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Abstract

The objective of this paper is to bring systematic methods for scenario tree generation
to the attention of the Process Systems Engineering community. In this paper, we fo-
cus on a general, data-driven optimization-based method for generating scenario trees,
which does not require strict assumptions on the probability distributions of the un-
certain parameters. This method is based on the Moment Matching Problem (MMP),
originally proposed by Høyland & Wallace (2001). In addition to matching moments,
and in order to cope with potentially under-specified MMP, we propose matching (Em-
pirical) Cumulative Distribution Function information of the uncertain parameters.
The new method gives rise to a Distribution Matching Problem (DMP) that is aided
by predictive analytics. We present two approaches for generating multi-stage scenario
trees by considering time series modeling and forecasting. The aforementioned tech-
niques are illustrated with a motivating production planning problem with uncertainty
in production yield and correlated product demands.

Keywords: Process Systems Engineering, Stochastic Programming, Scenario Genera-
tion, Distribution Matching Problem, Time Series Forecasting, Analytics

1 Introduction
The importance of accounting for uncertainty in mathematical optimization was recognized
in its early days in the seminal and influential paper by George B. Dantzig (Dantzig, 1955).
Two of the current popular optimization frameworks that incorporate uncertainty in the mod-
eling stage are Robust Optimization (Ben-Tal, Ghaoui, & Nemirovski, 2009) and Stochastic
Programming (Birge & Louveaux, 2011). In this paper, we focus on Stochastic Programming
(SP) and address the issue of scenario generation.

To illustrate the many possible sources of uncertainty in Process Systems Engineering
(PSE), consider as an example a production planning problem for a network of chemical
plants. Planning decisions usually span multiple time periods and generally involve, but are
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†The Dow Chemical Company. Midland, MI, 48674, USA.
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1 Introduction

not limited to determining the amount of raw materials to be purchased by each plant, the
production and inventory levels at each plant, the transportation of intermediate and finished
products between different locations, and meeting the forecast demand. It is clear that all
those decisions may be subject to some kind of uncertainty. For instance, the availability
of a key raw material may be uncertain, i.e. there may be shortage for certain months in
a year. Another example is the possibility of mechanical failure of pieces of equipment in
a plant or its complete unplanned shutdown, which affects the entire network. Two types
of uncertainty are reported in the literature (Goel & Grossmann, 2006): exogenous (e.g.,
market) and endogenous (e.g., decision-dependent). A review on optimization methods with
exogenous uncertainties can be found in Sahinidis (2004).

A central aspect of Stochastic Programming is the definition of scenarios, which describe
possible values that the uncertain parameters or stochastic processes may take. Applications
in PSE that make explicit use of scenarios expand multiple areas and time scales. Some repre-
sentative examples are: dynamic optimization (Abel & Marquardt, 2000), scheduling (Guil-
lén, Espuña, & Puigjaner, 2006; Colvin & Maravelias, 2009; Pinto-Varela, Barbosa-Povoa, &
Novais, 2009), planning (Sundaramoorthy, Evans, & Barton, 2012; Li & Ierapetritou, 2011;
You, Wassick, & Grossmann, 2009; Gupta & Grossmann, 2012), and synthesis and design
(Kim, Realff, & Lee, 2011; Chen, Adams II, & Barton, 2011). The most common assumption
made in the works listed before is that the scenario tree is given (probabilities and values of
uncertain parameters at every node are known). That is, the “true” probability distributions
are known, and the uncertainty typically is characterized by arbitrary deviations from some
average value based on minimum and maximum values (for instance: low, medium, and high
values with probabilities arbitrarily chosen).

Researchers have also developed decomposition algorithms to tackle large-scale and real-
world instances that originate from explicitly considering scenarios in optimization problems.
We argue that it is equally important to generate scenario trees that satisfactorily capture
the uncertainty in a given problem, as the quality of the solution to the SP problem is directly
influenced by the accuracy of the scenarios. Therefore, it is important to apply systematic
scenario generation methods instead of making assumptions that may be questionable. King
& Wallace (2012) wrote an excellent book on the challenges of optimization modeling under
uncertainty. The authors also discuss the importance of generating meaningful scenarios
(see Chapter 4), as modeling with SP results in a framework with practical and robust
decision-making capability.

These data-driven approaches to optimization problems have become common in the
Operations Research and Management Science communities, and are an example of what is
called Business Analytics (BA) (Bartlett, 2013). After the data collection and management
phase, BA leverages data analysis to make analytics-based decisions that can be divided into
three general layers: descriptive (querying and reporting, databases), predictive (forecasting
and simulation), and prescriptive (deterministic and stochastic optimization) (Davenport &
Harris, 2007). The data-driven scenario generation method described in this paper can be
linked with the descriptive and predictive layers, and then used for decision-making in the
prescriptive layer.

It is worth noting that, even though not usually regarded as a scenario generation method,
the Sample Average Approximation (SAA) method (Kleywegt, Shapiro, & Homem-de-Mello,
2001; Shapiro, 2006) can be used to approximate the continuous probability distribution
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assumed for the uncertain parameters. Specifically, the distributions are sampled, for in-
stance via Monte Carlo sampling, and the expected value function is approximated by the
corresponding sample average function, which is repeatedly solved until some convergence
criterion is met. The size of the sample must be such that a degree of confidence on the final
objective function value is satisfied. In addition, the sampling step becomes more compli-
cated in Multi-Stage SP (MSSP), as conditional sampling is required for the SAA method
to produce consistent estimators. Conditioning on previous events also plays a key role in
the moment matching method as discussed later in the paper.

The goal of this paper is to bring systematic methods for scenario tree generation to
the attention of the Process Systems Engineering community, and give an organizational
structure to the formulations proposed in the literature thus far. We describe in detail the
moment matching method for scenario tree generation. Different formulations of the MMP
are presented. The main inputs or parameters to the MMP are the statistical moments of
either time-independent random variables or stochastic processes. For the latter, statisti-
cal properties can be obtained through the aid of time series forecasting models as will be
demonstrated. In order to cope with under-specified MMPs, we propose an extension to
the MMP, called Distribution Matching Problem (DMP), in which cumulative distribution
data are also matched. For completeness, we briefly present the ideas of scenario reduction
(Dupačová, Gröwe-Kuska, & Römisch, 2003) and remark that moment matching and sce-
nario reduction methods are not mutually exclusive. That is, a (dense) scenario tree can
be generated by matching statistical properties of the historical data, and then it can be
systematically reduced so that the SP becomes tractable.

This paper is organized as follows. Section 2 introduces the moment matching method
as a systematic method to generate scenario trees. Enhancements to each formulation of the
Moment Matching Problem are also proposed. The method is illustrated via a motivating
numerical example for the optimal production planning of a network of chemical plants.
Moreover, approaches for reducing the scenario tree are briefly discussed. Section 3 extends
the methodology to the multi-stage case; the role of modeling stochastic processes is empha-
sized and two approaches are described based on NLP and LP statistical property matching
formulations for generating multi-stage scenario trees. The approaches are illustrated with
a numerical example, and conclusions are drawn in Section 4.

2 Two-Stage Scenario Tree Generation
It is important to recall the role of scenario trees in Stochastic Programming (SP). Scenario
trees are an approximate discretized representation of the uncertainty in the data (Kaut,
2003). They are based on discretized probability distributions to model the stochastic pro-
cesses. The scenario trees are approximate because they contain a restricted number of
outcomes in order to avoid the integration of continuous distribution functions. However,
the size of the scenario trees directly impacts the computational complexity of SP models.

The concerns raised in the above paragraph have motivated the search for methodologies
that can be used to systematically generate scenario trees. Two main classes of methods
can be identified: scenario generation and scenario reduction. In this section, we focus on
scenario generation methods, in particular, the moment matching method, which was
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originally proposed by Høyland & Wallace (2001) and is described as follows. Given an
initial structure of the tree, i.e. number of nodes per stage, it determines at each node the
values for the random variables and their probabilities by solving a nonlinear programming
(NLP) problem. The NLP problem minimizes the weighted squared error between statistical
properties calculated from the outcomes or nodes, and the same properties calculated directly
from the data. Thus, it is based on an L2-norm formulation. If the absolute deviations
from the target properties are minimized as proposed by Ji et al. (2005), then an L1-norm
formulation can be employed, which has the advantage that it can be cast as an LP problem.
In this paper, we present a new formulation of the MMP based on the L∞-norm. Examples
of statistical properties are the first four moments (expected value, variance, skewness, and
kurtosis), covariance or correlation matrix, quantiles, etc.

In this section, we focus on two-stage problems in which the sources of uncertainty do not
have a time-series effect. In Section 3, we present approaches to generating scenario trees
with multiple stages where stochastic processes are the source of uncertainty.

2.1 L2 Moment Matching Problem
In the Moment Matching Problem (MMP), the uncertain parameters of the SP model be-
come variables in a nonlinear optimization formulation as well as the probabilities of the
outcomes. The purpose of the MMP is to find the optimal values for the random variables
and probabilities (see Figure 1) of a pre-specified structure for the scenario tree that minimize
the error between the statistical properties calculated from the tree and the ones calculated
directly from the data.

x1

p1

x2

p2

. . .
xj

pj

. . .
xN−1

pN−1

xN

pN

Figure 1: Two-stage scenario tree for one uncertain parameter.

In the L2 formulation, the squared error is employed in the objective function. Hence,
the NLP formulation can be generically written as follows:

min
x, p

∑
s∈S

ws · (fs(x, p)− Svals)2

s.t.
N∑
j=1

pj = 1
(1)

where x is a vector of random variables (uncertain parameters of the SP model), p is a
vector of probabilities of outcomes, s ∈ S is a statistical property to be matched (target), ws

is the weight for statistical property s, fs(·, ·) is the mathematical expression of statistical
property s calculated from the tree, Svals is the value of statistical property s (target value)
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that characterizes the distribution of the data. Therefore, generating scenario trees via the
solution of the MMP is a data-driven approach in the sense that it does not require assuming
specific parametric probability distributions to model the uncertainty.

Any statistical property that somehow describes the data can be used to measure how
well the scenario tree represents them. Descriptive statistics provides measures that can be
used to summarize and inform us about the probability distribution of the data. Four of
these measures, called moments, (Papoulis, 1991), are the following: mean or expectation,
and the central moments variance, skewness, and kurtosis. The mean or expectation tells
us about the average value in a data set, the variance is a measure of the spread of the data
about the mean, the skewness is a measure of the asymmetry of the data, and the kurtosis
is a measure of the thickness of the tails of the shape of the distribution of the data.

A more detailed definition of the L2 MMP is as follows. The uncertain data are indexed
by i ∈ I, which denotes the entity of an uncertain parameter (for example, a product).
N denotes the number of outcomes per node at the second stage, j ∈ J = {1, 2, . . . , N}
denotes the branches (outcomes) from the root node, and k ∈ K = {1, 2, 3, 4} is the index of
the first four moments. The decision variables are the uncertain parameters of the stochastic
programming problem, xi,j, with corresponding probabilities of outcomes, pj. The moments
calculated from the tree are denoted by variables mi,k and the ones calculated from the data
are denoted by parameters Mi,k. Finally, the second co-moment, i.e. covariance, calculated
between entity i and i′ from the tree and the data are denoted by ci,i′ and Ci,i′ , respectively.
The L2 MMP formulation is given as follows (see Gülpınar, Rustem, & Settergren (2004)).
The goal is to generate a tree (determine the values of xi,j and pj) whose properties match
those calculated from the data (Mi,k and, if applicable, Ci,i′).

(L2 MMP)

min
x, p

zL
2

MMP =
∑
i∈I

∑
k∈K

wi,k(mi,k −Mi,k)2 +
∑

(i, i′)∈I
i<i′

wi,i′(ci,i′ − Ci,i′)2 (2a)

s.t.
N∑
j=1

pj = 1 (2b)

mi,1 =
N∑
j=1

xi,jpj ∀ i ∈ I (2c)

mi,k =
N∑
j=1

(xi,j −mi,1)kpj ∀ i ∈ I, k > 1 (2d)

ci,i′ =
N∑
j=1

(xi,j −mi,1)(xi′,j −mi′,1)pj ∀ (i, i′) ∈ I, i < i′ (2e)

xi,j ∈ [xLBi,j , xUBi,j ] ∀ i ∈ I, j = 1, . . . , N (2f)
pj ∈ [0, 1] ∀ j = 1, . . . , N (2g)

where the weighted squared error between the statistical properties calculated from the tree
and inferred from the data is minimized in (2a), constraints (2b) ensure that the probabil-
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ities of outcomes add up to 1, (2c) represent the calculation of the first moment (mean),
constraints (2d) represent the calculation of higher-order central moments, constraints (2e)
are the expressions for the covariance, and wi,k = w′i,k/M2

i,k and wi,i′ = w′i,i′/C2
i,i′ , where w′i,k

and w′i,i′ are weights, which can be chosen arbitrarily. The bounds on the decision variables
x and p are represented in constraints (2f) and (2g), respectively.

Remark 1. Skewness, Skew, and kurtosis,Kurt, are by definition normalized properties:

Skewi =

N∑
j=1

(xi,j −mi,1)3pj

σ3
i

∀ i ∈ I

Kurti =

N∑
j=1

(xi,j −mi,1)4pj

σ4
i

∀ i ∈ I

where σ2
i = mi,2 is the variance as defined in equation (2d) for k = 2. Therefore, in order to

use constraints (2d) for k > 2 in the L2 MMP, the statistical properties calculated from the
data have to be denormalized.

Remark 2. Before solving the L2 MMP, the number of branches or outcomes from
the root node, N, is pre-specified. Høyland & Wallace (2001) suggest the rule (|I| + 1)N −
1 ∼ number of statistical specifications, where |I| is the number of random variables. The
authors also discuss potential over- and under-specification that may arise from choosing a
value for N. The other inputs or parameters to the L2 MMP are the values of the statistical
properties to be matched. They directly affect the quality of the tree obtained. Hence, care
should be exercised to obtain those properties in a meaningful way, so that the scenario tree
effectively captures the uncertainty in the data.

Remark 3. The use of covariance or correlation information enables one to capture the
linear dependence between multiple sources of uncertainty. More sophisticated and rigorous
ways, such as copulas, to model dependency of distributions in a multivariate structure have
been employed in a few papers, for instance, Sutiene & Pranevicius (2007); Kaut (2013).

Remark 4. Two theoretical concepts in scenario tree generation are stability and bias.
Kaut (2003) defines two types of stability criteria: in-sample and out-of-sample stability.
In-sample stability can be checked by comparing the solutions to the SP model from using
different trees among each other, whereas out-of-sample stability is obtained by comparing
the solutions obtained from different trees with the solution obtained from using “true”
distributions. In practice, only in-sample stability can be tested as we may not know the
true probability distribution of the uncertain parameters. Bias in the tree structures can be
detected if the vector of solution variables are not “too similar” to the one obtained when
solving the SP model with known true probability distributions. Again, this may not be
possible to check in practice. More formal definitions of stability and bias can be found in
Kaut (2003).

The NLP problem in equation (2) is nonconvex and its degree of nonlinearity and non-
convexity increases when attempting to match higher moments. As expected, initialization
plays an important role in such optimization problems. Therefore, local NLP solvers may
encounter numerical difficulties and get stuck in poor local solutions. Systematic multi-start
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methods can be used with local NLP solvers to help overcome the problems aforementioned
by sampling multiple starting points in the feasible region and solving the NLP problem
using each different starting point; however, it must be recognized that multi-start methods
are not a panacea and there is no guarantee of systematically obtaining a global (or near
global) solution to the MMP. Finally, deterministic global optimization solvers can also be
used although at considerable computational expense.

2.2 L1 and L∞ Moment Matching Problems
If the absolute value of the deviations from the target moments and co-moments are min-
imized, then the MMP becomes an L1-norm model as proposed by Ji et al. (2005). A
well-known reformulation of the nondifferentiable absolute value function in the definition of
the objective function consists in splitting the variable in its argument into two non-negative
variables, which correspond to the positive and negative values of the original variable.

The L1 formulation of the MMP is then as follows. Partition the moment and covariance
variables, mi,k and ci,i′ , respectively, into their positive and negative parts m+

i,k, m−i,k, c+
i,i′ ,

and c−i,i′ . Thus, the L1 MMP is given by:

(L1 MMP)

min
x, p

zL
1

MMP =
∑
i∈I

∑
k∈K

wi,k(m+
i,k +m−i,k) +

∑
(i, i′)∈I
i<i′

wi,i′(c+
i,i′ + c−i,i′) (3a)

s.t.
N∑
j=1

pj = 1 (3b)

N∑
j=1

xi,jpj +m+
i,1 −m−i,1 = Mi,1 ∀ i ∈ I (3c)

N∑
j=1

(xi,j −
N∑
j′=1

xi,j′pj′)kpj +m+
i,k −m−i,k = Mi,k ∀ i ∈ I, k > 1 (3d)

N∑
j=1

(xi,j −
N∑
j′=1

xi,j′pj′)(xi′,j −
N∑
j′=1

xi′,j′pj′)pj + c+
i,i′ − c−i,i′ = Ci,i′ ∀ (i, i′) ∈ I, i < i′

(3e)
m+
i,k, m

−
i,k ≥ 0 ∀ i ∈ I, k ∈ K (3f)

c+
i,i′ , c

−
i,i′ ≥ 0 ∀ (i, i′) ∈ I, i < i′

(3g)
xi,j ∈ [xLBi,j , xUBi,j ] ∀ i ∈ I, j = 1, . . . , N

(3h)
pj ∈ [0, 1] ∀ j = 1, . . . , N (3i)

where the weighted absolute deviations between the statistical properties calculated from
the tree and inferred from the data are minimized in (3a), constraints (3b) ensure that the
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probabilities of outcomes add up to 1, (3c) attempts to match the first moment (mean),
constraints (3d) represent the matching of higher-order central moments, constraints (3e)
attempt to match the covariance, and wi,k = |w′i,k/Mi,k| and wi,i′ = |w′i,i′/Ci,i′|, where w′i,k
and w′i,i′ are weights that can be arbitrarily chosen. The bounds on the variables x, p, m+,
m−, c+, and c− are represented by constraints (3f) – (3i).

Another way of formulating the MMP is through the minimization of the L∞-norm of
the deviations with respect to the targets.

(L∞ MMP)

min
x, p

zL
∞

MMP = µ+ γ (4a)

s.t.

Constraints (3b) – (3i)
µ ≥ wi,km

+
i,k ∀ i ∈ I, k ∈ K (4b)

µ ≥ wi,km
−
i,k ∀ i ∈ I, k ∈ K (4c)

γ ≥ wi,i′c
+
i,i′ ∀ (i, i′) ∈ I, i < i′ (4d)

γ ≥ wi,i′c
−
i,i′ ∀ (i, i′) ∈ I, i < i′ (4e)

where µ and γ are scalar variables that account for the maximum deviations in the moments
and covariances, respectively.

2.2.1 Linear Programming L1 and L∞ MMPs

The L2, L1, and L∞ MMPs shown in equations (2), (3), and (4), respectively, are nonlinear
and nonconvex due to the mathematical expressions for the moments since both probabil-
ities and node values are decision variables. Ji et al. (2005) used ideas from Linear Goal
Programming and proposed an LP formulation for the L1 MMP in which only probabili-
ties are decision variables. In this LP formulation, the node values are generally obtained
via some simulation approach. For time-dependent data, such as asset returns in financial
portfolio management applications, a time-series model is used to forecast future expected
values and possibly higher moments. Multiple values above and below the forecast expected
value can be used as the node values or outcomes in the L1 and L∞ LP MMP formulations
and the probabilities of each outcome are left as the decision variables. In PSE applications,
uncertain parameters that typically have a time component are product demand and market
price.

Let xi,j be a parameter with the value of the uncertain parameter that can be arbitrarily
chosen or calculated from some simulation procedure, for example simulation of time-series
forecasting models. As long as there are at least two values, for example xi,j and xi,j′ , that
are symmetric with respect to the mean, then the expected value can always be matched
(see Proposition 1 in Ji et al. (2005)) and the L1 LP MMP is given as follows:
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(L1 LP MMP)

min
p

zL
1

LP MMP =
∑
i∈I

∑
k∈K\{1}

wi,k(m+
i,k +m−i,k) +

∑
(i, i′)∈I
i<i′

wi,i′(c+
i,i′ + c−i,i′) (5a)

s.t.
N∑
j=1

pj = 1 (5b)

N∑
j=1

xi,jpj = Mi,1 ∀ i ∈ I (5c)

N∑
j=1

(xi,j −Mi,1)kpj +m+
i,k −m−i,k = Mi,k ∀ i ∈ I, k > 1 (5d)

N∑
j=1

(xi,j −Mi,1)(xi′,j −Mi′,1)pj + c+
i,i′ − c−i,i′ = Ci,i′ ∀ (i, i′) ∈ I, i < i′ (5e)

m+
i,k, m

−
i,k ≥ 0 ∀ i ∈ I, k ∈ K (5f)

c+
i,i′ , c

−
i,i′ ≥ 0 ∀ (i, i′) ∈ I, i < i′ (5g)

pj ∈ [0, 1] ∀ j = 1, . . . , N (5h)

Likewise, the L∞ LP MMP can be formulated as follows:

(L∞ LP MMP)

min
p

zL
∞

LP MMP = µ+ γ (6a)

s.t.

Constraints (5b) – (5h)
µ ≥ wi,km

+
i,k ∀ i ∈ I, k ∈ K (6b)

µ ≥ wi,km
−
i,k ∀ i ∈ I, k ∈ K (6c)

γ ≥ wi,i′c
+
i,i′ ∀ (i, i′) ∈ I, i < i′ (6d)

γ ≥ wi,i′c
−
i,i′ ∀ (i, i′) ∈ I, i < i′ (6e)

Obviously, it may be more advantageous to solve an LP problem instead of a nonconvex
NLP problem. For multi-stage stochastic problems with time-dependent uncertain parame-
ters, the solution strategy is much more complex when applying the NLP model instead of
the LP formulation. Details are given in Sections 3.1 and 3.2.

2.3 Remarks on the MMP Formulations
Each Lp-norm formulation for the MMP produces different solutions, i.e. different values
of probabilities, and when applicable, outcomes. This can be explained by the properties of
Lp-norms of vectors. To illustrate, consider a vector x ∈ R2 where the goal is to approximate
it using a point in a one-dimensional affine space A. In other words, we wish to find x̂ ∈ A
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that it minimizes the error measured by an Lp-norm denoted by ||x − x̂||p. Figure 2 shows
the best approximation for the cases where p = 1, 2, and ∞ (Eldar & Kutyniok, 2012). The
geometric shapes correspond to Lp spheres. Notice that the larger p tends to spread out the
error more evenly, while smaller p leads to an error that is more unevenly distributed and
tends to be sparse. This observation generalizes to higher dimensions.

Figure 2: Best approximation of a point in R2 by a one-dimensional subspace using the
Lp-norms for p = 1, 2, and ∞. (Eldar & Kutyniok, 2012)

It has been our experience that it is common to have under-specified NLP and LP prob-
lems when only moments are matched. This is due to the fact that not enough information
to be matched (statistical properties) is provided to achieve non-degenerate solutions. The
consequences are that multiple choices for the node values and/or probabilities yield the
same objective function value. In other words, multiple trees with the same number of
nodes and having very different node values and (sometimes zero) probabilities satisfy the
specifications. In addition, we observed that the Lagrange multipliers associated with all
constraints in the models are zero or very small at the optimal solution obtained by local
and global solvers. Moreover, the distribution obtained from solving the MMPs does not
exhibit a similar shape as the distribution of the data even when up to four moments were
matched.

Therefore, we propose including additional statistical properties to be matched in order
to avoid solving an ill-posed problem, and to ensure that the shape of the distribution of the
data is captured in the solution. This is also motivated by the fact that in certain applications
it may not be practical to obtain accurate estimates of higher moments as a large amount of
data is needed. Consequently, fewer moments may be matched based on their availability,
while still capturing the shape of distribution of data with the scenario tree. Lastly, our
numerical experiments demonstrate that the same solution vector is achieved by local and
global solvers. That is, only one tree satisfies the specifications, although theoretically there
is no guarantee that this property holds true due to nonconvexity in the NLP models.

An enhanced formulation – Distribution Matching Problem (DMP) – based on the MMP
is proposed that not only attempts to match moments, but also the Empirical Cumulative
Distribution Function (ECDF) of the data as explained in the next section.

2.4 Distribution Matching Problem
In this section, we propose enhancements to the L2, L1, L∞ MMPs, and the L1 and L∞ LP
MMPs in order to also match an approximation to the Empirical Cumulative Distribution
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Function (ECDF) of the data. Before describing the steps of the algorithm to incorporate
the ECDF information into the optimization models, some definitions are presented.

For a given random variable (r.v.) Z, the probability of Z to take on a value, say z, less
than or equal to some value t is given by the Cumulative Distribution Function (CDF), or
mathematically CDF (t). A CDF is associated with a specific Probability Density Function
(PDF), for continuous r.v.s, or Probability Mass Function (PMF), for discrete r.v.s. In order
to avoid making assumptions about the distribution model, an estimator of the CDF can be
used, the Empirical CDF (ECDF), which is defined as follows (van der Vaart, 1998):

ECDF (t) = 1
n

N∑
i=1

1{zi ≤ t} (7)

where n is the sample size and 1{A} is the indicator function of event A, that takes the value
of one if event A is true, or zero otherwise. Therefore, given a value t, the ECDF returns
the ratio between the number of elements in the sample that are less than or equal to t and
the sample size.

Every CDF has the following properties:

• It is (not necessarily strictly) monotone non-decreasing;

• It is right-continuous;

• lim
x→−∞

CDF (x) = 0; and

• lim
x→+∞

CDF (x) = 1.

We note that most CDFs are sigmoidal. Therefore, the ECDF, as an estimator of the CDF,
is also “S-shaped” in most cases. Hence, in order to incorporate the ECDF data in the
optimization models in a smooth way, we propose fitting the Generalized Logistic Function
(GLF) (Richards, 1959), also known as Richards’ Curve, or a simplified version (for instance,
the Logistic Function is a special case of the GLF). The GLF is defined as follows:

GLF (x) = β0 + β1 − β0

(1 + β2e−β3x)1/β4
(8)

where β0, β1, β2, β3, and β4 are parameters to be estimated. When fitting the GLF to
ECDF data, the GLF can be simplified by setting β0 = 0 and β1 = 1 as these parameters
correspond to the lower and upper asymptotes, respectively. Analytical expressions for the
partial derivatives of GLF (x) with respect to its parameters can be derived and used to form
the Jacobian matrix for least-squares fitting purposes.

The algorithm for generating a two-stage scenario tree, where the uncertain parameters
have no time-series effect, by matching moments and ECDF is described as follows:

Step 1: Collect data for the (independent) uncertain parameters and obtain individual
ECDF curves for each data set.

Step 2: Approximate each ECDF curve obtained by fitting the Generalized Logistic Func-
tion (GLF) or a simplified version.
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Step 3: Solve a Distribution Matching Problem (DMP) defined in equations (9), (10), or
(11).

Remark. We note that if a particular probability distribution family is assumed, i.e. a
parametric approach is taken, then CDF information rather than ECDF data can be used in
the DMP. This avoids the extra step of fitting a smooth curve to the ECDF data. However,
very few distribution families have closed-form expressions for the CDF. Thus, approximate
formulas have to be used in order to avoid evaluating integrals in the DMP.

Extended versions of the three MMP formulations for Step 3 are presented as follows.
Note that since ECDF information is taken into account, we must ensure that the values of
the nodes in the tree are ordered, i.e. order statistics. The convention adopted is the follow-
ing: xi,1 ≤ xi,2 ≤ . . . ≤ xi,N, which is ensured via additional inequalities in each extended
NLP model. Because the node values are ordered, the summation ∑j

j′=1 pj′ represents the
cumulative probability of the node value xi,j.

(L2 DMP)

min
x, p

zL
2

DMP = zL
2

MMP +
∑
i∈I

N∑
j=1

ωi,jδ
2
i,j (9a)

s.t.

Constraints (2b) – (2g)

ÊCDF (xi,j)−
j∑

j′=1
pj′ = δi,j ∀ i ∈ I, j = 1, . . . , N (9b)

xi,j ≤ xi,j+1 ∀ i ∈ I, j = 1, . . . , N− 1 (9c)

where the variables δi,j represent the deviations with respect to the ECDF data, which in turn
are approximated by, for example, the GLF and is represented by the expression ÊCDF (xi,j).
In addition to minimizing the weighted square errors from matching (co-)moments, the sum
of squares of the deviations δi,j is also minimized with given weights ωi,j that can be chosen
relative to the weights for the term involving the moments. Thus, the weights represent a
trade-off between matching sample (co-)moment data and a smooth representation of the
(E)CDF.
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(L1 DMP)

min
x, p

zL
1

DMP = zL
1

MMP +
∑
i∈I

N∑
j=1

ωi,j(δ+
i,j + δ−i,j) (10a)

s.t.

Constraints (3b) – (3i)

ÊCDF (xi,j)−
j∑

j′=1
pj′ = δ+

i,j − δ−i,j ∀ i ∈ I, j = 1, . . . , N (10b)

xi,j ≤ xi,j+1 ∀ i ∈ I, j = 1, . . . , N− 1 (10c)

where the variables δ+
i,j and δ−i,j represent the positive and negative deviations with respect

to the ECDF data, respectively. The expression ÊCDF (xi,j) represents the approximation
to the ECDF data obtained by, for example, fitting the GLF. The weights to the deviations
are given by ωi,j.

(L1 LP DMP)

min
p

zL
1

LP DMP = zL
1

LP MMP +
∑
i∈I

N∑
j=1

ωi,j(δ+
i,j + δ−i,j) (11a)

s.t.

Constraints (5b) – (5h)

ÊCDF (xi,j)−
j∑

j′=1
pj′ = δ+

i,j − δ−i,j ∀ i ∈ I, j = 1, . . . , N (11b)

The constant expression ÊCDF (xi,j) represents the approximation to the ECDF data ob-
tained by, for example, fitting the GLF. Note that it is required that the vector of node
values is ordered, that is, xi,j ≤ xi,j+1 for j = 1, . . . , N− 1.
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(L∞ DMP)

min
x, p

zL
∞

DMP = zL
∞

MMP + ξ (12a)

s.t.

Constraints (3b) – (3i) and (4b) – (4e)

ÊCDF (xi,j)−
j∑

j′=1
pj′ = δ+

i,j − δ−i,j ∀ i ∈ I, j = 1, . . . , N (12b)

ξ ≥ ωi,jδ
+
i,j ∀ i ∈ I, j = 1, . . . , N (12c)

ξ ≥ ωi,jδ
−
i,j ∀ i ∈ I, j = 1, . . . , N (12d)

xi,j ≤ xi,j+1 ∀ i ∈ I, j = 1, . . . , N− 1 (12e)

(L∞ LP DMP)

min
p

zL
∞

LP DMP = zL
∞

LP MMP + ξ (13a)

s.t.

Constraints (5b) – (5h) and (6b) – (6e)

ÊCDF (xi,j)−
j∑

j′=1
pj′ = δ+

i,j − δ−i,j ∀ i ∈ I, j = 1, . . . , N (13b)

ξ ≥ ωi,jδ
+
i,j ∀ i ∈ I, j = 1, . . . , N (13c)

ξ ≥ ωi,jδ
−
i,j ∀ i ∈ I, j = 1, . . . , N (13d)

where ξ is a scalar variable that accounts for the maximum deviations in the ECDF infor-
mation.

If a parametric approach to the distribution family is taken, then the term ÊCDF (·) can
be substituted by an exact closed-form expression, represented by CDF (·), or an approxi-
mate formula, denoted by C̃DF (·), and no curve fitting is needed.

The distribution matching method is illustrated in the following motivating example in
which the objective is to determine the optimal production plan of a network of chemical
facilities or plants. For simplicity, the only uncertain parameter considered is the production
yield of one facility in the network. The example demonstrates the impact that selecting a
scenario tree has on the quality of the solution of the stochastic model.

2.5 Example 1: Uncertain Plant Yield
Figure 3 shows the network of the motivating example used throughout the paper. It consists
of a raw material A, an intermediate product B, finished products C and D (only product
D can be stored), and facilities (plants) P1, P2, and P3. Product C can also be purchased
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from a supplier, or in the case of multiple sites, it could be transferred from another site
that also produces it.

Supply A P1 B

P2

P3

C

D

Purchase

Sales

Sales

Storage

xpurchA,t yrateP1,t wrate
P1,t

yrateP2,t

yrateP3,t

wrate
P2,t

wrate
P3,t

xpurchC,t

xsalesC,t

xsalesD,t

winv
D,t

Figure 3: Network structure for the motivating Example 1.

The Linear Programming (LP) formulation has the following main elements: variables
corresponding to the inlet/outlet flow rates to/from facility f in time period t, yratef,t and wrate

f,t

respectively; production yields for each facility, θf ; and demands for each finished product
m ∈ FP in time period t, ξm,t. The deterministic multiperiod optimization model is given
as follows:

max wprofit (14a)
s.t. wrate

f,t = θfy
rate
f,t ∀ f ∈ F, t ∈ T (14b)

xsalesC,t = wrate
P2,t + xpurchC,t ∀ t ∈ T (14c)

winv
D,t = winv

D,t−1 + wrate
P3,t − xsalesD,t ∀ t ∈ T (14d)

wrate
P1,t = yrateP2,t + yrateP3,t ∀ t ∈ T (14e)

xpurchA,t = yrateP1,t ∀ t ∈ T (14f)
xsalesm,t + slacksalesm,t = ξm,t ∀ m ∈ FP, t ∈ T (14g)
wrate
f,t ≤ wrate,max

f,t + slackmax,cap
f,t ∀ f ∈ F, t ∈ T (14h)

wrate
f,t ≥ wrate,min

f,t − slackmin,cap
f,t ∀ f ∈ F, t ∈ T (14i)

winv
D,t ≤ winv,max

D,t ∀ t ∈ T (14j)
xpurchA,t ≤ xpurch,max

A,t ∀ t ∈ T (14k)

where constraints (14b) relate the output flows with the input flows through the yield of each
facility f , constraints (14c) – (14f) represent material and inventory balances, equations (14g)
represent the demand satisfaction and slack variables are employed to account for possible
unmet demand, constraints (14h) – (14k) are limitations in the flows, storage, raw material
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availability, and capacity violations, respectively, and the profit is calculated as follows:

wprofit =
∑
t∈T

 ∑
m∈FP

SPm,txsalesm,t −
∑
f∈F

OPCf,tw
rate
f,t −

∑
m∈M :MPUR=1

PCm,tx
purch
m,t −

∑
m∈M :MINV=1

ICm,tw
inv
m,t −

∑
m∈FP

PENm,tslack
sales
m,t −

∑
f∈F

PENf,t(slackmax,cap
f,t + slackmin,cap

f,t )


where SPm,t is the selling price of material m in period t, OPCf,t is the operating cost of
facility f in period t, PCm,t is the purchase cost of material m in period t, ICm,t is the
inventory cost of material m in period t, and PENm,t denotes the penalty associated with
unmet demand.

Consider historical data showing the variability of the production yield of facility P1,
θP1, with 120 data points, which represent monthly records of θP1 for a period of ten years.
The distribution of θP1 is depicted in a histogram as shown in Figure 4. Only the first two
moments and ECDF data were estimated from the randomly generated production yield
values. The simplified GLF (β0 = 0 and β1 = 1) fit to ECDF data and the estimated
parameters are shown in Figure 5. Details of the procedure for generating the historical
data for θP1, fitting the simplified GLF, and the remaining parameters for the production
planning model are given in Appendix A.

Figure 4: Distribution of the historical data for the production yield of facility P1.

Figure 5: ECDF data of the production yield of facility P1 fitted by a simplified GLF.
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To simplify the analysis, we model this multiperiod production planning problem as
a Two-Stage Stochastic Programming (TSSP) problem. There are four time periods that
correspond to a quarterly production plan problem over the course of one year time horizon.
The first stage or here-and-now variables are all the model variables in the model at the
first time period, t = 1, whereas the second stage or wait-and-see variables are all the
model variables at the remaining time periods, t > 1. All the DMPs and the deterministic
equivalent of the TSSP models are implemented in AIMMS 3.13 (Roelofs & Bisschop, 2013).
The DMPs were solved with IPOPT 3.10.1 using the Multi-Start Module in AIMMS and the
TSSP model was solved with Gurobi 5.1. The model sizes are small; therefore, CPU times
are not reported. In the DMPs, the yield variables were bounded below by the minimum
data point, and above by the maximum data point.

Five scenarios are selected for the two-stage scenario tree. Two approaches are compared:
heuristic and DMP, which includes the optimization models described in Subsection 2.4. The
heuristic approach represents an arbitrary way to construct a scenario tree that does not
consider the distribution of the historical data. From minimum and maximum data values
(e.g., production yield that can vary between 0 and 1), their arithmetic mean is calculated
(center node) and the values of the other nodes are calculated by fixed deviations of ±20%
and ±40% from the mean node. Therefore, the tree in this example has five nodes in the
second stage. Also, the probabilities are arbitrarily chosen. Notice that by not visualizing the
distribution of the uncertain parameter, choice of outcomes and their probabilities may not
satisfactorily characterize the shape of the distribution of the actual data. In other words,
the heuristic scenario tree does not represent the actual problem data and the production
plan obtained may not be very meaningful. The DMP approach calculates the probabilities
(both LP and NLP formulations) and values of the nodes (only NLP formulations) in order to
match statistical properties that describe the distribution of the yield data. The targets for
the DMPs include the first two moments and ECDF data. Figure 6 shows the probabilities
and yield values obtained for the five-scenario tree in each approach.
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Figure 6: Probability profiles for the heuristic and optimization-based (DMP) approaches in
Example 1. For reference, a histogram of the uncertain data is depicted in Figure 4.

Note that despite attempting to match only the first two moments, the additional ECDF
information allows for the probability profiles obtained by solving the L2 DMP, L1 DMP and
L∞ DMP formulations to satisfactorily capture the shape of the distribution of the uncertain
parameter. The yield distribution as shown in Figure 4 is skewed to the right, which results
in higher probabilities assigned to node values that are slightly higher than the mean yield
(0.7301). Such characteristic is not captured in the heuristic approach. Thus, it does not
satisfactorily represent the actual data. It was observed that the probabilities obtained with
the L1 LP DMP and L∞ LP DMP formulations were strongly dependent on the node values
chosen and this fact will affect the remaining results shown below. The objective function
value of the three DMP formulations are shown in Table 1. Note that the extra degrees of
freedom associated with considering the node values as variables (NLP formulations) resulted
in smaller deviations in the matching procedure for the choices of weights (see Appendix A).

Table 1: Objective function values of the DMP formulations in Example 1. The values
represent the error of matching the statistical properties.

Model Objective Function
L2 DMP 0.0081
L1 DMP 0.1453

L1 LP DMP 0.5200
L∞ DMP 0.0918

L∞ LP DMP 0.2317

Table 2 shows the optimal expected profit of the stochastic production planing model
in equation (14). The relatively low expected profit by using the heuristic approach can
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be explained due to high probabilities placed on production yields below the mean of the
actual yield data. In other words, the scenario tree in the heuristic approach is pessimistic
for the values chosen for the production yield of facility P1. Ultimately, the tree in the
heuristic approach is an inaccurate representation of the yield data. However, note that
the magnitude of the expected profit of the TSSP problem is not an assessment of the
quality of each solution with respect to the “true” solution that would be obtained if the
true distributions were known and were not approximated by finite discrete outcomes. The
LP deterministic equivalent two-stage stochastic program has 273 constraints, 305 variables,
832 nonzeros, and was solved in not more than 0.02 seconds for all approaches.

Table 2: Expected profit of the production planning model in Example 1 using the scenario
trees from two approaches.

Approach Expected Profit [$]
Heuristic 65.43
L2 DMP 73.23
L1 DMP 73.70

L1 LP DMP 76.48
L∞ DMP 77.05

L∞ LP DMP 76.39

Figures 7 and 8 show the different production plans obtained for each approach. Specif-
ically, the solution obtained with the heuristic approach predicted higher overall inventory
levels of product D for the time horizon under consideration. Moreover, using the tree ob-
tained with the heuristic approach incurred higher purchase amounts of product C in every
period in the time horizon, which can explained by the fact that the scenario tree in that
approach is constructed around a lower mean than the actual mean estimated from the data.

Figure 7: Optimal inventory levels of product D from using the scenarios obtained from
heuristic and DMP approaches.
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Figure 8: Optimal purchase amounts of product C from using the scenarios obtained from
heuristic and DMP approaches.

Finally, the quality of the stochastic solutions was assessed using a simulation-based
Monte Carlo sampling scheme that provides statistical bounds on the optimality gap (Bayrak-
san & Morton, 2006). The optimality gap is defined as the difference between an approx-
imation of the “true” stochastic solution (very large tree to approximate the continuous
distribution of the yield) and the candidate stochastic solution. In this context, a candidate
stochastic solution refers to the first-stage decisions of the TSSP when using the scenario
trees from either heuristic or DMP approaches. The Multiple Replications Procedure (MRP)
was used with twenty replications, and each replication contains one hundred independent
scenarios. In each replication, the gap between the approximate true solution and the candi-
date solution is calculated. Table 3 shows the average gap of all replications plus one-sided
confidence intervals for 95% confidence. The results suggest that the stochastic production
planning solutions obtained by using the trees generated by the L2 DMP and L1 DMP ap-
proaches are closer to the true solution as seen from the small optimality gap. Note that
since the historical data were artificially generated, i.e. the data-generating mechanism
(distribution) is known (see Appendix A), a Monte Carlo sampling strategy can be used.

Table 3: Average value and upper bound of the optimality gap of the stochastic production
planning model in Example 1.

Approach Avg Gap [$] Upper Bound [$]
Heuristic 0.21 0.29
L2 DMP 0.04 0.10
L1 DMP 0.04 0.11

L1 LP DMP 0.70 0.91
L∞ DMP 0.37 0.50

L∞ LP DMP 0.70 0.91

The results in Table 3 clearly show that selecting the scenario tree as an input to the
stochastic optimization model is crucial to obtain a meaningful solution of an SP formula-
tion. The distribution matching method is a scenario generation method that allows creating
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scenario trees that satisfactorily represent the distribution of the data, so that the decisions
made with the stochastic optimization model are supported by factual probabilistic infor-
mation.

2.6 Reducing the Scenario Tree
Two methods have been commonly used in the literature to remove scenarios by aggregating
neighboring nodes in a scenario tree. The scenario reduction method, originally proposed
by Dupačová, Gröwe-Kuska, & Römisch (2003), and later improved by Heitsch & Römisch
(2009), is a heuristic that attempts to generate a tree with pre-specified number of scenarios
that is the closest to the “original” distribution according to a probability metric. The
intuitive idea is to find a subset of the original set of scenarios of prescribed cardinality
that has the shortest distance to the remaining scenarios. Feng & Ryan (2013) modified
that method to also account for what the authors call “key” first-stage decisions in the
aggregation of scenarios in addition to probability metrics.

Another common approach to reduce the number of scenarios comes from clustering
methods in data mining (Hastie, Tibshirani, & Friedman, 2009). In particular, some authors
have used variants of the k-means clustering algorithm, where the main goal is to group or
aggregate paths in the scenario tree that are “near” to each other according to some distance
metric that is minimized. For instance, Xu, Chen, & Yang (2012) proposed a k-means
algorithm that generates a scenario tree from a fan-like tree that not only groups paths that
are near in a probabilistic sense, but also accounts for inter-stage dependency of the data.

3 Multi-Stage Scenario Tree Generation
The MMPs in equations (2) – (6) and DMPs in equations (9) – (13) can be applied to both
two-stage and multi-stage cases. When generating multi-stage scenario trees, a statistical
property matching problem is solved at every node of the tree except at the leaf or terminal
nodes. Multi-stage scenario trees can be viewed as a group of two-stage subtrees that are
formed by branching out from every node except the leaf nodes. The complication in gener-
ating multi-stage scenario trees with interstage dependency lies in the fact that the moments
calculated for each path into future stages are dependent on the previous states or nodes
present in each path. Therefore, prediction of future events (time series forecasting) must
be combined with property matching optimization as will be described below.

For stochastic processes, such as time-series data of product demands, statistical proper-
ties can be estimated through forecasting models that take into account information that is
conditional on past events. Appendix ?? contains more details of using time series forecasting
models to estimate the statistical properties.

Time series forecasting models play an essential role in generating scenario trees when
there is a time-series effect in the uncertain parameters. Briefly, mathematical models are
fit to the historical data and their predictive capabilities provide conditional (co-)moments
of the uncertain parameters at future stages. The moments are conditional on past events.
That is, they take into account the serial dependency of the time-stamped observed values
of the uncertain parameters. Hence, the statistical moments are supplied to the property
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matching optimization models at each non-leaf node and the scenario tree is consistently
generated. Moreover, simulation of the time series models can be used to generate data of
which an ECDF can be constructed and approximated with a smooth function, such as the
GLF or a simplified version (see Subsection 2.4).

In the next two sections, we present two sequential solution strategies for generating a
multi-stage scenario tree: NLP Approach and LP Approach. We focus on the DMP formu-
lations, where L2 DMP, L1 DMP and L∞ DMP are nonlinear (both node values and proba-
bilities are variables), whereas L1 LP DMP and L∞ LP DMP are linear (only probabilities
are variables). Each approach comprises two main steps, forecasting and optimization,
which are summarized below:

Forecasting Step: After successfully fitting a time series model to the data, forecast future
values.

• Input: observed data represented by the nodes
• Output: conditional moments and ECDF information to be matched in the opti-

mization step

Optimization Step: Solve a DMP at a given node in the tree.

• Input: conditional moments estimated by the forecasting step
• Output: probabilities of outcomes, and if using the NLP approach, values of the

nodes

Remark 1. Conditional (co-)moments are readily available via forecasting. ECDF
information can be obtained through simulation of time series models, and a brief overview
is given in ?? in Appendix ??. If a particular family of distribution is assumed for the
forecast data, then the CDF or an approximate expression can be used instead as illustrated
in Example 2 (Subsection 3.3).

Remark 2. Instead of a forecasting step, some authors have used a simulation step to
generate the targets (conditional moments) to the optimization step and/or the values of
the nodes in the scenario tree. For example, Høyland, Kaut, & Wallace (2003) proposed
a heuristic method to produce a discrete joint distribution of the stochastic process that
is consistent with specified values of the first four marginal moments and correlations. In
addition, due to the independence of the optimization problems to be solved at each node of
a given stage, there is an opportunity for parallel algorithms to speed up the solution process
(Beraldi, De Simone, & Violi, 2010).

3.1 NLP Approach
A general solution strategy for generating a multi-stage scenario tree using the NLP formu-
lations of the DMP consists of alternating the two main steps described above in a shrinking-
horizon fashion, i.e. marching forward in time, node-by-node and stage-by-stage until the
end of the time horizon. Figure 9 depicts the sequence of steps in the approach. The black
dots (past region) in each subfigure correspond to historical data of the uncertain parameter
under consideration, the blue line represents the time series model used to make predictions
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of the stochastic process, the red dots (future region) are the possible future states that
the stochastic process will visit, and the grey shaded area surrounding the red dots denotes
the estimated prediction confidence limits for a given significance level of α, i.e. α = 0.05
indicates 95% confidence. Note that by connecting parent nodes to their descendants (from
left to right), a scenario tree is obtained.

The algorithm can be stated as follows.

Step 0: Start at the root (“present”) node whose value is known. Set it as the current node.

Step 1: If not the last stage in the time horizon, then perform a one-step-ahead forecast
from the current node to estimate conditional moments.

Step 2: Simulate the time series model including observations up to the current node, con-
struct the ECDF curve, and approximate it by a smooth function, such as the GLF
or a simplified version.

Step 3: Solve a nonlinear DMP to determine the node values and their probabilities for the
next stage.

Step 4: For each node determined, set it as the current node and go to Step 1.

In Figure 9, the blue curve represents the time series model, the black dots represent
past or historical data, the green dot is the current or present state, and the red dots are
the future states. For demonstration purposes, Figure 9(c) only shows the forecasting step
for the bottom node generated in the first optimization step. Note that some nodes may lie
outside the confidence interval predicted by the forecasting step; this allows more extreme
events to be captured in the scenario tree, which in turn subject the stochastic programming
problem to riskier scenarios and may lead to more “robust” solutions.
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(a) First one-step-ahead forecasting step to predict the most likely value of the stochastic process
in the next stage as well as possible higher moments and distribution information from simulation.

(b) Optimization step to calculate probabilities and nodes for the next stage. Optionally, the node
corresponding to the conditional mean may be fixed in the DMP.

(c) One-step-ahead forecasting step from a given node obtained in the optimization step before.
Repeat these steps for every node generated in every stage until the end of the time horizon
considered.

Figure 9: Alternating forecasting and optimization steps in generating multi-stage scenario
trees using the NLP Approach. CI denotes the confidence interval estimated at each forecast
and ECDF means Empirical Cumulative Distribution Function.

The complexity in implementing this approach in practice is the communication between
the forecasting and the optimization steps at every non-leaf node in the tree. On the other
hand, the approach using the LP formulations of the property matching problems only
alternates between the forecasting and optimization steps once. The next section contains
our proposed approach, and we note that there are variants in the literature that for instance
use clustering algorithms as discussed in Subsection 2.6.

3.2 LP Approach
The only decision variables in the LP formulation in equation (11) are the probabilities of
the outcomes. Therefore, if the node values are known in advance, then a single optimization
problem can be solved for the entire tree to compute their probabilities. Thus, the approach
has only two steps: (1) the forecasting step generates the nodes plus the statistical properties
to be matched, and (2) an LP DMP is solved for all non-leaf nodes simultaneously. The
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optimization step is a straightforward solution of an LP problem, whereas the forecasting
step contains elements that are particular to a specific strategy.

The strategy for the forecasting step proposed in this paper is shown in Figure 10. As
shown in Figure 10(a), after performing a one-step-ahead forecast from the present node to
the base or most likely node in the second stage, additional nodes are created by adding and
subtracting multiples of the standard error of the forecast to the base node. The number
of additional nodes above and below the base node is chosen a priori. In practice, near-
future stages may be more finely discretized than far-future stages, since the prediction is
less accurate the further into the future it is made. For ease of exposition, Figure 10(b)
shows the forecast from the second to the third stage of one of the nodes created in the
second stage. The process is repeated for every node in every stage, except the last one of
the time horizon considered.

(a) First one-step-ahead forecasting step to predict the most likely value of the stochastic process
in the next stage. Create new nodes by adding and subtracting multiples of the standard error, σe,
of the forecast to the base node.

(b) For each node created, perform a one-step-ahead forecast and create new nodes. Repeat the
process until the end of the time horizon considered.

Figure 10: Proposed forecasting step in generating multi-stage scenario trees using the LP
Approach. σe, CI, and ECDF denote the standard error, confidence interval estimated at
each forecast, and the Empirical Cumulative Distribution Function, respectively.

In summary, the main difference between the NLP Approach and the LP Approach is
that, in the latter, the forecasting and optimization steps alternate only once as all the nodes
or outcomes of the tree are created in the forecasting step, and then the optimization step
is executed to compute the probabilities.

The next example demonstrates how the two approaches can be used to generate a multi-
stage scenario tree when product demand is uncertain.
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3.3 Example 2: Uncertain Product Demands
Consider the same network depicted in Figure 3 and the deterministic multiperiod production
planning model defined in (14). In this case, the product demands of C and D are the
uncertain parameters. The planning horizon is one year, which is divided into time periods
of quarters. Quarterly historical demand data are given from the years of 2008 to 2012. Thus,
the frequency (number of observations per year) of the time series is four. The objective
is to obtain the optimal quarterly production plan for the year of 2013. As in Example 1,
all optimization models were implemented in AIMMS 3.13. The NLP problems were solved
with IPOPT 3.10.1 using the multi-start module in AIMMS with 30 sample points and 10
selected points in each iteration. All LP models were solved with CPLEX 12.5. In the DMPs,
the demand variables were bounded below by half the minimum and above by double the
maximum historical demand data points.

A common approach for deciding the structure of multi-stage trees is to select more
outcomes per node in earlier stages than in later stages, since the uncertainty in the forecasts
is much higher in the latter. Thus, it is more reasonable to select a finer discretization in
earlier stages. It is then decided that the multi-stage scenario tree has the following structure:
1-5-3-1, which means that the second quarter has five outcomes, the third quarter has tree
outcomes for each outcome in the second quarter, and the fourth quarter has only one
outcome for each outcome of the third quarter, thus, the scenario tree has 15 scenarios as
seen in Figure 11. As in Example 1, a heuristic approach is compared with the optimization-
based DMPs to obtain scenario trees. We consider uncertainty in the demand of both
products C and D. The tree for each individual product demand is obtained as follows. The
center or base node at a given quarter is the arithmetic average of the corresponding quarter
of previous years, and the remaining nodes above and below the base node are obtained by
fixed deviations. Therefore, the node values ignore the serial dependence and time-series
effects in the data. The individual heuristic trees for products C and D were combined into
a single tree with the same structure (1-5-3-1) by overlapping the outcomes for each stage
as shown in Figure 11. Probabilities of outcomes were arbitrarily chosen and are symmetric
with respect to each base node.
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Figure 11: Heuristic scenario tree for the demand of products C and D. The percentage
deviations are computed based on each base node. The values above and below the arcs are
arbitrarily chosen probabilities.

Figure 12 shows the time series demand data for products C and D. The time series
model that best fits the data (see Appendix B for details) is fixed in subsequent forecasts.
That is, when executing an approach no refitting is performed prior to forecasting. The root
node of the tree, which is the node value at the first quarter in 2013 or “Q12013”, is forecast
and assumed to have probability of one. The constant variance for the demand of products
C and D are estimated to be 1.65 t2 and 1.14 t2, respectively, and the properties matched
are first two moments, covariance, and CDF information.

Figure 12: Time series data of the demand of products C and D.

Since the demand data are fitted to a linear Gaussian model (ARIMA), the forecasts
are expected to follow normal distributions. Therefore, an expression for the Cumulative
Distribution Function (CDF) of a normal distribution with mean µ and standard deviation
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σ can be used in the constraints involving ÊCDF (·). In particular, the CDF of a normal
distribution can be written in terms of the error function as follows (Abramowitz & Stegun,
1965):

CDF (x)Normal := Φ
(
x− µ
σ

)
= 1

2

[
1 + erf

(
x− µ
σ
√

2

)]
where erf(·) is the error function defined as the following integral:

erf(x) = 2√
π

∫ x

0
e−t

2
dt

Hence, constraints (9b) can be replaced with,

Φ
xi,j −Mi,1√

Mi,2

− j∑
j′=1

pj′ = δi,j ∀ i ∈ I, j = 1, . . . , N

constraints (10b) and (12b) can be substituted by,

Φ
xi,j −Mi,1√

Mi,2

− j∑
j′=1

pj′ = δ+
i,j − δ−i,j ∀ i ∈ I, j = 1, . . . , N

and finally constraints (11b) and (13b) are rewritten as,

Φ
xi,j −Mi,1√

Mi,2

− j∑
j′=1

pj′ = δ+
i,j − δ−i,j ∀ i ∈ I, j = 1, . . . , N

AIMMS offers a native, numerical approximate implementation of the error function, which
can be directly used in the implementation of the constraints in the DMPs.

Exclusively for the LP DMPs, it was observed that additional constraints on the probabil-
ities were necessary in order to enforce a normal-like profile, i.e. probabilities monotonically
decrease from the center node outward. The additional constraints are given below and are
equivalent to the ones proposed by Ji et al. (2005).

pj ≥ pj′ ∀ j =
⌈
N
2

⌉
, . . . , N, j′ > j

pj ≥ pj′ ∀ j = 1, . . . ,
⌈
N
2

⌉
, j′ < j

For illustration purposes, the scenario trees obtained with NLP and LP approaches are
shown in Figure 13 (L2 DMP) and Figure 14 (L∞ LP DMP), respectively. For the NLP
Approach, the node values in the fourth time period correspond to the conditional means
obtained via forecasting, i.e. no optimization was needed as only one outcome was consid-
ered. It should be noted that the total time for solving the six NLPs with multi-start for
the tree in Figure 13 was 12.35 seconds, while the LP in Figure 14 took 0.02 seconds.
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Figure 13: Scenario tree obtained with the NLP Approach (L2 DMP) for Example 2. Top
and bottom values inside each node are the calculated demands of products C and D,
respectively.
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Figure 14: Scenario tree obtained with the LP Approach (L∞ LP DMP) for Example 2. The
node values are obtained via forecasting and the probabilities are calculated via optimization.
Top and bottom values in each node are the demands of products C and D, respectively.

The optimal expected profit of the production planning model by using the scenario
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tree of the proposed approach as the input, and by solving the deterministic equivalent of
the multi-stage stochastic programming model is shown in Table 4. The heuristic approach
underestimates the expected total profit when compared to the NLP DMPs. Again, we
note that the scenario probabilities and the solution obtained with the LP DMPs is greatly
affected by the node values chosen. The LP deterministic equivalent of the multi-stage
stochastic program has 613 constraints, 685 variables, 1,872 nonzeros, and was solved in less
than 0.02 seconds for all approaches.

Table 4: Expected profit in Example 2 using the scenario trees from heuristic and
optimization-based approaches.

Approach Expected Profit [$]
Heuristic 79.95
L2 DMP 82.39
L1 DMP 82.65

L1 LP DMP 80.04
L∞ DMP 82.41

L∞ LP DMP 80.03

Figures 15 and 16 show the different production plans obtained for each approach at
each quarter. Specifically, the solution obtained with the heuristic approach predicted higher
overall inventory levels of product D for the time horizon under consideration. Moreover,
the solution using the heuristic tree shows very different average flowrates out of plant P2
compared to the ones obtained using the DMP formulations. In real life terms, the production
quota for a plant affects lower-level operability decisions, such as scheduling and control.

Figure 15: Optimal inventory levels of product D from using the scenarios obtained from
heuristic and DMP approaches.
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Figure 16: Optimal flow rates out of plant P2 from using the scenarios obtained from
heuristic and DMP approaches.

Finally, similarly to Example 1, the quality of the stochastic solutions was assessed using
a simulation-based Monte Carlo sampling scheme that provides statistical bounds on the
optimality gap (Chiralaksanakul & Morton, 2004). The optimality gap is calculated using a
tree-based estimator of the lower bound (candidate solution, maximization problem) and the
approximate true solution (upper bound estimator, maximization problem). The simulated
trees have the structure 1-10-10-10, which amounts to one thousand scenarios. All subtrees
are generated by simulating ARIMA processes (see ?? in Appendix ??). Ten replications
of the algorithm (see Procedure P2 in the original paper) were performed to obtain the
confidence interval on the gap. Table 5 shows the one-sided confidence intervals for 95%
confidence. Note that by modeling the demand time series as ARIMA processes, the data-
generating mechanism is known, and Monte Carlo sampling can be performed by simulating
the ARIMA models (see ?? in Appendix ??).

Table 5: Average value and upper bond of the optimality gap of the stochastic production
planning model in Example 2.

Approach Avg Gap [$] Upper Bound [$]
Heuristic 2.03 2.16
L2 DMP 0.92 1.00
L1 DMP 0.93 1.01

L1 LP DMP 1.12 1.35
L∞ DMP 0.93 1.01

L∞ LP DMP 1.04 1.22

Note that the confidence interval of the gaps obtained for all the DMP formulations are
lower than the one obtained for the heuristic approach, which indicates that the scenario
trees generated via the optimization-based procedure are good approximations of the “true”
distribution. In addition, they contain correlation information between the demands of the
two products, thus improving the characterization of the uncertainty.
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4 Conclusions
In this paper, we have described a systematic method for scenario tree generation that can
be used in optimization and simulation solution strategies in Process Systems Engineering
(PSE) problems. The distribution matching method is based on an optimization model that
can be used to calculate the probabilities and values of outcomes in a scenario tree. This
is accomplished by attempting to match statistical properties, such as (co-)moments and
Empirical Cumulative Distribution Function (ECDF) information, calculated from the tree
to the ones estimated from the data. The motivation behind this approach is to ensure
that the scenarios considered in a stochastic programming framework correspond to the
behavior observed in historical and forecast data, as opposed to assigning arbitrary values
and probabilities to the nodes in the scenario tree. Therefore, characterizing the uncertainty
adds value to the solution of the stochastic model used for decision-making.

For multi-stage scenario tree generation, we presented two approaches that can be used
in conjunction with time series forecasting or simulation. The NLP Approach is composed of
two alternating steps: the forecasting or simulation step computes conditional (co-)moments
and ECDF information to be matched, and the optimization step determines the probabilities
and values of the outcomes in order to match those properties. The two steps are alternated
until the prescribed time horizon is completed. The LP Approach also contains the same
two steps, but each step is performed only once. First, the forecasting or simulation step
generates all the nodes in the tree and computes the conditional (co-)moments and ECDF
information, and then the optimization step calculates the probabilities of outcomes.

The quality of the solution of the stochastic programming problems was assessed via
simulation-based Monte Carlo sampling methods. It was shown that the proposed scenario
tree generation methods provide good-quality solutions, and provide a systematic approach
for handling multiple sources of uncertainty, thus generating more compact trees with co-
variance or correlation information.
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Appendix A Data for Example 1
The production yield data were randomly generated using the R programming language
version 3.0.1 (R Core Team, 2013). In particular, the library PearsonDS (Becker & Klößner,
2013) was used to generate 120 random numbers sampled from a Pearson distribution with
given mean, variance, skewness, and kurtosis. The four moments of the generated data were
calculated using functions of the library e1071 (Meyer et al., 2012). The code in Listing A.1
can be used to reproduce the yield data in Example 1.
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library ( PearsonDS )
library (e1071)
moments <- c(mean =0.7 , variance =0.02 , skewness =-1, kurtosis =4)
set.seed (1234)
v <- rpearson (10*12, moments = moments )
data.min <- min(v)
data.max <- max(v)
data.mean <- mean(v)
data.var <- var(v)
data.dskew <- skewness (v)* data.var ^1.5 # Denormalized skewness
data.dkurt <- ( kurtosis (v) + 3)* data.var ^2 # Denormalized kurtosis

Listing A.1: R code to generate production yield data and their moments for Example 1.

Only the first two moments and the ECDF information were considered in the DMPs.
The weights for the moments were chosen such that the weight of the mean is the same as
the weight of the variance, that is wi,k = 1.0/M2

i,k and wi,k = 1.0/|Mi,k| for L2 DMP and
L1 DMP, respectively. The weights for the deviations from the approximation to the ECDF
are equal to one, ωi,j = 1.0. The ECDF data were estimated in MATLAB (The MathWorks
Inc., 2013) with the function ecdf and a simplified GLF (β0 = 0 and β1 = 1) was fit to the
ECDF data by using the function lsqcurvefit with the following options: 10,000 maximum
function evaluations (MaxFunEvals), 10,000 maximum iterations (MaxIter), 10−12 function
tolerance (TolFun), exact Jacobian. Initial guesses for the parameters β2, β3, and β4 were
100, 10, and 1, respectively.

The parameters for the production planning LP model are given in the following tables.

Table A.1: First-stage production yield (θf at t = 1) [-]. For facilities P2 and P3, the yields
remain the same at the second stage.

Facility Group
P1 0.85
P2 0.7
P3 0.9

Table A.2: Product demand (ξm,t) [t].

Product Time Period
1 2 3 4

C 20 10 15 17
D 15 7 12 10
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Table A.3: Maximum inventory (winv,max
m,t ) [t].

Product Time Period
1 2 3 4

D 6 6 6 6

Table A.4: Maximum (minimum) capacity (wmin
m,t and wmax

m,t ) [t].

Facility Time Period
1 2 3 4

P1 20 (5) 20 (5) 20 (5) 20 (5)
P2 18 (0) 18 (0) 18 (0) 18 (0)
P3 19 (2) 19 (2) 19 (2) 19 (2)

Table A.5: Selling price (SPm,t) [$/t].

Product Time Period
1 2 3 4

C 1.75 1.75 1.71 1.71
D 1.10 1.10 1.18 1.18

Table A.6: Operating cost (OPCf,t) [$/t].

Facility Time Period
1 2 3 4

P1 0.26 0.26 0.14 0.14
P2 0.16 1.16 0.13 0.13
P3 0.32 0.32 0.32 0.32

Table A.7: Purchase cost (PCm,t) [$/t].

Product Time Period
1 2 3 4

A 0.05 0.05 0.05 0.05
C 1.00 1.00 1.00 1.00

Table A.8: Inventory cost (ICm,t) [$/t].

Product Time Period
1 2 3 4

D 0.03 0.03 0.03 0.03
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Table A.9: Raw material availability (xpurch,max
A,t ) [t].

Raw Material Time Period
1 2 3 4

A 30 25 27 23

The penalties for unmet demand (PENm,t), and maximum capacity and minimum ca-
pacity violations (PENf,t) are 10 times the selling prices, and proportional to the operating
costs, respectively.

Appendix B Data for Example 2
Time series modeling and forecasting were implemented in the R programming language (R
Core Team, 2013). For demonstration purposes, only ARIMAmodels (see Appendix ??) were
fit to the time series data. The library used for fitting ARIMA models is called forecast
(Hyndman et al., 2013). In particular, the function auto.arima was used to automatically
determine the best ARIMA model that fits the data according to the default information
criterion (Akaike Information Criterion, AIC). Seasonality effects were allowed and no hold
out sample was considered in the fitting process. The time series demand data for both
products C and D were then modeled as ARIMA(1,0,0) processes with non-zero means.
Future values were predicted with 95% level of confidence using the predict function in the
stats library, which is part of R.

The constant variance of ARIMA models was estimated by the sigma2 attribute of the
ARIMA object. For the LP Approach in Subsection 3.2, the standard error of a forecast
was estimated by setting the value of the argument se.fit of the predict function to TRUE.
Covariance information was estimated through R’s builtin function ccf, which estimates the
cross-covariance function of two time series data at different lags. Since the NLP Approach
involves alternating one-step-ahead forecasting with optimization, the estimated covariance
corresponds to the lag 1 outcome of function ccf.

The parameters for the production planning LP model are the same as the data given in
tables Tables A.3 to A.9. In addition, the production yield for all time periods are the same
as those given in Table A.1. The product demand for every stage in each scenario tree is
generated as described in Subsection 3.3.
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