables Yr.: /(.. From this
7

reformulation, the upper and lower bounds of the external variables can be directly inferred from the sets of ordered
iti : . These bounds are defined as:

1< ZE,j < |S;| Vj S {1,2, ...,nR} (4)

The general external variable reformulation is given by equations (3) and (4). Next, we proceed to derive a simpler
reformulation that follows from the special case when all the disjunctions are defined over well-ordered sets. First,
note that Requirement 2 is naturally satisfied by the disjunctions in a standard (GDP) formulation. This arises from
the fact that the exclusivity requirement in disjunctions enforces constraints of the form Exactly(1, Yx), Y k € K,
where vector Y contains Boolean terms Yiy, Vi € Dy.. Consequently, if each disjunction & represented an ordered
decision over the well-ordered set Dy, then Requirement 1 would be directly satisfied, allowing to reformulate a
standard (GDP) problem following the guidelines in equations (3) and (4) to instead obtain:

YDk(a),k <~ ZEk =20 Vke K,Vae€e {1,2,..., ‘Dk|} %)

respectively. In this case, there are as many external variables as disjunctions k ¢ K in the formulation, making index
7 interchangeable with disjunction index k. Similarly, ordered subsets S correspond to disjunct sets Dy. For this
reason, indices 7 in Yy are replaced by ordered index Dy (a) in equation (5). In practice, not every Boolean variable
in the formulation fulfills the requirements to be reformulated with external variables as suggested by equation (5).

In addition, ordered discrete structures may appear outside disjunctions ., within Q(Y) = True. Therefore, the

reformulation in equations (3) and (4) is more general and practical than equations (5) and (6).

Generalizing the reformulation established in previous research, we adapt the proposed reformulation to handle
variables Yr . defined over ordered, but unevenly spaced sets V7 € {1.2,....nr}. Instead of defining external

variables based on the elements of these ordered sets S; as in earlier works [33], we propose defining external vari-
ables with-respeet-to-based on the posmons in ordered-sets—In-this-ecase—the-the ordered sets S’.. For each j, the

set of positions is denoted as 1,2, . , where the distance between consecutive elements mheeseeeiepesrﬁeﬂs

{1—2,—|€~H»1s equal to %Geﬂ%equeﬂﬂyeone This change avoids otentlal issues with solutions defined by isolated

discrete elementsw W a-, since the nearest-
neighborhood Wm%%w%&l&%w&ﬁned over posmons —Fo-iHustrate

this-potential-issue;considersforexamples-instead of elements.

To illustrate the problem that may arise when considering the reformulation in terms of elements, consider an unevenly
spaced set S7 = {0,1,2,7,10}, and its corresponding Boolean variables

W&Wwwwﬁmmmhmﬂy (1,Yr1) = True. Sup-
pose the incumbent point is zg; = 4¢,_which corresponds to Yr; 7 = Tme}—%hu&ﬁs—neafest—ﬂetghbefs—af& A
nei hborhood search around the 1ncumbent would explore zp 1 = 3 and Zp1 = . %Chr%stem%#em—%&mﬁg—&&él-aﬂd

Weu}d—seem&eﬂf—ﬂaetﬁeepeeﬁve—Bee}e&ﬂﬂf&ﬁ&b}eﬁe—TwﬁAccordm to revious deﬁnltlons 33 th1s search Woul
attempt to set Yr1,3 = True or Yg; 5 = Trueyand-therestof-, while assigning the remaining Boolean variables in YR

to False. Given-thatSince 3 ¢ S{ and 5 ¢ 51, both 2pr=-3-and=r1T=">5would-be-declared-as-infeasible—Thus-the

neighboring points would be treated as infeasible, causing the search
to sto rematurel 1dent1f 1n zE l=4asa local optlmumﬁﬂdﬁemghbeHeafdeﬁep—aeﬂﬂ%pMs

ro osed definition resolves th1s issue b conductm the reformulatron over set pos1t10ns In eur—theeae&mple—ﬂ%e«&ew
definititon-would-interpret-this case, the neighboring points zg 1 = 3 and zg 1 = 5 as-would correspond to positions
over Y r—Tthismeans-, meaning that either Yr 2 or Y1 19 would be set to True, instead of YR1,3 or Ygy 5rand-the

diserete-exploration-wounld-proeeed. This allows the discrete search to continue without prematurely declaring a local

optimum.
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3.2 GDP Decomposition Using External Variables

The reformulation presented in the previous section allows to express some of the Boolean variables in the problem
in terms of the external variables as Yr = Yr(zg), where zg is a vector of np external variables. The core idea of
the LD-SDA is to move these external variables to an upper-level problem (Upper) and the rest of the variables to a
subproblem (7). This decomposition allows taking advantage of the special ordered structure of the external variables
by using a Discrete-Steepest Descent Algorithm (B-SBAj-in-the-uppertevelin the upper-level problem to explore
their domain as explained in §3.3. Once an external variable configuration is determined by D-SDA, a subproblem is
obtained by only eensidered-considering the active disjuncts of that specific zg configuration. The formal definition of
both problems is given as:

Hzlli;n f sub (ZE)

o (Upper)
st.zg € {zg,...,Zg} C Z"*c  (From Eq. (4))

fsub(ZE) = mingyyz f(X, Z)
st. YR = Yr(zg) (Fixed as shown in Eq. (3))
g(x,z) <0
s(zg) = Q(Y) = True (7)

Yi
MieDk [hik(x,z) <0 kek

x € [x,X] CR";Y € {False,True}"v;z € {z,...,z} CZ"*

In problem (Upper), a value for the objective function f,;(zg) is obtained by the optimization of subproblem (7). Thus,
fsub(zg) is defined as the-an optimal objective function value found by optimizing the subproblem s(zg ), obtained
by fixing external variables fixed at zg. If the subproblem (7) is infeasible, fs,;(zg) is set to as-positive infinity by
convention. Notably, the subproblems are reduced formulation given that they only consider the relevant constraints for
the relevant external variable configuration zg.

A novel feature of the LD-SDA is its ability to handle various types of subproblems, extending previous versions [33],
whieh-that solely supported NLP subproblems. In its most general form, the lower-tayer-lower-level problem (7) is a
(GDP) with continuous (x), discrete (z) and non-reformulated Boolean (Yn;) variables. Consider the scenario where
every Boolean variable can be reformulated (e.g., as shown in equations (5) and (6)) or every non-reformulated variable
Y is equivalently expressed in terms of Ygr. Note that the later-latter situation may occur if all Boolean variables
Y are determined within the subproblem upon fixing Ygr, implying that logic constraints (YY) = True establish
Y as functions of Yg. In such a scenario, the resulting subproblem becomes an (MINLP) with continuous (x) and
discrete variables (z), or an NLP if there are no discrete variables (z) in the formulation. In the following subsection,
we introduce the LD-SDA as a decomposition algorithm that leverages the external variable reformulation and bi-level
structure depicted so far.

3.3 FEogie-based Logic-Based Discrete-Steepest Descent Algorithm

The Logie-based-Logic-Based Discrete-Steepest Descent Algorithm(ED-SPA), as described in Algorithm 1, solves a
series of subproblems (7) until a stopping criterion is satisfied. The LD-SDA can only start once the external variable
reformulation of the problem has been performed. The external variables zg are handled in an upper optimization fayer
level where the algorithm is performed. To initialize, this method requires an initial fixed value of external variables
Zx,0, the value of the variables of its corresponding feasible solution (xg, Yo, Zg), and its respective objective function
value fqu5(2zE o). Finding a starting feasible solution is beyond the scope of this work; however, it would be enough to
have zg o and solve the subproblem s(zg o) to find the rest of the required initial solution. Note that problem-specific
initialization strategies have been suggested in the literature, e.g., see [48].

The LD-SDA explores a neighborhood within the external variable domain; hence, the user must te-determine the type
of neighborhood & that will be studied. f-this-paperAs mentioned in §2.3, we only consider k € {2, oo} as-shewnin
Figure-H(see Figure 1); nevertheless, other types of discrete neighborhoods can be considered [34]. Once £ has been
selected, the neighborhood Ny, of a-given-the current point zg is defined as Ny (zg) = {o € Z™5 : ||a — zg||r < 1}
as given by Equation |. Similarly, the set of distanees-directions A, from the point zg to each neighbor « is be

calculated as A (zg) ={d: a—zg =d,Va € Nk(zE)} as dicatated by Equation 2.
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LD-SDA in a 6x6 Lattice of Two External Variables
61 @ ® [ ] [ ] ®

Nl
AN

ZE,2
I
I
Objective function

Figure 3: Visualization of the LD-SDA W@e 1 0r1thm using N in a two-variable discrete lattice example.
%&memvxmmmhe algorithm i i begins at the initial point (2, 2). Neighber-A
Neighborhood Search is-within the neighborhood %epresented with-by blue arrows)-finds-,
identifies the best neighbor w{%%}—heﬁeem resulting in the steepest descent direction d—s-H-Hd* = (1. 1).
Theﬂ—A Line Search&epfeseﬁ{eéﬁ Vdvqngctecl with black arrows%r&peffefmedﬂp%& _follows this direction until
reaching point {5; ‘ ’ @L&’W
Fool(5.3)) < fun(5.5] 1 d"). A second Neighbor Neighborhood Search in Y-
i-Noo ((5,5)), shown with red arrows%&nd—eeﬂe}ude%—%ha%—pem%{%—f)%m) is mtegrally local:-therefere,

terminating the algorithmterminates.

The next step is to perform Neighbor-Neighborhood Search (see Algorithm 22);-whieh-2), that consists of a local search
within the defined neighborhood. Essentially, this algorithm solves s(«) V « € Ny (zg) and compares the solutions
found with the best incumbent solution fs,;(zg). If, in a minimization problem, fq,;,(2g) < fsup(@) V @ € Ni(zg)
then, the current solution in zg is a discrete local minimum (i-local or s-local depending on the value of k); otherwise,
the steepest descent direction d* = o* — zg is computed, the algorithm moves to the best neighbor by letting zg = o*
and performs a Line Search in direction d*. Note that for a neighbor to be considered the best neighbor o*, it must
have a feasible subproblem, and a strictly better objective than both the incumbent solution and its corresponding
neighborhood.

The Line Search (see Algorithm 3) determines a point in the direction of steepest descent 8 = zg + d* and evaluates it.
If the subproblem s(3) is feasible and fs,5(3) < fsub(zg) then, let zg = S8 and perform the Line Search again until
the search is unable to find a better feasible solution in direction d*. Once this occurs, the general algorithm should
return to calculate Ny (zg) and A (zg) to perform the Neighbor-Neighborhood Search again in a new iteration.

The LD-SDA will terminate once the NeighberNeighborhood Search is unable to find a neighbor o with a feasible
subproblem s(c) that strictly improves the incumbent solution as fg,p, () < fsup(zE) V @ € Ni(zg). In that case, the
point is considered a discrete i-local or s-local minimum, and the algorithm will return the values of both variables
(x,Y,z,zg) and the objective function f , of the solution found. The stopping criterion employed indicates that the
current point has the best objective function amongst its immediate discrete neighborhood mapping [34]. In rigorous
terms, the integrally local optimality condition can only be guaranteed after an V., exploration given that this is
the neighborhood that considers the entire set of immediate neighbors (i-local optimality). Therefore, when using
neighborhood Na, it is up to the user to choose if the final solution Zx, is to be certified as integrally local by checking
its Noo (ZE) neighborhood.

Figure 3 illustrates and explains the LD-SDA executed in its entirety on a 6x6 lattice of two external variables. For this
example, the co-neighborhood is utilized and two different NeighberNeighborhood Searches are required. Furthermore,
a detailed pseudo-code for the LD-SDA is presented below—in the following section (see Algorithm 1). Additional
efficiency improvements and other implementation details are presented in §4.
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Algorithm 1: Logie-based-Logic-Based Discrete-Steepest Descent Algorithm (LD-SDA)

Input: k € {2, 00} ; An external variable feasible solution zg o

Data: Variable values associated with feasible solution xq, Yq, Zo

/* Initialize */

Setx + xg; Y « YO, Z <— Zg; ZE < ZE,0

Solve subproblem: f* , < four(zE)

Set neighborSearching < True

Generate initialization: v+ < {x,Y,2,zg} // Optional

Initialize set of explored point in lattice as G + {zg} // Optional

/* This cycle performs Neighborhood Search either when the algorithm starts (after
initialization) or when Line Search does not improve the incumbent solution */

while neighborSearching is True do

/* Find the current neighborhood Nj(zg) and directions Ay(zg) to execute Neighborhood Search
*/

Compute Ni(zg) = {a € 2™ : ||a — zg|r < 1}

Compute Ag(zg) ={d: a—zg =d,Va € Ng(zg)}

/* Perform the Neighborhood Search by evaluating an comparing every fsus(c) */

frw; 2z ; d° ; improvedDuringNS ; 7in: < Neighber-Neighborhood

Search(f subr ZE, Nk (ZE) Ak (ZE))

/* Check for improvement during Neighborhood Search */
if improvedDuringNS is T'rue then
/* If so, perform Line Search in direction d” until the incumbent does not improve */

Set 1ineSearching < True
while 1ineSearching is T'rue do
frwa s 2g ; improvedDuringLsS ; vin; < Line Search(f?,,, zg, d*)

/* Check if the current solution was not improved during Line Search */
if improvedDuringLS is F'alse then
/* If so, stop Line Search */
L Set 1ineSearching < False

else
/* If not, stop Neighborhood Search to terminate the algorithm and return the solution */
Set neighborSearching < False

Oiltput: fon:x; Y z; zg

3.3.1 Neighber-Neighborhood Search and Line Search

In a general sense, the Neighbor-Neighborhood Search algorithm is a local search around the immediate neighborhood of
discrete variables from a starting point zg. Therefore, the neighborhood Ny (zg) and the set of distances corresponding
to each neighbor Ay (zg) must be computed before starting the exploration. This algorithm solves the subproblems
s(a) YV o € Ni(zg) and compares their objective function; if feasible, with the best incumbent solution found by

Neighber Neighborhood Search £ so far.

Neighbor-Seareh-The Neighborhood Search algorithm determines whether a new neighbor o improves upon the current
solution zg based on two criteria, which can be evaluated in relative or absolute terms. The first criterion employs

a strict less than (<) comparison and is utilized-applied when no neighbor has yet improved-upon-outperformed the
current solution. This ensures the algorithm dees—ﬂeraﬂ%mefravmds transmomn toa nelghbor W1th an 1dent1cal
objective -thereby-value, preventing cycling between points with i ¢ ssion-the

ame ob ectlve functlon Further details on the non-cycling properties of the LD-SDA t&pfewdeém in §3 4.

7

Once a neighbor o improves the 1ncumbent solutlon a second crlterlon employmg a less than or-equal to (<) compar-

s-) is utilized. This
allows the algorlthm to con51der multlple pggl}bvqrAsNa s w1th the same objectlve %eﬁseqﬂeﬁ&y—lf—value If more than

one nelghbor shares-the-best-eurrent-achieves the best solution, a tie-breaking strategy based on a maximum Euclidean
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distance lexicographic heuristic may s-a—ti ¢ itert his tsti
distanee-is used. The Euclidean dlstance is com uted as dlSt = [ja — zE||2 Vae Nk(zE) favormg the ﬁrst found

"most diagonal" reutes—Suchroutes;—absent-path. These diagonal routes, which do not exist in /Ny neighborhoods,
have proven effective in previous versions of the D-SDA [33, 35, 36].

Algorithm 2: Neighber-Neighborhood Search

Input: f:ub ) ZE Nk(ZE) N Ak(ZE)

/* Initialize */
Relative tolerance ¢

Set improvedDuringNS < False; d* « 0; sub — 00
Setdist* < 0 // Optional
for every o; € Ni(zg) do
/* Optional: Check if the neighbor was already evaluated in a previous iteration */
if oy € G then
L Go to line 4 with o1
else
| Append o; to G
/* Optional: Check if the neighbor is within external variable domain */
ifoa; ¢ Zg = {1,...,Zg} then
L Go to line 4 with a5 1
/* Create fixed subproblem */
Create subproblem and fix with external variables s(c;)
Initialize s(cv;) using Yint // Optional
/* Optional: Check feasibility of fixed external variables in s(«;) with FBBT */
if FBBT of s(«;) detects infeasibility then
| Go to line 4 with avj 1
/* Solve subproblem */
Solve s(cy)
if s(o) is feasible then
Set b «— fsub(oh)
Setdlst +— || — zg]|2 // Optional
/* Check if the algorithm has already improved the starting solution to choose the
corresponding minimum improvement criterion */
if improvedDuringNS is False then
/* Check if minimum improvement criterion is satisfied */
if fsub fsub or ( sub sub )/(| sub| + 10_10) > € then
/* Update w1th new best solution */
Set fs*u f b’ d* « Ak(ZE)l, ZE < Q4
Set improvedDuringNS « T'rue
Setdist* <« dist; // Optional
Generate initialization: v;,;; <+ {x,Y,2,zg} // Optional
else
/* Check if minimum improvement criterion is satisfied. There is an additional
condition that implements the maximum Euclidean distance heuristic */
if (fN5 < frpor (frn — N/ (| f2,] +10710) > €) and dist; > dist* then
/* Update w1th new best solution */
Set sub f ub d* « Ak(ZE)lv ZE < @i
Set improvedDuringNS < T'rue
Setdist* < dist; // Optional
Generate initialization: ¥;n;t <+ {x,Y,2z,2g} // Optional

Output: f7 . ; zg ; d*; improvedDuringNS ; ini

The Line Search algorithm is a search in the steepest descent direction, determined by the direction of the best neighbor
d* = o* — zg. This approach generates a point in the steepest descent direction § = zg + d* and solves the
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optimization subproblem s(f3) to obtain fZ7. The algorithm moves to the point 3 if and only if, s(f) is feasible and

L3 < fr ., adhering to the strict fess-than-less than (<) improvement criterion. This criterion prevents revisiting
previous points, thereby accelerating and ensuring convergence. Again, more insights into the convergence properties
of the LD-SDA are stated in §3.4. The Line Search process continues until there is no feasible point in the direction d*
that improves upon the incumbent solution.

Algorithm 3: Line Search
Input: f7 ,; zg ; d*
/* Initialize */
Relative tolerance €
Set improvedDuringLS <+ False; 8+ zg +d*; fL3 « oo
/* Optional: Check if the moved point /3 was already evaluated in a previous iteration */
if 5 € G then
| Terminate algorithm

else
| Append 3 to G

/* Optional: Check if the moved point is within the external variable domain */
if¢Zg ={1,...,25} then
| Terminate algorithm

/* Create fixed subproblem */
Create subproblem and fix with external variables s(f3)
Initialize s(/3) using vint // Optional
/* Optional: Check feasibility of fixed external variables in s(f) with FBBT */
if FBBT of s(3) detects infeasibility then

| Terminate algorithm

/* Solve subproblem */
Solve s(3)

if s(B) is feasible then

Set sub « fSUb(ﬁ)

/* Check if minimum improvement criterion is satisfied */
—10
sub < fsub OI'( sub sub)/(| ub| +10 ) > e then
/* Update with new best solution */
LS.
Set ¥, foli ZE < B
Set improvedDuringLS < T'rue
Generate initialization: v+ <+ {x,Y,2,zg} // Optional

Output: f7 . ; zg ; improvedDuringLS ; 7Vinst

3.4 Legie-based Logic-Based Discrete-Steepest Descent Algorithm Properties

The LD-SDA algorithm is guaranteed not to cycle, i-e--it-willnot re-evaluate meaning it avoids re-evaluating the same

solution candidates when-searching-for-the-while searching for an optimal solution. This is aveidingrevisiting-achieved
by avoiding revisitation of previously solved subproblems, and iteanbe-accomplished-ecarefulty-evaluating-carefully
deciding when to move to a-nextineumbent—In-both-Neighbor the next incumbent solution. Both Neighborhood
Search (Algorithm 2?2) and Line Search (Algonthm 3) rthe-algoerithms-ensure-improvementin-thesolution-of the-next
diserete-point-by-following-adhere to a minimum improvement criterion —As-established-to ensure progress toward

mmn §3.3.1, this criterion is satisfied if and only if a strict less than (<) improvement
is obtained. G%seqtte&ﬂﬁ%h%eﬂfeﬁewwsm is met, the algorithms update the incumbent with the rew-best
solutiondiscovered-during-the-searches;ensuring-newly found solution, ensuring that only strictly better solutions are
eonsidered—Itisimportantto-note-that-this-eriterion-accepted. An important aspect of this approach is that it excludes
points with the-same-objeetive-value-identical objective values as the incumbent, thereby-effectively preventing cycling
between pomts w1th tdeﬂﬂe&l»ebjeeﬁve%m By avo1d1ng WMWOIHB in the
lattice, 0 i 5 i

?hfweﬂﬁe&ﬁemﬁfeﬂ}ybboth Ne1 hbor and L1ne Search avo1d retracm steps Wthh uarantees convergence to a
discrete local minimum but-als ational-tim ale hey s-the-while also saving

computational time by not re-evaluatin th e same pomt
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The primary advantage of the LD-SDA over previous iterations of the D-SDA lies-in-its-utilization-of-in how it leverages
the structure of ordered Boolean variables for external variable reformulation, as-eppesed-torather than ordered binary
variables. In the LD-SDA, the solution to the upper-level problem is the same as the one used in the D-SDA, involving
a series of Neighbor and Line searches over the external variable lattice. However, the key distinction is that each lattice
point in the LD-SDA upper-level problem corresponds to a reduced space GDP or (MI)NLP, obtained by fixing Beeleans
Boolean variables, and thereby disjunctions (see §3.2). This approach-results-in-leads to a reduced subproblem that
eeﬂﬁdef%eﬂwmrelevant constraints, effectively-eireumventing-avoiding zero-flow issues and improving
both numerical stability and computational tractabilityefficiency. In contrast, previous versions of the D-SDA fixed
blnaIy variables to obtain NLP subproblems, which-that could potentially contain irrelevant constraints with respect to
the current configuration of the Boolean variables yielding and ill-posed behavierproblem. Furthermore, additional
algorithmic improvements with respect to previous versions of the D-SDA were added to the LD-SDA as discussed in

§4.

3.5 Equivalence to Other Generalized Disjunctive Programming Algorithms

While LD-SDA exhibits different features compared to other GDP algorithms, certain aspects of it remain equivalent
to them. Notably, akin to other logic-based approaches, LD-SDA addresses (MI)NLP subproblems containing only
the constraints of active disjunctions, thereby excluding irrelevant nonlinear constraints. Each method employs a
mechanism for selecting the subsequent (MI)NLP subproblem, typically based on a search procedure. In LOA, this
mechanism involves solving a MILP problem subsequent to reformulating Problem (Main 1-GDP). On the other hand,
LBB determines a sequence of branched disjunctions for each tayer-level I, K B, based on a predetermined rule known
as branching rule. In contrast, LD-SDA utilizes Neighbor and Line Search algorithms to make this decision, solving
Problem (Upper) locally.

The LD-SDA employs an external variable reformulation to map Boolean variables into a lower-dimensional represen-
tation of discrete variables. While LD-SDA solves the upper-level problem through steepest descent optimization, this
problem essentially constitutes a discrete optimization problem without access to the functional form of the objective.
Hence, in principle, this problem could be addressed using black-box optimization methods. Meving-

When transitioning from one point to another within-in the discrete external variable lattice involves changing the
configuration of Boolean variables in the original problem, often modifying multiple Boolean variables simultaneously.
Consequently, the LD-SDA can be viewed as a variant of LBB, where Neighbor and Line Searches act as sophisticated
branching rules for obtaining Boolean configurations to fix and evaluate. AdditionaltyFurthermore, improvements
to this problem could be achieved by leveraging information from the original GDP problem. For instance, linear
approximations of the nonlinear constraints of the GDP could be provided, although this would necessitate employing &
an MILP solver. By constructing such linearizations around the solutions of the subproblem (7), one could recover
Problem (Main 1-GDP) from LOA.

4 Implementation Details

The LD-SDA, as a solution method for GDP, was implemented in Python using Pyomo [40] as an open-source algebraic
modeling language. Pyomo.GDP [41] was used to implement the GDP models and use their data structures for the
LD-SDA. The code implementation allows the automatic reformulation of the Boolean variables in the GDP into
external variables and provides an efficient implementation of the search algorithms over the lattice of external variables.

4.1 Automatic Reformulation

In contrast to previous works for MINLP models [33], the reformulation in (3) and (4) provides a generalized framework
that is automated in the Python implementation developed in this work. Minimal user input is required for the
reformulation process, with only the Boolean variables in Y defined over ordered sets S;,V j € {1,2,...,nr} needing
specification. This reformulation allows fixing Boolean variables based on the values of external variables. Moreover,
additional Boolean variables can be fixed based on the values of the external variables, as users can specify those
Boolean variables in Yy that are equivalent to expressions of the independent Boolean variables Ygr through logic
constraints Q(Y) = True.

4.2 Algorithmic Efficiency Improvements

This section presents the four major efficiency improvements that are included in the algorithm and are indicated
throughout the pseudo-codes in §3.3 as Optional.
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4.2.1 Globally Visited Set Verification

Due to the alternating dynamic between Line Search and Neighbor Neighborhood Search, the LD-SDA often queues
discrete points that were previously visited and evaluated. An example of this issue can be observed in Figure 3 where
the second Neighbor-Search-inNs{{5-5)Neighborhood Search in N ((5,5)), depicted in red, visits points {4-4}-and
16761-(4,4) and (6, 6) that had already been evaluated during Line Search (shown in black). The number of reevaluated
re-evaluated points depends on how close to the Neighbor-Neighborhood Search the Line Search stops, increasing
proportionally with the number of external variables.

Although re-evaluating points does not affect the convergence of the algorithm as discussed in §3.4, it results in
unnecessary additional computation that can be avoided. This redundant evaluation existed in the previous versions
of the D-SDA [33, 35, 36] and can be rectified by maintaining a globally visited set G (line 5 of Algorithm 1).
NewFurthermore, before solving the optimization model for a particular point « (lines 5 to 8 of Algorithm 222) or 8
(lines 3 to 6 of Algorithm 3), the algorithm verifies if the point has already been visited. If so, the algorithm disregards
that point and either proceeds to the next « in the Neighbor-Neighborhood Search or terminates the Line Search
algorithm.

4.2.2 External Variable Domain Verification

All external variables must be defined over a constrained box Zg = {1,...,Zg} (as shown in Eq. (4)) that depends on
the problem. For superstructure problems, this domain is bounded by the size of the superstructure, such as the number
of potential trays in a distillation column, or the maximum number of available parallel units in a process. Similarly, for
scheduling problems, the external variable domain can be given by the scheduling horizon.

External variables with non-positive values or exceeding the potential size of the problem, resulting in a lack of physical
sense, should not be considered in the explorations. To prevent unnecessary presolve computations, the algorithm
verifies if the incumbent point (« or [3) belongs to Zg before solving the optimization model, effectively avoiding
consideration of infeasible subproblems. If during NeighborNeighborhood Search @ ¢ Zg, the neighbor a can
be ignored, and the algorithm proceeds to explore the next neighbor. Similarly, if 3 ¢ Zg while performing the
Line Search, the algorithm should return to Zp = B d* and termlnate Returmng to the example shown in Figure

3, note that, for 1nstance, Nt 6= S1h 1.6 2.6),(2,5),(1,5)} given that points
1.7),(2 7 0 .(0.6 O 7)} can be automatlcally dlscarded and considered

1nfea51ble since zE 1, zEyz E {1,2,...,6}.

4.2.3 Fixed External Variable Feasibility Verification via FBBT

The existence of external variables zg within their respective bounds does not ensure feasibility in the subproblem
s(zg). While external variables can encode a physical interpretation of the problem by representing specific positions
within a well-ordered set, constraints concerning the rest of the problem must align with spatial information to achieve
a feasible subproblem. For instance, consider the distillation column (discussed in §5.2) that has two external variables:
one determining the reflux position zg g and another determining the boil-up position zg g. The problem has an
implicit positional constraint zg g < 2g,g, indicating that the boil-up stage must be above the reflux stage when
counting trays from top to bottom.

Throughout the algorithm, this type of discrete positional constraint, which relates external variables, is frequently
violated when a particular zg is fixed in a subproblem s(zg ). This violation arises because these constraints are specified
in the original GDP model in terms of Boolean variables. Consequently, after the external variable reformulation, fixed
points in the discrete lattice may overlook the original logical constraints.

In previous works [33, 35, 36], users were tasked with manually re-specifying these constraints in the domain of external
variables. However, this work aims to automate this requirement. Instead of solving infeasible models that consume
computation time and may generate errors terminating-that terminate the algorithm, we used Feasibility-based-Bound
Tightening (FBBT)-which-is-the Feasibility-Based Bound Tightening routine available in Pyomo. FBBT rapidly

verifies feasibility over the fixed Boolean constraints, enabling the algorithm to identify subproblem infeasibility without
executing a more resource-intensive MINLP or GDP presolve algorithm. Now, if FBBT determines that a subproblem
s(zg) is infeasible, the point zg can be instantly disregarded.

4.2.4 Re-initialization-Re-Initialization Scheme

The LD-SDA method incorporates an efficiency improvement that involves reinitializing from the best solution
Yinit = {X,Y,z,zg}. Effective model initialization is crucial for achieving faster convergence, particularly as
problems increase in size and complexity. Initiating a discrete point with the solution of a neighboring point is
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Bypass Bypass Bypass Bypass
R R-1 2 1

Figure 4: Reactorseries-Visualization of a superstructure with-"N-consisting of 17 potential continuously stirred reactor

tanks (CSTRs). The reactors are numbered starting from the product stream and counted in reverse. At each position,
a reactor can either be present or replaced by a bypass. The configuration must be continuous, meaning no bypasses

are allowed between two active reactors.

intuitively reasonable. Since points in the external variable lattice are derived from Boolean configurations following
ordered sets, adjacent points are expected to yield very similar subproblems (e.g., adding an extra tray in a distillation
column or starting a process one time step later). Therefore, initializing from an adjacent neighbor can offer an
advantage of discrete-steepest descent optimization over black-box methods that search the lattice.

During NeighberNeighborhood Search with o € Ny (zg), all subproblems are initialized using the solved variable
values from the best incumbent solution s(zg ). Similarly, in Line Search each subproblem from the moved point s(£) is
initialized with the variable values of the best incumbent solution s(zg = 5 — d*) This reinitiatizationre-initialization
methodology proved very efficient when integrated into the MINLP D-SDA in the rigorous design of a catalytic
distillation column using a rate-based model [36].

5 Results

The LD-SDA is implemented as an open-source code using Python. The case studies, such as reactors, chemical batch
processing, and binary distillation column design, are modeled using Python 3.7.7 and Pyomo 5.7.3 [40]. The catalytic
distillation column design case study was modeled using GAMS 36.2.0. All the solvers used for the subproblems are
available in that version of GAMS and were solved using a Linux cluster with 48 AMD EPYC 7643 2.3GHz CPU
processors base clock frequency and 1.0 TB RAM. Although the Neighborhood Search can be trivially parallelized,
this study limited experiments to a single thread. All the codes are available at https://github.com/SECQUOIA/
dsda-gdp. The solvers used for the MINLP optimization are BARON [53], SCIP [54], ANTIGONE [55], DICOPT
[56], SBB [57], and KNITRO [58]. KNITRO, BARON, and-CONOPT [59], and IPOPT [60] are used to solve the NLP
problems. The GDP reformulations and algorithms are implemented in GDPOpt [41].

5.1 Series of Continuously Stirred Tank Reactors (CSTRs)

Consider a reactor network adapted from -[33], consisting of a superstructure of R reactors in series (depicted in
Figure 4), where N IR represents the total number of potential reactors to install. The objective is to minimize the sum
of reactor volumes. The network involves an autocatalytic reaction A + B — 2B with a first-order reaction rate, along
with mass balances and reaction equations for each reactor. Logical constraints define the recycle flow location and the
number of CSTRs in series to install. All installed reactors must have the same volume and a single recycle stream
can feed any of them. Interestingly, as the number of reactors increases and the recycle is placed in the first reactor,
the system approximates to a plug-flow reactor, minimizing the total volume and providing an asymptotic analytical
solution. We investigate this feature by varying the number of potential reactors NR. For a detailed formulation of the

reactor series superstructure, refer to AppeﬂdﬁeSu lementary Material A.1.

The external variables : :
: No. of reactors related Wlth YF 2p.2 : Recycle position (related with YR)) as shown in Figure 5 are
the result of a complete reformulation of logic variables into external integer variables (detailed in Appendix
Supplementary Material B.1). This figure shows the binaries associated with the values of the ordered Boolean
variables and their corresponding external variable mapping for an illustrative feasible solution, effectively indicating
the reformulation Y Fy = True < zp1 =4 and Y Ry = True < 22 = 2.
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YFs = False YF5; = False YFy=True YF;=False YF,=False YF, =False
YR¢ = False YRs = False YR, = False YR3; =False YR, =True YR, = False

—»{ Bypass H Bypass N
cQ cQ cQ
6 5 2

Figure 5: Refermulation-Visualization of a potential configuration for an-itustrative-feasible-the CSTR superstructure
with R = 6. The figure explicitly displays the Boolean variables for the position of the feed (YF') and recycle (YR,
streams. In this configuration, the feed enters at the fourth reactor, meaning Y Fy = T'rue, indicating the presence
of four reactors in the superstructure. The recycle stream is positioned before the second reactorseries-withNr—-=6,

meaning Y 1ty = Truce .

We analyze the paths and solutions generated by the LD-SDA under varying neighborhood selections, as depicted in
Figure 6. Given R series of potential reactors, the problem is initialized with one reactor and its recycle flow. This
initialization is represented in the integer variables lattice as a single reactor with a reflux position immediately behind

it (ze="{52ze = (1L, 1)).

For LD-SDA employing a k = 2 neighborhood search, the algorithm identifies {2,4}-(2, 1) is locally optimal and
proceeds with the line search in the d*—=-H-6-d* = (1, 0) direction. The algorithm continues the line search until {54
as16;:4H-(5, 1) as (6, 1) exhibits a worse objective. It searches among its neighbors, eventually moving and converging
to the-a local optimal solution {5;4(5, 1). In contrast, with LD-SDA utilizing a k = oo neighborhood search, the
algorlthm finds that both {2-4}-and-{2:2]-(2, 1) and (2, 2) yield the best solution within the first neighborhood explored.
Employing the maximum Euclidean distance heuristic as a tie-breakeriterion-seleets{2:-2], this criterion selects (2, 2)
as the new incumbent. Subsequently, a line search in the steepest direction d*=-H-H-d* = (1,1) proceeds until
reaching PN—Nr}(R, R), representing the global optimal solution as it approximates the plug-flow reactor.

For a reactor series superstructure with N—=-30R = 30, we performed external variable reformulation and fully
enumerated the discrete points in a 30x30 lattice. Notably, only the lowerright-lower-right triangle of the lattice
is depicted, as points outside this region yield infeasible Boolean configurations. More specifically, these points
indicate superstructures that have their recycle previous to an uninstalled reactor. Local optimality was verified with

both neighborhoods, revealing local minima for ¥ = 2 neighborhood at {5;:H;{5;3}-and-N; AN 5 1 5,3) and
(r.r) V NeAgb29r € {5,. ... 29}, whereas the only locally optimal point for k = oo was 30, 30).

Figure 6 illustrates the LD-SDA process for the 30 CSTR series, showing trajectories and local minimum pomts for all
neighborhoods. The presence of multiple local optima with respect to both the 2-neighborhood and the co-neighborhood
suggests that this problem is neither separably convex, nor integrally convex.

For the CSTR series, various solver approaches are applied across different numbers of potential reactors (NI
ranging from 5 to 30). The solution approaches include MINLP reformulations, LBB, LOA, GLOA, and LD-SDA with
two different neighborhoods. Figure 7 illustrates the comparison of solution times for each reactor superstructure size
with different solvers. Netably;-

LD-SDA with k = 2 neighborhoods failed to achieve eptimat-solutions within 0.1% of the global optimum for any
superstructure size, converging instead to the {5:141-(5, 1) solution, as explained above. In contrast, methods that
employed k& = oo attained the global minimum. KNITRO was computationally more efficient than BARON when using
k = 00, as BARON, being a global solver, incurred higher-in-greater computational costs certifying global optimality
for each NLP subproblem. InterestinglyRemarkably, even when using local solvers like KNITRO for the subproblem,
k = oo allowed LD-SDA to converge to global optimal solutions.

Among the logic-based methods in GDPopt, LBB for 4——=-5-1 = 5 achieved the global optimum. GLOA reached
globally-global optimal solutions up to &—=34-R = 14, but only when paired with the global NLP solver BARON.
Comparing MINLP reformulations, HR outperformed BM, with KNITRO being the most efficient subsolver. While
some MINLP reformulations exhibited faster solution times for smaller superstructures (up to 9-nine reactors), LD-SDA,
particularly with KNITRO, surpassed them for larger networks (from 15 reactors onwards). This trend suggests
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LD-SDA for the CSTR with 30 reactors
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Figure 6: Paths-Visualization of the paths traversed by LD-SDA and the solutions found by-the- -D-SPA-using both
neighborhoods for a N——=-36-ESTR-series;-superstructure with £ = 30 CSTRs. LD-SDA with £—=-2-N, converged
on{b;H-whichis-the loeal-optimal-pointto (5, 1), a discrete s-local optimum in the lattice:-. In contrast, LD-SDA with

k—=-oc-proeceeded-N continued to {36; 30, 30), achieving the global optimal solution. This figure highlights the
difference in convergence behavior between the two neighborhood strategies.

that LD-SDA methods are particularly well-suited for solving larger optimization problems, where solving reduced
subproblems offers a significant advantage over monolithic GDP-MINLP approaches.

Figure 8 compares different algorithmic alternatives derived from LD-SDA. These include the algorithm discussed
so far (referred in this example as NLP LD-SDA) where Boolean variables are fixed from external variables, leading
to NLP subproblems considering only relevant constraints. Another approach, which we refer to as MIP LD-SDA,
is where inactive disjunctions are retained in subproblems, and mixed-binary reformulations (e.g., HR or BM) are
applied to unresolved disjunctions, resulting in MINLP subproblems. The third alternative is Enumeration, which
involves reformulating external variables, fixing (or not) Boolean variables, and enumerating all lattice points instead of
traversing them via steepest descent optimization.

LD-SDA and Enumeration methods exhibited faster performance when the mixed-binary reformulation was omitted.
The inclusion of MIP transformations led to additional solution time, emphasizing the efficiency of solving GDP
problems directly where reduced subproblems with solely relevant constraints are considered. As anticipated, the
Enumeration of external variables coupled with a-preficient-an efficent local solver like KNITRO achieved the global
optimum. However, employing LD-SDA yielded the same result in significantly less time, showcasing the importance
of navigating the lattice intelligently, like via discrete-steepest descent.

Among the LD-SDA approaches, 2-neighborhood search methods were only effective when the tolerance gap between
solutions was 10%, while co-neighborhood search methods performed consistently across both gap thresholds. The
LD-SDA using k = 2 neighborhood converges to a local minimum —whieh-that is more than 0.1% away from the
global optimal solutionand:-, and for larger instances, is beyond the 10% optimality gap. Although LD-SDA with the
k = oo neighborhood search required more time compared to k = 2, it consistently converged to the global optimal
point regardless of the superstructure size.
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Solution Time by Number of CSTRs for Different Solvers (Achieved Gap = 0.1%)
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Flgure 7: Computational time-solution times for different sizes-of reactornetwork-Nr—for-various-GDP solution strate-
gies and solvers as the size of the superstructure 1 increases. Sokutions The figure includes only accounted-for being
the-analytically-guaranteed-solutions that achieved a global eptimal-solution-(equivatent-optimum, which corresponds
to the instatling—Nr—reaetors—sinee—the-minimum total volume eerresponds—to—II=limy;—cGSTI)of the
superstructure, analytically derived as the volume of a plug flow reactor as R — oc. It can be observed that LD-SDA
with Voo using KNITRO consistently reaches the global optimum the fastest for instances with more than 15 CSTRs.

5.2 Distillation Column Design for a Binary Mixture

We consider the single-unit operation design of an example distillation column in Ghouse, Chen, Zamarripa, Lee,
Burgard, Grossmann, and Miller [61], whieh-that implements the simplified model provided by Jackson and Grossmann
[62]. The objective is to design a distillation column to separate Toluene and Benzene while minimizing cost—There-is-,

which include both a fixed cost asseetated-with-for tray installation and an-eperational-costrelated-to-operational costs
for the condenser and reboilerduties—Fhe-feed-conditions-are-,

The column processes 100 motgmol/s of an equimolar benzene-toluene mixture, with-aiming to achieve a minimum
mole fraction of 0.95 for benzene in the distillate and 0.95 for toluene in the bottom —TFhe-eonstraints-are-the-product.
MWMWmaSS equ111br1um summation, and heat (MESH) equations for
each tray. Each eelumn-stage-is-modeled-with-thermodynamie-stage of the column is modeled using thermodynamic
principles and vapor-liquid equilibriums+a-, applying Raoult’s law and Antoine *s-egtation—equation.

The continuous variables ef-this-model-are-in the model include the flow rates of each component in both the liquid and

vapor phase-and-the-temperataresin- hases, the temperatures of each tray, the reflux and boil-up fa&eratlos and the
heat duties of the condenser and reboilerheat-duties. The logical variables are-account for the existence ce of t trays and

the position of the peﬂﬁeﬂ—e#fh&mreﬂux and boil- up ﬂows%%e%wme—ﬂwrste&ee«e#&mys—e*pmssed—eﬁ#m%ermsﬁ
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Solution Time by Number of CSTRs (Gap = 10.0%) Solution Time by Number of CSTRs (Gap = 0.1%)
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Figure 8: Solution-Computational solution times for CSTR-superstructures-using different solution approaches derived
from LD-SDA and-Enumeration-(including external variable enumeration) using various solvers as the size of the
Wm s methods at-different-that achieved a discrete local minimum with
a10% optimality gap-(left)-+6%, éwhile the right >4+ %)subfigure shows methods that reached an analytically proven
global optimum. LD-SDA with N, and the KNITRO solver is the fastest method for smaller superstructures but fails
to meet the 10% optimality gap for structures larger than 13 CSTRs. For larger superstructures, LD-SDA with Noo
and KNITRO consistently achieves a global optimum and becomes the fastest approach among LD-SDA methods.

2, with tray existence modeled usin
lo 1cal constralnts related to these ﬂow ositions. PreV10us studles from the literature -[61] set a maximum number of

17 potential trays and provide the initial position of the feed tray in the ninth stage (tray aumber9nine).

The distillation column optimization uses the LD-SDA method with different neighborhoods for the search. The
problem is initialized with a column that has the reflux at tray 16 (top to bottom numbering, condenser being tray 17
and the reboiler being tray 1) and the boil-up at the second tray, which we represent as H-5:34(15, 1). The configuration
for initialization is shown in Figure 9a, which corresponds to all possible trays being installed.

For the 2-neighborhood, the LD-SDA converges to external variable configuration £2;-3}(12, 3), with an objective value
of $19, 450 in only 6.3 seconds using KNITRO as subsolver, resulting in the design shown in Figure 9b. Note this is the
exact same solution reported by the GDP model from the literature [61], whieh-that was solved using the LOA method.

Regarding the co-neighborhood, the algorithm terminates at {+3:4}1-(13,4) with an objective of $19, 346 after 8.6
seconds using KNITRO as subsolver, yielding the column design shown in Figure 9c. In this case, the LD-SDA found
the best-known solution to this problem, also found through a complete enumeration over the external variables, which
that took 42.7 seconds using KNITRO as a subsolver. The same best-known solution could be found using GLOA with
KNITRO as the NLP subsolver, but after 161.6 seconds. In our results of the binary mixture distillation column design,
we successfully identified a better solution by applying the LD-SDA to the GDP model, surpassing the optimal values
previously doeumented-reported in the literature. This achievement highlights the efficacy of our approach, especially
considering the limitations of the NLP formulation in guaranteeing global optimality, which we effectively navigated by
employing the GDP framework.

The trajectories traversed by the LD-SDA with both neighborhoods mentioned are depicted in Figure 10. Similarly,
Table | summarizes the previous design from the literature as well as the different columns obtained by the LD-SDA.

5.3 Catalytic Distillation Column Design

Consider a catalytic distillation column design for the production of Ethyl tert-butyl ether (ETBE) from isobutene and
ethanol. In this work, two models are considered: one that uses equilibrium-based modeling in each of the separation
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Initial Solution
Cost = $ 22,217

(a) Initial-selution—for—theDistillation
Celumncolumn configuration of the

Figure 9:

Local Solution
Cost =$19,450

(b) Distillation Celumn—Selation—by

column configuration obtained with
LD-SDA #—=-2—Referenee-and No,

which matches the solution by reported
in [61 Jasing-GDP-medel.

Best Known
Solution
Cost = $19,346

(c) Distillation Celumn—Selution—by

column configuration obtained with
LD-SDA #=-ecand N, which yields

a new best solution for the problem.

Visualization of the distillation columns obtained from

Distillation-Column-design—comparison-between—
the initial solution, teeaithe solution found using LD-SDA with N>, and globatsetutionsthe solution using LD-SDA
with Nog. The feed tray is fixed at stage nine, with existing trays displayed in white and bypassed trays shaded in
gray. The boil-up position is highlighted in red, while the reflux position is marked in blue. Each subfigure shows its
corresponding objective function.

LD-SDA for the Distillation Column with 17 potential trays
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Flgure 10: Mger&hm&%ep%%suahzatlon of the paths traversed by LD-SDA when-selving-and the solutions found
using both neighborhoods for the distillation column examplesuperstructure. The lattice shows points proven to be

infeasible with a global solver (black triangle) and points where no feasible solution was found before timing out
red circle). Both solutions were initialized with the largest column configuration. LD-SDA with k£ = 2 converged to
13, 3), a discrete s-local optimal point in the lattice. Meanwhile, LD-SDA with £ = oo advanced to (13,4

the best-known solution for the problem.
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Table 1: Comparison of the optimal setution-with-solutions found in the literatureresults-, using LD-SDA with [V:

and LDSDA with N The LD-SDA with NV, identified the same configuration as previously reported in the literature
(with a minor numerical difference in the objective). In contrast, the LD-SDA with Voo discovered a new best solution,
effectively improving upon the existing results in the literature. This table illustrates the improvements gained by using
more expansive neighborhoods in LD-SDA.

Solution Method LOA {6+]Ghouse et al. [61] LD-SDAk =2 LD-SDA k = oo

Objective [$] 19,450 19,449 19,346
Number of Trays 10 10 10
Feed Tray 6 6 5
Reflux ratio 2.45 245 2.01
Reboil ratio 2.39 2.39 2.00

Table 2: Exeeution-time-Comparison of eatalytie-distillation-the optimal design-solutions and respective computational
times using KNITRO for the catalytic distillation column and rate-based model-presentedcatalytic distillation column
case studies, using D-SDA (from the 11terature and LD SDA w1th both N and N... For the catalytic distillation
column case, both neighborhoods in & ' at 361 LD-SDA successfully found
@a&mw&&%
column case, D-SDA was unable to find a solution, while LD-SDA, using KNITROboth neighborhoods, found distinct

optimal solutions.

s s

Catalytic Distillation Column Rate-Based Catalytic Distillation Column
Solution Method D-SDA: [36] LD-SDA: This work ~ D-SDA: [36] LD-SDA: This work
Neighborhood k=2 k=00 k=2 k=00 k=2 k=00 k=2 k=00
Objective [$/year] 22,410 22,410 22,410 22,410 - - 23,443.2 23,4432
Time [s] 12.49 12.52 4.29 4.25 - - 1089.31 1061.18

and reactive stages, and another one that includes a rate-based description of the mass and energy transfer in all the
stages [35]. These models maximize an economic objective by determining the position of separation and catalytic
stages along the column, together with a Langmuir-Hinshelwood-Hougen-Watson kinetic model for the chemical
reaction, MESH equations for each one of the stages, and hydraulic constraints for the column operation. The goal is to
determine optimal operational variables such as reboiler and condenser heat duties and reflux ratio. Similarly, design
variables such as column diameter, tray height, and downcomer specifications need to be defined. Finally, discrete
design choices, meaning feed locations and positions of catalytic stages, must be selected. A detailed description of the
models is given in [36, 63].

Previously in the literature, the economic annualized profit objective maximization of a catalytic distillation column to
produce ETBE from butenes and ethanol was solved using a D-SDA [36]. Here, the authors demonstrated the difficulty
of this design problem as several traditional optimization methods fail even-to-ebtain-to obtain even a feasible solution
[33, 35]. In these papers, the D-SDA was used to solve the problem as a-an MINLP by fixing binary variables and
including constraints of the form y;;h;;(x) < 0 to enforce the logic constraints. In this work, we demonstrate that
approaching the problem disjunctively and employing LD-SDA leads to a faster solution of subproblems (as in Eq.
(Sub)) as our method neglects the irrelevant and numerically challenging nonlinear constraints.

Fhese- The models were implemented in GAMS;-henee;-, Hence, for this problem, the reformulation and implementa-
tions of the algorithms were custom-made, as they did not rely on our implementation of LD-SDA in Python. Given
that only the relevant constraints were included for each problem, we could more efficiently obtain the same solution to
each subproblem. More specifically, as shown in Table 2, the proposed LD-SDA method leads to speedups of up to 3x
three-fold in this problem when using KNITRO as a subsolver. D-SDA was unable to even initialize the rate-based
catalytic distillation column with KNITRO, while LD-SDA could find the-an optimal solution. Moreover, note that the
previous results using the D-SDA were already beating state-of-the-art MINLP solution methods, further demonstrating

the advantages of the LD-SDA.

An important distinction for the LD-SDA is that it does not include all the constraints in each iteration, given that
subproblems are reduced after the disjunctions are fixed. This implies that not all variables are present in all iterations,
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Figure 11: Selutien-design-comparison-Visualization of the catalytic distillation eolumn-problem-between-columns
obtained using the-LD-SDA with N3 and Voo The feed trays for Ethanol and Butane are shaded in blue, with existing
trays shown in white, while bypass trays are shaded in gray. The boil-up position is marked in red, and the reflux

preventing a complete variable initialization as the algorithm progresses. These missing values for the variables
might make converging these complex NLP problems challenging, explaining-which explains why the D-SDA and
the LD-SDA sometimes yield different solutions. Moreover, the solver KNITRO reported that the initial point was
infeasible for the more complex NLP problem involving rate-based transfer equations. Using that same initialization,
yet using the logic-based D-SDA, the model could not only be started, but it converged to the same optimal solution
reported in [35].

5.4 Optimal Design for Chemical Batch Processing

Consider an instance of the optimal design for chemical batch processing from Kocis and Grossmann [64] formulated as
a GDP. This is a convexified GDP that aims to find the-an optimal design for multiproduct batch plants that minimizes
the sum of exponential costs. In our example, the process has 3-three processing stages where fixed amounts of g¢;
of 2-two products must be produced. The goal of the problem is to determine the number of parallel units n;, the
volume v; of each stage j, the batch sizes b;, and the cycle time t/; of each product <. The given parameters of the
problem are the time horizon h, cost coefficients o, 5; for each stage j, size factors s;;, and processing time ;;
for product 7 in stage j. The optimization model employs Boolean variables Y} ; to indicate the presence of a stage,
potentially representing three unit types: mixers, reactors, and centrifuges. The formulation of the model can be
found in Appendix-A-3Supplementary Material A.3, and the external variable reformulation of the Boolean variables is

described in Appendix-Supplementary Material B.4.

The problem was initialized by setting the maximum number of units, i.e., 3:3:3}(3, 3, 3), for the number of mixers,
reactors, and centrifuges, respectively. The algorithm terminates on a solution with objective $167, 427 with external
variables {2;2:14-(2, 2, 1) for both k = 2 or k = oo neighborhood alternatives in LD-SDA. The trajectories taken by
both searches of the LD-SDA for the small batch problem are shown in Figure 12. This solution corresponds to the-a
global optimal solution of the problem, hinting-suggesting that convergence to global optimal solutions in convex GDP
might be achieved even with k = 2 in the Neighber-Neighborhood Search step. For this small problem, the solution
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LD-SDA for Small Batch Scheduling
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Flgure 12: EB-SBA-Visualization of the paths to-optimat-setationin-traversed by LD-SDA and the solutions found
using both neighborhoods for the small batch scheduling case study. The lattice includes points proven to 1 to be infeasible

with a solver (black triangle). Both solutions were initialized with a configuration containing all mixers, reactors, and

centrifuges. LD-SDA with both £ = 2 and k& = oo converged to the same solution (2, 2, 1), corresponding to a global
optimal solution. This example highlights convergence to the same solution in a convex GDP problem using different
neighborhoods.

times were negligible (<-2-less than two seconds). Still, this example is included to observe convergence to the same
solution in a convex GDP problem using different neighborhoods.

6 Conclusions and Final Remarks

This work presented-the- Logie-based-has presented the Logic-Based Discrete-Steepest Descent Algorithm =BD-SBAj-as

an optimization method for GDP problems with ordered Boolean variables, which often appear in process superstructure
and single-unit design problems. The unique characteristics of the LD-SDA are highlighted, and its similarities with
other existing logic-based methods are discussed. To verify the performance of the LD-SDA, we solved various
GDP problems with applications in process systems engineering, such as reactor series volume minimization, binary
distillation column design, rate-based catalytic distillation column design, and chemical batch process design. The
LD-SDA has demonstrated an efficient convergence toward high-quality solutions that outperformed state-of-the-art
MINLP solvers and GDP solution techniques —for the problems studied. The results show that LD-SDA is a valuable
tool for solving GDP medels-with-ordered-Boolean-variables—problems with the special ordered structure considered

in this work, Nonetheless, the scalability of the LD-SDA still needs to be evaluated for larger superstructure problems,
€.g., those resulting in more than 7 external variables. The limitations of the LD-SDA include the lack of guarantee
for a globally optimal solution due to its local search nature. Additionally, the exponential growth of neighbors with
increasing reformulated variables can make neighborhood evaluation prohibitively expensive for large-scale problems.

Future research directions include utilizing the LD-SDA to solve larger and more challenging ordered GDPs. Similarly,
we propose exploring theoretical convergence guarantees of the LD-SDA method, with a special focus on convex GDP
problems and their relation to integrally convex problems in discrete analysis. Moreover, part-of-the-future-work-future
work also involves the integration of the LD-SDA into the GDPOpt solver in Pyomo.GDP, making tt-avaitable-te-more

praetitionersthis algorithm available to a wider audience. Finally, we will study the parallelization of NLP solutions
in the neighborhood search. The neighbersearch-Neighborhood Search can be faster by dividing the computation
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involved in solving NLP problems into multiple tasks that can be executed simultaneously, eventually improving

ED-SPA-performance-the performance of the LD-SDA.
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Supplementary Material

The supplementary material provides detailed formulations of GDP models, such-as-including reactors and chemical
batch processing oafe—fefmulated—"lﬁhe W&M@pctwe functlons and thefepvrgge/ntvswb/ovtbtl}g\algebraw

and loglcal constraints are

model. Addltlonall thls section ex 1a1ns how Boolean var1ables are reformulated into external var1ables “Several
models are also illustrated through figures for clarity.

A Generalized Disjunctive Programming formulations

This appendix includes the formulations of the examples of the problems solved in this manuscript as Generalized
Disjunctive Programs(GBP).

A.1 Series of Reactors
Set of components (index i)
[={A,B) (8)
Set of units in the superstructure (index n, j)
N=A{1,..,NT} )
Existence of an unreacted feed in unit n

YF, € {True, False} VYn € N

10
If YF,, = True = There is unreacted feed in reactor n (10)

Existence of a recycle flow in unit n

Y R,, € {True, False} Vn e N
If YR, = True = There is recycle in reactor n

(1)

Unit operation in n: If at the current unit n every unit after it (from 1-one to n) is not an unreacted feed or if the current
unit n has the unreacted feed, then the unit is a CSTR (the opposite is also true)

YP, < /\ -YF; | VYF, VneN
7€{1,2,.n} (12)
IfYP, = True = Unitnisa CSTR
It Y P, = False = Unit n is a bypass

The unit must be a CSTR to include a recycle at n

YR, = YP, VneN (13)
There is only one unreacted feed
Vyer, (14)
neN
There is only one recycling stream.
M YR, (15)
neN
Unreacted feed unit: Partial mole balance
0=FO0;+ FR; Nt — FinT +1inTVNT Vi€ET (16)
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Unreacted feed unit: Continuity
0=Qro+ Qrr Nt — QNT

Reactor Sequence: Partial mole balance

OZFi7n+1 +FR27n _Fiﬁn +ri,nVn Vne N\{NT},VZ el

Reactor Sequence: Continuity

0=Qnt1+QFrn—Qn VTLGN\{NT}

If unit n is a CSTR or a bypass

YP b
o FRi,=0Viel
TA,'ILQVL - Avn B7n \/ Ti,n = 0 v'L 6 I Vn e N
Bn = —TAn —
. : Qrrn =20

tn = Vn cp, =0

If there is recycle in before reactor n

YR, -YR,
FRip=R; Viel|\/ |FR,=0Viel|lVneN
QFrn = QR o QFrn =0

Splitting point: Partial mole balance
OZFi’l—PZ‘—RZ' Viel

Splitting point: Continuity
0=0Q1—-Qp—CQr

Splitting point: Additional constraint
0=PQ1—F1Qp Viel

Product specification constraint
0.95Qp = Pp

Volume constraint
Vio=Vho1 Ve N\ {1}

Objective Function: Total reactor network volume

fops =min Z Cn

neN

A.2 Distillation Column Design

Set of trays (index )
T={2,3,...,16}

Set of composition (index c)
C = {Benzene, Toluene}

Existence of tray ¢
Y: € {True, False} Yt e T

If Y; = True = There exist a tray in stage ¢

Existence of boil-up flow in tray ¢

Y B, € {True, False} VteT
If Y B; = True —> There is a boil-up flow in tray ¢

34

a7)

(18)

19)

(20)

21

(22)

(23)

(24)

(25)

(26)

27)

(28)

(29)

(30)
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Existence of reflux flow in tray ¢

YR, € {True, False} VteT

If YR; = True = There is a reflux flow in tray ¢ (32)
There is only one boil-up flow in the distillation column.
Vys, (33)
teT
There is only one reflux flow in the distillation column.
Vg, (34)

teT

Tray ¢ is an equilibrium stage or a bypass, where g; (x) contains equilibrium mass and energy balances, while gs(x)
contains a bypass material balance

Y —Y;
gi(x)=0|\/|&(x) =0|, VteT (35)
Yt active — — LYt active =

If the reflux flow is on or above tray ¢ and the boil-up flow is on or below tray ¢, then tray ¢ is an equilibrium stage (the
opposite is also True).

( \/ }YRT> A < /\ -YB,V YBt> =Y, VteT (36)
16

Vre{t,t+1,..., Vre{tt+1,...,16}
The reflux flow stage is not below the feed tray.

A YR, (37)
Vte{23,...,8}

The boil-up flow is not above the feed tray.

A -YB, (38)
Vte{10,11,...,17}

The column has at least eight active trays.

Z Yt,active Z 8 (39)

teT
Tray 1 (reboiler), tray 9 (feed), and tray 17 (condenser) are equilibrium stages.

Y1 = True, Yy = True, Y17 = True, 40)

Benzene concentration constraint (distillate product)

XD,Benzene >0.95 (41)

Toluene concentration constraint (bottom product)

XB,Toluene Z 0.95 (42)

Bounds imposed over the reflux ratio RF’
0.5 < RF <4 (43)

Bounds imposed over the Reboil ratio RB
1.3<RB<A4 (44)
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Objective Function: Sum of the capital cost (number of active trays) and operating cost (reboiler and condenser duty),
where () is the reboiler duty, Q¢ is the condenser duty, and the sum term over binary variables y; acive represents the

total number of active trays.

Ntrays
= min 103 + + Z ;
Jos RF,RB, feedtray,Nirays (@r+Qc) pperd Ytiactve

A.3 Small Batch Problem

Set of components (index i)
I={A, B}

Set of stages (index j)
J = {mixer, reactor, centrifuge}

Set of potential number of parallel units for each stage (index k)

K ={1,2,3}

Existence of the parallel units for each stage j
Yi; € {True, False} Vk e K, j e J

If Yy,; = True = There are k parallel units in stage j

Only one of the parallel unit existence is T'rue

MYM VkeK
jeJ

Volume requirement in stage j
’UjZlIl(Sij)-f—bi ViGI,jgj

Cycle time for each product i
n; +tr > ln(tij) Viel, jeJ

Constraint for production time(horizon constraint)

z Qiexp (tr; —bi) < H

i€l
Relating number of units to 0 — 1 variables

nj=Z%j Vjed
keK

If only k parallel units exist in stage j

= } { v } ‘
VkeK, jeJ
[%jzln(k) \/ Ye; =0 J

Objective Function: the investment cost for setting the small batch system [$]

fops = minZaj(exp(nj + 5v5))
jed

B External variable reformulation for example problems

(45)

(46)

47

(48)

(49)

(50)

61y

(52)

(53)

(54)

(55)

(56)

This appendix presents the external variable reformulation of the Boolean variables in the examples considered in this

manuscript.
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B.1 Series of Reactors Problem
yE, = {True zea=n oy (B.1.57)
" | False, otherwise o
True, zgos=n
YR, = ’ . VneN (B.1.58)
False, otherwise
X, =dog ez 152 SNT (B.1.59)
1 = SN Zg .1§ZE72§NT I
Xo={2g €2° :zp2 —2zp1 < 0} (B.1.60)
1-2zg1 <0
2 Zg 1 — NT S 0
X=XiNXo=KzpgeZ: (B.1.61)
1—-2zg2<0
zg2 —zZg,1 <0
B.2 External Variable Reformulation for Distillation Column Problem
Distillation Column Reformulation: Y — zg
Tray existence
Y € {True, False}
[ Yyps = Faise
Yy -2 = False
Leftover — )
Trays
External Variable
L Y;, = False Reformulation: zg
Y11 = True P m e - 2
Y10 = True Reflux position
Zgg =10
Active —
Trays
Y, = True ity
Leftover _j' Y; = False BZO"-UE gosition
Trays L Y, = False BB
Figure 13: Example of distillation column external variable reformulation
T =t—1
YR, = {6 ZBrefux VteT (B.2.1)
False, otherwise
T dap =t — 1
YB, =11 ZEboilup VteT (B.2.2)
False, otherwise
1<z <15
X, = {zE ezt — B = } (B.2.3)

"1 < 2E poilp < 15
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B.3 Catalytic Distillation Column Problem

The external variable reformulation is equivalent to the one presented in [35] with Boolean variables instead of binary
variables. We highlight in Figure 14 how these external variables are interpretable as relative positions of the ethanol

feed, the butene feed, the catalytic stages and the boil-up.

Z2E3,1
2 ]

Feed
Ethanol

()« Inactivdlsage  REfOrmulation of the
Distillation Column: Y — zg

Figure 14: Example of catalytic distillation column external variable reformulation

B.4 Small Batch Problem

True, Zgmixer = k
v » ZEmixer Vke K
k,mixer { False, otherwise
True, Zgreactor = k
v _ s Jreac ot Vke K
k reactor {False, otherwise

True, ZE centrifuge = k

False, otherwise vheR

Yk,centrifuge = {
1< ZE mixer <K

X|=<zg € 731 < ZE reactor <K
1< ZE centrifuge <K
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