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Abstract

For optimal operation of power-intensive plants, production scheduling and elec-

tricity procurement have to be considered simultaneously. In addition, uncer-

tainty needs to be taken into account. For this purpose, an integrated stochas-

tic mixed-integer linear programming model is developed that considers the

two most critical sources of uncertainty: spot electricity price, and product de-

mand. Conditional value-at-risk is incorporated into the model as a measure of

risk. Furthermore, scenario reduction and multicut Benders decomposition are

implemented to solve large-scale real-world problems. The proposed model is

applied to an illustrative example as well as an industrial air separation case.

The results show the benefit from stochastic optimization and the effect of tak-

ing a risk-averse rather than a risk-neutral approach. An interesting insight

from the analysis is that in risk-neutral optimization, accounting for electricity

price uncertainty does not yield significant added value; however, in risk-averse

optimization, modeling price uncertainty is crucial for obtaining good solutions.
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1. Introduction

Due to high fluctuations in electricity demand and increasing penetration

of intermittent renewable energy into the electricity supply mix, it is becoming

increasingly difficult to match electricity demand and supply in the power grid

(Hand et al., 2012). As a result, electricity prices have become extremely volatile

and difficult to predict, which poses immense challenges to power-intensive in-

dustries, such as air separation, aluminum, and chlor-alkali manufacturing.

For large industrial electricity consumers, there are two ways of dealing with

uncertainty in electricity price: (1) dynamically adjust the production schedule

to changes in the spot price, i.e. shift the electricity load to lower-price peri-

ods, which is also referred to as demand response (Charles River Assosicates,

2005); (2) remove price uncertainty by signing power contracts with agreed fixed

prices. Both strategies can be very effective in reducing the electricity cost, but

they also have their limitations and drawbacks. A plant’s capability for de-

mand response is limited by the flexibility of the production process, which has

to be carefully evaluated in order to avoid detrimental disruptions caused by

sudden changes in the plant operation. Power contracts provide fixed electric-

ity prices; however, this reduction in risk usually comes at the cost of higher

expected average prices. Moreover, power contracts require the consumers to

commit themselves in advance to the amount that they are going to purchase

for a certain period of time. This commitment reduces the consumers’ demand

response opportunities since there is less room for adjustments in response to

real-time price changes. Hence, there is a trade-off between purchasing power

from contracts and from the spot market.

It is clear that often only a combination of the two aforementioned strategies

will lead to the best result. Here, the major challenge in the decision-making

is uncertainty. This uncertainty does not only occur in the electricity price;

another source of uncertainty that has a possibly even greater impact on the

production schedule is product demand. Major operational decisions and deci-

sions regarding the commitment to power contracts have to be made before the

actual spot electricity price and product demand are known for the time hori-

zon of interest. There is only limited room for reactive actions as soon as these

decisions are made. Therefore, it is crucial to account for these uncertainties in

the decision-making process.

The high potential impact of large industrial electricity consumers partici-

pating in demand response is widely acknowledged (Paulus and Borggrefe, 2011;

Samad and Kiliccote, 2012; Merkert et al., 2014) and has been the focus of in-

creased research efforts in recent years. Deterministic scheduling models consid-

ering demand response have been proposed for various industrial power-intensive
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processes such as steelmaking (Ashok, 2006; Castro et al., 2013), cement pro-

duction (Castro et al., 2009, 2011), electrolysis (Babu and Ashok, 2008), and air

separation (Ierapetritou et al., 2002; Karwan and Keblis, 2007; Mitra et al., 2012;

Zhang et al., 2014). However, these models do not consider power contracts but

rather assume that power can only be purchased from the spot market.

Although many works have addressed problems involving power contracts

from an electricity producer’s or retailer’s point of view (Conejo et al., 2008;

Lima et al., 2015; Carrión et al., 2007a; Hatami et al., 2009), the literature is

scarce in papers considering the consumers’ perspective. Conejo et al. (2005)

solve a medium-term electricity procurement problem that considers a set of

bilateral contracts, hourly changing spot prices, and the possibility of produc-

ing electricity with an onsite generating facility. The self-generated power can

be used for own consumption or sold to the spot market. A subsequent work

(Conejo and Carrión, 2006) addresses a similar problem for a shorter time hori-

zon, while considering cost volatility by using an estimate of the covariance of

the spot price. While the models proposed in these two papers are deterministic,

Carrión et al. (2007b) apply stochastic programming to explicitly model uncer-

tainty in electricity prices; furthermore, the conditional value-at-risk (CVaR)

is included in the model as a measure of risk, which is used to show the clear

trade-off between expected cost and risk. A similar trade-off is shown by Zare

et al. (2010) who apply the concept of information gap decision theory to eval-

uate the robustness of a solution against high spot prices or high procurement

costs. Beraldi et al. (2011) consider the short-term electricity procurement prob-

lem involving bilateral contracts and the day-ahead market; here, a stochastic

programming model is solved in a rolling-horizon fashion.

In all the works reviewed in the previous paragraph, the consumer’s elec-

tricity demand profile is assumed to be known and therefore fixed. This implies

that a separate production scheduling problem has to be solved first in order

to determine the electricity demand, which then can be used as input in the

electricity procurement problem. However, this sequential approach is likely

to be suboptimal since the production scheduling problem does not take the

full electricity price information into account. Recently, Zhang et al. (2015)

have introduced a general deterministic model that simultaneously optimizes

the production schedule for a given power-intensive process and the electricity

procurement strategy involving various power contracts.

In this work, in addition to taking an integrated approach, we apply stochas-

tic programming to model uncertainty in both spot electricity price and product

demand, which to the best of our knowledge has not been considered in this con-

text before. Also, risk is taken into account by incorporating the CVaR into

the model. Scenario reduction and multicut Benders decomposition are applied
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to the resulting mixed-integer linear programming (MILP) model in order to

solve large-scale industrial problems. We apply the proposed framework to an

illustrative example and an industrial air separation case. In the analysis of the

results, we emphasize the difference between risk-neutral and risk-averse opti-

mization. Moreover, a comprehensive assessment of the added value gained from

stochastic optimization compared to the deterministic approach is conducted by

computing the value of stochastic solution for a large number of instances.

The remainder of this paper is organized as follows. In Section 2, the prob-

lem statement is presented before the MILP model is developed in Section 3.

Section 4 describes the applied scenario generation and reduction techniques,

while Section 5 outlines the multicut Benders decomposition algorithm. In Sec-

tions 6 and 7, the proposed model is applied to an illustrative example and

an industrial case study, respectively. The main insights from the results are

discussed in Section 8. Finally, in Section 9, we close with a summary and

concluding remarks.

2. Problem statement

We consider a power-intensive continuously operated plant that can produce

a given set of products. Inventory capacities exist for storable products, and

additional products can be purchased at given costs. It is assumed that for

fixed product demand, all production costs, besides the cost of electricity, are

constant. In this way, for optimization purposes, the total operating cost only

consists of the electricity cost and the cost of purchasing additional products.

Electricity can be purchased from the spot market, or from power contracts

that have fixed pre-agreed electricity price and availability conditions. While

purchases from the spot market can be made a day in advance (day-ahead) or on

the spot (real-time), one has to commit to the electricity purchase from power

contracts for a longer period of time, e.g. for one week.

The goal is to optimize the production and electricity procurement schedules

in terms of expected cost and/or risk over a given time horizon. For this purpose,

uncertainty in spot electricity price and product demand is considered. The

decisions can be divided into two sets: one containing here-and-now decisions

that have to be made at the beginning and cannot be changed over the course of

the scheduling horizon, the other containing wait-and-see decisions that can be

adjusted after realization of the uncertainty. In this problem, the here-and-now

decisions are the following in each time period of the scheduling horizon:

� the mode of operation for the production process,

� and the amount of electricity purchased from each power contract,
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where the mode of operation refers to the state in which the plant operates, e.g.

“off”, “on”, or “startup”.

The wait-and-see decisions are:

� the actual production rates,

� the amounts of products stored,

� the amounts of products purchased,

� and the amount of electricity purchased from the spot market.

3. Model formulation

The stochastic scheduling problem is formulated as a mixed-integer linear

program (MILP). The underlying production scheduling model is based on a

formulation developed in previous works (Mitra et al., 2012, 2013; Zhang et al.,

2014). Hence, we only provide brief descriptions of the production schedul-

ing constraints and focus more on the electricity procurement and uncertainty

modeling. Note that unless specified otherwise, all continuous variables in this

model are constrained to be nonnegative. A list of indices, sets, parameters, and

variables used in the model formulation is given in the Nomenclature section.

3.1. Uncertainty modeling strategy

We adopt a stochastic programming (Birge and Louveaux, 2011) approach

to model the uncertainty in electricity price and product demand. In stochastic

programming, uncertainty is represented by discrete scenarios, and decisions are

made at different stages, which are defined such that realization of uncertainty is

observed between two stages, and at each stage, actions depending on previous

observations are taken.

Depending on the type of spot market, the real electricity price can be

observed minutes (real-time), hours, or one day (day-ahead) in advance. Also,

production rates can be adjusted in every time period, which makes this problem

a multi-stage problem. However, the resulting multi-stage stochastic program-

ming problem is extremely large and computationally intractable. Therefore, we

approximate the multi-stage problem with a two-stage stochastic programming

problem where we assume that all uncertainty for the entire scheduling horizon

is realized right after the here-and-now decisions are made.

We define the set of product demand scenarios, SD, with probabilities ϕD
s̄

of each demand scenario s̄; similarly, SP denotes the set of electricity price

scenarios with ϕP
ŝ being the probability of price scenario ŝ. Each pair of demand

scenario s̄ and price scenario ŝ corresponds to a general scenario s ∈ S with the
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probability ϕs = ϕ
D
s̄ ϕ

P
ŝ . For the sake of brevity, we refer to the general scenario

set S in most part of the model formulation.

3.2. Plant model

In this framework, we assume that the plant can operate in different operat-

ing modes. For each mode, the feasible operating region is defined by a polytope

in the product space, and a linear electricity consumption function with respect

to the production rates is given for each mode. At any point in time, the plant

can only run in one operating mode. For a given operating mode, the operating

point has to lie within the corresponding polytope. These relationships can be

expressed by the following constraints:

PDits = ∑
m

PDmits ∀ i, t ∈ T , s (1a)

PDmits = ∑
j∈Jm

λmjts vmji ∀m, i, t ∈ T , s (1b)

∑
j∈Jm

λmjts = ymt ∀m, t ∈ T , s (1c)

EUts = ∑
m

(δm ymt +∑
i

γmi PDmits) ∀ t ∈ T , s (1d)

∑
m

ymt = 1 ∀ t ∈ T (1e)

where Jm is the set of vertices of the polytope associated with mode m. The

binary variable ymt is 1 if mode m is selected in time period t. The amount of

product i produced in time period t of scenario s is denoted by PDits. Associ-

ated with PDits is the the disaggregated variable PDmits for mode m, which

is expressed as a convex combination of the corresponding vertices, vmji. The

amount of electricity consumed, EUts, is a linear function of PDits with a con-

stant δm and coefficients γmi specific to the selected mode. Note that while ymt
is a first-stage variable, PDits and EUts are second-stage variables that depend

on scenario s.

3.3. Transition constraints

A transition occurs when the system changes from one operating point to

another. In particular, constraints have to be imposed on transitions between

different operating modes, which is achieved by Eqs. (2)–(4). The binary vari-

able zmm′t takes the value 1 if and only if the plant switches from mode m to

mode m′ at time t, which is enforced by the following constraint:

∑
m′∈TRf

m

zm′m,t−1 − ∑
m′∈TRt

m

zmm′,t−1 = ymt − ym,t−1 ∀m, t ∈ T (2)
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where TRf
m = {m′ ∶ (m′,m) ∈ TR} and TRt

m = {m′ ∶ (m,m′) ∈ TR} with TR

being the set of all possible mode-to-mode transitions.

The restriction that the plant has to remain in a certain mode for a minimum

amount of time after a transition is expressed in the following constraint:

ym′t ≥
θmm′

∑
k=1

zmm′,t−k ∀(m,m′
) ∈ TR, t ∈ T (3)

with θmm′ being the minimum stay time in mode m′ after switching to it from

mode m.

For predefined sequences, each defined as a fixed chain of transitions from

mode m to mode m′ to mode m′′, we can specify a fixed stay time in mode m′

by imposing the following constraint:

zmm′,t−θ̄mm′m′′
= zm′m′′t ∀(m,m′,m′′

) ∈ SQ, t ∈ T (4)

where SQ is the set of predefined sequences and θ̄mm′m′′ is the fixed stay time

in mode m′ in the corresponding sequence.

3.4. Mass balance constraints

The plant produces a certain set of products, of which some may be storable.

As stated in Eq. (5a), the inventory level at time t, IVits, is the inventory level

at time t−1 plus the amount produced minus the amount sold, SLits, and minus

the amount wasted, PWits, in time period t. PWits takes a nonzero value if the

demand is satisfied and the inventory has reached its maximum capacity. Eq.

(5b) sets bounds on the inventory levels, and Eq. (5c) states that also products

purchased from other sources, denoted by PCits, can be used to satisfy demand.

Note that all variables involved in the mass balance constraints are second-stage

variables.

IVits = IVi,t−1,s + PDits − SLits − PWits ∀ i, t ∈ T , s (5a)

IV min
it ≤ IVits ≤ IV

max
it ∀ i, t ∈ T , s (5b)

SLits + PCits =Dits ∀ i, t ∈ T , s (5c)

3.5. Energy balance constraints

As stated in Eq. (6a), the plant can be powered by electricity purchased

from contracts and from the spot market, denoted by ECct and ESts, respec-

tively. EWts is the amount of electricity “wasted” in time period t of scenario s,

which takes a nonzero value if the committed electricity purchase from contracts

exceeds the electricity consumption in that particular scenario s. In practice,
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this amount of “wasted” electricity simply does not get delivered, yet you still

have to pay for it. Here, ECct is a first-stage variable, whereas ESts and EWts

are second-stage variables. Eq. (6b) restricts the amount of electricity that can

be purchased from the spot market in each time period.

EUts = ∑
c

ECct +ESts −EWts ∀ t ∈ T , s (6a)

ESts ≤ ES
max
t ∀ t ∈ T , s (6b)

3.6. Power contract model

Power contracts can be very complex in their price structures. Here, we apply

a relatively simple model that incorporates the main features of any common

power contract. We assume that for each contract c, the price consists of two

components: a time-dependent, and an amount-dependent component. The

time-dependent price component roughly follows the expected spot electricity

price profile, and is typically given for so-called time-of-use (TOU) periods.

Figure 1a shows an example with four TOU periods over the course of 24 hours.

The time-dependent price level depends on the type of TOU period: off-peak,

mid-peak, or on-peak. The amount-dependent component sets a base price that

depends on the total amount of electricity purchased during the entire scheduling

horizon. As illustrated in Figure 1b, electricity is offered at discounted rates

when certain purchase amounts have been reached.

(a) Time-dependent price component (b) Amount-dependent price component

Figure 1: Contract prices typically consist of a time-dependent and an amount-
dependent component.

The time-dependent price component is simply expressed through the cost

coefficient αEC
ct associated with the variable ECct, which is the amount of elec-

tricity purchased from contract c in time period t. To accommodate the amount-

dependent price component, we apply a block contract model which can be
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formulated as follows:

ÊCc = ∑
t∈T

ECct ∀ c (7a)

⋁
b∈Bc

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Xcb

BCc = βcbÊCc

ÊC
max

c,b−1 ≤ ÊCc ≤ ÊC
max

cb

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∀ c (7b)

∨

b∈Bc

Xcb ∀ c (7c)

Xcb ∈ {true, false} ∀ c, b ∈ Bc (7d)

where ÊCc is the amount of electricity purchased from contract c over the entire

scheduling horizon. Bc is the set of blocks of contract c, and Xcb is a boolean

variable that is true if block b of contract c is chosen. ÊC
max

cb is the amount

of electricity that one has to purchase in block b ∈ Bc before reaching the next

block. Hence, block b is chosen if ÊCc takes a value between ÊC
max

c,b−1 and

ÊC
max

cb . In that case, the base cost, BCc, is ÊCc times the corresponding unit

cost coefficient βcb. Eq. (7c) states that only one block can be chosen for each

contract.

By applying the hull reformulation (Balas, 1985), the disjunction and the

logic constraints given by Eqs. (7b)–(7d) can be transformed into the following

set of mixed-integer linear constraints:

ÊCc = ∑
b∈Bc

ẼCcb ∀ c (8a)

BCc = ∑
b∈Bc

βcbẼCcb ∀ c (8b)

ÊC
max

c,b−1 xcb ≤ ẼCcb ∀ c, b ∈ Bc, b > 1 (8c)

ẼCcb ≤ ÊC
max

cb xcb ∀ c, b ∈ Bc (8d)

∑
b∈Bc

xcb = 1 ∀ c (8e)

where xcb is a binary variable, and ẼCcb is the disaggregated variable associated

with ÊCc.

As stated before, we assume that contract terms require that the electricity

purchase decisions for the scheduling horizon are made before the beginning of

that time horizon. These decisions cannot be changed later, i.e. consumers

have to purchase the amount of electricity to which they has committed them-

selves regardless of their actual need. Hence, all contract-related decisions are

first-stage decisions. Moreover, in each TOU period, which generally consists of
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multiple time periods, the power purchase from a contract has to remain con-

stant for the entire duration of that TOU period, which is expressed through

the following constraint:

ECct = ECcp ∀ c, p ∈ Pc, t ∈ T̂cp (9a)

ECcp ≤ EC
max

cp ∀ c, p ∈ Pc (9b)

where ECcp is the electricity purchased from contract c in each time period

within the TOU period p. Pc denotes the set of TOU periods for contract c,

while T̂cp is the set of time periods in TOU period p of contract c. EC
max

cp

bounds the amount that can be purchased from contract c in TOU period p.

3.7. Boundary conditions

The scheduling problem is formulated for a given time horizon. For the prob-

lem to be well-defined, initial conditions and terminal constraints are required,

which are given in the following:

IVi,0,s = IV
ini
i ∀ i, s (10a)

ym,0 = y
ini
m ∀m (10b)

zmm′t = z
ini
mm′t ∀(m,m′

) ∈ TR, −θmax
+ 1 ≤ t ≤ −1 (10c)

IVi,tfin,s ≥ IV
fin
i ∀ i, s (10d)

with θmax = max(max
m,m′

{θmm′}, max
m,m′,m′′

{θ̄mm′m′′}), which defines for how far

back in the past the mode switching information has to be provided.

3.8. Total expected operating cost

The total expected operating cost, TC, consists of the cost of purchasing

electricity from contracts, the expected cost of purchasing electricity from the

spot market, and the expected cost of purchasing products, as stated in the

following:

TC = ∑
c

BCc + ∑
t∈T

∑
c

αEC
ct ECct +∑

s

ϕs∑
t∈T

(αES
ts ESts +∑

i

αPC
it PCits) (11)

where ϕs denotes the probability of scenario s.

3.9. Conditional value-at-risk

There are many risk measures that are widely used in practice, such as the

variance of the loss distribution, shortfall probability, downside risk, and value-

at-risk (VaR) (Rockafellar, 2007). The risk measure of choice in this work is
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the conditional value-at-risk (CVaR). For a given α ∈ (0,1), the α-CVaR is

defined as the expected loss greater than the α-VaR, which is the α-quantile

of the loss distribution. Since the CVaR was introduced by Rockafellar and

Uryasev (2000), it has become very popular because of its ability to consider

the probability density in the tail of the loss distribution, its mathematical

properties from being a coherent risk measure, and the ease of incorporating it

into stochastic optimization models. For more information on the use of CVaR,

we refer to Rockafellar and Uryasev (2000) and Sarykalin et al. (2008).

Applied to a scenario-based formulation and defined in terms of cost, the

α-CVaR corresponds to the mean cost computed over the scenarios that have

costs greater than the α-quantile. Because the model here considers price as

well as demand uncertainty, we have to be cautious when defining the risk

measure. If we simply apply the CVaR to the scenario set S, we bias toward

high-demand scenarios in the sense that scenarios contributing to the CVaR will

most likely be associated with high product demand as illustrated in Figure 2a.

The obvious explanation is that higher demand automatically leads to higher

cost; thus, high demand is deemed to be risky and therefore contributes to the

CVaR. However, higher demand also results in higher revenue, which is not

considered in the CVaR defined in terms of cost; hence, high-demand scenarios

are falsely regarded as unfavorable.

(a) CVaR defined in terms of cost (b) CVaR defined in terms of profit

Figure 2: CVaR can be defined in terms of cost or in terms of profit, which
can have different implications on the solution.

The simple solution to the problem is to define the CVaR in terms of profit

by incorporating a constant revenue term, Rs, for each scenario. Now the α-

CVaR is defined as the expected profit computed over the scenarios that have

profit values smaller than the α-VaR, which is now the (1 − α)-quantile of the

profit distribution. As illustrated in Figure 2b, low-demand scenarios are likely

to contribute to the CVaR because of the reduced revenues and therefore smaller
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profits; however, high demand may also result in low profit, e.g. if the plant

does not have sufficient production capacity to satisfy the demand such that

additional products have to be purchased at higher cost.

The CVaR, denoted by CV , is incorporated into the model by adding the

following constraints to the formulation:

CV = κ −
1

1 − α
∑
s

ϕs ωs (12a)

κ −

⎡
⎢
⎢
⎢
⎢
⎣

Rs −∑
c

BCc − ∑
t∈T

∑
c

αEC
ct ECct − ∑

t∈T

(αES
ts ESts +∑

i

αPC
it PCits)

⎤
⎥
⎥
⎥
⎥
⎦

≤ ωs ∀ s

(12b)

where κ and ωs are continuous variables with κ ∈ R and ωs ≥ 0. When CV is

maximized, it takes the value of the α-CVaR.

3.10. Objective functions

With the proposed model, we can consider both risk-neutral and risk-averse

optimization, which merely differ in their objectives. In risk-neutral optimiza-

tion, where risk is not taken into account, the objective is the minimization of

the total expected cost, hence the objective function is TC.

In risk-averse optimization, one tries to balance two typically conflicting ob-

jectives: optimizing the expected outcome and hedging against risk. Since the

CVaR is defined as the expected profit over a small scenario subset consisting of

the worst scenarios, the financial risk decreases with increasing CVaR. There-

fore, the objective is to maximize a weighted sum of the total expected profit

and the CVaR:

ζ TP + (1 − ζ)CV (13)

with the total expected profit TP = ∑s ϕsRs −TC and ζ ∈ [0,1]. Because there

is usually a trade-off between expected outcome and risk in the sense that no

solution can be found that maximizes both TC and CV , the weighting factor

ζ can be used to specify which objective should be emphasized more. In this

context, ζ can also be seen as a parameter that sets the desired level of risk

aversion. The smaller ζ, the more risk-averse is the solution, since more weight

is assigned to the CVaR. Note that the revenue term, ∑s ϕsRs, is constant;

hence, if ζ = 1, we obtain the risk-neutral formulation because maximizing TP

is equivalent to minimizing TC. If ζ = 0, only the CVaR is maximized.
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4. Scenario generation and reduction

In the proposed two-stage stochastic programming framework, each scenario

corresponds to a time series, i.e. a sequence of values assigned to each time

period of the scheduling horizon. Scenarios can be obtained by sampling from a

suitable stochastic forecasting model. Most electricity price forecasting tools are

based on univariate time series models, such as autoregressive integrated moving

average (ARIMA) models (Nogales et al., 2002). Aggarwal et al. (2009) present

a review of methodologies for electricity price forecasting, which is not the focus

of this work. This section merely provides a brief description of the ARIMA and

ARIMAX (ARIMA with exogenous inputs) methods that are used to generate

the scenarios in our case studies. Furthermore, we outline the scenario reduction

technique that is used to reduce the scenario set to a manageable size.

4.1. Scenario generation using ARIMA/ARIMAX models

An ARIMA model is a linear univariate time series model, which expresses

the output at time t, yt, as a function of observed output values in previous

time periods. An ARIMA model can be formulated as follows:

A(L) yt =
1

(1 −L)d
B(L) εt (14a)

A(L) = 1 − φ1L − φ2L
2
−⋯ − φpL

p (14b)

B(L) = 1 + θ1L + θ2L
2
+⋯ + θqL

q (14c)

where L is the lag operator, i.e. Lkxt = xt−k and (1 −L)dxt = xt − xt−d.

An ARIMA model consists of three parts: the autoregressive part of order

p given by A(L), the integrated part of order d given by the integrator 1/(1 −

L)d, and the moving average part of order q given by B(L). The parameter p

defines how many past output values are considered, whereas q defines how many

past error terms εt are taken into account. εt, also referred to as white noise,

are generally assumed to be independent and identically distributed random

variables sampled from a normal distribution with zero mean. The parameter

d defines the integrator and is used to remove the nonstationarity in the data.

There are (p + q) parameters, namely the coefficients φ1, . . . , φp and θ1, . . . , θq.

An ARIMA model is built by estimating these parameters using historical time

series data.

An ARIMA model only considers time series data of the output variable.

However, if we have information about exogenous inputs that are correlated

with the output, we may want to make use of this information to help predicting

future outputs. For instance, when predicting electricity price, useful exogenous
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inputs could be the temperature and the price of natural gas. The ARIMAX

model is an extension to the ARIMA model that takes input time series data

into account. An ARIMAX model is given by the following formulation:

A(L) yt =
1

(1 −L)d
B(L) εt +C(L)ut (15)

with C(L) = η1L
k + η2L

k+1 + η3L
k+2⋯ + ηbL

k+b−1. Eq. (15) consists of the

expression given in Eqs. (14) and an additional exogenous input term C(L)ut.

The nonnegative integer k is the input-output lag time expressed as number of

time periods. Here, the (p + q + b) parameters to be estimated are φ1, . . . , φp,

θ1, . . . , θq, and η1, . . . , ηb.

4.2. Scenario reduction using probability distance metrics

With an ARIMA or ARIMAX model, Monte Carlo simulation can be ap-

plied to sample scenarios. If the uncertain parameter can change significantly

over time, which is certainly true in the case of spot electricity price, a large

number of scenarios may be required to accurately characterize the uncertainty,

resulting in a computationally intractable optimization problem. To reduce the

computational effort yet still obtain good results, we seek to select a manageable

number of scenarios that still represent the main features of the uncertainty. To

achieve this, we apply the scenario reduction technique proposed by Dupacova

et al. (2003), which selects a subset of scenarios from a given set of scenarios

such that the probability distribution represented by the reduced scenario set

is close to the one represented by the original scenario set. Here, the closeness

of two distributions is measured in terms of a so-called probability distance.

A commonly used probability distance is the Kantorovich distance. Given

two discrete probability distributions, Q and Q̃, with scenarios {ω1, . . . , ωN} and

{ω̃1, . . . , ω̃M}, and probability weights {q1, . . . , qN} and {q̃1, . . . , q̃M}, respec-

tively, the Kantorovich distance between Q and Q̃, here denoted by DK(Q, Q̃),

can be defined as follows:

DK
(Q, Q̃) = min

ηij

⎧⎪⎪
⎨
⎪⎪⎩

N

∑
i=1

M

∑
j=1

c(ωi, ω̃j)ηij ∶ ηij ≥ 0,
M

∑
j=1

ηij = qi,
N

∑
i=1

ηij = q̃j ∀ i, j

⎫⎪⎪
⎬
⎪⎪⎭

(16)

where c(ω, ω̃) is a nonnegative, continuous, symmetric cost function. The min-

imum is taken over all possible joint probabilities.

In scenario reduction, M < N , and the reduced scenario set {ω̃1, . . . , ω̃M} is

a subset of the original scenario set {ω1, . . . , ωN}. The problem then becomes
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which M scenarios to select and what values to assign to the new probabil-

ities q̃j for j = 1, . . . ,M such that DK is minimized. To solve the scenario

reduction problem, Römisch and coworkers (Dupacova et al., 2003; Heitsch and

Römisch, 2003) propose two heuristic algorithms—forward selection and back-

ward reduction—which are fast but do not guarantee optimality. Optimality

can be achieved by solving an MILP formulation recently proposed by Li and

Floudas (2014). In this work, we apply the backward reduction method im-

plemented in the scenario reduction routine SCENRED2 in GAMS (GAMS

Development Corporation, 2015).

5. Multicut Benders decomposition

Even with a smaller number of scenarios, the optimization problem can still

be very large and difficult to solve. In order to reduce the solution time, Benders

decomposition (Benders, 1962) is applied. In this decomposition framework, the

optimal solution is found by iteratively converging lower and upper bounds on

the optimal objective function. In a minimization problem, upper bounds are

obtained by fixing the first-stage variables and optimizing the second-stage deci-

sions for each scenario. Lower bounds are obtained by solving a master problem

in the space of the first-stage variables, which incorporates lower bounds on the

second-stage costs. Convergence of the algorithm is achieved by improving the

lower bound with the master problem which adds successively dual information

of the second-stage costs obtained from the upper-bounding subproblems, which

in turn potentially leads to first-stage decisions that improve the upper bound.

Lower bounds on the second-stage costs are added to the master problem

in the form of cuts determined by the dual multipliers of the subproblems. In

the classical Benders decomposition algorithm, one cut is generated at every

iteration. To provide stronger lower bounds, Birge and Louveaux (1988) pro-

pose to generate multiple cuts at every iteration, namely one cut per scenario.

This leads to a master problem that grows faster in size; however, the solution

time is often shorter because fewer iterations are required. Multicut Benders

decomposition has been successfully applied to various two-stage stochastic pro-

gramming problems (You and Grossmann, 2013; Garcia-Herreros et al., 2014;

Skar et al., 2014). For this specific problem, computational experiments have

shown that multicut Benders decomposition is superior to the traditional Ben-

ders decomposition approach.

In the following, the multicut Benders decomposition approach is outlined.

Consider the original problem expressed in the following general form:

min cTx +∑
s

ϕsq
T
s ys (17a)

15



s.t. Ax ≥ b (17b)

Tsx +Wsys ≥ hs ∀ s (17c)

ys ≥ 0 ∀ s (17d)

where x denotes the vector of first-stage variables, which may be continuous or

integer, and ys are the continuous second-stage variables for scenario s. Param-

eter matrices A, b, and c are independent of the scenarios, while Ts, Ws, hs,

and qs are scenario-specific; ϕs denotes the probability of scenario s.

The subproblem is formulated by fixing the first-stage variables x in (17).

After omitting the constant term in the objective function and the pure first-

stage constraints Ax ≥ b, the dual of the subproblem at the k-th iteration can

be written as follows:

max ∑
s

(hs − Tsx
k
)
Tµs (18a)

s.t. WT
s µs ≤ ϕsqs ∀ s (18b)

µs ≥ 0 ∀ s (18c)

where µs denotes the vector of dual multipliers. Note that (18) can be de-

composed by scenario allowing solving multiple separate smaller subproblems

in parallel.

The multicut master problem at the k-th iteration is formulated as follows:

min cTx +∑
s

ξs (19a)

s.t. Ax ≥ b (19b)

(hs − Tsx)
Tµks ≤ ξs ∀ s, k (19c)

where ξs is a continuous variable representing the approximate cost of scenario

s. So-called optimality cuts are accumulated in Eq. (19c) at each iteration.

Note that no feasibility cuts are considered because the problem has complete

recourse.

A flowchart for the multicut Bendesr decomposition algorithm is shown in

Figure 3. The algorithm terminates when the gap between upper and lower

bounds becomes smaller than a prespecified tolerance ε or the time limit is

reached.

6. Illustrative example

To demonstrate the main features of the model, we first apply it to an

illustrative example in which a plant is considered that produces two products,
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Figure 3: Flowchart for Benders decomposition algorithm.

P1 and P2. The plant can operate in three different operating modes: off,

startup, and on. The vertices of the polyhedral feasible regions of the modes are

listed in Table 1, while the electricity consumption coefficients associated with

each mode are shown in Table 2. The possible mode transitions are off→startup,

startup→on, and on→off, for which the minimum stay times after transition are

2 h, 6 h, and 8 h, respectively. In fact, the startup process takes exactly 2 h, i.e.

for the sequence on→startup→on, the fixed stay time in the startup mode is 2 h.

At the start of the scheduling horizon, the plant is in the on mode. Also, it is

assumed that no mode switching has occurred in the previous 8 h.

Table 1: Vertices associated with each operating mode of the plant from the
illustrative example.

Mode Vertex P1 [kg] P2 [kg]

off 1 0 0

startup 1 5 5

on

1 10 10

2 50 10

3 30 40

4 70 40
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Table 2: Coefficients for linear electricity consumption correlations associated
with each operating mode.

Mode δ [kWh] γP1 [kWh/kg] γP2 [kWh/kg]

off 0 0 0

startup 500 0 0

on 800 20 30

Data regarding the inventory of each product are given in Table 3. We

consider a two-day scheduling horizon, which starts at 8 AM of the first day.

An hourly time discretization is applied, resulting in 48 time periods. One

power contract is available with the following characteristics:

� Daily TOU periods: two on-peak (6 AM – 12 AM, 12 AM – 6 PM), two

off-peak (0 AM – 6 AM, 6 PM – 0 AM) TOU periods

� Time-dependent price component: $20/kWh during on-peak, $15/kWh

during off-peak periods

� Amount-dependent price component: $16/kWh if total electricity pur-

chase less than 30 MWh, $15/kWh if between 30 MWh and 80 MWh,

$14/kWh if greater than 80 MWh

� Maximum electricity purchase in every time period: 3 MWh

Table 3: Inventory bounds and initial inventory levels for each product.

IV min [kg] IV max [kg] IV ini [kg] IV fin [kg]

P1 600 6,000 1,000 1,000

P2 300 3,000 500 500

Three sets of spot electricity price scenarios with different levels of uncertainty—

low, medium, and high—are considered. Each set consists of 40 equiprobable

scenarios, where each scenario is associated with a specific price profile over the

48 hours of the scheduling horizon. As an example, the price profiles along with

the expected price for the price scenario set with medium level of uncertainty

are shown in Figure 4. All price scenario data for this illustrative example are

provided in the supplementary material. No limit is imposed on the amount of

electricity that can be purchased from the spot market.

Demand is assumed to be constant over time. This is a reasonable assump-

tion since the products in this example are storable and small variations in
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Figure 4: Spot electricity price profiles associated with the scenario set with
medium level of price uncertainty.

demand over time can be made up by the available inventory. This assumption

simplifies the generation of scenarios since no time series are needed. Also, the

uncertainty can be described by considerably fewer scenarios. By further assum-

ing that the demands for the two products are perfectly positively correlated, we

generate three sets of demand scenarios with different levels of uncertainty—low,

medium, and high—with the same expected demands. The data for the three

scenario sets including the probabilities for each scenario are given in Table 4,

where VarD denotes the variance which is a measure for the level of uncertainty.

Table 4: Demand values and probabilities for each scenario of the three differ-
ent demand scenario sets.

low VarD medium VarD high VarD

s̄ ϕs̄ DP1 [kg/h] DP2 [kg/h] DP1 [kg/h] DP2 [kg/h] DP1 [kg/h] DP2 [kg/h]

1 0.25 57 33.25 54 31.5 48 28

2 0.50 60 35 60 35 60 35

3 0.25 63 36.75 66 38.5 72 42

The prices for purchasing Products P1 and P2 are $3/kg and $4/kg, respec-

tively. The revenues for each scenario can be computed by applying the selling

prices $1.5/kg and $2/kg to the demands of Products P1 and P2, respectively.

In the following, various instances are created by combining different price

and demand scenario sets. Risk-neutral optimization is performed before risk-

averse optimization is applied to the same instances. In the analysis of the

results, we pay special attention to the assessment of the added value obtained

from explicitly accounting for uncertainty in the model.
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6.1. Risk-neutral optimization

In risk-neutral optimization, the objective is to minimize the total expected

cost. To compare the deterministic and stochastic solutions, the value of stochas-

tic solution (VSS) is used as a measure for the difference in the solutions. Here,

the VSS is defined as

VSS = TCdet
− TCsto (20)

where TCsto is the total expected cost at the optimal solution of the stochastic

problem, and TCdet is obtained by solving the stochastic problem with the first-

stage variables fixed to the values at the optimal solution of the deterministic

problem. Hence, the VSS expresses the cost savings that can be expected from

implementing the stochastic solution instead of the deterministic solution. The

relative VSS is defined as

VSS =
TCdet − TCsto

TCdet
(21)

which is only meaningful if TCdet > 0. TCdet could become negative if there

are scenarios with negative electricity prices, which is unlikely but possible.

First, we consider three cases in which uncertainty only exists in the electric-

ity price. The total expected costs resulting from the deterministic and stochas-

tic solutions as well as the corresponding VSS are listed in Table 5. Here, ∣SD∣

and ∣SP∣ denote the numbers of demand and price scenarios, respectively. Since

there is no demand uncertainty, ∣SD∣ = 1. One can see that the VSS is essen-

tially zero in the low- and medium-VarP cases. In the high-VarP case, the VSS

is noticeable but very small.

Table 5: Expected costs and VSS resulting from risk-neutral optimization with
only electricity price uncertainty.

∣SD∣ ∣SP∣ VarP TCdet [$] TCsto [$] VSS [$] VSS [%]

1 40 low 4,351 4,351 0 0.0

1 40 medium 4,422 4,420 2 0.0

1 40 high 4,401 4,329 72 1.6

Table 6 shows the results for three cases in which uncertainty only exists

in the product demand. Here, significant VSS can be observed, which grows

with increasing level of uncertainty. For the medium-VarD case, Figure 5 shows

the electricity purchase profiles from the deterministic and stochastic solutions.

Note that the shown electricity purchase from the spot market is the expected
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value computed over all scenarios. The contract price comprises both the time-

dependent and the amount-dependent components at the chosen purchasing

amount. The comparison between the two solutions shows the impact of ac-

counting for other scenarios besides the expected one. In the stochastic solu-

tion, the plant operates longer in order to accommodate for the high-demand

scenario. By doing so, more flexibility is provided for load shifting such that

the electricity consumption during the high price peak can be reduced; this in

turn lowers the need for electricity purchase from the power contract.

Table 6: Expected costs and VSS from risk-neutral optimization with only
demand uncertainty.

∣SD∣ VarD ∣SP∣ TCdet [$] TCsto [$] VSS [$] VSS [%]

3 low 1 4,528 4,431 97 2.1

3 medium 1 4,674 4,459 215 4.6

3 high 1 4,967 4,621 346 7.0

Figure 5: Electricity purchase profiles for the medium-VarD case.

The results from the first six cases indicate that accounting for demand

uncertainty can lead to significant added value, while this does not necessarily

hold true for electricity price uncertainty. This raises the following question: If

uncertainty exists in both electricity price and product demand, is there a benefit

from considering price uncertainty in the model in addition to accounting for

demand uncertainty? To answer this question, we consider nine cases involving
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both price and demand uncertainty. The results are shown in Table 7, where ∣S̃P∣

denotes the number of scenarios in the reduced scenario set, which is used in the

stochastic optimization. ∣S̃P∣ indicates whether price uncertainty is considered

in the model or not. Each of the nine cases is solved once only considering the

expected price profile (∣S̃P∣ = 1, ignoring price uncertainty) and once with all

possible price scenarios (∣S̃P∣ = 40, accounting for price uncertainty).

Table 7: Expected costs and VSS from risk-neutral optimization with both
electricity price and demand uncertainty.

∣SD∣ VarD ∣SP∣ VarP ∣S̃P∣ TCdet [$] TCsto [$] VSS [$] VSS [%]

3 low 40 low
1

4,460
4,356 104 2.3

40 4,356 104 2.3

3 low 40 medium
1

4,528
4,490 38 0.8

40 4,426 102 2.3

3 low 40 high
1

4,501
4,455 46 0.1

40 4,333 168 3.7

3 medium 40 low
1

4,605
4,413 192 4.2

40 4,383 222 4.8

3 medium 40 medium
1

4,670
4,502 168 3.6

40 4,450 220 4.7

3 medium 40 high
1

4,637
4,464 173 3.7

40 4,344 293 6.3

3 high 40 low
1

4,898
4,548 350 7.1

40 4,548 351 7.2

3 high 40 medium
1

4,960
4,673 287 5.8

40 4,591 369 7.4

3 high 40 high
1

4,923
4,618 305 6.2

40 4,494 429 8.7

Table 7 lists some significant VSS, especially in the cases with high level of

demand uncertainty. In most cases, a comparison of the two instances (∣S̃P∣ =

1 and ∣S̃P∣ = 40) shows that the impact of price uncertainty on the solution

is relatively small. In other words, the added benefit from considering price

uncertainty in addition to demand uncertainty is only moderate. Exceptions

are the two low-VarD cases with medium and high VarP.
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6.2. Risk-averse optimization

In risk-averse optimization, the objective is to maximize a weighted sum of

the expected profit and the CVaR as given by Eq. (13). The VSS is defined as

VSS = ζ (TP sto
− TP det) + (1 − ζ) (CV sto

−CV det) (22)

where TP sto and CV sto denote the total expected profit and CVaR at the

optimal solution of the stochastic problem, and TP det and CV det are computed

by solving the stochastic problem with fixed first-stage decisions obtained from

the deterministic problem. The relative VSS is defined as

VSS =
ζ (TP sto − TP det) + (1 − ζ) (CV sto −CV det)

ζ TP det + (1 − ζ)CV det
(23)

which is only meaningful if the denominator is positive.

Risk-averse optimization is performed on the same instances presented in

the previous subsection. We choose α = 0.9 and ζ = 0.5, i.e. equal weights are

assigned to the total expected profit and the CVaR. The results are shown in

Tables 8, 9, and 10. It is remarkable how much the deterministic and stochastic

solutions can differ when risk is considered. The VSS reported here are consid-

erably higher than those obtained in risk-neutral optimization. Furthermore,

unlike in risk-neutral optimization, accounting for price uncertainty can lead to

much improved solutions. In the cases with only electricity price uncertainty,

the VSS increases dramatically with the level of uncertainty (see Table 8). This

can also be observed in the cases in which uncertainty exists in both price and

demand. Moreover, by comparing the results for ∣S̃P∣ = 1 and ∣S̃P∣ = 40 in each

case, we see that considering electricity price uncertainty can greatly improve

the solution. In fact, ignoring price uncertainty can be detrimental, to an ex-

tent that the stochastic solution is even worse than the deterministic solution

(indicated by negative VSS).

Table 8: Expected profits, CVaRs, and VSS from risk-averse optimization with
only electricity price uncertainty.

∣SD∣ ∣SP∣ VarP TP det [$] CV det [$] TP sto [$] CV sto [$] VSS [$] VSS [%]

1 40 low 3,329 2,981 3,328 3,006 12 0.4

1 40 medium 3,258 2,169 3,155 2,668 198 7.3

1 40 high 3,278 1,334 3,242 2,369 499 21.7

For the medium-VarD medium-VarP case, Figure 6 shows the electricity pur-

chase profiles for the stochastic solutions with ∣S̃P∣ = 1 and with ∣S̃P∣ = 40. In the

23



Table 9: Expected profits, CVaRs, and VSS from risk-averse optimization with
only demand uncertainty.

∣SD∣ VarD ∣SP∣ TP det [$] CV det [$] TP sto [$] CV sto [$] VSS [$] VSS [%]

3 low 1 3,152 3,015 3,249 3,058 70 2.3

3 medium 1 3,006 2,631 3,221 2,831 207 7.4

3 high 1 2,713 1,863 3,059 2,384 434 19.0

first instance, in which price uncertainty is ignored, the solution suggests pur-

chasing all electricity from the spot market. This solution provides maximum

flexibility, and is therefore good for dealing with demand uncertainty, which is

accounted for in the model. In the second instance, the model considers both

price and demand uncertainty, which results in a very different solution. In

this solution, more than half of the electricity is purchased from the power con-

tract. This solution results in a slightly lower expected profit, but significantly

increases the CVaR, i.e. it reduces the risk of low-profit scenarios.

Figure 6: Electricity purchase profiles for the medium-VarD medium-VarP

case.

All models were implemented in GAMS 24.4.1 (GAMS Development Corpo-

ration, 2015), and the commercial solver CPLEX 12.6.1 was applied to solve the

MILPs. Each model has up to approximately 133,000 continuous variables, 315

binary variables, and 128,000 constraints. All models were solved to zero inte-

grality gap in less than 20 seconds wall-clock time on an Intel® CoreTM i7-2600
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Table 10: Expected profits, CVaRs, and VSS from risk-averse optimization
with both electricity price and demand uncertainty.

∣SD∣ VarD ∣SP∣ VarP ∣S̃P∣ TP det [$] CV det [$] TP sto [$] CV sto [$] VSS [$] VSS [%]

3 low 40 low
1

3,220 2,833
3,323 2,918 94 3.1

40 3,321 2,921 94 3.1

3 low 40 medium
1

3,152 2,072
3,199 1,360 -333 -12.7

40 3,163 2,595 267 10.2

3 low 40 high
1

3,179 1,252
3,321 752 -179 -8,1

40 3,240 2,331 570 25.7

3 medium 40 low
1

3,075 2,496
3,296 2,713 219 7.9

40 3,297 2,713 220 7.9

3 medium 40 medium
1

3,010 1,876
3,178 1,293 -207 -8.5

40 3,158 2,495 383 15.7

3 medium 40 high
1

3,043 1,084
3,304 727 -48 -2.3

40 3,232 2,255 680 33.0

3 high 40 low
1

2,782 1,732
3,132 2,282 450 20.0

40 3,130 2,296 457 20.2

3 high 40 medium
1

2,720 1,332
3,007 1,057 6 0.3

40 3,012 2,167 563 27.8

3 high 40 high
1

2,757 624
3,164 635 209 12.4

40 3,072 1,994 843 49.9

machine at 3.40 GHz with eight processors and 8 GB RAM running Windows 7

Professional.

7. Industrial case study

We now apply the proposed model to a real-world industrial case study

provided by Praxair. Here, we consider an air separation plant that produces

liquid oxygen (LO2) and liquid nitrogen (LN2). Two power contracts, which

differ in price and availability, are considered. The scheduling horizon is one

week, to which an hourly time discretization is applied resulting in 168 time

periods. Note that due to confidentiality reasons, we cannot disclose information

about the plant specifications as well as the actual product demand. Therefore,

all results presented in the following are given without units and the values are

normalized if necessary.

To model the uncertainty in electricity price, an ARIMAX model with tem-

perature as exogenous input is created in R (R Core Team, 2014) using data

from four consecutive weeks as training data. Monte Carlo simulation is then
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applied to generate 1,000 equiprobable price scenarios; the corresponding price

profiles are shown in Figure 7 along with the expected price profile. Because

lines are shown in the same color, the individual scenarios are indistinguishable

in the diagram; however, the picture depicts the large spread in the price distri-

bution. One can see that the level of uncertainty increases with time. We apply

scenario reduction to the 1,000 price scenarios and obtain a set of 50 scenarios,

which are shown in Figure 8. Notice that the scenario reduction process assigns

different probabilities to the scenarios in the reduced set.

Figure 7: Spot electricity price profiles associated with the full set of scenarios
and the expected price profile.

Figure 8: Spot electricity price profiles associated with the reduced set of
scenarios.

Product demand occurs every six hours and is the total amount of product

that needs to be drawn from the tank over the course of these six hours. The as-

sumption is that there is sufficient capacity in the inventory to handle flows into

and out of the inventory tank during this period of time. By further assuming

that the demands for LO2 and LN2 are correlated, the uncertainty in product

demand is characterized by five scenarios that resemble a normal distribution.

Again, we use the VSS to quantify the difference between the deterministic
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and stochastic solutions. However, note that since the stochastic optimization

is performed on a reduced scenario set, but the VSS is computed over the full

scenario set, only an approximate VSS (AVSS) can be obtained. The AVSS

would take the value of the true VSS if the obtained first-stage decisions were

the same as the ones that one would obtain from solving the stochastic problem

with the full set of scenarios.

7.1. Risk-neutral vs. risk-averse optimization

We create three cases with different levels of demand uncertainty: low,

medium, and high. For each case, two instances are created, one neglecting

electricity price uncertainty (∣S̃P∣ = 1), the other incorporating the 50 price sce-

narios from the reduced scenario set (∣S̃P∣ = 50). Risk-neutral and risk-averse

(ζ = 0.5, α = 0.9) optimization are performed on all instances for which the

results are shown in Tables 11 and 12, respectively.

The most notable observation is that in risk-neutral optimization, accounting

for price uncertainty does not seem to provide any added value at all. In every of

the three cases, the VSS does not change when ∣S̃P∣ is increased from 1 to 50. In

contrast, in risk-averse optimization, there is a clear increase in VSS when price

uncertainty is considered in the stochastic optimization. Note that a consistent

increase in VSS can be observed although some of the stochastic problems with

∣S̃P∣ = 50 were not solved to optimality (see Section 7.4). This result is very

similar to what is observed in the illustrative example, which further supports

the hypothesis that accounting for electricity price uncertainty in risk-neutral

optimization may be unnecessary, while in risk-averse optimization it leads to

significant additional benefit.

Table 11: Expected cost and VSS from risk-neutral optimization.

∣SD∣ VarD ∣SP∣ ∣S̃P∣ TCdet TCsto AVSS AVSS [%]

5 low 1,000
1

12.49
12.49 0.00 0.0

50 12.49 0.00 0.0

5 medium 1,000
1

13.40
13.08 0.32 2.4

50 13.08 0.32 2.4

5 high 1,000
1

15.98
14.82 1.16 7.2

50 14.83 1.15 7.2

In Figure 9, we compare for the high-VarD case the solutions obtained from

the deterministic, risk-neutral, and risk-averse optimization. One can see that

these three approaches lead to very different decisions. In deterministic opti-

mization, uncertainty is ignored such that decisions are primarily driven by the
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Table 12: Expected profits, CVaRs, and VSS from risk-averse optimization.

∣SD∣ VarD ∣SP∣ ∣S̃P∣ TP det CV det TP sto CV sto AVSS AVSS [%]

5 low 1,000
1

15.51 12.84
15.51 12.84 0.00 0.0

50 15.27 13.68 0.30 2.1

5 medium 1,000
1

14.60 11.15
14.69 11.39 0.17 1.3

50 14.80 11.59 0.32 2.5

5 high 1,000
1

12.02 5.78
12.82 6.34 0.68 7.6

50 12.71 6.57 0.74 8.3

differences between the power contract prices and the expected spot price. A

significant amount of electricity is procured from Contract 2 because the price

discount at this purchasing amount makes it less expensive than purchasing

from the spot market during on-peak hours. One issue with the deterministic

solution is only implicitly shown in the diagram, namely that there is a very

high expected cost of purchasing additional products because the selected op-

erating modes do not have sufficient production capacities in the high-demand

scenarios.

Figure 9: Electricity purchase profiles for the high-VarD case.
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In risk-neutral stochastic optimization, first-stage decisions are to a great

extent driven by the need for flexibility that has to be maintained in the second

stage in order to react to different scenarios. Deterministic and risk-neutral

optimization lead to similar schedules for the electricity procurement from power

contracts. However, the risk-neutral solution suggests selecting operating modes

with higher production capacities in order to be able to accommodate high-

demand scenarios. This strategy leads to considerably lower costs for purchasing

additional products, especially during the last three days of the week.

The electricity procurement decisions resulting from risk-averse optimization

are very different from the deterministic and risk-neutral solutions. Here, more

than half of the required electricity is purchased from power contracts. Because

no more electricity can be purchased from Contract 2 due to the specified pur-

chase limit, electricity is also procured from Contract 1. Here, contracts are

effectively used to hedge against the risk of low-profit scenarios. In particular,

considerable amount of electricity is purchased from contracts toward the end

of the week when the level of uncertainty in the spot electricity price is highest.

7.2. Impact of product demand distribution

Next, the impact of different probability distributions describing the demand

uncertainty is examined. We create four different demand distributions: sym-

metric, uniform, positively skewed, and negatively skewed. Each distribution is

represented by five discrete scenarios as depicted by the figures in Table 13. The

symmetric demand distribution is the one used in the instances presented in the

previous subsection. The expected demand is the same for all four distributions.

Table 13: VSS [%] obtained from risk-averse optimization for different demand
distributions and levels of demand uncertainty.

Demand
Distribution symmetric uniform pos. skewed neg. skewed

low VarD 2.1 2.5 3.5 1.8

medium VarD 2.5 3.4 6.0 1.4

high VarD 8.3 9.7 19.3 4.9

Table 13 shows the VSS obtained from risk-averse optimization (ζ = 0.5,

α = 0.9) applied to the three cases with different levels of demand uncertainty.

The highest VSS are achieved for the positively skewed demand distribution,

while the VSS are lowest for the negatively skewed distribution. Evidently, the
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more probability weight is assigned to low-demand scenarios, the greater is the

benefit gained from stochastic optimization.

7.3. Trade-off between expected outcome and risk

Optimizing the expected outcome and minimizing risk are usually two con-

flicting objectives. In our case, it means that one cannot maximize the total

expected profit and maximize the CVaR at the same time. To show this trade-

off, we solve the risk-averse model with different values for the weighting factor

ζ. The results are shown for three different values of α—0.8, 0.9, and 0.95—in

Figure 10, where the CVaR is plotted against the total expected profit. The

left endpoint of each curve depicts the solution of the case in which ζ = 0, and

the right endpoint is achieved when ζ = 1. The CVaR decreases with increasing

profit, which means that in order to achieve a high CVaR (reduce risk), one has

to accept a lower expected profit.

Figure 10: Solutions obtained by changing the weights in the objective func-
tion, showing the trade-off between total expected profit and CVaR.

Note that the obtained solutions are not necessarily Pareto-optimal due to

multiple reasons: (1) the stochastic problem is only solved for a subset of scenar-

ios, (2) the problem may not be solved to optimality within the given time, and

(3) since the model is nonconvex, maximizing the weighted sum does not guar-

antee Pareto optimality. The last limitation could be circumvented by applying

the ε-constraint approach (Hwang and Masud, 1979); however, the downside

would be that the Benders decomposition algorithm could then not be used to

solve the model.

7.4. Computational results

With 5 demand scenarios and 50 price scenarios in the reduced scenario set,

the stochastic problem is solved for 250 scenarios. Each model has approxi-
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mately 3.6 million continuous variables, 3,700 binary variables, and 2.7 million

constraints. Here, we apply the proposed multicut Benders decomposition since

the problems cannot be solved in fullspace in a reasonable amount of time. All

models were implemented in GAMS 24.4.1 (GAMS Development Corporation,

2015), and the commercial solver CPLEX 12.6.1 was applied to solve the MILPs

on an Intel® CoreTM i7-2600 machine at 3.40 GHz with eight processors and

8 GB RAM running Windows 7 Professional.

The computational results for solving the risk-neutral models and a selected

set of the risk-averse models are shown Tables 14 and 15, respectively. The

wall-clock times and optimality gaps for solving each model in fullspace and

with multicut Benders decomposition are reported. We specify a computational

budget of 7,200 s (two hours). Note that the time reported for multicut Benders

decomposition is the time after solving the master problem in the last itera-

tion, which may exceed 7,200 s. However, solving this last master problem is

only needed for obtaining the final lower bound on the objective function and

computing the final gap; the best feasible solution is obtained before solving

the last master problem, at which point the computational time usually has not

exceeded 7,200 s. If an optimality gap is not available (n/a), it means that no

feasible solution can be found within the time limit.

Table 14: Computational results for risk-neutral optimization

∣SD∣ VarD ∣S̃P∣ Fullspace Multicut Benders
Time [s] Gap [%] Time [s] Gap [%]

5 low 50 7,200 n/a 7,204 0.0

5 medium 50 7,200 100 4,871 0.0

5 high 50 7,200 100 502 0.0

From the results in Tables 14 and 15, one can see that in almost all cases, the

solver cannot even find a feasible solution within the given time if the problem

is to be solved in fullspace. When solving the fullspace risk-neutral models for

the medium- and high-VarD cases, feasible but very poor solutions are found

(100 % gap). In contrast, when the proposed multicut Benders decomposition is

applied, all problems can be solved to optimality or close to optimality. In gen-

eral, solving the risk-neutral models requires less computing time than solving

the risk-averse models. Furthermore, the computational effort decreases with

increasing level of demand uncertainty, which can be explained by the reduction

of the degree of symmetry when the scenarios are more easily distinguishable.
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Table 15: Computational results for risk-averse optimization with ζ = 0.5 and
α = 0.9

∣SD∣ VarD ∣S̃P∣ Demand
Distribution

Fullspace Multicut Benders
Time [s] Gap [%] Time [s] Gap [%]

5 low 50 symmetric 7,200 n/a 7,531 5.1

5 medium 50 symmetric 7,200 n/a 7,830 2.2

5 high 50 symmetric 7,200 n/a 7,531 0.7

5 low 50 uniform 7,200 n/a 7,247 3.0

5 medium 50 uniform 7,200 n/a 7,499 1.8

5 high 50 uniform 7,200 n/a 7,550 1.5

5 low 50 pos. skewed 7,200 n/a 7,275 5.7

5 medium 50 pos. skewed 7,200 n/a 7,604 2.2

5 high 50 pos. skewed 7,200 n/a 7,371 0.4

5 low 50 neg. skewed 7,200 n/a 7,231 5.2

5 medium 50 neg. skewed 7,200 n/a 7,286 0.9

5 high 50 neg. skewed 7,200 n/a 5,165 0.0

8. Discussion

The results from the illustrative example and the industrial case study show

the difference between deterministic, risk-neutral, and risk-averse optimization,

as well as the impact of electricity price and product demand uncertainty. The

most remarkable insight drawn from the observations is that in risk-neutral

optimization, explicitly modeling electricity price uncertainty does not lead to

any significant added value. In the following, we provide an explanation for this

phenomenon.

First, we notice that in the risk-neutral model, electricity prices only appear

in the objective function, not in the constraints; thus, uncertainty in the price

does not affect the feasible space. We can therefore restrict our analysis to the

objective function given by Eq. (11), which can also be written as follows:

TC = ∑
c

BCc + ∑
t∈T

∑
c

αEC
ct ECct

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
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+ ∑
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ϕP
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it PCits̄ŝ)
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TC2

(24)

where we distinguish between demand scenarios (s̄ ∈ SD) and price scenarios

32



(ŝ ∈ SP), and the general scenario index s is replaced by the corresponding

(s̄, ŝ)-pair. The first-stage and second-stage costs are denoted by TC1 and TC2,

respectively, where only the term expressing TC2 involves price scenarios.

Now we make the following assumption: Given fixed first-stage decisions and

fixed product demand, the optimal solution yields the same second-stage deci-

sions for each price scenario ŝ, in particular the same electricity purchase from

the spot market, ESts̄ŝ, and product purchase, PCits̄ŝ, i.e. ESts̄ŝ = ESts̄ ∀ t, s̄

and PCits̄ŝ = PCits̄ ∀ i, t, s̄. With this assumption, TC2 can be rewritten as

TC2
= ∑
s̄∈SD

ϕD
s̄ ∑
ŝ∈SP

ϕP
ŝ ∑

t∈T

(αES
ts̄ŝESts̄ +∑

i

αPC
it PCits̄)

= ∑
s̄∈SD

ϕD
s̄ ∑

t∈T

[( ∑
ŝ∈SP

ϕP
ŝ α

ES
ts̄ŝ)ESts̄ +∑

i

( ∑
ŝ∈SP

ϕP
ŝ )α

PC
it PCits̄]

= ∑
s̄∈SD

ϕD
s̄ ∑

t∈T

[E (αES
ts̄ )ESts̄ +∑

i

αPC
it PCits̄]

(25)

with E (αES
ts̄ ) denoting the expected value of αES

ts̄ . Since the constraints do not

change for different price scenarios, Eq. (25) implies that under the given as-

sumption, the stochastic model considering both demand and price uncertainty

is equivalent to the model considering only demand uncertainty. In this case,

both formulations will result in the same optimal first-stage decisions, which

means that accounting for price uncertainty is not necessary.

The important question remains whether the assumption of equal second-

stage decisions is really valid. It turns out that the assumption approximately

holds true because of a particular characteristic of the electricity price uncer-

tainty. From Figure 8, one can see that the electricity prices in different sce-

narios may differ considerably in magnitude; however, all price profiles follow

essentially the same trend. In other words, the times during which the price

is low or high compared to the rest of the price curve are approximately the

same in all scenarios. For fixed first-stage decisions and fixed demand (i.e. for

a specific demand scenario s̄), the total required electricity purchase from the

spot market and additional product purchase are approximately constant, i.e.

∑t∈T ESts̄ŝ ≈ const. ∀ ŝ and ∑t∈T PCits̄ŝ ≈ const. ∀ i, ŝ. Then the second-stage

cost only depends on the distribution of electricity and product purchases over

time, which is mainly affected by the price trend rather than the price value.

Hence, ESts̄ŝ tend to take the same values in all price scenarios, which have

almost identical price trends. The same applies trivially to PCits̄ŝ since the

product purchasing price does not depend on the electricity price scenario.

The analysis described above explains why no significant benefit is gained by
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considering electricity price uncertainty in risk-neutral optimization. However,

this does not apply to risk-averse optimization since the objective function here

also includes the CVaR, which only considers the most unfavorable scenarios. In

this case, no equivalence between the formulation using the expected electricity

price and the formulation considering different price scenarios can be deduced.

In fact, the results from the case studies show that in risk-averse optimization,

accounting for price uncertainty is essential for obtaining a good solution.

9. Conclusions

This work addresses the simultaneous optimization of short-term produc-

tion scheduling and electricity procurement under uncertainty for continuous

power-intensive processes. A discrete-time MILP model has been developed

that applies a mode-based formulation to represent the flexibility of the plant

and a block contract formulation to model power contracts, from which elec-

tricity can be purchased besides the spot market. Two-stage stochastic pro-

gramming has been applied to model both uncertainty in spot electricity price

and product demand. Risk is taken into account by incorporating the CVaR

into the model. Furthermore, to reduce the computational effort when solving

large-scale problems, scenario reduction and multicut Benders decomposition

have been applied.

An illustrative example and a real-world industrial air separation case demon-

strate the capability of the proposed model and solution approach. Both risk-

neutral optimization (minimization of total expected cost) and risk-averse op-

timization (maximization of weighted sum of total expected profit and CVaR)

have been considered. The case studies show how significant the differences

can be between the solutions obtained from deterministic, risk-neutral, and

risk-averse optimization. Especially the electricity procurement decisions highly

depend on the choice of the model. Also, in the analysis of the results, the quan-

tification of the value of stochastic solution has been emphasized, which has led

to the following remarkable insight: In risk-neutral optimization, accounting for

electricity price uncertainty in the stochastic model does not result in signifi-

cant additional benefit. In contrast, in risk-averse optimization, modeling price

uncertainty is crucial for obtaining good solutions.

Nomenclature

Indices

b, b′ contract blocks
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c power contracts

i products

j vertices

m,m′,m′′ operating modes

p time-of-use (TOU) periods

s general scenarios

s̄ product demand scenarios

ŝ electricity price scenarios

t time periods

Sets

Bc blocks in contract c

C power contracts

I products

Jm vertices of polytope describing mode m

M operating modes

Pc TOU periods for contract c

S general scenarios

SD product demand scenarios

SP electricity price scenarios

SQ predefined sequences of mode transitions

T time periods, T = {−θmax + 1,−θmax + 2, . . . ,0,1, . . . , tfin}

T time period in the scheduling horizon, T = {1,2, . . . , tfin}

T̂cp time periods in TOU period p of contract c

TR possible mode transitions

TRf
m modes from which mode m can be directly reached

TRt
m modes which can be directly reached from mode m

Parameters

Dits demand for product i in time period t in scenario s [kg]

EC
max

cp maximum amount of electricity that can be purchased from

contract c in one time period within TOU period p [kWh]

ÊC
max

cb maximum amount of electricity that can be purchased from

block b of contract c [kWh]

ESmax
t maximum amount of electricity that can be purchased from

the spot market in time period t [kWh]

IV fin
i minimum final inventory of product i [kg]

IV ini
i initial inventory of product i [kg]
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IV min
i minimum inventory of product i [kg]

IV max
i maximum inventory of product i [kg]

Rs total revenue in scenario s [$]

vmji amount of product i produced in one time period at vertex j of

mode m [kg]

yini
m 1 if plant was operating in mode m in the time period before the

start of the scheduling horizon

zini
mm′t 1 if operation switched from mode m to mode m′ at time t

before the start of the scheduling horizon

α confidence level at which the CVaR is defined, α ∈ (0,1)

αEC
ct unit electricity price for purchasing electricity from contract c in

time period t [$/kWh]

αES
ts unit electricity price for purchasing electricity from the spot market

in time period t in scenario s [$/kWh]

αPC
it unit cost for purchasing product i in time period t [$/kg]

βEC
cb unit electricity price for purchasing electricity from block b of

contract c [$/kWh]

γmi unit electricity consumption corresponding to product i if plant

operates in mode m [kWh/kg]

δm fixed electricity consumption if plant operates in mode m [kWh]

∆t length of one time period [h]

ζ weight factor for total expected cost, ζ ∈ [0,1]

θmm′ minimum stay time in mode m′ after switching from mode m to m′ [∆t]

θ̄mm′m′′ fixed stay time in mode m′ of the predefined sequence (m,m′,m′′) [∆t]

θmax maximum minimum or predefined stay time in a mode [∆t]

ϕs probability of scenario s

ϕD
s̄ probability of demand scenario s̄

ϕP
ŝ probability of price scenario ŝ

Continuous Variables

BCc base cost for purchasing electricity from contract c [$]

ECct amount of electricity purchased from contract c in time period t [kWh]

ECcp amount of electricity purchased in each time period during TOU

period p of contract c [kWh]

ÊCc amount of electricity purchased from contract c [kWh]

ẼCcb amount of electricity purchased from block b of contract c [kWh]

ESts amount of electricity purchased from the spot market in time

period t in scenario s [kWh]

EUts amount of electricity used by the plant in time period t in scenario
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s [kWh]

EWts amount of electricity wasted in time period t in scenario s [kWh]

CV conditional value-at-risk (CVaR) [$]

IVits inventory of product i at time t in scenario s [kg]

PCits amount of product i purchased in time period t in scenario s [kg]

PDits amount of product i produced in time period t in scenario s [kg]

PDmits amount of product i produced in mode m in time period t in

scenario s [kg]

PWits amount of product i discarded in time period t in scenario s [kg]

SLits amount of product i sold in time period t in scenario s [kg]

TC total expected cost [$]

κ auxiliary variable for modeling CVaR

λmjts coefficient for vertex j in mode m in time period t in scenario s

ωs auxiliary variable for modeling CVaR associated with scenario s

Binary Variables

xcb 1 if electricity is purchased from block b of contract c

ymt 1 if plant operates in mode m in time period t

zmm′t 1 if plant operation switched from mode m to mode m′ at time t

Boolean Variables

Xcb true if electricity is purchased from block b of contract c
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