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Abstract

The effects of carbon dioxide in the atmosphere can be reduced by closing

anthropogenic cycles. The methanation of carbon dioxide with hydrogen

provide an option in this direction. Nevertheless, the reaction mechanism

of this system is under discussion.

The search of reaction pathways is a key matter when studying a

reaction system, specially to find an expression for kinetics. The proposal

of new pathways and the discussion of their feasibility can be structured

with the application of P-graphs, in order to perform a combinatorially

complete search of pathways in the first step of a kinetic study. By

imposing constraints, the searching algorithm allows to compose feasible

pathways. These constraints include mass balances and the existence of

known intermediates.

The search domain to find feasible pathways in the methanation of

carbon dioxide can be reduced with the use of reaction blocks. No feasible
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pathway is lost in this process. The set of possible mechanisms have been

reduced from 31 billion to 71 possible pathways, presented as an option to

explain the reaction mechanism in this system. A procedure is presented to

integrate experimental data, so as to discriminate the reaction mechanism

among these 71 options.
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Carbon dioxide
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1. Introduction

The climate effects of atmospheric CO2 has been the subject of study

in the last 3 decades [1, 2] and many efforts has been directed to its

capture from industrial gas streams, mainly by absorption in amines [3]

and adsorption on solids [4].

After separation, different downstream processes could be implemented

for mitigating global climate change, as reuse, geological storage or ocean

storage [5]. Despite the huge potential of the last two options, the net cost

of reuse is far more attractive [6].

Since the main industrial source of carbon dioxide is the combustion of

fossil fuels, it seems attractive to recycle the CO2 and reduce it to a fuel

such as CH4 [7]. In this strategy, the generated methane could be an energy

vector since we need energy to generate H2.

The methanation of CO2 through hydrogenation (Eq.1, [8]) has been

performed on different catalysts [9], but the reaction mechanism is subject

of debate [10].

CO2 + 4H2 ⇄ CH4 + 2H2O ∆H0 = −165 kJ/mol (1)

Even though the decomposition of CO2 to adsorbed CO is widely

accepted as an intermediate step [10] and the participation of formate-like

species has been reported [11, 12, 13], the mechanism on the catalyst surface

is still not clear.

In other contexts, the P-graph theoretic method [14, 15, 16] has been

adopted to explore the mechanisms of catalytic [17] and biochemical

reactions [18]. In a large scale, P-graphs have also been used to synthesize

process networks [19], to optimize industrial complexes [20], to optimize
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regional energy [21] and biomass supply chains [22], to optimize renewable

energy systems [23], to select technologies for reducing carbon emissions

[24], to design sustainable supply chains [25], and to economically allocate

resources [26], among other applications.

Within the context of reaction pathway identification, P-graphs show

a wide set of attractive properties when compared with other methods as

linear algebraic methods [27, 28], convex methods [29, 30], combinatorial

analysis [31], and reaction route graphs [32]. These properties include

[33]: the unique representation of each pathway, a complete set of direct

pathways, a complete set of combinatorially feasible pathways, a complete

set of acycle feasible pathways, a graph representation, and combinatorial

acceleration.

The classical proposal of mechanisms can be substituted by a

combinatorially complete exploration of pathways between reactants and

products, avoiding bias in the selection of the mechanism. Furthermore, the

construction of new mechanisms can integrate feasibility criteria (e.g. mass

balance) for a complete definition of feasible routes instead of an exhaustive

search. In such a strategy, a mechanism proposal should be divided into

three stages:

1. Create a list of all stoichiometrically feasible mechanisms. They are

combinatorially feasible mechanisms with stoichiometric balance. It

is an exploration of pathways in silico.

2. Filter the results comparing with reported intermediate species or

causality relations reported in reaction systems (e.g. an intermediate

molecule always reacts forming another defined molecule).
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3. Compare with real data. Further experiments can be conducted for

discriminating the mechanism.

This work exploits the combinatorial structure of CO2 methanation on a

catalyst for reducing the set of possible mechanisms from billions to dozens

of options. We consider the reported intermediates on a catalyst surface,

showing all the feasible mechanisms in this system for further discussion.

The aforementioned exploration has been performed with P-graph

algorithms [14, 15, 16] and a reduction with reaction blocks [34].

The aim is to cover the first two steps of the previous list in the case of

CO2 methanation. Pointing to the third step, the stoichiometrically feasible

mechanisms reported herein are a guide for further experiments and future

demonstration of the reaction mechanism.

2. Methodology

The methodology of the present work is based on previous efforts in P-

Graph theory [14, 15, 16]. P-graphs has two types of nodes (e.g. points and

bars) for species and reactions, respectivelly. They have been created for

uniquely represent processes and reaction systems, avoiding the ambiguity

of digraphs or signal-flow graphs when a synthesis problem is presented [14].

The P-graph structure is very close to Species-Reaction graph structure (SR

graph) [35], but without labels on edges.

Briefly describing this technique (Fig.1), a global reaction (E) is needed

to define global reactants and products. These species should be included

in all generated P-graphs. This is the first constraint for accepting a

combinatorial pathway as feasible. After the definition of a set with global

5



reactants (R) and global products (P ), a set of feasible reactions has

to be defined. This set is called O (from operations). This set could

be constructed from experimental experience, including all the reactions

considered feasible by the scientific community (Fig.1a). The set of reactions

(O) imposes new species: the intermediates. Strictly, the set O is a list of

reactions. The species involved in all the aforementioned sets (reactants,

products and intermediates) are listed separately [14].

The next step is the Maximal Structure Generation (MSG) [15, 16]

(different from a superstructure [36]). This structure is the largest one

that must be taken into account in the construction of mechanisms, and

it is also the simplest one that contains all combinatorial pathways [15].

The Maximal Structure is the universal set of all possible P-graphs in the

problem. Then, all relations in the set O should be included in the Maximal

Structure (Figs. 1b and 1c). No direction is imposed in the arcs of any P-

graph, because both direct and reverse reactions are considered for each

element in O.

A well formed mechanism has to satisfy the mass balance within the

network. The direction of the reactions does matter in this case. Anyway,

the mass balance can either be evaluated in forward or backward overall

direction.

Focusing on combinatorial possibilities, each reaction can be included

(or not) in a mechanism. If a reaction is included, it can participate in a

direct (→) or reverse way (←) into the mass balance, defining 3 options

of participation: no participation, direct way inclusion, and reverse way

inclusion. If a mechanism has no reactions then is not a combinatorially

feasible mechanism, therefore this alternative is usually removed from the
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Name herein Reaction Reported by

1 H2 + 2s ⇄ 2Hs [37]

2 CO2 + s ⇄ CO2s [12]

3 CO2s+ s ⇄ COs+Os [12]

4 COs+ s ⇄ Cs+Os [37]

5 COs ⇄ CO + s [37]

6 Cs+Hs ⇄ CHs+ s [37]

7a CHs+Hs ⇄ CH2s+ s [37]

7b CH2s+Hs ⇄ CH3s+ s [37]

7c CH3s+Hs ⇄ CH4s+ s [37]

7d CH4s ⇄ CH4 + s [37]

8 Os+Hs ⇄ OHs+ s [37]

9 OHs+Hs ⇄ H2Os+ s [37]

10 H2Os ⇄ H2O + s [37]

11 COs+Hs ⇄ HCOs+ s [10]

12 HCOs+ s ⇄ CHs+Os [10]

13 COs+OHs ⇄ HCO2s+ s [11]

14 HCO2s+OHs ⇄ CO2s+H2Os [11]

15 HCO2s+ s ⇄ CO2s+Hs [11]

16 COs+Hs ⇄ Cs+OHs [12]

17 HCO2s+ s ⇄ HCOs+Os [12]

18 CO2s+OHs ⇄ HCO3s [13]

19 HCO3s+Hs ⇄ HCO2s+OHs [13]

Table 1: Reactions considered in the system.
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(a) Sets (b) All elements (c) Maximal Structure

Figure 1: Maximal structure generation (MSG).

combinatorial enumeration of pathways. The number of combinatorial

candidates for being a mechanism is then 3n − 1, with n the number of

reactions in set O.

Table 1 shows all species and reactions included in the CO2 methanation

system, with a reference to other works for sustaining its inclusion. All these

reactions have been signed as elementary and will be understood as feasible

reactions in the methanation system. Taking all of them, the number of

combinatorially feasible mechanisms is 322 − 1 ≈ 31 billion. A theoretical

reduction of the reaction system allows to aggregate reactions with common

(and exclusive) intermediates during the search of feasible pathways. This

technique and its theoretical background have been presented in other

article [34].

In this case, the reactions 7a to 7d will be considered a reaction

block (R7), because these reactions are connected in series (common

intermediates) and all their intermediates are not included in any reaction
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outside the block (exclusive intermediates). This reduction maintains the

number of feasible mechanisms from the disaggregated reaction set [34].

This theoretical reduction of the system infers 19 reactions, and therefore

≈ 1 billion of combinatorially feasible mechanisms.

An algorithm has to connect global reactants and products through the

reactions network for generating candidate mechanisms. This algorithm

must consider all the pathways with a satisfied mass balance. A general

algorithm written in Algol was published by Friedler et al. [16] for this

purpose.

The routines for MSG and the search for candidate mechanisms with

P-graph theory were adapted from previous developments [15, 16] and

implemented in GNU Octave [38].
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3. Results

The aforementioned methodology was applied over the reaction system

shown in Table 1. This search considers a reaction block (Reaction 7)

composed by reactions 7a, 7b, 7c, and 7d. Within the 319 − 1 ≈ 1 billion

combinatorial options, 91 feasible mechanisms were found. Further filtration

was performed looking for reported intermediates on catalyst surface: COs

and HCOs, reported by Eckle et al [10]. This filter imposes the participation

of these species and infers 71 feasible mechanisms for the CO2 methanation

system. These feasible mechanisms are listed in Table 2 with a reference

to the reactions included in each mechanism. These mechanisms are also

represented as P-graphs in Appendix A.

Number Reaction set

1 1 10 2 8 9 3 11 12 7

2 1 10 2 9 -4 16 3 11 12 7

3 1 10 2 8 9 3 12 13 17 7

4 1 10 2 9 16 3 6 -11 -12 7

5 1 10 2 8 9 11 12 -13 -15 7

6 1 10 2 9 -4 16 12 -15 17 7

7 1 10 2 8 9 11 12 -13 -14 7

8 1 10 2 9 -4 16 12 17 -14 7

9 1 10 2 9 -3 11 12 -13 -15 7

10 1 10 2 9 3 11 12 -13 -17 7

11 1 10 2 8 3 11 12 13 14 7

12 1 10 2 8 3 11 12 -15 14 7

13 1 10 2 8 3 11 12 -17 14 7

14 1 10 2 9 -3 12 -13 -15 17 7

15 1 10 2 9 -3 11 12 -13 -14 7

16 1 10 2 8 3 12 13 17 14 7

17 1 10 2 9 11 12 -13 -15 -17 7

18 1 10 2 9 -3 12 -13 17 -14 7

19 1 10 2 8 11 12 -13 -15 14 7

20 1 10 2 -4 16 12 -15 17 14 7

21 1 10 2 9 11 12 -13 -17 -14 7

22 1 10 2 -3 11 12 -13 -15 14 7

23 1 10 2 3 11 12 -13 -17 14 7

24 1 10 2 -3 12 -13 -15 17 14 7

25 1 10 2 11 12 -13 -15 -17 14 7

26 1 10 2 8 9 4 6 -11 -15 17 7

27 1 10 2 8 9 16 6 -11 -15 17 7

28 1 10 2 8 9 4 6 -11 17 -14 7

29 1 10 2 8 9 16 6 -11 17 -14 7
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30 1 10 2 9 -4 16 3 12 13 17 7

31 1 10 2 9 -4 16 6 -11 -15 17 7

32 1 10 2 9 4 3 6 11 -13 -17 7

33 1 10 2 9 4 3 6 -12 -13 -17 7

34 1 10 2 9 -4 16 11 12 -13 -15 7

35 1 10 2 9 16 3 6 11 -13 -17 7

36 1 10 2 8 4 3 6 11 -17 14 7

37 1 10 2 9 16 3 6 -12 -13 -17 7

38 1 10 2 9 -4 16 6 -11 17 -14 7

39 1 10 2 8 4 3 6 -12 -17 14 7

40 1 10 2 9 16 3 6 -12 15 -17 7

41 1 10 2 8 16 3 6 11 -17 14 7

42 1 10 2 -8 16 3 6 -12 -17 14 7

43 1 10 2 9 -4 16 11 12 -13 -14 7

44 1 10 2 9 4 6 11 -13 -15 -17 7

45 1 10 2 9 16 6 -11 -12 -15 17 7

46 1 10 2 9 4 6 -12 -13 -15 -17 7

47 1 10 2 9 16 3 6 -12 -17 14 7

48 1 10 2 8 4 6 -11 -15 17 14 7

49 1 10 2 8 16 6 -11 -15 17 14 7

50 1 10 2 9 4 6 11 -13 -17 -14 7

51 1 10 2 -4 16 3 6 11 -17 14 7

52 1 10 2 9 16 6 -11 -12 17 -14 7

53 1 10 2 9 4 6 -12 -13 -17 -14 7

54 1 10 2 4 16 3 6 -12 -17 14 7

55 1 10 2 -4 16 3 11 12 13 14 7

56 1 10 2 -4 16 3 11 12 -15 14 7

57 1 10 2 -4 16 3 11 12 -17 14 7

58 1 10 2 -4 16 3 12 13 17 14 7

59 1 10 2 -4 16 6 -11 -15 17 14 7

60 1 10 2 16 3 6 -11 -12 13 14 7

61 1 10 2 16 3 6 -11 -12 -15 14 7

62 1 10 2 4 3 6 11 -13 -17 14 7

63 1 10 2 16 3 6 11 -12 -17 14 7

64 1 10 2 4 3 6 -12 -13 -17 14 7

65 1 10 2 -4 16 11 12 -13 -15 14 7

66 1 10 2 16 3 6 11 -13 -17 14 7

67 1 10 2 16 3 6 -12 13 -17 14 7

68 1 10 2 16 3 6 -12 -15 -17 14 7

69 1 10 2 4 6 11 -13 -15 -17 14 7

70 1 10 2 16 6 -11 -12 -15 17 14 7

71 1 10 2 4 6 -12 -13 -15 -17 14 7

Table 2: Feasible mechanisms for CO2 methanation expressed as reaction sets. The

participation of COs and HCOs is imposed, because they have been signed as well known

intermediates [10].

Fig. 2 shows a histogram for the participation of each reaction from

Table 1 in the filtered pathways informed in Table 2. In this histogram both

direct (→) and reverse (←) ways have been classified in a single reaction.
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Figure 2: Histogram for the appearance of each reaction within the 71 filtered pathways

represented in Table 2 and Appendix A.

Reactions 1, 2, 7, and 10 are present in the complete set of filtered pathways.

Since Reaction 7 is a reaction block [34], all filtered pathways should include

reactions 7a to 7d from Table 1.

Fig. 3 shows a Maximal Structure after the aforementioned pathway

filtration. This structure is the union of all the pathways in Table 2. The

direction of reactions has not been included in this graph, because most

reactions can participate in a direct or reverse way in the set of feasible

pathways after filtration. This Maximal Structure after filtration has been

marked taking into account the information from Fig. 2: species and

reactions highlighted with gray are present in the complete population of

filtered pathways.

In order to propose a final mechanism, further information is necessary.

In this context, experimental information is crucial. The experimental

efforts would demonstrate or discard the presence of the following adsorbed
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species: Cs, Os, OHs, HCO2s. The evolution of these adsorbed species on

surface is also significant for the proposal of a final mechanism. With all

this information, the role of reactions 3, 4, 6, 8, 9, 11, 12, 13, 14, 15, 16,

and 17 can be clarified.

4. Discussion

As mentioned before, experimental information is necessary to elucidate

the mechanism of CO2 methanation. The information provided in Fig.3

and Table 2 can structure a search tree. The following example illustrates

this point. We assumed the hypothetical availability of experimental

information about molecular characterization of intermediates on catalyst

surface. The branches and scenarios have been supposed to show how the

provided information could be used to suggest the scientific questions in

order to find the mechanism of CO2 methanation. Accordingly, we first

propose the search algorithm and then we illustrate its application with an

example.

We define a confirmed reaction or species as those forced to be included

in the reaction mechanism, otherwise the mechanism is not a feasible

pathway as defined in [34]. The confirmed reactions and species have been

marked with gray in Fig.3. The inclusion of all other reactions and species

have to be proved through logic and experimental data. These reactions

and species will be called free. Reactions and species could also be discarded

during the search of the reaction mechanism.

We propose the following algorithm to find the reaction mechanism:

1. Within the P-graph, find a reaction with n species: (n − 1) of them

have to be confirmed, and one of them free.
13



R1

Hs 

H2  

R15

R16 R11

R6

R7

R8

R9R2

CO2 s 

CO2  

R3

Os 

COs 

R12

R17

R4

HCO2 s

R13

R14

Cs 

OHs 

HCOs 

CHs 

CH4  H2 Os 

R10

H2 O 

Figure 3: Maximal structure after pathway filtration. The participation of COs and

HCOs is imposed, because they have been signed as well known intermediates [10].

Species and reactions marked with gray are present in all filtered pathways (Table 2).

The active site on surface (s) has been omitted in this representation to ease the reading.
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2. Structure the question about the existence of the free species from the

last step.

3. Structure the answers to the last question: No (0) or Yes (1). Within

the Fig.3 and Table 2, state the logic consequences of each scenario.

The scenarios (0) and (1) are excluding.

4. Include experimental information about the existence of the analysed

species and conclude the veracity of each scenario: (0) or (1) will be

true. Impose the respective logic consequences on Fig.3 and Table 2.

5. If all species are confirmed, stop. Else, return to step 1 with the new

information.

With this algorith, researchers can minimize the list of feasible pathways

with the molecular characterization of species. After this sequence of steps,

all confirmed and discarded species will be defined with no free species.

The algorithm could finish either with a clear mechanism (all reactions

will be either confirmed or discarded) or with remaining free reactions. If

there are free reactions at the end of the algorithm, the mechanism is still

not clear. Thus, other experiments are needed in order to distinguish which

free reactions have to be confirmed or discarded in the pathway to compose

a reaction mechanism. This experiments are different from the molecular

characterization of intermediates. To confirm or discard the remaining free

reactions is necessary a causality relation among species: the demonstration

of a transition.

Taking into account the Fig.3, the search algorithm can be applied over

the CO2 methanation system as follows:
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Iteration 1:

1. Reaction 6.

2. Does Cs exist on catalyst surface?

3. Possibilities are:

(0) No. Accordingly, reactions 4, 6, and 16 are discarded.

Reaction 12 is confirmed, thus Os is confirmed with no further

experiments. Is not possible to confirm nor discard reaction 3.

(1) Yes. Cs is confirmed. Is not possible to confirm nor discard

reaction 6.

4. Let scenario (0) be true1.

5. Go back to step 1.

After this iteration, there are 20 feasible pathways. Using the nomenclature

from Table2, the feasible pathways are: 1, 3, 5, 7, 9 to 19, and 21 to 25.

Iteration 2:

1. (0) Reaction 8.

2. (0) Does OHs exist on catalyst surface?

3. (0) Possibilities are:

1Hypothetical experiments performed to evaluate the veracity of scenarios (0) and

(1).
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(0) No. Accordingly, reactions 8, 9, 13, and 14 are discarded.

Nonetheless, this scenario is infeasible because reactions 9 and

14 are excluding. One of them has to exist, otherwise H2Os

cannot be connected with global reactants, violating a necessary

condition to have feasible pathways [34]. Then, this scenario is

infeasible.

(1) Yes. OHs is confirmed. Is not possible to confirm nor discard

reactions 8 and 9.

4. (0) No additional information is needed. Scenario (1) is verified by

logic.

5. (0) Go back to step 1.

After this iteration, the set of feasible pathways remains unaltered.

Iteration 3:

1. (01) Reaction 14.

2. (01) Does HCO2s exist on catalyst surface?

3. (01) Possibilities are:

(0) No. Accordingly, reactions 13, 14, 15, and 17 are discarded.

Reactions 3 and 9 are confirmed, otherwise CO2s and H2Os are

disconnected from global products and reactants, respectivelly.

Reaction 11 is confirmed, otherwise HCOs is either accumulated

or extinguished in the reaction pathway. Two reactions are

needed surrounding each intermediate, one to produce this
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component; another to consume it. Reaction 8 is confirmed,

otherwise OHs cannot be connected with global reactants.

(1) Yes. HCO2s is confirmed. Is not possible to confirm nor discard

reactions 3, 8, 9, 11, 13, 14, 15, and 17.

4. (01) Let scenario (0) be true2.

5. (01) All species have been confirmed or discarded. Stop.

Taking the aforementioned assumptions into consideration, the scenario

3.(010) is confirmed. After this iteration, the only feasible pathway is the

first one. Thus, the concluded reaction mechanism is shown in Appendix

A, Fig.4.

It is important to highlight the end of this algorithm: let the scenario (1)

be true in step 3.(01). Within the scenario 3.(011), we still have 20 feasible

pathways. As mentioned before, further experiments should be necessary

to elucidate the reaction mechanism in this case. These experiences have

to discriminate among reactions, because molecular characterization of

intermediates is not enough to settle the reaction mechanism.

5. Conclusions

The search of reaction pathways with P-graphs and the application of

reaction blocks to reduce the combinatorial space aim at systhematizing

the definition of a reaction mechanism. Mass balance criteria can be

included during a combinatorially complete search, in order to find a

2Hypothetical experiments performed to evaluate the veracity of scenarios (0) and

(1).
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maximal structure where all phisically feasible pathways can be found.

After obtaining this general structure, the search methodology can be

formalized through a series of steps presented herein. These steps integrate

experimental data in a logic evaluation tree.

When applied over the CO2 methanation system, this technique allows to

state the participation of reactions 1, 2, 7a, 7b, 7c, 7d, and 10 in all feasible

pathways. Other reactions have to be confirmed through new experimental

data about species on surface. The use of this information to confirm or

discard feasible pathways have been illustrated with a hypothetical case.

This technique exploits the combinatorial structure of a reaction system.

In the case of CO2 methanation on a catalyst, the set of possible mechanisms

have been reduced from billions to dozens of options. This computational

search allows to focus the scientific analysis on a reduced set of species

and partial reactions, defining further experiments in order to elucidate the

reaction pathway of any chemical system.
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Appendix A: P-graph representation of the 71 feasible

mechanisms for CO2 methanation reaction including COs and

HCOs as intermediates
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Figure 4: P-graph N.1.
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Figure 5: P-graph N.2.
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Figure 6: P-graph N.3.
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Figure 7: P-graph N.4.
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Figure 8: P-graph N.5.
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Figure 9: P-graph N.6.

29



s    

R1R2

R12

R-13

Hs   

H2   

R8

R9

R11

R7

H2Os 

R10R-14

H2O  

CO2s 

CO2  

Os   

OHs  

HCOs 

COs  

CHs  

HCO2s

CH4  

Figure 10: P-graph N.7.
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Figure 11: P-graph N.8.
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Figure 12: P-graph N.9.
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Figure 13: P-graph N.10.
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Figure 14: P-graph N.11.
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Figure 15: P-graph N.12.
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Figure 16: P-graph N.13.
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Figure 17: P-graph N.14.
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Figure 18: P-graph N.15.
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Figure 19: P-graph N.16.
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Figure 20: P-graph N.17.

s    

R1 R2

R12

R-13R17

Hs   

H2   

R9

R7

H2Os 

R10R-14

H2O  

CO2s 

CO2  

OHs  

Os   

R-3

COs  

CHs  

HCOs 

HCO2s

CH4  

Figure 21: P-graph N.18.
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Figure 22: P-graph N.19.
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Figure 23: P-graph N.20.
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Figure 24: P-graph N.21.
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Figure 25: P-graph N.22.
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Figure 26: P-graph N.23.
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Figure 27: P-graph N.24.
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Figure 28: P-graph N.25.
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Figure 29: P-graph N.26.
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Figure 30: P-graph N.27.
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Figure 31: P-graph N.28.
40



s    

R1 R2

R-11

R17

Hs   

H2   

R8

R9

R16

R6

R7

H2Os 

R10R-14

H2O  

CO2s 

CO2  

Os   

OHs  

Cs   

COs  

CHs  

HCOs 

HCO2s

CH4  

Figure 32: P-graph N.29.
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Figure 33: P-graph N.30.
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Figure 34: P-graph N.31.
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Figure 35: P-graph N.32.
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Figure 36: P-graph N.33.
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Figure 37: P-graph N.34.
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Figure 38: P-graph N.35.
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Figure 39: P-graph N.36.
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Figure 40: P-graph N.37
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Figure 41: P-graph N.38.
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Figure 42: P-graph N.39.
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Figure 43: P-graph N.40.
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Figure 44: P-graph N.41.
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Figure 45: P-graph N.42.
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Figure 46: P-graph N.43.
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Figure 47: P-graph N.44.
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Figure 48: P-graph N.45.
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Figure 49: P-graph N.46.
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Figure 50: P-graph N.47.
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Figure 51: P-graph N.48.
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Figure 52: P-graph N.49.
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Figure 53: P-graph N.50.
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Figure 54: P-graph N.51.
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Figure 55: P-graph N.52.
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Figure 56: P-graph N.53.
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Figure 57: P-graph N.54.
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Figure 58: P-graph N.55.
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Figure 59: P-graph N.56.
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Figure 60: P-graph N.57.

s    

R1R2

R3 R12

R17

Hs   

H2   

R16

R7

H2Os 

R10

H2O  

CO2s 

CO2  

Os   

R-4

COs  

Cs   

R13

OHs  

R14

CHs  

HCOs 

HCO2s

CH4  

Figure 61: P-graph N.58.
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Figure 62: P-graph N.59.
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Figure 63: P-graph N.60.
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Figure 64: P-graph N.61.
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Figure 65: P-graph N.62.
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Figure 66: P-graph N.63.
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Figure 67: P-graph N.64.
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Figure 68: P-graph N.65.
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Figure 69: P-graph N.66.
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Figure 70: P-graph N.67.
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Figure 71: P-graph N.68.
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Figure 72: P-graph N.69.
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Figure 73: P-graph N.70.
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Figure 74: P-graph N.71.
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