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Abstract

The proposition of new kinetic expressions for a reaction system starts

with the postulation of feasible reaction pathways. An ordered and

combinatorially complete search of feasible mechanisms would focus the

efforts of the expert groups on the selection of likely mechanisms and the

creation of kinetic laws.

The search of feasible pathways can be addressed with algorithms based

on P-graphs. This article proposes the definition of reaction blocks as a

set of reactions with exclusive intermediaries, within a Maximal Structure.

Two lemmas and a theorem are proposed to formalize the use of reaction

blocks during the search of reaction pathways with the PBT algorithm.

These reaction blocks allow a reduction of the search space when applied

on a Maximal Structure of reactions. An example is presented to illustrate

this reduction: the combinatorial number of feasible pathways in the

methanation of carbon dioxide with hydrogen is 31.38 billion; and this

search domain is reduced to 1.16 billion with the application of reaction

blocks. No feasible pathway is lost in this process, as stated by the theorem
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herein proposed.
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1. Introduction

The determination of reaction mechanisms plays a key role in the kinetic

description of reactive systems. A reaction mechanism consists of a set

of reactions occurring in series, parallel, or combinations thereof, which

describe molecular modifications of the reactants and intermediate species

to generate the products of a chemical system. The sequence of steps in a

mechanism determines the rate of the overall reaction, which depends on a

rate limiting step: the slowest step involved in the mechanism [1].

The kinetic description of an overall reaction is developed in three major

stages, namely:

• The postulation of feasible mechanisms.

• Selection of the most likely mechanism supported on physicochemical

information.

• The postulation and validation of a kinetic law assuming a rate

limiting step in the mechanism.

Usually, the emphasis of the groups working on kinetics and catalysis is

placed on the second and third phases. The first phase is covered by

proposing several alternatives, and determines the results of the following

phases [2].

An ordered and combinatorially complete search of feasible mechanisms

would focus the efforts of the expert groups in catalysis on the selection of

likely mechanisms (phase 2) and the proposition of kinetic laws (phase 3).

The execution of a complete search in phase 1 would support more robust

analyses and would increase the speed of the overall kinetic study.
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To search for candidate mechanisms is necessary to analyze each feasible

alternative, so a non-ambiguous representation is required. The use of P-

graphs is proposed for this purpose. P-graphs were originally introduced by

Friedler et al for process analysis [3] and have been used to propose reaction

pathways [4, 5]. This representation is close to Species-Reaction graphs (SR

graphs) [6], but without labels on edges.

P-graphs consist of two sets of nodes: operations (or reactions) and

species. These nodes are linked by arcs, which state a relationship. P-graphs

allow an accurate representation of reactions or processes when compared

with conventional graphs (digraphs and signal flow graphs) [3].

The search for reaction mechanisms in a reaction network has been

addressed in previous works [3, 7, 4, 5]. A global reaction (E) is needed to

define global reactants (R) and products (P ) of a reaction system (Fig.1).

These species must be included in all feasible P-graphs. A set of feasible

reactions has to be defined, called O (from operations). This set summarizes

all the feasible reactions discussed by the scientific community (Fig.1a). The

set of reactions imposes intermediaries. While the set O is a list of reactions,

the set M is a set of the included species (reactants, intermediaries and

products) [3].

After the definition of sets, a Maximal Structure is generated through an

algorithm: the Maximal Structure Generation (MSG) presented by Friedler

et al [7, 4]. This structure contains all the combinatorial pathways [7], so

all relations within the set O should be included in the Maximal Structure

(Figs. 1b and 1c).

A mechanism has to meet the mass balance within the network, which

can either be evaluated in forward or backward overall direction. A
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(a) Sets (b) All elements (c) Maximal Structure

Figure 1: Maximal structure generation (MSG).

procedure is also necessary to connect global reactants and products through

the reaction network for searching feasible mechanisms. A general algorithm

(PBT) was published for this purpose [4]. In this strategy, the mechanisms

with a correct mass balance are distinguished through the feasibility of a

Linear Programming problem for deciding stoichiometric factors.

Within the Maximal Structure, the number of combinatorial candidates

for being a mechanism is 3n − 1, with n the number of reactions in set O,

since every reaction can participate or not in a pathway [4]. This value is

sustained in the following ideas: If it is included, a reaction can participate

in a direct or reverse way. Thus, there are three possible participation

options for each reaction in a pathway: direct (→), reverse (←), or no

participation. As a pathway with no reaction is not a pathway, we need to

remove this configuration from the counting.

The number of combinatorial candidates for a mechanism grows

exponentially with the number of reactions. If the proposed feasible
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reactions in the system are elementary, the number of reactions populating

the set O can be tens, so the number of combinatorially possible mechanisms

can grow to billions. Question is whether it is possible to reduce the

search without excluding feasible solutions. Furthermore, another question

is whether it is possible to aggregate elementary reactions without losing

information from the mechanism during the search.

This article defines a reaction block as a set of reactions that can be

treated as a single reaction during the execution of the PBT algorithm.

With the use of reaction blocks, the search space of feasible pathways can

decrease by millions without excluding feasible mechanisms. An example

is presented to illustrate this point. The aim of this work is to present

definitions and theorems for the use of reaction blocks in the search of

reaction pathways with P-graphs, allowing a significant reduction of the

search space.

2. Definitions and Theorems

This section presents the definitions, lemmas and a theorem for the

creation and use of reaction blocks. The proofs of lemmas and the theorem

have been included in the Appendixes.

2.1. Definition 1

A feasible pathway is a p-graph (m, o) with mass balance satisfaction.

It connects reactants and products of a global reaction (E) with reactions

(o ⊆ O) from a defined set (O). This p-graph has been founded in the

Maximal Structure by the PBT algorithm [4]. The set m is a subset of

predefined species M and covers all species that participate in reactions
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belonging to o. The set of all feasible pathways within the Maximal

Structure is denoted by mec [O].

2.2. Definition 2

A reaction block (oRB) is a subset of the reactions set (oRB ⊆ O). Its

reactions are connected in series, allowing branches. oRB covers a set of

species (mRB) divided in reactants (rRB), intermediaries (iRB) and products

(pRB) of the reaction block. The set oRB is such that no species in iRB

participate in reactions belonging to O\oRB, so no intermediary in iRB is

present outside the reaction block. A reaction block can be summarized as

an aggregated reaction SRB (see Definition 3 and Fig.2).

2.3. Lemma 1

Let yi a reaction belonging to oRB a reaction block in O. Let (m, o) a

feasible pathway in mec [O]. If yi participates in the pathway (yi ∈ o), then

all reactions in the reaction block have to be in the pathway (oRB ⊆ o).

The proof of this lemma has been included in Appendix A.

2.4. Definition 3

An aggregate reaction (SRB) for the block oRB is a composition of all

the reactions in the block. It is constructed as a summation:

SRB :=
∑

i∈{1,2,...,|oRB|}

γi · yi yi ∈ oRB (1)

γi factors are such that:

• The reactants of SRB are rRB.

• The products of SRB are pRB .
7



• All intermediaries of the reaction block (iRB) are not in SRB.

• The same mass balance is satisfied between rRB and pRB through the

p-graph (mRB , oRB) and SRB.

As an example, the block in the left hand side of Fig. 2 can be condensed

in an aggregate reaction, as shown in the right hand side of the same figure.

Figure 2: Example: construction of reaction SRB from reaction block oRB. A

construction function fSRB
is defined between sets.

2.5. Definition 4

After the construction of SRB two functions are defined between the

sets oRB and {SRB}: an aggregate reaction function (fSRB
(oRB) := {SRB})

and its inverse (f−1
SRB

({SRB}) := oRB). Note that by construction fSRB
is a

bijective function (Fig. 2).
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2.6. Definition 5

A feasible pathway (m, o) can include reactions in oRB or not. The sets

of pathways in each case can be defined as follows:

mec [O]oRB = {(m, o) a feasible pathway |

m ⊆M ∧ o ⊆ O ∧ o ∩ oRB 6= ∅} (2)

mec [O]oRB = {(m, o) a feasible pathway |

m ⊆M ∧ o ⊆ O ∧ o ∩ oRB = ∅} (3)

Since the last condition in the definition of mec [O]oRB and mec [O]oRB only

has two possibilities, those sets establish a partition on mec [O], as stated

in Lemma 2.

2.7. Lemma 2

Let o′ ⊆ O. The collection {mec [O]o
′

, mec [O]o
′

} partitions mec [O].

The proof of this lemma is available in Appendix B.

2.8. Theorem 1

Given a set of reactions (O) with a reaction block (oRB), there is a

bijective function (F ) relating the pathways obtained from O and the

pathways obtained from OR := (O\oRB) ∪ {SRB}.

The proof of this theorem is available in Appendix C. Theorem 1 can be

used while obtaining feasible pathways with an aggregated set of reactions.

If a reaction block is created within a reaction set, then every pathway found

by the PBT algorithm [4] in the reduced set of reactions has a connection

with a pathway in the disaggregated set of reactions through the F function.
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The pathways constructed by the PBT algorithm [4] in the aggregated set

of reactions can include the reaction SRB or not. When it is included, the

pathway can be rewritten through f−1
SRB

substituting SRB by elementary

reactions; if it is not included, both pathways are identical in the reduced

and the original space of reactions.

The reaction mechanisms are constructed with elementary reactions for

explaining the molecular changes step by step. The use of elementary

reactions allows to postulate a rate limiting step, and create a kinetic

expression supported on these hypotheses. In this context, Theorem 1

allows to use the PBT algorithm [4] in non-elementary reaction sets. In

this strategy, the constructed pathways can be translated to elementary

reaction sets with the aforementioned conversion through f−1
SRB

.

The next section illustrates the use of reaction blocks on a methanation

system. The search for feasible mechanisms in this system is presented in

other work of the same authors [8]. In this article, Theorem 1 is necessary

in order to perform the search of feasible pathways in a reduced space of

reactions and convert back the mechanisms in terms of elementary reactions.

3. Application of reaction blocks on a reaction system for CO2

methanation with hydrogen

The CO2 methanation has been signed as an alternative for cycling

anthropogenic CO2 [9]. In this reaction the carbon dioxide is converted to

methane, which could be used as fuel. While anthropogenic CO2 is mainly

generated by combustion, it can be converted back to a fuel by methanation.

In this cycle, both the source of H2 and the energy source for the process

determine the carbon footprint calculated by LCA [10]. The methanation
10



of CO2 through hydrogenation is summarized by Sabatier’s reaction (Eq.4,

[11]):

CO2 + 4H2 ⇄ CH4 + 2H2O ∆H0 = −165 kJ/mol (4)

Table 1 shows all species and reactions included in the CO2 methanation

system. All these reactions have been signed as elementary and will be

understood as feasible reactions in the methanation system. Taking all

of these reactions, the combinatorial number of feasible mechanisms is

322 − 1 ≈ 31.38 billion.

In this case, the reactions R7 to R10 in Table 1 can be considered a

reaction block because they are connected in series and there is no reaction

outside the block including these intermediaries. This reaction block is

consistent with Definition 2, and it is summarized by (R7a) in Table 2.

The set of reactions has 19 elements after the reduction using a reaction

block, so the search domain decreases to 319 − 1 ≈ 1.16 billions. The

new set of reactions is listed in Table 2. Theorem 1 allows to state a

relation between each feasible mechanism in the original set of reactions

and a feasible mechanism in the reduced space, so this reduction maintains

the number of feasible mechanisms from the disaggregated reaction set.

As mentioned before, the search of pathways within the reduced set of

reactions is presented in other work of the same authors [8]. In this context,

the use of reaction blocks allow a significant reduction of the search domain.
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Name herein Reaction Reported by

R1 H2 + 2s ⇄ 2Hs [12]

R2 CO2 + s ⇄ CO2s [13]

R3 CO2s+ s ⇄ COs+Os [13]

R4 COs+ s ⇄ Cs+Os [12]

R5 COs ⇄ CO + s [12]

R6 Cs+Hs ⇄ CHs+ s [12]

R7 CHs+Hs ⇄ CH2s+ s [12]

R8 CH2s+Hs ⇄ CH3s+ s [12]

R9 CH3s+Hs ⇄ CH4s+ s [12]

R10 CH4s ⇄ CH4 + s [12]

R11 Os+Hs ⇄ OHs+ s [12]

R12 OHs+Hs ⇄ H2Os+ s [12]

R13 H2Os ⇄ H2O + s [12]

R14 COs+Hs ⇄ HCOs+ s [14]

R15 HCOs+ s ⇄ CHs+Os [14]

R16 COs+OHs ⇄ HCO2s+ s [15]

R17 HCO2s+OHs ⇄ CO2s+H2Os [15]

R18 HCO2s+ s ⇄ CO2s+Hs [15]

R19 COs+Hs ⇄ Cs+OHs [13]

R20 HCO2s+ s ⇄ HCOs+Os [13]

R21 CO2s+OHs ⇄ HCO3s [16]

R22 HCO3s+Hs ⇄ HCO2s+OHs [16]

Table 1: Reactions considered in the system.
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Name herein Reaction Reported by

R1a H2 + 2s ⇄ 2Hs [12]

R2a CO2 + s ⇄ CO2s [13]

R3a CO2s+ s ⇄ COs+Os [13]

R4a COs+ s ⇄ Cs+Os [12]

R5a COs ⇄ CO + s [12]

R6a Cs +Hs ⇄ CHs+ s [12]

R7a CHs+ 3Hs ⇄ CH4 + 4s SRB, this work

R8a Os+Hs ⇄ OHs+ s [12]

R9a OHs+Hs ⇄ H2Os+ s [12]

R10a H2Os ⇄ H2O + s [12]

R11a COs+Hs ⇄ HCOs+ s [14]

R12a HCOs+ s ⇄ CHs+Os [14]

R13a COs+OHs ⇄ HCO2s+ s [15]

R14a HCO2s+OHs ⇄ CO2s+H2Os [15]

R15a HCO2s+ s ⇄ CO2s+Hs [15]

R16a COs+Hs ⇄ Cs+OHs [13]

R17a HCO2s+ s ⇄ HCOs+Os [13]

R18a CO2s+ OHs ⇄ HCO3s [16]

R19a HCO3s+Hs ⇄ HCO2s+OHs [16]

Table 2: Reactions considered in the system after reduction.
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4. Concluding remarks

This work introduces the use of reaction blocks for reducing the domain

of feasible reactions in a reaction system. The aforementioned reduction

maintains the number of feasible pathways, as a consequence of Theorem

1. This theorem establishes a bijective function between the sets of feasible

pathways within the original and the reduced space of reactions. The use of

reaction blocks is also sustained on lemmas and definitions herein presented.

The application of reaction blocks has been exemplified in the

methanation of CO2 with H2. In this context, the reduction of the feasible

reaction space implies a decrease in the number of combinatorial pathways

within the Maximal Structure, from 31.38 billion to 1.16 billion.

The main use of Theorem 1 is the validation of the search of feasible

pathways in a reduced space of reactions, while no feasible mechanism is

lost. This theorem also formalizes a way for converting back the mechanisms

found in the reduced set of reactions in terms of the original set of

elementary reactions.

Theorem 1, the lemmas, and definitions provide a basis for further

theorems, in order to improve the search of reaction mechanisms within

a Maximal Structure of feasible reactions.
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Notation

E A global reaction.

O A set of feasible reactions in a

chemical system.

M A set of feasible species in a chemical

system.

R A set of global reactants.

P A set of global products.

o A subset of feasible reactions within

O.

m A subset of feasible species within

M .

(m, o) A P-graph with nodes for species

and reactions. Can represent a

mechanism.

mec [O] The set of all feasible mechanisms

within O. It has been found with

PBT algorithm [4].

oRB A reaction block. It is a set of

reactions within O.
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mRB The set

of species within M participating in

the reactions included in oRB.

rRB Reactants of a reaction block. It is

a set of species within M .

iRB Intermediaries of a reaction block. It

is a set of species within M .

pRB Products of a reaction block. It is a

set of species within M .

yi A reaction within O.

SRB An aggregate reaction for the block

oRB.

fSRB
An aggregate reaction function,

relating oRB and {SRB}

mec [O]oRB The set of all feasible mechanisms

within O including the reactions in

oRB. It has been found with PBT

algorithm [4].

mec [O]oRB The set of all feasible mechanisms

within O not including the reactions

in oRB. It has been found with PBT

algorithm [4].

OR A reduced set of reactions equal to

(O\oRB) ∪ {SRB}
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Appendix A: Proof of Lemma 1

If (m, o) is a feasible pathway, it has been found within the Maximal

Structure by the PBT algorithm [4]. Then, theorems R1 to R6 [4] are valid

for this pathway. Since theorem R3 is valid, all intermediaries in a feasible

pathway have to be completely consumed. Taking into acount the definition

of oRB, the intermediaries in the reaction block (iRB) are not included in

other reactions outside the block. Then, the reactions for consuming these

intermediaries belong to the reaction block oRB. By Theorem R3 and Axiom

T4 [4], all reactions in oRB have to be included in o. Otherwise, there

exist an intermediary i∗ ∈ iRB which is not completely consumed, violating

Theorem R3 [4].

Appendix B: Proof of Lemma 2

• No intersection: Let (m∗, o∗) a feasible mechanism belonging to

mec [O]o
′

. Then o∗ ∩ o′ 6= ∅. By definition of mec [O]o
′

, (m∗, o∗) /∈

mec [O]o
′

. Similarly, an element in mec [O]o
′

cannot be in mec [O]o
′

,

so mec [O]o
′

∩mec [O]o
′

= ∅.

• Covering: Let (m∗, o∗) an element in mec [O]o
′

∪mec [O]o
′

. Then:

mec [O]o
′

∪mec [O]o
′

= {(m∗, o∗) a feasible pathway |

[m∗ ⊆M ∧ o∗ ⊆ O ∧ o∗ ∩ o′ 6= ∅] ∨ [m∗ ⊆M ∧ o∗ ⊆ O ∧ o∗ ∩ o′ = ∅]}

With a distribution of or over and we have:

mec [O]o
′

∪mec [O]o
′

= {(m∗, o∗) a feasible pathway |

m∗ ⊆M ∧ o∗ ⊆ O ∧ [ o∗ ∩ o′ 6= ∅ ∨ o∗ ∩ o′ = ∅]}
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Since the term in parenthesis [ ] is a tautology, we have:

mec [O]o
′

∪mec [O]o
′

= {(m∗, o∗) a feasible pathway |

m∗ ⊆M ∧ o∗ ⊆ O}

The last statement is the definition of a feasible pathway in O, so

(m∗, o∗) ∈ mec [O]. Then mec[O] = mec[O]o
′

∪mec[O]o
′

.

Appendix C: Proof of Theorem 1

• The function: Let (m∗, o∗) ∈ mec[O]. Let F a piecewise function

defined as follows:

F [(m∗, o∗)] =











F1[(m
∗, o∗) ∈ mec[O]oRB ] = (m∗2, o∗2) ∈ mec[OR]SRB

F2[(m
∗, o∗) ∈ mec[O]oRB ] = (m∗2, o∗2) ∈ mec[OR]SRB

The functions F1 and F2 are defined as follows (see Fig. 3):

F1[(m
∗, o∗)] := (m∗2, o∗2) |m∗2 = m∗\iRB ∧ o∗2 = (o∗\oRB) ∪ {SRB}

F2[(m
∗, o∗)] := (m∗2, o∗2) |m∗2 = m∗ ∧ o∗2 = o∗

Figure 3: Function F between sets of pathways. The subfunctions F1 and F2 are

represented relating the elements into each partition.

By Lemma 2, the collection {mec [O]oRB , mec [O]oRB} partitions

mec [O]. Also the collection {mec
[

OR
]{SRB}

, mec
[

OR
]{SRB}

}
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partitions mec
[

OR
]

. Both partitions are represented in Fig. 3.

Therefore, the next steps in this proof will be demonstrated for F1

and F2 separately.

• Every pathway in mec[O] has an image in mec[OR]:

– For F1: It is possible to create o
∗2 since both oRB ⊆ o∗ and {SRB}

exist. The latter has been constructed with the function fSRB
,

which is feasible to apply because SRB exists by definition of oRB.

The set m∗2 = m∗\iRB exists, because (m∗, o∗) ∈ mec [O]oRB and

then iRB ⊆ m∗.

Is (m∗2, o∗2) a feasible pathway? (m∗, o∗) is a feasible pathway,

because (m∗, o∗) ∈ mec [O]oRB . Let y∗ a reaction in oRB. By

Lemma 1, if y∗ belongs to the pathway then all y ∈ oRB belongs

to the pathway. By definition of oRB, all its intermediaries are

absent from other reactions outside the reaction block. The

remotion of oRB lets the pathway incomplete. Since reactions

in oRB have been removed, the intermediaries iRB are no longer

necessary. Without oRB the reactants rRB and products pRB are

not linked through the pathway. They can be connected by the

reaction SRB. By definition of SRB, it respects the same local

mass balance than oRB . Then, the new pathway has a feasible

mass balance.

In this statement, the sets m∗2 and o∗2 have been constructed, so

every pathway in mec [O]oRB has an image in the pathways set

mec
[

OR
]{SRB}

.

– For F2: It is possible to create o∗2 and m∗2, because both
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definitions are equalities in F2. (m∗2, o∗2) is a feasible pathway

since (m∗, o∗) is also a feasible pathway. Then, every pathway in

mec [O]oRB has an image in the pathways set mec
[

OR
]{SRB}

.

• The image of any pathway in mec[O] is unique:

– For F1: Let (m
∗2, o∗2) and (m∗3, o∗3) pathways in mec

[

OR
]{SRB}

such that F1[(m
∗, o∗)] = (m∗2, o∗2) and F1[(m

∗, o∗)] = (m∗3, o∗3).

As m∗2 = m∗\iRB and m∗3 = m∗\iRB, then m∗2 = m∗3. On the

other hand o∗2 = (o∗\oRB)∪{SRB}2 and o∗3 = (o∗\oRB)∪{SRB}3.

But {SRB}2 = {SRB}3 because fSRB
is bijective by Definition 4.

Then, (m∗2, o∗2) = (m∗3, o∗3), so the image of (m∗, o∗) through

F1 is unique.

– For F2: Let (m
∗2, o∗2) and (m∗3, o∗3) pathways in mec

[

OR
]{SRB}

such that F2[(m
∗, o∗)] = (m∗2, o∗2) and F2[(m

∗, o∗)] = (m∗3, o∗3).

Asm∗2 = m∗ andm∗3 = m∗, thenm∗2 = m∗3. On the other hand

o∗2 = o∗ and o∗3 = o∗, so o∗2 = o∗3. Then, (m∗2, o∗2) = (m∗3, o∗3),

so the image of (m∗, o∗) through F2 is unique.
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