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Abstract 

In this paper, we address the problem of simultaneously integrating planning and 

scheduling of continuous multiproduct plants consisting of a single processing unit. We 

present a multiperiod MILP optimization model that is based on a continuous time 

representation, which becomes computationally very expensive to solve as the length of 

the planning horizon increases. To circumvent this problem a rigorous bi-level 

decomposition algorithm is proposed to reduce the computational cost of the problem. 

The original simultaneous model is decomposed into an upper level planning problem 

and a lower level planning and scheduling problem. The upper level determines the 

potential products to be processed, their production levels and inventories. The lower 

level is solved in the reduced space of binary variables and determines production levels, 

product inventories, and the detailed sequence of products and their corresponding 

processing times. Integer cuts and logic cuts are proposed to reduce the feasible search 

space for the binary variables and to tighten the gap between the solutions of the two 

levels. Numerical examples for problems ranging from 4 to 24 weeks are presented to 

illustrate the performance of the algorithm and to compare it with a full space solution. 

 

Introduction 

Planning and scheduling of process systems are closely linked activities. Both 

planning and scheduling deal with the allocation of available resources over time to 

perform a collection of tasks required to manufacture one or several products (Bodington, 

1995; Shah, 1998, Kallrath, 2002). The aim in planning is to determine high level 

decisions such as production levels and product inventories for given marketing forecasts 

and demands over a long time horizon (e.g. months to years). Scheduling, on the other 

hand, is defined over a short time horizon (e.g. days to weeks) and involves lower level 

decisions such as the sequence and detailed timing in which various products should be 

processed at each equipment in order to meet the production goals set by the planning 

problem. 

Conceptually, the simplest alternative for solving planning and scheduling 

problems is to formulate a single simultaneous planning and scheduling model that spans 

the entire planning horizon of interest. However, the limitation of this approach is that 
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when typical planning horizons are considered, the size of this detailed model becomes 

intractable due to the potential exponential increase in the computation. The traditional 

strategy for solving planning and scheduling problems is to follow a hierarchical 

approach in which the planning problem is solved first to define the production targets. 

The scheduling problem is solved next to meet these targets (Bodington, 1995; Shapiro, 

2001). The problem of this approach, however, is that a solution determined at the 

planning level does not necessarily lead to feasible schedules. These infeasibilities may 

arise because the effects of changeovers are neglected at the planning level, thereby 

producing optimistic targets that cannot be met at the scheduling level. Therefore, there is 

a need to develop methods and approaches that can more effectively integrate planning 

and scheduling (Grossmann, 2005).  

Most of the work that has been reported on integrating planning and scheduling 

has focused on batch processes and is based on two-level decomposition schemes 

(Graves, 1982). Bassett et al (1996) proposed a decomposition scheme for multipurpose 

batch plants, where an aggregate planning problem is solved in the upper level, and 

detailed scheduling problems are independently solved for each planning period in the 

lower level. Heuristic techniques that make use of shifting of operations were proposed to 

overcome the infeasibilities that arise in the scheduling problem. Bassett, Pekny, and 

Reklaitis (1996) introduced slack variables for capacity or inventory shortfalls to remove 

the infeasibilities. These authors also proposed a recursive backwards rolling horizon 

strategy where only one interval is solved in detail at every stage of the recursion. 

Changeover costs and times were not considered in the scheduling model. 

Subrahmanyam et al (1996) proposed a hierarchical decomposition algorithm for batch 

plants, where the planning problem is updated at each iteration by disaggregating the 

aggregate constraints for all infeasible scheduling subproblems within the planning 

problem. The drawback of this procedure is that it may require exploring all levels of 

decomposition. Birewar and Grossmann (1990) proposed a multiperiod LP formulation 

for simultaneous planning and scheduling of multiproduct batch plants with flowshop 

structure. In this formulation, batches belonging to the same products are aggregated and 

sequencing considerations for scheduling are accounted at the planning level by 

approximating the makespan with the cycle time. Production shortfalls are treated 
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through penalties. Wilkinson et al (1996) used a constraint aggregation approach for 

obtaining approximate solutions to the large-scale production and distribution planning 

problems for multiple production sites that are represented with the State-Task Network 

(Kondili et al. 1993). In their work, an upper level aggregate model is solved to set 

production targets yielding a strict upper bound to the original problem, after which 

detailed scheduling is individually optimized for each site with fixed targets thus 

decreasing the computational effort. Zhu and Majozi (2001) proposed a two-level 

decomposition strategy for multipurpose batch plants. In the first level, the planning 

model is solved for the optimal allocation of raw materials to individual processes, and in 

the second level the raw material targets obtained at the planning model are incorporated 

into the scheduling models for individual processes and then solved independently. If the 

scheduling targets corresponding to the raw material inputs do not match the production 

targets predicted by the planning model, the latter is revised with more realistic targets 

predicted by the scheduling model.  

The major goal of this paper is to propose a novel bilevel decomposition 

procedure that allows rigorous integration and optimization of planning and scheduling of 

continuous multiproduct plants consisting of a single processing unit. The proposed 

integration scheme ensures consistency and optimality within a specified tolerance while 

significantly reducing the computational effort. The paper is organized as follows. The 

MILP formulation is first presented. We then introduce the detailed and the aggregated 

models. The proposed decomposition algorithm is then described, which relies on the use 

of a novel set of cuts and is guaranteed to produce the same optimal solution as the full-

space model. Finally, the effectiveness of the algorithm is demonstrated with several 

examples. 

 

Problem Definition 

Given are a number of products that are to be manufactured on a single 

continuously operating unit. Also, given is a planning horizon which is subdivided into 

weeks. At the end of each week, demands in the form of lower bounds are specified for 

each product. Constant production rates, production costs and selling prices are given for 

each product. Sequence dependent transition times that arise from the processing of two 
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successive products are also given as well as the corresponding transition costs. The 

change of inventory levels with respect to time must be taken into account, and hence the 

corresponding inventory costs. The problem is then to determine the products to be 

produced in each week, the sequencing of these products, length of production times, 

amounts to be produced, and inventory levels for each product. The objective is to 

maximize the total profit in terms of sales revenues, operating costs, inventory costs and 

transition costs. 

 

MILP Model 

In this section basic ideas of the proposed mathematical model will be discussed. 

Demands, due dates and prices are assumed to be deterministic and a continuous time 

representation is adopted in this model. For convenience we assume that the due dates are 

specified at the end of each week of the specified time horizon. 

Slot 1 Slot 2 Slot N Slot 1 Slot 2 Slot N Slot 1 Slot 2 Slot N

week 1 week 2 week t

due date due date due date
Transition times

Transition times
across periods

Slot 1 Slot 2 Slot N Slot 1 Slot 2 Slot N Slot 1 Slot 2 Slot N

week 1 week 2 week t

due date due date due date
Transition times

Transition times
across periods

 
Figure 1. Time slots postulated for each week 

 

N time slots are postulated in each week (Figure 1), where N is the total number 

of products. The length of each time slot, which consists of the assigned product’s 

processing time and the corresponding transition time, is a continuous variable to be 

determined. The assignments of products to these time slots, is to be determined to define 

the sequence of the processing of the products. Binary variables tiW l are used to model 

the potential assignment of product, i , to slot l  in time period t . In order to model the 

transition times across adjacent weeks we enforce the constraint that each slot be utilized. 
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Both the transitions within each week and transitions across the weeks are activated 

depending on the assignments of products to slots and time periods. 

The indices, parameters, and variables defined in the model are as follows: 

1. Indices 

Products ki, = 1,….., N  

Time Slots       lll, = 1,…., N  

Time Periods    t = 1,……, Htot  

2. Variables 

tiW l   0-1 variable to denote if product i is assigned to slot l of period t 

itYOP   0-1 variable to denote if product i is assigned to period t  

tikZ l   to denote if product i is followed by product k in slot l of period t 

iktTRT  to denote if product i is followed by product k at the end of period t 

itNY   number of slots that product i is assigned in period t. 

tiX l

~   amount produced of i in slot l of period t 

itX   amount produced of i in period t 

tilθ
~   production time of i in slot l of period t 

itθ   production time of i in period t 

tTsl   start time of slotl in period t 

tTel   end time of slot l in period t 

itINV   inventory level of product i at the end of time period t 

itINVO  final inventory of product i at time t after the demands are satisfied 

itAREA  area below the inventory time graph for product i at period t  

itS   sales of i in period t 

pz  total profit over given time horizon 

3. Parameters 

ir   Production rates 

itd   demand of product i in period t 
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ikτ   transition time from product i to product k 

ioINVI  initial inventory level of product i 

invc   inventory cost  

oper
itc   operating cost for product i in period t 

tran
ikc   transition cost from product i to k 

itp   selling price of product i in period t 

iTR   minimum transition time for product i 

U   maximum transition time  

tH   duration of the tth time period 

tHT   time in terms of hours at the end of tth time period 

Htot  time at the end of the planning horizon 

The MILP model (P) for the planning and scheduling problem is as follows: 

a) Objective function 

Maximize 

∑∑∑∑∑∑ ∑∑∑∑ −−−=
i k t

iklt
trans
ikilt

i t i t

oper
it

i t
itinvitit

P ZcXcAreacSpz
l

*~*  

ikt
i k

trans
ik TRTc∑∑ ∗−  (1) 

The profit is given by the sum of sales revenues, the inventory costs, the operating 

costs, the transition costs within each week and transition costs across adjacent weeks. 

The cost coefficients in the objective function are defined so as to yield a profit in ($). 

The selling price itp  and cost coefficient oper
itc are in $/kg whereas cost coefficient tran

ikc  is 

in $ and the cost coefficient invc  is in $/kg.h.  

b) Assignment and processing times 

tW
i

ti ,1 ll ∀=∑   (2) 

tiWH titti ,,~0 lll ∀∗≤≤ θ   (3a) 

∑ ∀=
l

l titiit ,~θθ   (3b) 

tirX tiiti ,,~~
lll ∀∗= θ   (4a) 
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∑ ∀=
l

l tiXX tiit ,~   (4b) 

Equation (2) represents the condition that exactly one product can be produced in 

each slot. Note that the same product can be produced in more than one slot in time 

period t. Also, the total number of time slots is equal to the number of total products. 

According to constraint (3a), the time devoted to production of product i at slot l  

of time period t  is zero unless the product is assigned to slot l  of time t . The length of 

the week, tH , is a valid upper bound on the processing time. Equation (3b) states that the 

processing time of product i  at time period t, is the sum of processing times over the 

slots that are being utilized by product i  at time t . Equations (4a) and (4b) represent the 

amounts produced, which are directly proportional to processing times and production 

rates. These production rates are constants that are product dependent. 

c) Transitions 

tkiWW tktitik ,,,1,1, llll ∀−+≥Ζ +   (5) 

 Constraint (5) defines the transition variable tikZ l  which represents the transitions 

that occur within each week. tikZ l  is 1 if product i is followed by product k at slot l of 

time period t, and becomes zero otherwise. Since transition costs are minimized in the 

objective function, the variables tikZ l  can be treated as continuous variables, 10 ≤≤ tikZ l . 

d) Timing relations 

tTsTe
i k

tikik
i

titt ,~
lllll ∀Ζ++= ∑∑∑ τθ   (6) 

1,,,,11 ==∀−+≥ + llllll NtkiWWTRT tktiikt   (7) 

1,,1 ==∀=∗+∑∑ + llllll NtTsTRTTe
i k

tiktikt τ  (8) 

tNTsTe tt ,1 ≠∀= + lll   (9) 

tHTTe tNt ∀≤   (10) 

According to equation (6), the end time of a slot is equal to the starting time plus 

summation of the processing times of the products that are being produced in that slot 

and the corresponding transition times. Note that according to equations (2) and (3a), 

exactly one processing time is non zero in the summation term of (6). Constraint (7) 
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defines the transition variables for the transitions that occur across successive weeks. 

Transition variable iktTRT  will become 1 if both tiW l and 1+tkW ll  are one. On the other 

hand, if at least one of them is zero, the constraint becomes redundant. Since transitions 

are cost terms in the model, they will naturally be set to zero, and therefore they can be 

treated as continuous variables. According to constraint (8), the start time of the first slot 

of time period t has to be equal to the end time of the last slot of the previous time period 

summed with the corresponding transition time between the time periods. Equation (9) 

ensures that the end time of one slot is equal to the start time of the preceding slot. The 

inequality in (10) ensures that the end time of the last slot in time period t can not exceed 

the duration of time period t. 

e) Inventory 

1,~
=∀∗+= ∑ tirINVIINV tiiioit

l
lθ   (11a) 

1,~
1 ≠∀∗+= ∑− tirINVOINV tiiitit

l
lθ   (11b) 

tiSINVINVO ititit ,∀−=   (12) 

tiHrHINVOArea titititit ,1 ∀∗∗+∗≥ − θ   (13) 

In equation (11a), the inventory level of product i in the first time period is 

defined as the sum of the initial inventory level for product i and the amount of product i 

produced in the first time period. In equation (11b), the inventory level of product i at the 

end of time t is defined as the sum of the final inventory level of product i at the end of 

time t-1, and the amount of product i produced during time period t. In equation (12), the 

final inventory level of product i is defined by subtracting the sales iS . This final 

inventory level is the one after demands are satisfied at the end of each time period. 

Since the inventory changes with time, the inventory cost will be proportional to 

the integral of the inventory function along time. The integral of the inventory function 

along time is equal to the area below the inventory function (Figure 2) as given by 

equation (14).  

tirTeHTrHINVOArea ititt
itit

ititit ,,**)(
21 ll ∀−+
∗

∗+∗= − θ
θθ

(14) 
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Figure 2. Inventory changes with time. 

 

This equation, however, is nonlinear and nonconvex. To avoid the difficulty of 

handling such terms, we propose to use equation (13), which is a linear overestimation of 

the exact area that yields a valid upper bound on the inventory cost. The exact inventory 

cost and the corresponding overestimation are shown in Figure 3. It should be noted that 

for the time periods when no production occurs, equations (13) and (14) give the same 

inventory cost. 

INVit

INV0it-1

INVit

INV0it

Sit

rl * θilt

HTtHTt-1

θilt

slot
time

Inventory Level

Ht

l

overestimation

Telt

INVit

INV0it-1

INVit

INV0it

Sit

rl * θilt

HTtHTt-1

θilt

slot
time

Inventory Level

Ht

l

overestimation

Telt

 
Figure 3. Overestimation of Inventory 
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f) Demand 

tidS itit ,∀≥    (15) 

Constraint (15) states that the demand must be satisfied for all products in the 

plant and that the production may be exceeded. Note that demands to be satisfied are 

defined as lower bounds. Also, setting the values of the demands too high might lead to 

infeasible solutions. 

It is important to note in the proposed MILP model that when the same product is 

assigned to more than one slot in time period t, the model will not assign that product to 

nonconsecutive slots. This is due to the fact that when nonconsecutive slots are used this 

will result in the same inventory cost but in higher transition costs. As an example in 

Figure 4, solution 1 is a feasible but non-optimal configuration. Therefore, we do not 

need to enforce the utilization of consecutive slots for the same product as this will be 

handled by optimality in the search.  

A B A B

Slot l

Week t

Solution 1

A A B B

Slot l

Week t

Solution 2

A A A B

Slot l

Week t

Solution 3

A B B B

Slot l

Week t

Solution 4

A B A B

Slot l

Week t

Solution 1

A B A B

Slot l

Week t

Solution 1

A A B B

Slot l

Week t

Solution 2

A A B B

Slot l

Week t

Solution 2

A A A B

Slot l

Week t

Solution 3

A A A B

Slot l

Week t

Solution 3

A B B B

Slot l

Week t

Solution 4

A B B B

Slot l

Week t

Solution 4

 
Figure 4. Symmetric Solutions. 

 

However, using more than one slot for the same product can make the problem 

highly degenerate. Consider the case of solution 2 in Figure 4, where product A is 
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produced in two consecutive slots. If the processing times of product A in the solution are 

p1 and p2, allocating the total processing time p1+p2 in any feasible way in week t will 

result in several alternative optima. As seen in Figure 4, solution 2, solution 3 and 

solution 4 are all equivalent. In order to prevent these degenerate solutions, we propose to 

add symmetry breaking constraints where we enforce the product that is assigned to the 

first slot to utilize all the slots except one slot for each of the other assigned products. For 

the case shown in Figure 4, the only feasible optimal solution would be solution 3.  

The symmetry breaking constraints can be represented in logic form as follows: 

tiYOPW itti ,∀⇒∨ l
l

  (16) 

ti
NY

YOP
NY
YOP

it

it

it

it ,
01

∀⎥
⎦

⎤
⎢
⎣

⎡
=

¬
∨⎥

⎦

⎤
⎢
⎣

⎡
≥

  (17) 

ti
NY

W
YOPNNY

W

it

ti

i
itit

ti

,
01

1
1

∀⎥
⎦

⎤
⎢
⎣

⎡
≥

¬
∨

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡
−⎟

⎠

⎞
⎜
⎝

⎛
−= ∑  (18) 

where 

∑ ∀=
l

l tiWNY tiit ,   (19) 

The implication in (16) states that if product i is assigned to at least one slot l in 

time t then itYOP , the assignment of i in week t, is true. The disjunction in (17) states that 

if YOP is true then there is at least one assignment of product i in time t; otherwise it is 

zero. Finally, the disjunction in (18) establishes that if product i is assigned to the first 

slot of time t then the number of assigned slots for product i, itNY  must be equal to the 

total number of slots N , minus the total number of product assignments in time t, minus 

one. 

Transforming (16) to an inequality, using the convex hull transformation of (17) 

and the big-M reformulation of (18) yields (Raman and Grossmann, 1994), 

tiWYOP tiit ,,ll ∀≥        (20) 

tiYOPNNYYOP ititit ,∀∗≤≤      (21) 

tiWMYOPNNY ti
i

itit ,)1(*1 1 ∀−−⎥
⎦

⎤
⎢
⎣

⎡
−⎟
⎠

⎞
⎜
⎝

⎛
−≥ ∑    (22) 
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tiWMYOPNNY ti
i

itit ,)1(*1 1 ∀−+⎥
⎦

⎤
⎢
⎣

⎡
−⎟
⎠

⎞
⎜
⎝

⎛
−≤ ∑    (23) 

where M is a parameter that is chosen with a sufficiently large value to render (22) and 

(23) redundant when 01 =tiW . 

However, the proposed MILP model (1)-(13), (15) and (19)-(23), can become 

intractable when large number of products and long planning horizons are considered. As 

a result, simultaneous optimization techniques can fail to solve this model for large 

instances. Therefore, we propose a novel decomposition scheme for the integration of 

planning and scheduling that enables the rigorous solution at reasonable computational 

expense. For large scale problems we describe an approximation scheme. The proposed 

algorithm is described in the next section.  

 

Solution Strategy/Decomposition Algorithm 

In order to avoid the direct solution of the MILP model in the previous section, 

we propose a bi-level decomposition algorithm that exploits the hierarchical structure of 

planning and scheduling models. In particular, the original detailed planning and 

scheduling model is decomposed into an upper level planning and a lower level planning 

and scheduling problem. The upper level problem (PA) determines the products to be 

produced in each week, production levels and product inventories. (PA) is a relaxation of 

the original problem (P), and thus it yields an upper bound on the profit. In the lower 

level problem, the original problem (P) is solved by excluding products that were not 

selected by the upper level problem (PA). The lower level problem (Pr) corresponds to 

the sub problem of the MILP model (P) at iteration r and is in a reduced space since a 

subset of products is selected from the upper level (PA). A lower bound is obtained from 

the solution of (Pr) since its solution corresponds to a feasible solution of the original 

problem (P). The procedure iterates until the difference between the upper and the lower 

bounds is less than a specified tolerance. To expedite the search, integer cuts and logic 

cuts are added to the upper level. Integer cuts are used to exclude previous solutions, and 

logic cuts are used to exclude subsets and supersets of previously obtained configurations 

at the upper level problem, as well as potential solutions that violate capacity constraints. 

The decomposition algorithm is illustrated schematically in Figure 5. 
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UPPER LEVEL
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assignments and to get an upper bound UB

LOWER LEVEL

STOP
Solution = LB

No Yes

Solve the planning and scheduling problem Pr
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Add 
Integer Cuts

and 
Logic Cuts
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STOP
Solution = LB

No Yes
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Exclude the products that were not assigned by the 
upper level
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Add 
Integer Cuts

and 
Logic Cuts

 
Figure 5. Flowchart for the proposed algorithm 

 

Upper Level Problem 

The aggregated MILP model (PA) is used to predict an upper bound. It is based 

on the idea of ignoring the detailed sequencing constraints and is largely concerned with 

the assignment of products at each week through the binary variables itY . 

The indices, parameters, and variables defined in the model are as follows: 

1. Indices 

Products ki, = 1,….., N  

Time Periods    t = 1,……, Htot  

2. Parameters 

ir   Production rates 

itd   demand of product i in period t 

ioINVI  initial inventory level of product i 

invc   inventory cost  

oper
itc   operating cost for product i in period t 
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itp   selling price of product i in period t 

iTR   minimum transition time for product i 

iTRC   minimum transition cost for product i 

tH   duration of the tth time period 

3. Variables 

itY  0-1 variable to denote if product i is assigned to period t 

tU   maximum of the minimum transition times of products assigned to 

period t 

tUTRC  maximum of the minimum transition costs of products assigned to 

period t 

itX   amount produced of i in period t 

itθ   production time of i in period t 

itINV   inventory level of product i at the end of time period t 

itINVO  final inventory of product i at time t after the demands are satisfied 

itAREA  area below the inventory time graph for product i at period t  

itS   sales of i in period t 

The proposed model representing the upper level is shown below: 

∑ ∑∑∑ ∑∑∑∑ ⎟
⎠

⎞
⎜
⎝

⎛
−∗−−−=

t
t

i
iti

i t i t
it

oper
it

i t
itinvitit

PA UTRCYTRCXcAreacSpzMax )( (24) 

tirX itiit ,∀∗= θ    (25) 

tiYH ittit ,∀∗≤θ    (26) 

tiYTRU itit ,∀∗≥    (27a) 

{ } tTRU iit ∀≤max    (27b) 

tHUYTR ttiti
i

it ∀≤−∗+∑ )(θ    (28) 

tYTRCUTRC itit ∀∗≥    (29a) 

{ } tiTRCUTRC iit ,max ∀≤    (29b) 
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1, =∀∗+= tirINVIINV itiioit θ    (30) 

1,1 ≠∀∗+= − tirINVOINV itiitit θ    (31) 

tiSINVINVO ititit ,∀−=    (32) 

tiHrHINVOArea titititit ,1 ∀∗∗+∗≥ − θ    (33) 

tidS itit ,∀≥    (34) 

Since the detailed sequencing is ignored in the upper level, the exact changeover 

times and costs cannot be computed. However, ignoring changeover times and costs 

would yield very optimistic production targets and weak upper bounds. Therefore, we 

introduce binary variables itY  to represent the potential production of product i in time 

period t so that we can account for lower bounds for the changeover times and costs 

within each week. The idea is to assign a minimum changeover time for each product 

assigned to period t. Since the changeover times across the periods are neglected, the total 

number of changeovers assigned will be set equal to the total number of products minus 

one. Therefore, the maximum of the minimum transition times is subtracted in constraint 

(28) and in the objective function (24).  Specifically, in constraints (27a) and (27b), we 

define the maximum of the minimum changeover times of products assigned to period 

t, tU . According to constraint (28), minimum changeover times iTR  are assigned for each 

product that is being produced in time t, and the maximum of the minimum changeover 

times, tU  is subtracted. As an example in Figure 6, products A, B and C are assigned to 

period t, and products A and C are assigned to period t+1 where CAB TRTRTR ≥≥ . The 

maximum of the minimum transition times is BTR  in period t and ATR  in period t+1, 

therefore the changeover time assigned for product B is subtracted from period t, and the 

changeover time assigned for product A is subtracted from period t+1. The final 

assignments are shown in Figure 6c, which ensure a valid lower bound on the transitions 

throughout all the periods. 

Atθ BtθCtθATR CTR BTR

Period t

Atθ BtθCtθATR CTR BTRAtθ BtθCtθATR CTR BTR

Period tPeriod t

 
Figure 6a. Assignment of Products and changeover times to period t 
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AtθCtθ CTR ATR

Period t+1

AtθCtθ CTR ATRAtθCtθ CTR AtθCtθ CTR ATR

Period t+1Period t+1

 
Figure 6b: Assignment of Products and changeover times to period t+1 

 

Atθ BtθCtθATR CTR AtθCtθ CTR

Period t Period t+1

Atθ BtθCtθATR CTR AtθCtθ CTR AtθCtθ CTR

Period tPeriod t Period t+1Period t+1

 
Figure 6c: Assignments with final changeover times 

 

Constraints (29a) and (29b) are developed in analogy to constraints (27a) and 

(27b), and the term∑ ∑ ⎟
⎠

⎞
⎜
⎝

⎛
−∗

t
t

i
iti UTRCYTRC )( , which is an underestimation of the 

changeover costs, is subtracted from the objective function. 

The upper level MILP given by (24)-(34) is formulated by neglecting the 

sequencing constraints, neglecting the transition times across the weeks and 

underestimating the transition times within each week. Thus, the upper level model, 

which is based on the MILP in (PA), is a relaxation of problem (P) and it yields an upper 

bound on the solution of this problem. 

Property 1. Problem (PA) yields an upper bound to the solution of Problem (P). 

We prove that (PA) is a relaxation of (P), thus yielding an upper bound. 

i) Equations (2), (3a), (5), (7), (8), (9), (10), (19), (20), (21), (22), and (23) of the MILP 

Problem (P) are neglected. 

ii) Equations (4a), (4b) and (3b) are aggregated to obtain (25) as shown below: 

Substitute equation (4a) into (4b) to obtain: ∑ ∗=
l

iltiit rx θ . We can take out ir since it is 

independent of the summation to obtain, ∑∗=
l

iltiit rx θ  and by substitution of equation 

(3b), this yields, ∑=
l

iltit θθ ~ . Equation (25) is obtained as: itiit rx θ∗= . 
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iii) Equation (28) is obtained by relaxing (6) in Problem (P): 

Sum equation (6) over l  to get: ∑∑∑∑∑∑∑ Ζ++=
l

l
l

l
l

l
l

l
i k

tikik
i

titt TsTe τθ~  

Note that ttt HTsTe =−∑∑
l

l
l

l . Substituting in this relation and (3b) to the above 

summation we get, t
i k

tikik
i

it H=Ζ+∑∑∑∑
l

lτθ . We obtain a relaxation of this equation 

by underestimating the exact transition terms∑∑∑ Ζ
l

l
i k

tikikτ , by UyTR iti −⋅ . Hence this 

yields (28) which is a relaxation of (6). 

iv) Equation (6) is relaxed to obtain equation (26): 

We start from (6) which was rewritten to get t
i k

tikik
i

it H=Ζ+∑∑∑∑
l

lτθ in (iii). Since 

the transition term∑∑∑ Ζ
l

l
i k

tikikτ is positive, t
i

it H≤∑θ  is a valid relaxation of (6). 

tit H≤θ is also a relaxation of t
i

it H≤∑θ  since the minimum upper bound that tit H≤θ  

yields, is larger than the minimum upper bound obtained from t
i

it H≤∑θ . 

Note that the minimum upper bound that tit H≤θ yields, is obtained by summing tit H≤θ  

over i to get: ∑ ∑≤
i i

tit Hθ which is equivalent to∑ ∗≤
i

tit NHθ .  

To summarize, t
i

it H≤∑θ is a relaxation of equation (6), and tit H≤θ is a relaxation of 

t
i

it H≤∑θ . Therefore, tit H≤θ is a relaxation of (6).  

v) Equations (30) and (31) are obtained by substituting equation (3b) to (11). 

vi) Equations (32)-(33) and (34) are the same as equations (12)-(13) and (15) of Problem 

(P). � 

 

Lower Level Problem 

The lower level is represented by the detailed MILP planning and scheduling 

model (P), which is solved for only a subset of products predicted at the upper level at 

each time period. The main motivation for this procedure is that the number of binary 

variables, and hence the size of the lower level is reduced by excluding the products that 
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were not selected by the upper level problem through the binary variable r
itY  obtained at 

iteration .r Thus we impose the inequality, 
r

itit YYOP ≤   (35) 

Constraint (35) is used at the lower level, and implies that if product i is not 

produced at time t at the upper level, (i.e. 0=itY ), then that product will not be produced 

in time t at the lower level.  

To exclude the previously obtained feasible configurations, and to ensure 

different solutions at each iteration, the following integer cut is added to problem (P) 

(Balas and Jeroslow, 1972), 

1
),(),(

−≤− ∑∑
∈∈

r
Nti

it
r

Mti
it

r MYOPYOP
rr

     (36) 

where, 

{ }
{ }riterationinionconfiguratforYOPtiN

riterationinionconfiguratforYOPtiM
r

itr

r
itr

0,

1,

==

==
 

and r
itYOP is the value of the binary variable itYOP  at iteration r . 

Hence, the lower level problem (Pr) is defined by adding to problem (P) the 

inequalities in (35) and (36). Note that the model (Pr) yields a valid lower bound since its 

solution is a feasible solution of the original detailed planning and scheduling model. The 

upper level (PA) and the lower level (Pr) problems are solved iteratively until the bounds 

of each level converge within a specified tolerance. 

 

Integer and Logic cuts 

After each iteration, if the upper bound obtained from the upper level and the 

lower bound obtained from the lower level do not lie within a tolerance, we need to 

obtain a new solution from the upper level. Integer and logic cuts are used to generate 

new solutions in terms of the assignment variable itY . 

The integer cut that excludes the previously obtained feasible solutions from the 

upper level model is as follows, 

11
),(),( 01

−≤− ∑∑
∈∈

r

Zti
it

r

Zti
it

r ZYY
rr

      (37) 
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where { }0,0 == it
r YtiZ  and { }1,1 == it

r YtiZ  

Note that, rZ0  and rZ1 are obtained from the optimal solution at the upper level in terms 

of the assignment variable in iteration r. 

In order to reduce the search space for the binary variables and the number of 

iterations in the decomposition procedure, logic cuts are used, which correspond to subset 

cuts, superset cuts and a special capacity cut that are used to eliminate suboptimal 

alternatives. The cuts presented below are motivated by the cuts proposed by Iyer and 

Grossmann (1998). The following property establishes the basis for the derivation of the 

subset cuts. 

Property 2: Any subset of products in each week from the optimal solution of the upper 

level that was obtained at iteration r can be excluded from the upper level at any 

iteration rs> .  

Proof: During the solution at the lower level at iteration ,r  the optimal solution obtained 

at upper level ,, 1
rZ and all possible subsets of rZ1 will be considered as alternatives due to 

the inequality in (35). Some of these subsets will correspond to infeasible solutions, while 

the others will correspond to feasible solutions. The best configuration amongst the 

feasible configurations obtained during the search, will be selected as the optimal 

solution of Pr for that specific iteration r. Since all subsets have already been considered 

as alternatives in the optimization of Pr, we do not need to further consider these subsets 

in later iterations rs> at the upper level. Hence we can exclude the subsets from further 

consideration at the upper level problem PAr, rs> . � 

The cut for excluding the subsets imposes the condition that products i in time t that were 

not selected, { }0,),( 0 ==∈ it
r YtiZti , implies that selected products i in time 

t, { }1,),( 1 ==∈ it
r YtiZti must remain. That is, 

r
itit

Zti
ZtiYY

r
o

1
),(

),( ∈∀⇒⎟
⎠
⎞⎜

⎝
⎛ ¬

∈
∧      (38) 

which is logically equivalent to, 

itit
Zti

YY
r

∨∨
∈

))((
0),(

       (39) 

Mathematically this proposition can be written as (Williams, 1985), 



 20

r
ti

Zti
it ZtiYY

r
o

1''
),(

)','(1 ∈∀≥+∑
∈

  (40) 

In the following property, the derivation of the superset cuts is presented, which are used 

to exclude the supersets of previously obtained feasible configurations. 

Property 3: Given that { }1,1 == it
r YtiZ  and { }0,0 == it

r YtiZ  are the optimal solution of 

the upper level at iteration r, any superset of rZ1  at a later iteration rs> , will result in a 

solution of the upper level such that **
rs zz ≤ . Hence, supersets of optimal configurations 

obtained at iteration r  can be excluded from the solution of the upper level at 

iterations rs> . 

Proof: Let rZ1  be the optimal solution of the upper level in iteration .r  If any solution 
rs ZZ 11 ⊃  is not selected before iteration r , then this implies that the selection of any 

additional product sZi 1∈ and rZi 1∉ does not result in an increase in the objective value of 

the upper level model. Therefore, **
rs zz ≤  and any superset of the optimal 

configuration, rZ1 , can be excluded from further consideration at the upper level for all 

iterations rs> . � 

The cut for excluding the supersets is logically written as, 

)(
),(),( 1

it
Zti

it
Zti

YY
r
o

r
¬⇒ ∧∧

∈∈

      (41) 

The above proposition states that, if in any solution of an iteration rs> all the itY ’s in 

set rZ1  are 1 (true), then all the other Yit’s must be zero (false) to prevent a superset of rZ1 .  

Following a similar reasoning as in (38) – (40), this can be written as follows,  
r
o

r
ti

Zti
it ZtiZYY

r

∈∀≤+∑
∈

)''(1''
),( 1

  (42) 

where { }0,0 == it
r YtiZ  and { }1,1 == it

r YtiZ   

In the following property, the derivation of the capacity logic cut that helps to 

tighten the upper bound is given. The motivation for this cut is that it helps to tighten the 

upper bound, thereby reducing the difference between the upper and the lower bounds. 

This cut is different than the subset cuts and the superset cuts in the sense that it makes 
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use of the information on the lower level solution, whereas the subset and superset cuts 

make use of information obtained from the upper level solution. 

The cut for Property 4 is mathematically written as follows, 

rrti
Mti

it
r

i t
it NtiMYYTransHtot

r

∈∀⎥
⎦

⎤
⎢
⎣

⎡
−+∗+≥ ∑∑∑

∈
)''(''

),(
θ    (43) 

where  

{ }
{ }riterationinionconfiguratforYOPtiN

riterationinionconfiguratforYOPtiM
r

itr

r
itr

0,

1,

==

==
  

and rTrans stands for the total transition time obtained at the optimal solution of (Pr) at 

iteration .r  

Property 4: If at the upper level, in iteration rs> , a solution is obtained, which is the 

superset of the optimal solution at the lower level at iteration r, then the total transition 

time of the upper level at iteration s, has to be at least equal to the total transition time 

obtained at the lower level at iteration r.  

Proof: When a superset of the optimal configuration of (Pr) is selected at the upper level, 

the multiplying factor for the right hand side becomes one. Therefore, the inequality 
r

i t
it TransHtot +≥ ∑∑θ is forced through equation (43) resulting in a decrease in the 

actual production times. This, however, implies a decrease in the production amounts and 

hence a decrease in the objective value of the upper level thereby tightening the 

difference between the upper and lower bounds. Furthermore, for any other choice of 

configuration sM where ,sr MM ⊄ the multiplication factor becomes less than zero 

thereby rendering the inequality (43) redundant. � 

The implication of the above properties is that integer cuts and logic cuts 

developed at iteration r  may be added to the upper level problem (PAs) at each iteration 

rs> .In this way, all supersets and subsets of rZ1 and the solution rZ1 are excluded from the 

solution of iteration rs> , thereby eliminating a large number of feasible configurations 

from the solution of the upper level and expediting the search. Note that these cuts are 

added cumulatively at each iteration resulting in an increase of the size of the problem. 

The final decomposition algorithm is illustrated schematically in Figure 7.  
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Figure 7. Flowchart for the Final Decomposition Algorithm 

 

Algorithmic Steps 

The detailed steps of the proposed decomposition are as follows: 

(1) Set iteration count 0=r , upper bound ∞=UB , lower bound ∞−=LB , and 

optimality tolerance ε . 

(2) Set .1: += rr   

(a) Solve the MILP aggregate model (PAr), given by equations (24)-(34), to 

determine a configuration r
itŶ  with upper bound UB.  

 Define 

{ }
{ }0ˆ,ˆ

1ˆ,ˆ

0

1

==

==
r

it
r

r
it

r

YtiZ

YtiZ
 

(3) Set  
rr

itit ZtiYYOP 0
ˆ),(ˆ ∈=  

Solve (Pr), given by equations (1)-(13), (15), (19)-(23), (35), to determine the 

products produced in each time period, r
itYOP ,and a lower bound rLB . 

Set { }r
r LBLB max= . 
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Define 

{ }
{ }0,

1,

==

==
r

itr

r
itr

YOPtiN

YOPtiM
 

(4) If ( ) )(ε≤− UBLBUB , stop. The solution corresponding to the LB is the optimal 

solution. Else, go to step 5. 

(5) Add the following integer and logic cuts to (PAr). 
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Go to step 2. 

 

Remarks 

1. The proposed decomposition algorithm produces the same global optimal solution as 

the full-space MILP model in a finite number of iterations since the number of 

possible assignments of products in each week is finite. 

2. A major advantage of the proposed algorithm is that the size of the lower level model, 

which is the bottleneck for this multiperiod optimization problem, is reduced by 

considering a subset of assignment variables as obtained from the upper level, making 

it possible to fix a potentially large number of binary variables. 

3. The integer and logic cuts in equations (36), (37), (40), (42) and (43) are added 

cumulatively at each iteration to the upper level models (PA), and may result in the 

increase in the size of the upper level models. 

4. In order to reduce the number of iterations when there is slow convergence between 

the lower and upper bounds, a nonzero optimality  tolerance ε  can be specified in 

step 1 (e.g. 1% to 10%). Also, we should note that even though in larger problems it 

might be difficult to close the gap between the bounds, the proposed procedure will 



 24

be able to generate good feasible solutions whose global optimality can be guaranteed 

within the difference of the bounds.  

5. For instances when either the upper level or the lower level models are expensive to 

solve, these can be solved approximately with Forward Rolling Horizon Algorithms 

(Dimitriadis et al, 1997) or with Temporal Lagrangean Decomposition (Guinard and 

Kim, 1987; Jackson and Grossmann, 2003). 

 

Examples 

To illustrate the application and computational effectiveness of the proposed 

algorithm, three examples are presented. The solutions obtained from the proposed 

method are compared to the full space solutions. The methods were implemented in 

GAMS (Brooke at al., 2002) and solved with the MILP solver CPLEX 9.0 (ILOG 2004) 

on an Intel 3.2 GHz machine. For simplicity, zero levels of initial inventories are 

assumed in all examples. 

 

Example 1 

This planning and scheduling problem consist of five different products, A-E, to 

be processed on the continuously operating single unit. The planning horizon consists of 

4 weeks and due dates for orders are specified at the end of each week. The production 

rates are shown in Table 1, while the cost data are presented in Tables 2 and 3. This 

example was solved for two sets of lower bounds for the demands (high and low demand 

rates), which are shown in Tables 4a and 4b. The case of lower demands should be easier 

to solve because one product will be overproduced due to the continuous operation, 

which in turn has the effect of producing fewer products in each week. 
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Table 1. Production rates data for Example 1 
Production 

Product Rates(kg/hr)
A 800
B 900
C 1,000
D 1,000
E 1,200  
 

Table 2. Cost Data for each time period for Example 1 
Operating Selling 
Costs ($/kg) Price ($/kg)

A 0.19 0.25
B 0.32 0.40
C 0.55 0.65
D 0.49 0.55
E 0.38 0.45  
Inventory Cost ($/kg.h)

0.0000306  
 

Table 3. Transition times and transition costs for Example 1 
Product

Product A B C D E
Transition times (hrs)

A 0.00 2.00 1.50 1.00 0.75
B 1.00 0.00 2.00 0.75 0.50
C 1.00 1.25 0.00 1.50 2.00
D 0.50 1.00 2.00 0.00 1.75
E 0.70 1.75 2.00 1.50 0.00

Transition costs ($)
A 0 760 760 750 760
B 745 0 750 770 740
C 770 760 0 765 765
D 740 740 745 0 750
E 740 740 750 750 0  
 

Table 4. Lower Bounds for Demands 

a) High Demand Rates for Example 1a 

1 2 3 4

A 10,000 20,000 30,000 10,000
B 25,000 20,000 15,000 25,000
C 30,000 40,000 50,000 30,000
D 30,000 20,000 13,000 30,000
E 30,000 20,000 12,000 30,000

Time Period

Demand (kg)
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b) Low Demand Rates for Example 1b 

1 2 3 4

A 0 10,000 20,000 0
B 15,000 10,000 5,000 15,000
C 20,000 30,000 40,000 20,000
D 20,000 10,000 3,000 20,000
E 20,000 10,000 2,000 20,000

Time Period

Demand (kg)

 
Table 5 shows the problem sizes and solution times for the proposed 

decomposition algorithm and the full space methods for Example 1a which corresponds 

to high demand rates. Table 6 shows the progress of the iterations for a 0% optimality 

tolerance. It should be noted that in Table 5, the sizes of the upper and lower level 

problems are from the last iteration in Table 6, while the corresponding times are the total 

times. Although the sizes of the lower level problem are similar to the original problem, it 

includes the constraints in (35), which effectively fixes many of the 0-1 variables. 

The solution obtained using the proposed algorithm yields a profit of $43,120. 

The solution for the proposed approach was obtained in 15 major iterations in 207 CPU 

seconds. We should note that if the proposed method is solved with 1% tolerance, the 

number of iterations decreases to 4 and the CPU time decreases to 29 seconds. The full 

space method was solved with a 1% optimality tolerance and failed to terminate in 6000 

CPUs yielding a feasible solution of $43,015 with an 8% gap between the bounds. Figure 

8 shows the schedule that is predicted by the proposed method and Figure 9 shows the 

inventory levels. 

 

Table 5. Results for Example 1a 

Method Number of Number of Number of Time Solution
binary continuous Equations (CPUs) ($)

 variables variables
Full Space 120 987 906 6000* 43,015.9

Proposed 207.9 43,120.8
algorithm
Problem UB 20 151 564 2.0 43,013.0
Problem LB 120 996 949 205.9 43,120.8  
*Search not terminated, best feasible solution posted with 8% gap of bounds 
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Table 6. Progress of iterations for Example 1a 
Iteration Upper Bound (UB) Lower Bound (LB)

1 43,659.5 42,351.7
2 43,623.5 42,229.6
3 43,543.7 42,994.0
4 43,540.5 43,120.776*
5 43,530.1 42,307.7
6 43,530.1 42,219.9
7 43,489.2 42,998.2
8 43,467.9 42,980.8
9 43,425.6 42,980.8

10 43,403.3 43,009.4
11 43,394.6 42,818.9
12 43,376.7 42,818.9
13 43,354.2 42,995.1
14 43,353.8 42,721.5
15 43,013.0 41,637.7  

* Optimal solution 
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Figure 8. Gantt chart for Example 1a 
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Figure 9a. Inventory Levels for Product A for Example 1a 
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Figure 9b. Inventory Levels for Product B for Example 1a 
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Figure 9c. Inventory Levels for Product C for Example 1a 
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Figure 9d. Inventory Levels for Product D for Example 1a 
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Figure 9e. Inventory Levels for Product E for Example 1a 
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Recall that in order to avoid nonlinearities in the objective function due to the 

inventory costs, an overestimation of the inventory costs was developed (eqtn 13). If we 

had calculated the exact inventory cost for Example 1a, it would have been $1,679 less 

than the overestimated inventory cost. While the overestimation of the inventory is rather 

high (about 40%), its impact in the total profit was much smaller (4% overestimation). As 

we will seen below, the the overestimation is smaller in the case of low demands.  

Table 7 shows the problem sizes and solution times obtained for the proposed 

decomposition algorithm and the full space method for Example 1b, which has the low 

demands (Table 4b). The proposed algorithm yields a profit of $52,319 in 4.6 CPUs in 10 

major iterations using a 0% tolerance. The full space method yields the same solution of 

$52,319 in 526 CPUs. The progress of the iterations with the proposed method is 

presented in Table 8. We should note that the reason the profit is higher in Example 1b is 

because more of Product C is produced than in Example 1a (see Figure 10) due to the 

smaller lower bounds for the demands. It should also be noted that in this case, if we had 

calculated the exact inventory costs, they would have been $840 less than the 

overestimated inventory costs. In this case the inventory costs are overestimated by 18%, 

while the total profit is overestimated by 1.6%. 

The optimal schedule predicted by the proposed approach for Example 1b is 

shown in Figure 10a. As seen in Table 8, the difference between the solutions obtained at 

each iteration is very small. However, this is not true for every solution. To give an 

example, the profit for the heuristic schedule in Figure 10b that involves lower 

inventories but larger number of transitions is $48,754, which is significantly lower than 

the solutions in Table 7 (6.8%). 

Table 7. Results for Example 1b 

Method Number of Number of Number of Time Solution
binary continuous Equations (CPUs) ($)

 variables variables
Full Space 120 987 906 525.9 52319.9*

Proposed 4.6 52,319.9
algorithm
Problem UB 20 151 455 0.5 51,988.1
Problem LB 120 996 944 4.1 52,319.9  
*Optimal solution for the full space method with a 0% gap of bounds 
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Table 8. Progress of iterations for Example 1b 
Iteration Upper Bound (UB) Lower Bound (LB)

1 52,712.3 51,556.6
2 52,693.3 51,509.1
3 52,640.3 51,423.7
4 52,635.2 51,508.2
5 52,611.1 51,422.1
6 52,609.5 51,283.0
7 52,573.5 52,315.303*
8 52,558.1 52,123.9
9 52,549.4 52,319.9

10 51,988.1 50,690.4  
* Optimal solution 
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Figure 10a. Gantt chart for Example 1b 
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Figure 10b. Gantt chart for Heuristic Example 

 

Example 2 

This problem consists of the same five different products, A-E, to be processed 

over a 8 week horizon in which due dates are specified at the end of each week. The 

production rates data and the cost data are the same as for the first example. The lower 

bounds for the demand data for high rates are presented in Table 9a while the ones for 

low rates are presented in Table 9b. 
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Table 9. Lower Bounds for Demands for Example 2 

a) High Demand Rates (Example 2a) 
Time Period

1 2 3 4 5 6 7 8
Demand (kg)

A 10,000 20,000 30,000 10,000 20,000 30,000 10,000 20,000
B 25,000 20,000 15,000 25,000 20,000 15,000 25,000 20,000
C 30,000 40,000 50,000 30,000 40,000 50,000 30,000 40,000
D 30,000 20,000 13,000 30,000 20,000 13,000 30,000 20,000
E 30,000 20,000 12,000 30,000 20,000 12,000 30,000 20,000  
b) Low Demand Rates (Example 2b) 

Time Period
1 2 3 4 5 6 7 8

Demand (kg)
A 0 10,000 20,000 0 10,000 20,000 0 10,000
B 15,000 10,000 5,000 15,000 10,000 5,000 15,000 10,000
C 20,000 30,000 40,000 20,000 30,000 40,000 20,000 30,000
D 20,000 10,000 3,000 20,000 10,000 3,000 20,000 10,000
E 20,000 10,000 2,000 20,000 10,000 2,000 20,000 10,000  
 

Table 10. Results for Example 2a 

Method Number of Number of Number of Time Solution
binary continuous Equations (CPUs) ($)

 variables variables
Full Space 240 1,971 1,830 4000* 87,299.9

Proposed 1,041.8 88,100.1
algorithm
Problem UB 40 299 703 105.4 90,650.8
Problem LB 240 1,984 1,889 936.5 88,100.1  
* Search not terminated, best feasible solution posted with 13% gap of bounds 

 

Table 10 shows the problem sizes and solution times for the proposed 

decomposition algorithm and the full space methods, which were solved with a 3% 

optimality tolerance. Table 11 shows the progress of the iterations with the proposed 

method for Example 2a (high demand rates), and Figure 11 shows the optimal schedule 

that is predicted by the proposed method for Example 2a. 

The proposed algorithm yields a profit of $88,100 within 3% of the global 

optimum. The solution for the proposed approach was obtained in 7 major iterations in 

1041 CPU seconds, whereas the full space method fails to terminate within the specified 
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limit (4000 CPUs), only managing to produce a feasible solution with an objective value 

of $87,299. 

 

Table 11. Progress of iterations for Example 2a 

Iteration Upper Bound (UB) Lower Bound (LB)
1 90,694.90 87,360.31
2 90,687.02 86,469.02
3 90,676.69 86,469.02
4 90,671.93 86,312.44
5 90,669.19 86,450.69
6 90,665.3 87,528.22
7 90,650.80 88,100.074*  

*Optimal solution 
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Figure 11. Gantt chart for Example 2a 

 

Table 12. Results for Example 2b 
Method Number of Number of Number of Time Solution

binary continuous Equations (CPUs) ($)
 variables variables

Full Space 240 1,971 1,830 3000* 104,671.5

Proposed 1.7 104,702.3
algorithm
Problem UB 40 299 331 0.2 107,355.7
Problem LB 240 1,984 1,883 1.5 104,702.3  
*Search not terminated, best feasible solution posted with 7% gap of bounds 

 

Table 12 presents the results obtained for Example 2b, which corresponds to low 

demand rates. The proposed method yields a profit of $104,702 which lies within 3% of 

the global optimum in 2 CPUs in one major iteration. The full space method failed to 

terminate in 3000 CPUs and yielded a feasible solution of $104,671 with a 7% optimality 
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gap. The proposed approach is at least two orders of magnitude faster than the full space 

method for the low demand rates. 
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Figure 12. Gantt chart for Example 2b 

 

It should be noted that decreasing the tolerance results in more accurate values of 

the objective function, but at the cost of increased CPU times. The effect of the 

optimality tolerance on the results of Example 2b is shown in Table 13. 

 

Table 13. Effect of Tolerance on Results for Example 2b 

Tolerance Number of 
iterations

CPU(s) Upper 
Bound ($)

Lower 
Bound ($)

Simultaneous
CPU time

Simultaneous 
solution

1% 80 2591 106,234.70 104,957.12 3,000 104,671.46
2% 2 3.6 106,997.24 104,957.12 3,000 104,671.46
3% 1 1.7 107,355.70 104,702.30 3,000 104,671.46
5% 1 1.7 107,355.70 104,338.10 3,000 104,671.46  

 

Example 3 

In this example a planning horizon of 16 weeks is considered. The cost data and 

the production rates for products A-E are the same as for the first example. The lower 

bounds for high demand data are given in Table 14a and the lower bounds for the low 

demand data are presented in Table 14b. 

The proposed algorithm yields a profit of $184,144 within 6% of the global 

optimum in 93 CPUs in three major iterations. We should note that, when the tolerance is 

decreased to 5%, a solution of $183,041 is obtained in 23,000 CPUs and 35 major 

iterations. The full space method produced a solution of $183,161 in 3,000 CPUs. The 

results for Example 3a are shown in Table 15, while the progress of iterations are shown 

in Table 16. 
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Table 14. Lower Bounds for Demands for Example 3 

a) High Demand Rates (Example 3a) 

30,000 12,000 20,000 30,000 12,000 20,000 30,000 12,000 20,000 30,000 12,000 20,000 30,000 12,000 20,000 30,000 E

30,000 13,000 20,000 30,000 13,000 20,000 30,000 13,000 20,000 30,000 13,000 20,000 30,000 13,000 20,000 30,000 D

30,000 50,000 40,000 30,000 50,000 40,000 30,000 50,000 40,000 30,000 50,000 40,000 30,000 50,000 40,000 30,000 C

25,000 15,000 20,000 25,000 15,000 20,000 25,000 15,000 20,000 25,000 15,000 20,000 25,000 15,000 20,000 25,000 B

10,000 30,000 20,000 10,000 30,000 20,000 10,000 30,000 20,000 10,000 30,000 20,000 10,000 30,000 20,000 10,000 A

Demand (kg)

16151413121110987654321Product

30,000 12,000 20,000 30,000 12,000 20,000 30,000 12,000 20,000 30,000 12,000 20,000 30,000 12,000 20,000 30,000 E

30,000 13,000 20,000 30,000 13,000 20,000 30,000 13,000 20,000 30,000 13,000 20,000 30,000 13,000 20,000 30,000 D

30,000 50,000 40,000 30,000 50,000 40,000 30,000 50,000 40,000 30,000 50,000 40,000 30,000 50,000 40,000 30,000 C

25,000 15,000 20,000 25,000 15,000 20,000 25,000 15,000 20,000 25,000 15,000 20,000 25,000 15,000 20,000 25,000 B

10,000 30,000 20,000 10,000 30,000 20,000 10,000 30,000 20,000 10,000 30,000 20,000 10,000 30,000 20,000 10,000 A

Demand (kg)

16151413121110987654321Product

 
b) Low Demand Rates (Example 3b) 

20,000 2,000 10,000 20,000 2,000 10,000 20,000 2,000 10,000 20,000 2,000 10,000 20,000 2,000 10,000 20,000 E

20,000 3,000 10,000 20,000 3,000 10,000 20,000 3,000 10,000 20,000 3,000 10,000 20,000 3,000 10,000 20,000 D

20,000 40,000 30,000 20,000 40,000 30,000 20,000 40,000 30,000 20,000 40,000 30,000 20,000 40,000 30,000 20,000 C

15,000 5,000 10,000 15,000 5,000 10,000 15,000 5,000 10,000 15,000 5,000 10,000 15,000 5,000 10,000 15,000 B

0 20,000 10,000 0 20,000 10,000 0 20,000 10,000 0 20,000 10,000 0 20,000 10,000 0 A

Demand (kg)

16151413121110987654321Product

Time Period

20,000 2,000 10,000 20,000 2,000 10,000 20,000 2,000 10,000 20,000 2,000 10,000 20,000 2,000 10,000 20,000 E

20,000 3,000 10,000 20,000 3,000 10,000 20,000 3,000 10,000 20,000 3,000 10,000 20,000 3,000 10,000 20,000 D

20,000 40,000 30,000 20,000 40,000 30,000 20,000 40,000 30,000 20,000 40,000 30,000 20,000 40,000 30,000 20,000 C

15,000 5,000 10,000 15,000 5,000 10,000 15,000 5,000 10,000 15,000 5,000 10,000 15,000 5,000 10,000 15,000 B

0 20,000 10,000 0 20,000 10,000 0 20,000 10,000 0 20,000 10,000 0 20,000 10,000 0 A

Demand (kg)

16151413121110987654321Product

Time Period

 

Table 15. Results for Example 3a 
Method Number of Number of Number of Time Solution

binary continuous Equations (CPUs) ($)
 variables variables

Full Space 480 3,939 3,678 3000* 183,161.0

Proposed 92.6 184,144.7
algorithm
Problem UB 80 595 918 1.6 194,220.5
Problem LB 480 3,960 3,781 90.9 184,144.7  
* Search not terminated, best feasible solution posted with 17% gap of bounds 
 

Table 16. Progress of iterations for Example 3a 
Iteration Upper Bound (UB) Lower Bound (LB)

1 194,843.78 182,763.00
2 194,171.60 182,760.00
3 194,220.49 184,144.742*  

*Optimal solution 
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Table 17. Results for Example 3b 
Method Number of Number of Number of Time Solution

binary continuous Equations (CPUs) ($)
 variables variables

Full Space 480 3,678 3,939 1,000* 211,879.2

Proposed 151.0 210,879.5
algorithm
Problem UB 80 595 4,488 137.5 217,803.8
Problem LB 480 3,960 3,807 13.5 210,879.5  
* Search not terminated, best feasible solution posted with 10% gap of bounds 
 

Table 18. Progress of iterations for Example 3b 

Iteration Upper Bound (UB) Lower Bound (LB)
1 217,803.81 209,253.33
2 218,314.78 209,366.39
3 218,073.61 205,662.35
4 218,744.95 208,259.83
5 220,422.01 209,638.38
6 218,294.93 204,875.84
7 220,586.46 209,708.73
8 218,059.90 206,481.16
9 218,471.37 206,594.91

10 220,436.04 206,810.38
11 220,502.92 206,684.09
12 219,875.80 207,963.81
13 217,513.78 207,963.81
14 220,064.63 207,212.68
15 220,285.74 207,417.50
16 218,013.80 209,144.48
17 218,506.83 210,879.45*
18 219,690.71 209,908.00
19 217,821.57 208,224.97
20 219,834.70 209,120.11
21 219,516.03 208,594.87
22 217,578.13 206,246.97
23 218,367.29 209,674.75
24 218,131.54 204,806.03
25 218,198.43 203,974.34
26 219,082.18 206,392.90
27 218,666.82 208,599.21
28 218,539.90 205,120.69
29 217,308.54 208,334.30  

* Optimal solution 
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The results for Example 3b are presented in Table 17. A profit of $210,879 within 

3% of the global optimum is obtained with the proposed approach. The search is 

completed in 29 major iterations in 151 CPUs. Note that, the total number of constraints 

defining the upper level is more than the total number of equations in the lower level. 

This is due to the accumulation of logic and integer cuts in the upper level with each 

iteration. Hence, the upper level becomes the bottleneck for this example in contrast to 

the previous examples.  In Table 18, the progress of iterations for Example 3b is 

presented. Note that in this case the simultaneous solution did not terminate the search 

within 1000 seconds, but it was able to find a solution with higher profit ($211,879.2) 

compared to the proposed approach ($210,879.5) 

 

Example 4 

In this example a planning horizon of 24 weeks is considered. The cost data and the 

production rates for products A-E are the same as for the first example. The lower bounds 

for the high demand case is presented in Table 19a, while the ones for low demand are 

presented in Table 19b. 

 

Table 19. Lower Bounds for Demands for Example 4 

a) High Demand Rates (Example 4a) 
Product 1 2 3 4 5 6 7 8 9 10 11 12

Demand (kg)
A 10,000 20,000 30,000 10,000 20,000 30,000 10,000 20,000 30,000 10,000 20,000 30,000
B 25,000 20,000 15,000 25,000 20,000 15,000 25,000 20,000 15,000 25,000 20,000 15,000
C 30,000 40,000 50,000 30,000 40,000 50,000 30,000 40,000 50,000 30,000 40,000 50,000
D 30,000 20,000 13,000 30,000 20,000 13,000 30,000 20,000 13,000 30,000 20,000 13,000
E 30,000 20,000 12,000 30,000 20,000 12,000 30,000 20,000 12,000 30,000 20,000 12,000

Product 13 14 15 16 17 18 19 20 21 22 23 24

A 10,000 20,000 30,000 10,000 20,000 30,000 10,000 20,000 30,000 10,000 20,000 30,000
B 25,000 20,000 15,000 25,000 20,000 15,000 25,000 20,000 15,000 25,000 20,000 15,000
C 30,000 40,000 50,000 30,000 40,000 50,000 30,000 40,000 50,000 30,000 40,000 50,000
D 30,000 20,000 13,000 30,000 20,000 13,000 30,000 20,000 13,000 30,000 20,000 13,000
E 30,000 20,000 12,000 30,000 20,000 12,000 30,000 20,000 12,000 30,000 20,000 12,000
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b) Low Demand Rates (Example 4b) 
Time Period

Product 1 2 3 4 5 6 7 8 9 10 11 12
Demand (kg)

A 0 10,000 20,000 0 10,000 20,000 0 10,000 20,000 0 10,000 20,000
B 15,000 10,000 5,000 15,000 10,000 5,000 15,000 10,000 5,000 15,000 10,000 5,000
C 20,000 30,000 40,000 20,000 30,000 40,000 20,000 30,000 40,000 20,000 30,000 40,000
D 20,000 10,000 3,000 20,000 10,000 3,000 20,000 10,000 3,000 20,000 10,000 3,000
E 20,000 10,000 2,000 20,000 10,000 2,000 20,000 10,000 2,000 20,000 10,000 2,000

Time Period
Product 13 14 15 16 17 18 19 20 21 22 23 24

Demand (kg)
A 0 10,000 20,000 0 10,000 20,000 0 10,000 20,000 0 10,000 20,000
B 15,000 10,000 5,000 15,000 10,000 5,000 15,000 10,000 5,000 15,000 10,000 5,000
C 20,000 30,000 40,000 20,000 30,000 40,000 20,000 30,000 40,000 20,000 30,000 40,000
D 20,000 10,000 3,000 20,000 10,000 3,000 20,000 10,000 3,000 20,000 10,000 3,000
E 20,000 10,000 2,000 20,000 10,000 2,000 20,000 10,000 2,000 20,000 10,000 2,000

 

Table 20. Results for Example 4a 
Method Number of Number of Number of Time Solution

binary continuous Equations (CPUs) ($)
 variables variables

Full Space 720 5,907 5,526 4,000* 270,538

Proposed 3,190 272,474
algorithm
Problem UB 120 891 1,181 90 286,728
Problem LB 720 5,936 5,676 3,098 272,474  
* Search not terminated, best feasible solution posted with 18% gap of bounds 

 

The results for Example 4a are presented in Table 20. A profit of $272,474 within 

6% of the global optimum is obtained with the proposed approach. The search is 

completed in 2 major iterations in 3190 CPUs. The full space approach yielded a solution 

of $270,538 in 4000 CPUs. The progress of iterations for the proposed approach is shown 

in Table 21. 
 

Table 21. Progress of iterations for Example 4a 
Iteration Upper Bound (UB) Lower Bound (LB)

1 286,728 268,900
2 287,209 272474*  

* Optimal solution 

 
The results for Example 4b are presented in Table 22. An optimal solution of 

$313,285 is obtained within 4% of the global optimum solution. It took the proposed 
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method 8 CPUs and 3 major iterations to solve the problem, whereas with the full space 

method obtained a solution of $315,207 in 3000 CPUs. The progress of iterations for the 

proposed method for Example 4b is shown in Table 23. 

 

Table 22. Results for Example 4b 
Method Number of Number of Number of Time Solution

binary continuous Equations (CPUs) ($)
 variables variables

Full Space 720 5,907 5,526 3000* 315,207

Proposed 8 313,285
algorithm
Problem UB 120 891 1,396 6 325,576
Problem LB 720 5,936 5,677 2 313,285  
* Search not terminated, best feasible solution posted with 11% gap 

 

Table 23. Progress of iterations for Example 4b 
Iteration Upper Bound (UB) Lower Bound (LB)

1 325,958 311,071
2 326,169 310,547
3 325,576 313,285*  

* Optimal solution 

 

Conclusions 

An MILP model for the simultaneous planning and scheduling of continuous 

multiproduct plants with a single processing stage has been presented in this paper. The 

sequence dependent transition times, transition costs and inventory costs are readily 

accounted for. In order to avoid nonlinearities in the objective function that are due to the 

inventory costs, an overestimation was developed that can be expressed in linear form. 

Since the MILP model becomes very expensive to solve when a large number of products 

and long planning horizons are considered, a bi-level decomposition procedure has been 

proposed that allows rigorous integration and optimization of planning and scheduling. 

The main novelties in this method are the superset and the subset cuts, as well as capacity 

cuts that eliminate many solutions from the upper level aggregated model. The 

application of the algorithm was illustrated with eight examples for 5 products, ranging 

from 4 to 24 weeks and with high and low values for the lower bounds for the demands. 
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Our preliminary results show that the proposed method is significantly faster than the 

full-space method, although convergence with finite tolerance is required for reasonable 

computational times in the larger problems. 

Also, the results show that, the performance of the proposed approach is more 

efficient when low demand rates are used. Furthermore, in this case, the overestimation 

of the inventory costs is found to be lower. This is due to the fact that, the model tends to 

produce each product in only one time period and satisfy the demands from the 

inventories when low demand rates are used. 
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