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Abstract

Capacity planning addresses the decision problem of an industrial producer
investing on infrastructure to satisfy future demand at the highest profit. Tra-
ditional formulations neglect the rational behavior of external decision-makers
by assuming static competition and captive markets. We propose a mathe-
matical programming formulation with three levels of decision-makers to fully
capture the dynamic of competitive markets. The trilevel model is transformed
into a bilevel optimization problem with mixed-integer variables in both levels
by replacing the third-level linear program with its optimality conditions. We
introduce new definitions required for the analysis of degeneracy in multilevel
problems, and develop two novel algorithms to solve these challenging problems.
Each algorithm is shown to converge to a different type of degenerate solution.
The computational experiments for capacity expansion in industrial gas markets
show that no algorithm is strictly better in terms of performance.

Keywords: Multilevel programming, degeneracy, capacity expansion,
competitive markets.

1. Introduction

Industrial gas companies rely on capacity expansion models to plan the in-
vestments that allow them to satisfy future demands. In this industry, the
proximity of producers to customers is a key competitive advantage that in-
creases supply reliability and reduces transportation costs. This feature makes
capacity planning a major strategic decision that impacts the market share that
can be obtained in an environment with rational customers.

1.1. Capacity planning and bilevel programming

Capacity planning is a widely studied problem in areas requiring the de-
velopment of long-term infrastructure, like in electrical power supply [20], and
communication networks [5]. In the process systems engineering community,
the capacity planning problem has been extended to consider aspects of pro-
cess design [22] and product development [16]. The formulation can be applied
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to problems with large capital investments whose feasibility, effectiveness, and
profitability can only be assessed in a long time horizon. Therefore, capacity
planning is critical for many industries [15] and it is recognized as a key topic
in Enterprise-Wide Optimization [12].

Nevertheless, the capacity planning problem in a fully competitive environ-
ment has not been formulated before in a mathematical programming frame-
work. Previous works have focused on different market models, assuming static
competitors. Murphy and Smeers [20] proposed models with oligopolistic and
perfect markets for the expansion of electric infrastructure. Recently, Garcia-
Herreros et al. [10] presented a more realistic model proposing a bilevel formu-
lation. It models the expansion decisions of a company maximizing its profit,
subject to markets selecting their suppliers to satisfy their demands at minimum
cost.

A bilevel optimization problem is a mathematical program with a second
mathematical program in its constraints. It can be interpreted as a game with
an upper-level player, called the leader, that first decides its strategy with perfect
information of the criterion ruling the behavior of the lower-level player, called
follower. Once the follower observes the leader’s decision, it reacts according to
its own interests. The potential to coordinate decision-making in decentralized
systems has already been recognized [1]. Interesting multilevel programming
models have been developed for traffic planning [17], optimal taxation of biofuels
[3], parameter estimation [18], and product introduction [21].

However, a major extension of the bilevel formulations is needed to model a
fully competitive environment. Three nested optimization problems are required
instead of two because decisions are made sequentially by three players with
conflicting interests. The company planning its capacity is the first to decide
on its expansion strategy. Then, the competition observe the leader’s plan
and optimize their own capacity expansions. After all expansions are fixed,
the market selects providers to minimize the cost of satisfying its demands.
The logical decisions of the first two levels require the use of integer variables,
whereas the third level can be formulated as a linear program (LP).

There has been little work on multilevel optimization involving more that
two players with discrete variables. The electrical network defense is the only
problem for which a trilevel mixed-integer linear programming (TMILP) model
has already been proposed [24]. However, the solution procedures for this for-
mulation are problem specific and there is scarce theoretical study of the gen-
eral properties of trilevel optimization problems. Our research presents a novel
framework for capacity planning, discusses new ideas about how degeneracy
affects multilevel problems, and proposes two solution algorithms.

1.2. Solution approaches for multilevel programming

The first step for both algorithms is to reformulate the trilevel problem as
a bilevel problem, replacing the third-level by its optimality conditions. The
reformulation is based on strong duality of the lower-level LP, which offers doc-
umented advantages over the standard KKT reformulation because it avoids
the addition of discrete variables [10]. In the bilevel reformulation, the second
level models the capacity expansion of the competitors and enforces optimality
of the third-level problem. The resulting formulation is a Bilevel Mixed-Integer
Linear Program (BMILP) with discrete variables in both levels; these type of
problems is still considered an open question in Operations Research [6].
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The numerical solution of BMILPs has been receiving increasing attention
during the past years, but the existing literature has only considered academic
examples with a few discrete variables. The first Branch-&-Bound algorithm
was developed by Moore and Bard [19]; it was based exclusively on the solution
of LPs. Later, the same authors proposed a binary search tree algorithm that
obtains the rational reaction of the lower level by solving a MILP after fixing the
decision of the leader [2]; in the worst case, both algorithms conduct an exhaus-
tive exploration of the leader’s decision space. DeNegre and Ralphs [8] derived a
locally valid cut that can be added to the Branch-&-Bound procedure proposed
by Bard and Moore [2]; however, these cuts tend to be weak in problems with
parameters of different magnitudes or with non-integer coefficients.

The framework proposed by Gümüş and Floudas [13] is based on replacing
the lower-level MILP by the equivalent LP over the convex hull of the feasible
region. This strategy allows using the reformulation techniques developed for
LPs, but it comes at the expense of introducing an exponential number of new
variables and constraints. Fáısca et al. [9] have used multi-parametric program-
ming to obtain a function that characterizes the optimal lower-level response for
any potential decision of the leader. This procedure can be extremely involved,
but is interesting from a theoretical point of view because the multi-parametric
solution explicitly describes the feasible region of the bilevel problem.

Recently, there have been two relevant contributions for our research. Xu
and Wang [23] proposed a general spatial Branch-&-Bound search that splits the
variables of the leader in polyhedral sets called stability regions; stability regions
characterize the decisions of the leader that share the same optimal reaction of
the follower. Zeng and An [25] developed a reformulation-decomposition ap-
proach that iteratively approximates the rational reaction of the follower based
on linear inequalities in the space of the leader decision variables. Both contri-
butions have been important for the development of our algorithms.

We present two algorithms that leverage and expand the relaxation obtained
by eliminating the objective function of the lower level, known as high-point
(HP) problem. The first algorithm is a constraint-directed exploration; it elim-
inates decisions of the leader that have been explored, as well as all other deci-
sions that induce the same reaction of the other players. The second algorithm
is a decomposition solution strategy involving a master problem and a subprob-
lem. The main idea is to incorporate in the master problem the reactions of the
competitors that are iteratively observed; this procedure shows an interesting
speed-up in instances with few rational alternatives for the competition.

The rest of the paper is structured as follows. In Section 2, we describe the
capacity planning problem in a competitive environment. In Section 3, we pro-
pose the mathematical formulation for the capacity planning in a competitive
environment. Section 4 explores the implications of degeneracy in trilevel opti-
mization problems. In Section 5, we elaborate on the properties of the capacity
planning model that are useful for the development of two novel algorithms.
The algorithms are described in Sections 6 and 7. In Section 8, we illustrate
the implementation of the algorithms on two instances of the capacity plan-
ning problem. Finally, Section 9 reviews the novelty of this work and indicates
directions for future research.
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2. Problem statement

The capacity planning problem in a competitive environment considers three
players with independent decision criteria: the first-level industrial producer
(leader) planning its expansion strategy, competitors that are allowed to expand,
and costumers that select their providers according to the available supply. The
objective of the capacity planning problem is to establish the expansion plan
that maximizes the Net Present Value (NPV) obtained by the leader during
a finite time horizon. Sales are bounded by deterministic demands during the
entire time horizon and depend on the actions taken by other decision-makers.
Initially, the leader is given a set of plants with finite production capacity and a
set of candidate locations where new plants can be built. Capacity of the plants
can be expanded in discrete increments by paying a fixed cost; only discrete
capacity expansions are considered to model the installation of new production
lines. The attractiveness of expanding plants depends on the possibility of
satisfying a higher demand or saving in production and transportation costs.

The competitors are other industrial producers that observe the decisions of
the leader and select expansion plans with the objective of maximizing their own
NPV. All production plants that are not controlled by the leader are assumed to
behave as a rational decision-maker with a centralized planner. The competition
controls a set of open plants with given initial capacity; they are also allowed
to open new plants in a set of candidate locations. Expansions at open plants
are modeled with discrete increments in capacity and fixed costs. We assume
that the total initial capacity in the plants controlled by the leader and the
competitors is enough to satisfy all demands throughout the horizon, which is
modeled by including a plant that has a large capacity an offers products at a
high cost.

Demand assignments in each time period are decided after observing the
available capacities in the plants controlled by the leader and the competi-
tion. The market behaves as a centralized decision-maker that minimizes the
total cost paid by all customers; demand assignments are based exclusively on
availability and price. Industrial producers can only influence market decisions
by changing their production capacity since prices are fixed parameters. Fur-
thermore, the prices are constructed following two common assumptions in an
industrial environment, detailed in the following Eqns. (1)-(2).

• The leader offers homogeneous prices: the price Pt,i,j offered to a certain
customer (j) is the same regardless of the plant i ∈ IL.

Pt,i,j = Pt,j ∀ t ∈ T, i ∈ IL, j ∈ J (1)

• Competitors offer site-dependent prices: the price Pt,i,j offered to cus-
tomers depend on a raw price (P rawt,i ) and the transportation cost (Gt,i,j)
from that plant to the customers (j) .

Pt,i,j = P rawt,i +Gt,i,j ∀ t ∈ T, i ∈ IC , j ∈ J (2)

The decision process takes place sequentially, and perfect information is as-
sumed for all players. The perfect information assumption implies that higher
level decision-makers are aware of the decision criteria of the lower levels, and
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lower-level decision-makers observe the actions of the higher levels before choos-
ing their response. The optimal solution of the problem characterizes the ex-
pansion plan that optimizes the objective function of the leader, considering a
rational reaction of the competitors and the market.

3. Capacity expansion with competitive decision-makers: trilevel for-
mulation

According to the problem statement, we define the objective function of
the industrial producers as the maximization of their NPV over a finite time
horizon. The objective function presented in Eqn. (3) is the decision criterion
of the leader,

NPVL =
∑
t∈T

∑
i∈IL

∑
j∈J

Pt,i,jyt,i,j

−
∑
t∈T

∑
i∈IL

(At,ivt,i +Bt,iwt,i + Et,ixt,i)

−
∑
t∈T

∑
i∈IL

∑
j∈J

(Ft,i +Gt,i,j) yt,i,j (3)

where T , IL, and J are respectively the index sets for time periods (t), plants
controlled by the leader (i ∈ IL), and customers (j). The first term represents
the income obtained from sales. Variables yt,i,j indicate the quantities sold from
plant i to customer j at time t; coefficients Pt,i,j are the selling prices. In the
second term, vt,i is a binary variable indicating if a new plant is built at location
i during time t; its fixed cost is given by coefficients At,i. Maintenance costs
are modeled with binary variables wt,i that indicate which plants are open; the
maintenance cost per time period is given by Bt,i. Capacity expansion decisions
are modeled with binary variables xt,i; the fixed cost of the expansions is given
by Et,i. The third term models the operating costs by associating sales (yt,i,j)
with the unit costs of production (Ft,i) and transportation (Gt,i,j).

It is worth noticing that the objective presented in Eqn. (3) is not only a
function of the decision variables representing the planning decisions; it also
depends on demand assignment variables (yt,i,j) that are controlled by the cus-
tomers. The competing industrial producers are assumed to maximize their own
NPV with the same income and cost structure of the leader. In this framework,
the trilevel formulation can be modeled with Eqns. (4)-(16).

max
vL,wL,xL,cL

NPV L
(
vL, wL, xL, cL, y

)
(4)

s.t. wt,i = V0,i +
∑
t′∈T−t

vt′,i ∀ t ∈ T, i ∈ IL (5)

xt,i ≤ wt,i ∀ t ∈ T, i ∈ IL (6)

ct,i = C0,i +
∑
t′∈T−t

Hixt′,i ∀ t ∈ T, i ∈ IL (7)

max
vC,wC,xC,cC

NPV C
(
vC , wC , xC , cC , y

)
(8)
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s.t. wt,i = V0,i +
∑
t′∈T−t

vt′,i ∀ t ∈ T, i ∈ IC (9)

xt,i ≤ wt,i ∀ t ∈ T, i ∈ IC (10)

ct,i = C0,i +
∑
t′∈T−t

Hixt′,i ∀ t ∈ T, i ∈ IC (11)

y = arg min
y∈Y (cL,cC)

∑
t∈T

∑
i∈I

∑
j∈J

Pt,i,jyt,i,j

 (12)

ct,i ∈ R+ ∀ t ∈ T, i ∈ IC , j ∈ J (13)

vt,i, wt,i, xt,i ∈ {0, 1} ∀ t ∈ T, i ∈ IC (14)

ct,i ∈ R+ ∀ t ∈ T, i ∈ IL, j ∈ J (15)

vt,i, wt,i, xt,i ∈ {0, 1} ∀ t ∈ T, i ∈ IL (16)

where the set of production plants I is divided in two subsets denoting the
plants controlled by the leader (IL) and the plants controlled by the competi-
tors (IC). The superscript L identifies the variables controlled by the leader
and the superscript C the plants controlled by the competitors. The con-
straints modeling the feasible investment strategies for the leader are presented
in Eqns. (5)-(7). We define T−t as the subset of time periods before time t; for-
mally, T−t = {t′ : t′ ∈ T, t′ ≤ t}. Eqn. (5) enforces maintenance for open plants;
the parameter V0,i indicates if plant i is initially open. Eqn. (6) restricts expan-
sions to the open plants; only one expansion per time period is allowed in each
plant. Eqn. (7) models capacity of plants (ct,i) according to their initial capacity
(C0,i) and discrete increments of size Hi. The corresponding feasible expansion
plans for the competitors are presented in Eqns. (9)-(11). Domains for the de-
cisions of the competitors and the leader are expressed by Eqns. (13)-(14) and
Eqns. (15)-(16), respectively.

The rational response of the customers is modeled with Eqn. (12). The
market minimizes its total discounted cost by controlling the demand assignment
variables yt,i,j on the polyhedral set Y (cL, cC), defined by the followin feasibility
Eqns. (18)-(20); the decision space of the assignments depends on the capacity
planning strategies chosen by the leader and the competitors. The complete
third-level optimization problem that decides demand assignments is presented
in Eqns. (17)-(20),

min
y

∑
t∈T

∑
i∈I

∑
j∈J

Pt,i,jyt,i,j (17)

s.t.
∑
j∈J

yt,i,j ≤ ct,i ∀ t ∈ T, i ∈ I (18)

∑
i∈I

yt,i,j = Dt,j ∀ t ∈ T, j ∈ J (19)

yt,i,j ≥ 0 ∀ t ∈ T, j ∈ J, i ∈ I (20)

where Dt,j is the demand of customer j in time period t.
The trilevel formulation for the capacity planning in a competitive environ-

ment is a difficult mathematical problem. There are no standard techniques
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to solve this kind of problems and most of the available literature in multilevel
programming focuses on bilevel problems. Therefore, the first step to address
it is to reformulate the two lower levels as a single-level optimization problem.
Eqns. (8)-(12) is a bilevel formulation modeling the problem of the competitors
and the market; the upper level only has discrete variables and the lower level
is an LP. Hence, the problem can be transformed into a single-level formulation
by replacing the lower level with its optimality conditions.

The most common approach to reformulate a bilevel optimization leverages
convexity of the lower level to characterize the set of optimal lower-level solu-
tions using the Karush-Kuhn-Tucker (KKT) optimality conditions. However, in
lower-level problems with inequality constraints the KKT approach might be in-
effective because it requires the addition of many complementarity constraints.
The duality-based approach described by Garcia-Herreros et al. [10] is better
suited to model the capacity expansion problem with rational markets because
it can be reformulated as a single level MILP without additional discrete vari-
ables. The idea is to replace the lower-level LP by constraints guaranteeing
primal feasibility, dual feasibility, and strong duality. Hence the set of optimal
solutions to the problem (17)-(20) is described by the Eqn. (21)-(25)

∑
t∈T

∑
i∈I

∑
j∈J

Pt,i,jyt,i,j =
∑
t∈T

∑
j∈J

Dt,jλt,j −
∑
i∈I

ct,iµt,i

 (21)

∑
j∈J

yt,i,j ≤ ct,i ∀ t ∈ T, i ∈ I (22)

∑
i∈I

yt,i,j = Dt,j ∀ t ∈ T, j ∈ J (23)

λt,j − µt,i ≤ Pt,i,j ∀ t ∈ T, i ∈ I, j ∈ J (24)

yt,i,j ; µt,i ∈ R+; λt,j ∈ R ∀ t ∈ T, i ∈ I, j ∈ J (25)

where Eqn. (21) enforces strong dualigy and Eqn. (24) are the dual constraints
corresponding to primal variables yt,i,j . Dual variables associated to Eqn. (18)
are denoted by µt,i ∈ R+ and dual variables associated to Eqn. (19) are denoted
by λt,j,k ∈ R.

It is important to note that Eqn. (21) contains bilinear terms in the product
of upper-level variables ct,i and dual variables µt,i. Bilinear terms are nonconvex;
however, we can apply an exact linearization procedure [11] because variables ct,i
only take discrete values. The non-linearity is avoided by describing capacities
(ct,i) in terms of the expansion decisions, according to Eqn. (7) and Eqn. (11).
Additionally, new variables (ut,t′,i) defined for the product of dual variables µt,i
and expansion variables xt′,i are introduced in the formulation. Hence, (21) can
be replaced by the Eqns. (26)-(28).

∑
t∈T

∑
i∈I

∑
j∈J

Pt,i,jyt,i,j =

∑
t∈T

∑
j∈J

Dt,jλt,j −
∑
i∈I

C0,iµt,i −
∑
i∈I

∑
t′∈T−t

Hiut,t′,i

 (26)
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ut,t′,i ≥ µt,i −M(1− xt′,i) ∀ t ∈ T, t′ ∈ T−t , i ∈ I (27)

ut,t′,i ∈ R+ ∀ t ∈ T, t′ ∈ T−t , i ∈ I (28)

In this case, the exact linearization of the bilinear terms in Eqn. (21) is
achieved with only two linear inequalities (Eqns. (27)-(28)) because they are
enough to bound variables ut,t′,i in the improving direction of the objective
function.

The bilevel reformulation of the capacity planning problem in a competi-
tive environment is obtained by replacing Eqn. (12) in the trilevel formulation
with the constraints modeling the rational behavior of the market. The op-
timal response of the market is characterized with the primal feasibility con-
straints presented in Eqns. (22)-(23), the dual feasiblity constraints presented
in Eqn. (24), the linearized version of the strong duality constraint presented
in Eqns. (26)-(28), and the domains presented in Eqn. (25).

4. Multilevel programming and degeneracy

The optimal solution of a multilevel program might not be strictly defined
if a lower-level problem has several optimal responses to the decisions of the
higher levels. Degeneracy gives rise to ambiguity in the lower-level decision
criterion because the same optimal objective values can be obtained from a
set of responses that might produce different effects in the higher levels. The
interpretations of degeneracy have been studied for bilevel programs, but it
has not been addressed before in multilevel programming. We first offer some
background on bilevel optimization in order to present the definitions needed
for the trilevel case and our algorithms.

4.1. Review on bilevel optimization

We consider the general bilevel optimization problem presented in Eqn. (29)-
(32). The set of variables is partitioned such that x ∈ X is the vector variables
controlled by the upper level, y ∈ Y is the vector of variables controlled by the
lower level, and u is the vector of dual variables associated with constraints (32).

max
x∈X

cT1 x+ cT2 y (29)

s.t. A1x ≤ a (30)

max
y∈Y

dT y (31)

s.t. B1x+B2y ≤ b (32)

Our focus is on Bilevel Integer Linear Programs (BILP) and Bilevel Mixed-
Integer Linear Programs (BMILP) with discrete variables in both levels, for
which we introduce Definition 1.

Definition 1. Given the bilevel program presented in Eqns. (29)-(32), let
• Ω be the Bilevel Constraint Region:

Ω = {(x, y) ∈ X × Y : A1x ≤ a,B1x+B2y ≤ b} (33)
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• Ψ(x) be the Rational Reaction set for a fixed x ∈ X:

Ψ(x) = arg max
y∈Y

{
dT y : B1x+B2y ≤ b

}
(34)

• IR be the Inducible Region:

IR = {(x, y) : x ∈ X, y ∈ Ψ(x)} (35)

• R(y) be the Stability Region of y ∈ Y :

R(y∗) := {x ∈ X : y∗ ∈ Ψ(x)} (36)

Using Definition 1 we can establish that the inducible region (IR) character-
izes the feasible upper-level decisions and their corresponding rational response
in the lower level problem. Therefore, IR is the feasible region of the bilevel op-
timization problem. An explicit description of the IR would allow reformulating
the bilevel problem as a single-level model. Unfortunately this region is usually
non-convex, non-connected, and in general very hard to describe; consequently,
bilevel problems, even when the lower level is an LP, are known to be NP-hard
[14]. An important property of bilevel LPs is that their optimal solutions lie
at a vertex of region Ω, which allows using enumerative or reformulation tech-
niques [4]. However, this property does not hold when the lower-level problem
has discrete variables.

An interesting property of BILPs and BMILPs is that relaxing integrality
conditions of the lower-level variables does not yield a relaxation of the bilevel
problem [19]. Therefore, a special type of relaxation is required to develop
iterative solution methods for these problems. The High-Point (HP ) relaxation
for bilevel problems is introduced in Proposition 1.

Proposition 1. Let the High-Point (HP) be the problem obtained by removing
the lower-level objective function from the bilevel formulation. The resulting
single-level problem, presented in Eqn. 37, is a relaxation of the original bilevel
problem.

max
(x,y)∈Ω

cT1 x+ cT2 y (37)

The proof to Proposition 1 is presented by Moore and Bard [19]. The proof
demonstrates that the feasible region of the bilevel problem is augmented when
the optimality condition of the second-level decisions is removed. We can expect
the HP problem to provide a weak upper bound on the bilevel problem because
in this relaxation all decision variables are controlled by the upper level.

We illustrate the properties of a BMILP and the regions presented in Def-
inition 1 using Example 1. The 3D plot representing Example 1 is shown in
Fig. 1.

Example 1.

max
(x1,x2)∈Z+

F = x1 − 1.5x2 − 10y (38)

s.t. x1 ≤ 6 (39)

x2 ≤ 5 (40)
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Figure 1: 3D plot of the BMILP presented in Example 1

max
y∈Z+

y (41)

s.t. x1 − 6y ≤ 0 (42)

2.5x1 + x2 + 5y ≤ 30 (43)

− 3x1 + 2.5x2 + 15y ≤ 37.5 (44)

− 2x1 + 2.5x2 + 10y ≤ 27.5 (45)

Fig. 1 shows that the optimal solution for bilevel problems with discrete
variables do not necessarily lie on a vertex of the convex hull of Ω, which hin-
ders the application of cutting planes methods used in convex optimization.
In Example 1, the bilevel optimal solution is (x1 = 2, x2 = 4, y = 1) with
objective value F = −15, whereas the optimal solution to the HP relaxation
lies at (x1 = 0, x2 = 0, y = 0) with objective value F = 0. The optimal so-
lution of the bilevel problem with relaxed integrality in the lower level occurs
at (x1 = 6, x2 = 5, y = 2), which coincidently is part of the inducible region;
however, this solution is not bilevel optimal. Example 1 demonstrates some of
the counter-intuitive properties of bilevel programs.

4.2. Degeneracy in bilevel programming

An additional complication of bilevel optimization problems is related to the
characterization of optimal solutions when the lower-level problem has multiple
optima. Definition 2 describes a modeling approach of a bilevel problem in the
presence of degeneracy.

Definition 2. The solution to a bilevel program is considered optimistic if
any degeneracy of the lower level is resolved in favor of the leader. The rational
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reaction of the lower-level problem in the optimistic approach is formally defined
by Eqn. (46).

ΨL(x) = arg max
y∈Ψ(x)

{
cT1 x+ cT2 y

}
(46)

The optimistic approach is a common assumption to deal with degener-
acy in bilevel programming, mainly because optimistic solutions can be found
using reformulation techniques. Furthermore an optimistic solution can be in-
terpreted as imposing a minimum of collaboration between levels or allowing
side-payements from the leader to induce the best reaction among the optimal
ones for the follower. However, there is an increasing interest on extending the
treatment of degeneracies, studying the alternative formulation. The pessimistic
approach can be defined as the model in which the lower level selects the re-
sponse that is most detrimental to the leader in case of degeneracy [7]. These
alternative models are considered harder to solve than the optimistic approach.

4.3. Degeneracy in trilevel programming

Hierarchical optimization problem with three levels might exhibit new types
of solutions. In order to comply with the perfect information assumption, the
decision criteria must be completely specified in the case of degeneracy, such that
decision-makers that are hierarchically higher can calculate the response of the
lower levels. In the following, we propose definitions to clear out ambiguity in
our trilevel formulation when the second and third levels have multiple optima.

Definitions for the Trilevel Constraint Region (Ω) and the High-Point (HP )
problem can be extended directly to a trilevel optimization problem. Similarly,
the Inducible Region (IR) and the Stability Regions (R(y) and R(xC , y)) follow
the same intuition presented in Definition 1, but their interpretation depend on
a new definition of the Rational Reaction sets. For notational convenience, we
denote by xL and xC the first- and second-level decisions, respectively; all other
first- and second-level variables can be easily related to them in the capacity
planning problem.

Definition 3. The following Rational Reaction sets can be identified in a trilevel
program.

• The rational reaction set of the third level:

Ψy(xL, xC) = arg min
y∈Y (xL,xC)

∑
t∈T

∑
i∈I

∑
j∈J

Pt,i,jyt,i,j

 (47)

• The Sequentially optimistic reaction set of the third level:

ΨCy(xL, xC) = arg max
y∈Ψy(xL,xC)

{
NPV C(xL, xC , y)

}
(48)

• The Hierarchically optimistic reaction set of the third level:

ΨLy (xL, xC) = arg max
y∈Ψy(xL,xC)

{
NPV L(xL, xC , y)

}
(49)

• The Sequentially optimistic reaction set of the second level:

ΨSeq
xC

(xL) = arg max
xC∈XC(xL)

{
NPV C(xL, xC , y) : y ∈ Ψy(xL, xC)

}
(50)
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• The Hierarchically optimistic reaction set of the second level:

ΨHie
xC (xL) = arg max

xC∈XC(xL)

{
NPV C(xL, xC , y) : y ∈ ΨLy (xL, xC)

}
(51)

The Rational Reaction sets presented in Definition 3 suggest a variety of
interpretations for degenerate solutions in trilevel programs. We classify the
approaches to resolve degeneracy in trilevel programming according to the order
in which the upper-level objective functions are favored.

Definition 4. The optimal solution to a trilevel program is considered Sequen-
tially Optimistic if degeneracy in the third level is resolved in favor of the second
level, and degeneracy in the second level is resolved in favor of the first level.
A Sequentially Optimistic optimal solution is characterized according to Eqn.
(52).(

x̂L, x̂C , ŷ
)

= arg max
{
NPV L(xL, xC , y) : xL ∈ X, xC ∈ ΨSeq

xC
(xL),

y ∈ ΨCy(xL, xC)
}

(52)

Definition 5. The optimal solution to a trilevel program is considered Hier-
archically Optimistic if degeneracy in the third level is resolved in favor of the
first level, and degeneracy in the second level is also resolved in favor of the first
level. A Hierarchically Optimistic optimal solution is characterized according
to Eqn. (53).(

x̂L, x̂C , ŷ
)

= arg max
{
NPV L(xL, xC , y) : xL ∈ X, xC ∈ ΨHie

xC (xL),

y ∈ ΨLy (xL, xC)
}

(53)

Surprisingly, the Hierarchically Optimistic model for resolving degeneracy
does not guarantee the best possible objective for the first-level decision-maker.
Therefore, we present a third optimistic approach to degeneracy.

Definition 6. The optimal solution to a trilevel program is considered Strate-
gically Optimistic if degeneracy in the second level is resolved in favor of the
first level, and degeneracy in the third level is resolved such that the best first-
level solution is obtained. In order to define the Strategically Optimistic optimal
solution, we characterize the second-level pessimistic reaction set of the third
level (ΥCy) according to Eqn. (54).

ΥCy(xL, xC) = arg min
y∈Ψy(xL,xC)

{
NPV C(xL, xC , y)

}
(54)

The idea behind the Strategically Optimistic model is that the second-level
decision-maker accepts any resolution of degeneracy yielding at least the objec-
tive value of the second-level pessimistic model. First, let us define in Eqn. (55)
the rational reaction set for the second level in the pessimistic framework.

ΨΥ
xC (x

L) = arg max
xC∈XC(xL)

{
NPV C(xL, xC , y) : y ∈ ΥCy(xL, xC)

}
(55)

Now, the strategic reaction set is defined as the tuple of second- and third-
level decisions that belong to the rational reaction set of the third level and
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yield a better solution to the second level than the second-level pessimistic
model. The strategic rational reaction set is defined in Eqn. (56).

ΨStr
(xC,y)(x

L) =
{(
xC , y

)
: NPV C(xL, xC , y) ≥ NPV C(xL, x̃C , ỹ),

x̃C ∈ ΨΥ
xC (x

L), ỹ ∈ ΥCy(xL, x̃C), y ∈ Ψy

}
(56)

Finally, a Strategically Optimistic optimal solution is characterized according
to Eqn. (57).

(
x̂L, x̂C , ŷ

)
= arg max

{
NPV L(xL, xC , y) : xL ∈ X, (xC , y) ∈ ΨStr

(xC,y)(x
L)
}
(57)

The difference between the three models for resolving degeneracy is illus-
trated in Example 2.

Example 2. Fig. 2 describes a case in which different degeneracy resolution
models produce different solutions for a given first-level decision (xL). Here,
the second level has two rational reactions xC1 and xC2 , corresponding to different
interpretations of third-level degeneracy. If xC1 is selected, the third level has
two alternative optimal reactions (rational reaction set contains outcomes A and
B). With xC2 , the third-level is also degenerated (with outcomes C and D).

𝑥1
𝐿

𝑥1
𝐶 𝑥2

𝐶

𝑁𝑃𝑉𝐿 = 300
𝑁𝑃𝑉𝐶 = 300

𝑁𝑃𝑉𝐿 = 400
𝑁𝑃𝑉𝐶 = 100

Third-level degeneracy

Strategically 
optimistic solution

𝑁𝑃𝑉𝐿 = 250
𝑁𝑃𝑉𝐶 = 200

𝑁𝑃𝑉𝐿 = 200
𝑁𝑃𝑉𝐶 = 400

Third-level degeneracy

Sequentially 
optimistic solution

Hierarchically 
optimistic solution

A B C D

Figure 2: Different types of optimistic solution for a fixed leader decision xL1

Outcome D is the optimal solution under the Sequentially Optimistic model
because degeneracy in the third level favors the objective of the competititors
(NPV L = 200, NPV C = 400). Under the Hierarchically Optimistic model,
the optimal solution of the problem is given by outcome C (NPV L = 250,
NPV C = 200). This result is counter-intuitive because resolution of third-
level degeneracy locally favors the first level, but it forces the second-level to
avoid xC1 and select instead xC2 , which is detrimental for the leader. Also note
that even though the Sequentially Optimistic model will always give the highest
competitors profit for any fixed leader decision, the Hierarchically Optimistic
model might give a higher competitors profit when solving the full problem. The
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Strategically Optimistic solution is outcome A (NPV L = 300, NPV C = 300)
and it is always the best a leader can achieve in a trilevel setup. Outcome B is
not in the inducible region under any degeneracy resolution model because the
competitors will never accept it (will rather have any of the outcomes associated
with xC2 ).

We have only presented degeneracy resolution models that characterize op-
timistic approaches. However, models for pessimistic resolution or mixed reso-
lution (e.g. optimistic-pessimistic) can be easily extended from our definitions.

5. Properties of the trilevel capacity planning formulation

In this section we describe the most relevant properties for the algorithms
we propose, and indicate the how to exploit them.

5.1. Stability regions

We study the regions RxL(x̂C , ŷ) of the first-level decision space that aggre-
gate points xL producing the same rational reaction of the lower levels (x̂C , ŷ).
We can expect the trilevel capacity planning formulation to have large stability
regions because the second and third levels are indifferent to the distribution of
capacities in the plants controlled by the first level. From the point of view of
the market, only the total capacity of the leader in a given time period (Ct) is
relevant since all its plants offer the same price.

Definition 7. A Stability Region RxL(x̂C , ŷ) in the trilevel capacity planning
formulation is the set of first-level decisions that produce the same rational
reactions in the second and third levels. Formally, the stability region for some
fixed second and third level reactions (x̂C , ŷ) is characterized according to Eqn.
(58).

RxL(x̂C , ŷ) =
{
xL : xL ∈ XL, x̂C ∈ Ψ0

xC (x
L), ŷ ∈ Ψ0

y(xL, x̂C)
}

(58)

where Ψ0
xC (x

L) and Ψ0
y(xL, x̂C) refer to one of the degeneracy resolution models

described in Section 4.3.

Another property of the trilevel planning formulation that implies large sta-
bility regions can be derived from the intuition that expanding plants with slack
capacity does not change the rational response of the second and third levels.
Proposition 2 gives the mathematical description of this property.

Proposition 2. Let (Q̂) be the bilevel problem obtained after fixing the first-level
decisions to x̂L in the second- and third-level problems presented in Eqns. (8)-
(14). We denote by (x̂C , ŷ) a corresponding optimal bilevel solution and by µ̂
the optimal multipliers associated with capacity constraints (18). Then,

xL ∈

{
(c1,1, .., c|T |,|IL|) :[∑

i∈IL
ct,i =

∑
i∈IL

ĉt,i

]
∨

[ ∑
i∈IL

ct,i ≥
∑
i∈IL

ĉt,i

µ̂t′,i = 0 ∀ t′ ∈ T+
t , i ∈ IL

]
∀ t ∈ T

}
(59)
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=⇒ xL ∈ RxL(x̂C , ŷ) (60)

where T+
t is the subset of periods after time t: T+

t = {t′ : t′ ∈ T, t′ ≥ t}.

Proof. We want to prove that a first-level decision xL satisfying conditions
(59) produces the same rational reaction (x̂C , ŷ) as x̂L. We divide the proof of
Proposition 2 in three steps.

Step 1. In the third-level market problem, increasing the capacity of one
plant cannot increase the demand assigned to any other plant.

Let us denote by (P̂ ) the third-level problem with capacities equal to ct,i,

and by (P̃ ) the problem in which plant i′ increases its capacity by ∆Ci′ . We
want to show that the optimal demand assignments (yt,i,j) corresponding to

problems (P̂ ) and (P̃ ) satisfy the conditions presented in Eqn. (61).

∑
j∈J

ỹt,i,j ≤
∑
j∈J

ŷt,i,j ∀ t ∈ T, i ∈ I\ {i′} (61)

First, we notice that fully utilized plants (
∑
j∈J ŷt,i,j = ct,i) in problem (P̂ )

cannot increase the demand assigned to them. For all other plants with slack
capacity (

∑
j∈J ŷt,i,j + ε̂t,i = ct,i), the Lagrange multiplier (µ̂t,i) associated with

the capacity constraint (18) must be zero according to complementary slackness
of the third-level LP.

It was proved by Garcia-Herreros et al. [10] that increasing the capacity of
one plant cannot produce an increase in the optimal Lagrange multipliers asso-
ciated with any capacity constraint (18). In this case, the Lagrange multipliers
(µ̂t,i) of plants that had slack capacity in problem (P̂ ) remain at zero in the

optimum of problem (P̃ ), as expressed in Eqn. (62)

0 ≤ µ̃t,i ≤ µ̂t,i = 0 ∀ (t, i) ∈ {(t, i) : t ∈ T, i ∈ I\ {i′} , ε̂t,i > 0} (62)

Since the slack (ε̂t,i) in plants that are not fully utilized in problem (P̂ )
can be arbitrarily small, we conclude that the condition in Eqn. (61) must
be satisfied. Otherwise, an increase in the demand assignments would produce
a positive value in the Lagrange multipliers (µ̃t,i > 0) associated to capacity
constraints.

Step 2. The optimal objective value of the second level cannot improve if
the total capacity of the leader increases

(∑
i∈IL x̃t,i ≥

∑
i∈IL x̂t,i ∀ t ∈ T

)
and

capacities of the competitors remain constant.
Recall that the prices offered by competitors are defined in (2). Rewriting the

objective function of the competition as in Eqn. (63), it is easy to observe that
the margin obtained from every unit sold only dependents on the production
cost (Ft,i) and the raw price (P rawt,i ) of each plant.

NPVC =
∑
t∈T

∑
i∈IC

∑
j∈J

(
P rawt,i − Ft,i

)
yt,i,j

−
∑
t∈T

∑
i∈IC

(At,ivt,i +Bt,iwt,i + Et,ixt,i) (63)
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Now remember that the prices are set for the leader according to Eqn. (1),
which implies that with respect to the rest of players, the leader can be seen
as being a single plant. Thus any expansion

(∑
i∈IL x̃t,i ≥

∑
i∈IL x̂t,i ∀ t ∈ T

)
fits exactly the case of Step 1. Therefore, the condition presented in Eqn. (61)
also implies that the objective function of the second level cannot improve from
problem (P̂ ) to (P̃ ). This condition is formalized in Eqn. (64).

NPV C(x̃L, xC , ỹ) ≤ NPV C(x̂L, xC , ŷ) ∀ xC ∈ XC , ỹ ∈ Ψ0
y(x̂L, xC)

ŷ ∈ Ψ0
y(x̂L, xC)

(64)

Step 3. If the expansion strategy of the leader (x̃t,i) satisfies the conditions

presented in Eqn. (59), the bilevel problems (Q̂) and (Q̃), resulting from fixing
the variables of the leader to x̂L and x̃L respectively, have the same rational
reactions.

First, we use the duality-based reformulation presented in Eqns. (21)-(25) to
verify that optimal solutions (ŷ) to problem (P̂ ) are feasible in (P̃ ). This is the
case because capacity constraints (22) are relaxed with the additional expansions
of the leader, and the dual objective function (right-hand side of Eqn. (21)) only
changes in coefficients (ct,i) for which the optimal Lagrange multipliers (µ̂t,i)

are equal to zero. Then, the optimal solution (x̂C , ŷ) of the bilevel problem (Q̂)
resulting from fixing the first-level decisions to x̂L in Eqns. (8)-(14), is feasible in
the bilevel problem (Q̃) since second-level constraints (9)-(11) are not affected
by first-level decisions. Therefore, because the objective function of (Q) only
depends on (xC , y) and not xL, the optimal value of problem (Q̃) must be at
least as large as the optimal value of problem (Q̂); this condition is formalized
in Eqn. (65).

NPV C(x̂L, x̂C , ŷ) = NPV C(x̃L, x̂C , ŷ) ≤ NPV C(x̃L, x̃C , ỹ) (65)

where
(
x̃C , ỹ

)
is the optimal solution of (Q̃). Furthermore, we can establish the

inequalities given in Eqn. (66),

NPV C(x̃L, x̃C , ỹ) ≤ NPV C(x̂L, x̃C , ˆ̃y) ≤ NPV C(x̂L, x̂C , ŷ) (66)

where ˆ̃y is the optimum of Q̂ with xC fixed to x̃C . The inequality on the left is
derived from Eqn. (64), and the inequality on the right follows from optimality
of
(
x̂C , ŷ

)
in problem (Q̂). Eqns. (65) and (66) together demonstrate that

problems (Q̂) and (Q̃) have the same optimal objective value that can be given
by the optimal solution

(
x̂C , ŷ

)
. We conclude that x̂L and x̃L are in the same

stability region RxL(x̂C , ŷ), which proves Proposition 2.

5.2. A cut to eliminate RxL(x̂C , ŷ)

The capacity planning problem with competitive decision-makers is likely to
have large stability regions as a consequence of Proposition 2. All the xL ∈ XL
in the same stability region than a certain x̂L can be characterized from the
dual variables µ̂∗ of the optimal solution of the bilevel problem (Q̂). As will be
exploited in the algorithm of section 6, we don’t need to solve again the lower
level bilevel problem for any xL in this stability region and hence here we will
deduce a cut that eliminates every point in the stability regions we compute.
To do so, we introduce the following parameters and sets.
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Definition 8. Given the optimal bilevel solution (xC,k, yk, µk, λk) correspond-
ing to problem (Qk) with first-level decisions fixed to (xL,k), we define:
• The total capacity of the leader in time period t:

C k
t =

∑
i∈IL

C0,i +Hi

∑
t′∈T−t

∑
i∈IL

xkt,i (67)

• The subset of time periods in which all plants controlled by the leader do
not expand but expansions could change demand assignments:

Γkx0 =

t ∈ T :
∑
i∈IL

xkt,i = 0,
∑
t′∈T+

t

µkt′,i > 0

 (68)

• The subset of time periods in which the leader expands and further ex-
pansions could change demand assignments:

Γkµ+ =

t ∈ T :
∑
i∈IL

xkt,i > 0,
∑
t′∈T+

t

µkt′,i > 0

 (69)

• The subset of time periods in which the leader expands but further ex-
pansions would not change demand assignments:

Γkµ0 =

t ∈ T :
∑
i∈IL

xkt,i > 0,
∑
t′∈T+

t

µkt′,i = 0

 (70)

We characterize the Stability Region (Rk) where the first-level decisions
(vL,k, wL,k, xL,k, cL,k) lies by identifying if an alternative first-level solution sat-
isfies the conditions presented in Proposition 2. In Eqn. 71, we introduce binary
variables zk0,t and zk1,t to indicate if alternative solutions offer more, less, or the

same capacity for the leader with respect to C k
t .

[
zk0,t = 1∑

i∈IL
ct,i = C k

t

]
∨

[
zk1,t = 1∑

i∈IL
ct,i < C k

t

]
∨

[
zk0,t + zk1,t = 0∑
i∈IL

ct,i > C k
t

]
∀ t ∈ T (71)

Based on the variables that compare capacities in alternative solutions to
capacities in the solution of problem (Qk), we can characterize the rest of the
Stability Region of the solution (vL,k, wL,k, xL,k, cL,k) with Eqn. 72.∑

i∈IL

∑
t∈Γkx0

xt,i +
∑
t∈Γkµ0

zk1,t +
∑
t∈Γkµ+

(1− zk0,t) = 0 (72)

A no-good cut to exclude all solutions that belong to this region (xL ∈ Rk)
is obtained by forcing the left-hand side of Eqn. (72) to be greater or equal than
one (≥ 1).

17



5.3. Equations to tighten the HP relaxation

The High-Point (HP ) problem usually yields a weak lower bound to the
bilevel optimization problem because it gives control of all variables to the first
level. The column-and-constraint generation method developed by Zeng and
An [25] proposes a strategy to tighten the HP relaxation based on second-level
reactions for which the second-level objective value is known. The idea is to
generate cuts that constrain the second-level objective function to be at least
as good as it would be with any of the second-level solutions that have been
observed. These constraints, presented in Eqn. (73), are included in the HP
problem to model the reactions of the second level.

NPV C(xL, xC , y) ≥ NPV C(xL, x̂C,k, yk) (73)

where x̂C,k are parameters modeling a fixed second-level response, and yk are
duplicate variables that model optimal demand assignments for any first-level
decision (xL) when the second-level response (x̂C,k) is fixed. In order to enforce
the third-level optimality of demand assignments, a full set of duplicate variables
(ykt,i,j , µ

k
t,i, u

k
t,t′,i,λ

k
t,k) and constraints must be appended to the HP problem

for each solution that has been observed. The constraints correspond to the
duality-based reformulation of the third-level problem; they are presented in
Eqns. (74)-(80).

∑
t∈T

∑
i∈I

∑
j∈J

Pt,i,jy
k
t,i,j =

∑
t∈T

∑
j∈J

Dt,jλ
k
t,j −

∑
i∈I

C0,iµ
k
t,i +

∑
i∈I

∑
t′∈T−t

Hiu
k
t,t′,i

 (74)

∑
j∈J

ykt,i,j ≤ ct,i ∀ t ∈ T, i ∈ IL (75)

∑
j∈J

ykt,i,j ≤ ĉkt,i ∀ t ∈ T, i ∈ IC (76)

∑
i∈I

ykt,i,j = Dt,j ∀ t ∈ T, j ∈ J (77)

λkt,j − µkt,i ≤ Pt,i,j ∀ t ∈ T, i ∈ I, j ∈ J (78)

ukt,t′,i ≥ µkt,i −M(1− xt′,i) ∀ t ∈ T, t′ ∈ T−t , i ∈ IL (79)

ykt,i,j ; µkt,i, ukt,t′,i ∈ R+; λkt,j ∈ R ∀ t ∈ T, i ∈ I, j ∈ J (80)

We observe that the cuts modeled by Eqns. (73)-(80) do not exclude any
solution that is trilevel feasible. All first-level solutions remain feasible after
the cuts are appended to the HP problem because we assume that there is
always enough capacity in the third level to satisfy all demands. Therefore,
the duality-based reformulation of the third level always has a feasible solution
for any fixed xL and xC . Additionally, we can guarantee that no point in
the Inducible Region of the trilevel problem is excluded from the tightened
HP problem because Eqn. (73) provides lower bounds on NPV C based on
solutions that are feasible in the second- and third-level problems; solutions in
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the Inducible Region must be optimal in the second and third levels, which
implies that their corresponding NPV C must be greater or equal than any
bound imposed by inequality (73). Note that Eqns. (73)-(80) are appended
to the HP problem where the objective function is NPV L. Therefore in case
of degeneracy it is resolved by the leader and the rhs of Eqn. (73) is pushed to
the worst possible outcome for the competitors. Thus again it never cuts any
trilevel solution, no matter the degeneration-resolution chosen. As will be seen
in section 7, this is used to find the strategically optimistic solution.

The next two sections describe our two solution approaches that converge
to the different optimistic solutions.

6. Algorithm 1: Constraint-directed exploration

We use the stability regions of the capacity planning problem and the equa-
tions describing them to design a constraint-directed exploration of the leader’s
decision space. Algorithm 1 performs an accelerated search on the inducible
region by iteratively solving a restricted high-point problem HP k where cuts
are added to prevent selecting any leader decision xL belonging to any of the
previously computed stability regions (for which the solution is hence known).
The details of the algorithm are presented below.

6.1. Reaching the sequentially optimistic solution

After solving the HP k, the algorithm finds a trilevel feasible solution inside
the stability region (Rk) where the obtained xLHPk lies. This is done by fixing the
leader decision to xLHPk and solving the single-level reformulation (Qk) of the
second- and third-level problems. From that solution we don’t only get a lower
bound but we can now describe the stability region of this observed reaction of
the followers (Rk) by using Eqn. (72). By adding this cut to the next HP k+1,
the search is directed towards unexplored first-level decisions. Convergence of
the algorithm is guaranteed because the problem has a finite number of first-
level decisions, and every iteration eliminates one stability region that contains
at least one new point. The operations performed by the algorithm are divided
in six steps.

Step 1: Solve HP k over the unexplored first-level decision space. Identify the
first-level solution (xLHPk). If HP k is infeasible, terminate and return the
incumbent.

Step 2: Update the upper bound (UB). If UB is less than the best lower
bound (LB∗), terminate and return the incumbent.

Step 3: Solve Qk with first-level variables fixed to xLHPk . Identify the second-
and third-level solution (xCQk , yQk , µQk).

Step 4: Identify the sets Γkx0, Γkµ+, and Γkµ0 describing the region Rk that

contains xLHPk and all other first-level solutions satisfying the condition
given by Eqn. (59).

Step 5: Update LB∗ if solution (xLHPk , x
C
Qk , yQk) is better than the incumbent.

Terminate if UB is equal to LB∗.
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Step 6: Generate no-good cuts to exclude Rk from HP k+1. Go back to Step
1.

Algorithm 1 has two possible stopping criteria:

C1: If UB < LB∗ in Step 2 or Step 5, return incumbent. In this case, no
solution contained in the unexplored region of the first-level decision space
can be better than the incumbent.

C2: If HP k is infeasible in Step 1, return incumbent. In this case, the first-level
decision space has been exhaustively analyzed.

It is worth noticing that Step 1 produces an improving UB because the fea-
sible region of problem HP k is successively reduced. On the other hand, Step 3
finds a trilevel feasible solution that corresponds to the sequentially optimistic
model of degeneracy because problem Qk resolves degeneracy in favor of the
second level (y ∈ ΨCy). A sequentially optimistic solution might be very detri-
mental for the first level since demands assigned to the leader are degenerate
according to the pricing model presented in Eqn. (1). Furthermore, instances
with a degenerate third level might not close the gap between UB and LB∗

because problems HP k and Qk use different degeneracy resolution models. In
this case, an exhaustive search could be necessary to meet stopping criterion C2
and yield the incumbent, corresponding to the sequentially optimistic solution.

6.2. Reaching the hierarchically optimistic solution

Several additional operations are needed to instruct the algorithm to obtain
the hierarchically optimistic solution. The idea is to modify Step 4 to find among
the degenerate solutions the one that favors the leader according to the hierarchi-
cally optimistic model. Two additional optimization problems must be defined:
the high-point problem (HPKR (xC

Qk
)) constraint to region Rk with second-level

variables fixed to xCQk , and the high-point problem (HPKR (NPV C)) constraint to

region Rk with second-level objective value fixed to NPV C(xL
HPk

,xC
Qk
,y
Qk

).

Solving (HPKR (xC
Qk

)) has two purposes: first, to find the best first-level so-

lution in xL ∈ Rk knowing that the second-level response will be xC . This also
re-organizes the third level assignments to the leader so to fit the best supply
scheme for it -without affecting the benefit of the market. Second, to detect if
the market is degenerated in the sense of having different optimal assignments
that yield different NPV C . This is the case if the new solution yHPkR has a
different aggregated demand to every competitor’s plant. If it is the case, we
cannot conclude anything about the solution (xL

HPkR
, xCQk , yHPkR) being trilevel

hierarchically feasible because, if the competitors knew that the market would
directly favor the leader, they might choose another expansion plan xC . Hence
a penalty must be applied to the market in favor of the leader and go back to
Step 3. Notice that by how the prices are constructed, it is enough to check
that the total aggregated demand to the competitors is the same (if there are
changes from one plant to another it can be proven that there is another optimal
solution for the market that yields the same assignments to the competitor as
in Qk).

If the market was not found to be degenerated (or it was solved by a penalty),
we still have to check whether the second level is degenerated in the sense of
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having another possible expansion xC that yields the same value for it but a
better one for the leader. This is checked by solving (HPKR (NPV C)), and if
the objective value of the leader changes, we need to add a penalty to the
competitors and go back to step 3. A detailed description of the steps required
to reach the hierarchically optimistic solution are presented below.

Step 4a: Identify the sets Γkx0, Γkµ+, and Γkµ0 describing the region Rk that

contains xLHPk and all other first-level solutions satisfying the condition
given by Eqn. (2).

Step 4b: Solve HPKR (xCQk) and identify the third-level response (yHPkR). If the

third-level solution is different from the one obtained in Step 3 (
∑
i∈IC yQk 6=∑

i∈IC yHPkR ∀ t ∈ T ), add a penalty to the third-level objective to resolve
degeneracy in favor of the first level. Go back to Step 3.

Step 4c: Solve HPKR (NPV C). If the first-level objective is different from the
one obtained in Step 3 (NPV L(xL

HPk
,xC
Qk
,y
Qk

) 6= NPV L(xL
HPk

R
,xC
Qk
,y
HPk

R
)),

add a penalty to the second-level objective to resolve degeneracy in favor
of the first level. Go back to Step 3.

The steps of the algorithm are presented schematically in Fig. 3; diamonds
control the flow of the algorithm, light gray boxes are simple operations and
dark gray boxes involve optimization problems.

7. Algorithm 2: Column-and-constraint generation algorithm

In opposition to Algorithm 1, Algorithm 2 finds optimal trilevel solutions
by exploring the decision space of the second-level problem. Algorithm 2 is
inspired in the column-and-constraint generation algorithm developed by Zeng
and An [25] for linear bilevel problems with mixed-integer variables in both
levels. However, our algorithm operates over the bilevel reformulation of the
trilevel capacity planning problem, which already enforces optimality of the
variables control by the markets; therefore, no additional reformulation is needed
for the continuous variables. The details of the algorithm are presented below.

7.1. Reaching the strategically optimistic solution

Algorithm 2 uses the cuts presented in Section 5.3 to sequentially tighten the
high-point relaxation of the trilevel capacity planning problem. The algorithm
iterates between a master problem (MP k) that provides upper bounds (UP k)
and the single-level reformulation of the second- and third-level problems (QkR).
Problem MP k is the high-point relaxation of the bilevel reformulation with the
cuts modeled by Eqns. (73)-(80). The search is directed towards unexplored
second-level decisions by adding no-good cuts to problem QkR, such that second-
level decisions that were already observed are not considered in future iterations.
The no-good cuts used to diversify the search in the second-level decision space
are presented in Eqn. (81).

∑
(t,i)∈

{
(t,i): [xCi,j ]Qk′

R
=1

}(1− xCt,i) +
∑

(t,i)∈
{

(t,i): [xCi,j ]Qk′
R

=0

}xCt,i ≥ 1 ∀ k′ ∈ K (81)
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Figure 3: Algorithm 1 towards the hierarchically optimistic solution
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where [xCi,j ]Qk′R
denotes the second-level optimal solution for problem Qk

′

R and

K = {1, 2, . . . , k}.
The algorithm is identified as a column-and-constraint generation approach

because at every iteration, a new second-level candidate solution (ĉt,i ∀ t ∈ T, i ∈
IC) is appended to MP k, together with the constraints and variables modeling
the third-level optimal response. Convergence of Algorithm 2 is guaranteed
because the problem has a discrete number of second-level decisions, which
implies that a finite number of different columns and constraints can be added
to MP k. The operations performed by Algorithm 2 are divided in five steps.

Step 1: Solve MP k. Identify the first-level solution (xLMPk) and the second-
level objective value NPV C(xL

MPk
,xC
MPk

,y
MPk

).

Step 2: Update the upper bound (UB). If UB is less or equal to the best lower
bound (LB∗), terminate and return the solution yielding LB∗.

Step 3: Fix first-level variables to xLMPk and solve Q̄kR, which is QkR includ-
ing the no-good cuts from Eqn. (81). If infeasible, terminate and return
the solution yielding UB . Otherwise, identify the second-level solution
(xCQk). If NPV C(xL

MPk
,xC
Qk
R
,y
Qk
R

) < NPV C(xL
MPk

,xC
MPk

,y
MPk

), terminate

and return the solution yielding UB.

Step 4: Update the best LB∗. If UB is less or equal to the best lower bound
(LB∗), terminate and return the solution yielding LB∗.

Step 5: Generate the columns and constraints tighten MP k+1 and the cuts to
exclude xC

QkR
from Q̄kR. Go back to Step 1.

The steps of the algorithm are presented schematically in Fig. 4. Algorithm
2 has three possible stopping criteria:

C1: If UB ≤ LB∗ in Step 2 or in Step 4, both problems MP k and Q̄∗R yield
the same optimal value (NPV L(xL

MPk
,xC
MPk

,y
MPk

)). This only happens if
there is no third-level degeneracy favoring the second-level in Q̄∗R.

C2: If Q̄kR is infeasible in Step 3, return the solution (xLMPk , x
C
MPk , yMPk) ob-

tained from MP k. In this case, the second-level decision space has been
exhaustively analyzed.

C3: If NPV C(xL
MPk

,xC
MPk

,y
MPk

) ≥ NPV C(xL
MPk

,xC
Qk
R
,y
Qk
R

), return the solution

(xLMPk , x
C
MPk , yMPk) obtained in MP k. In this case, no other solution

contained in the unexplored region can be better for the second level than
(xLMPk , x

C
MPk , yMPk).

It is worth noticing that Step 1 produces an improving UB because the feasible
region of problem HP k is successively reduced. Also, the solutions obtained
from HP k correspond to strategically optimistic model of degeneracy since the
control of all variables is granted to the first level and only a constraint on the
second-level objective value is imposed. Neverhteless, Step 3 resolves third-level
degeneracy in favor of the second level. Consequently, the gap between UB and
LB∗ might not close; in this case, either criterion C2 or C3 will be met.
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Figure 4: Algorithm 2 towards the strategically optimistic solution

Remark. Algorithm 1 and Algorithm 2 are guaranteed to find the same trilevel
optimal solution in instances with no degeneracy at any level. If degeneracy
is present, no result can be established about the relative performance of the
algorithms because they look for different solutions, and these two problems can
be arbitrarily difficult to solve with respect to the other. For non-degenerate
instances we can establish that Algorithm 1 explores at least the same number
iterations as Algorithm 2. This is the case because Algorithm 2 explores at most
one point in each stability region, which is not true for Algorithm 1. However,
it does not imply that Algorithm 2 outperforms Algorithm 1 in execution time
because Algorithm 2 adds many variables and constraints to MP k at every
iteration, which increases the complexity of the iterations.

8. Capacity planning instances

We test Algorithm 1 and Algorithm 2 using two instances of the capacity
planning problem with competitive decision-makers. The algorithms are imple-
mented to find the hierarchically and strategically optimistic solutions, respec-
tively. The first instance is an illustrative example that we use to provide insight
about the performance of the algorithms; the second instance is an industrial
example of practical interest for the air separation industry.

Instance 1. Illustrative instance of trilevel capacity planning
This example considers one existing plant (L1) and one potential plant (L2)

controlled by the leader, as well as one existing plant (C1) and one potential
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plant (C2) controlled by the competition. The market comprises four customers
(Mj) with demands for a single commodity. The planning problem has a horizon
of 20 time periods, in which the plants are allowed to expand in periods 1, 5,
9, 13, and 17. A scheme representing the location of plants and markets is
presented in Fig. 5; the parameters of the instance are given in Tables 1, 2, and
3.

𝓛1

𝑃 =9
𝓛2

𝓒1

𝓒2

𝑴𝟑
𝑴𝟏

𝑴𝟒

𝑴𝟐

𝑃 =8

𝑃 =8𝑃 =8

Figure 5: Network of plants and markets in
Instance 1

Time (t)
Customer (j)

Dt,1 Dt,2 Dt,3 Dt,4

1-4 3.75 0 3 10
5-8 3.75 0 3 10
9-12 3.75 8 3 10
13-16 3.75 10 3 10
17-20 3.75 10 3 10

Table 1: Market demands in Instance 1

Costumer
(j)

Plant (i)
Pt,L1,j Pt,L2,j Pt,C1,j Pt,C2,j

M1 8 8 17 17
M2 8 8 9 17
M3 17 17 8 17
M4 9 9 10 8

Table 2: Selling prices in Instance 1

Parameter
Plant (i)

L1 L2 C1 C2
At,i - 0 - 0
Bt,i 15 15 15 15
Et,i 110 110 110 110
Ft,i 3 3 2 4
Gt,i,1 1 10 10 10
Gt,i,2 10 1 2 10
Gt,i,3 10 10 1 10
Gt,i,4 10 2 3 1
C0,i 3.75 0 30 0
Ht,i 30 30 30 30

Table 3: Cost parameters and initial capaci-
ties in Instance 1

The optimal expansion strategy for the leader comprises expanding plant
L2 at time 9 to capture the demand from M2. The rational reaction of the
competition is to expand plant C2 at time 9 to maintain M4 by offering a lower
price than the leader. The elements of the objective functions at the trilevel
optimal solution are presented in Table 4.

Instance 1 has been designed such that Algorithm 1 and Algorithm 2 find
exactly the same solution at every iteration. This is possible because the hi-
erarchically and strategically optimistic solutions coincide (no degeneracy) and
because the different restrictions on the HP in the 2 algorithms happen to have
the same solution at every step of this instance. The convergence of the upper
and lower bounds for both algorithms can be observed in Fig. 6.

Both algorithms were implemented in GAMS 24.4.1 and the optimization

Element of objective function Leader Competition

Income from sales [M$]: 1,496 2,240
Expansion cost [M$]: 110 110
Maintenance cost [M$]: 480 480
Production cost [M$]: 561 760
Transportation cost [M$]: 187 420

Total NPV [M$]: 158 470

Table 4: Optimal objective values in Instance 1
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Figure 6: Convergence of Algorithms 1 and 2 in Instance 1

problems were solved using GUROBI 6.0.0 on an Intel Core i7 CPU 2.93 Ghz
processor with 4 GB of RAM. Table 5 presents the computational statistics
for problems HP k of Algorithm 1 and MP k of Algorithm 2 in the first and
last iterations. We observe that both problems have the same the number of
continuous variables and constraints in the first iteration, but they grow much
faster in Algorithm 2 than in Algortihm 1; on the other hand, Algorithm 1 has
a modest increase in the number of binary variables. Our analysis indicates
that instances for which both algorithms explore the solution space in the same
order, can be solve faster with Algorithm 1 because the complexity of iterations
increases at a lower rate.

First iteration Final iteration
Problem HPk & MPk HPk MPk

Constraints: 1,015 1,035 3,596
Continuous variables: 835 835 3,331
Binary variables: 120 128 120
CPU time [s]: 2 5 9

Table 5: Computational statistics for Algorithms 1 and 2 in Instance 1

Instance 2. Industrial instance
This example is based on the instance Mid-size 1 presented by Garcia-

Herreros et al. [10]; we extend the problem by considering expansions in the
plants controlled by the competition. The problem comprises the production
and distribution of one product to 15 customers. Initially, the leader has three
plants with initial capacities equal to 27,000 ton/period, 13,500 ton/period, and
31,500 ton/period. Additionally, the leader considers the possibility of open-
ing a new plant at a candidate location. As for the competition, they control
three plants with an initial capacity of 22,500 ton/period, 45,000 ton/period
and 49,500 ton/period; the competition also has a candidate location for a new
plant. The investment decisions are evaluated over a time horizon of 5 years
divided in 20 time periods; all producers are allowed to expand only every fourth
time-period.

Selling prices and market demands follow an increasing trend during the
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Figure 7: Convergence of Algorithm 1 (A1) and Algorithm 2 (A2) in Instance 2

time horizon. Investment and maintenance costs grow in time to adjust for
inflation. The costs of production also have an increasing trend but exhibit
a seasonal variation that relate to electricity prices. The exact data for this
industrial instance can be found in the Supplementary material.

The same computational setup described above is used. In this industrial
instance, Algorithm 2 is very efficient; it only needs two iterations to find the
trilevel optimal solution, while Algorithm 1 requires 7 iterations. Both algo-
rithms find the same solution because the hierarchically and strategically opti-
mistic solutions coincide. The convergence of the upper and lower bounds to
the optimal solution (M$302) can be observed in Fig. 7.

Table 6 presents the computational statistics for problems HP k of Algorithm
1 and MP k of Algorithm 2 in the first and last iterations. We observe that the
number of continuous variables and constraints grows very quickly for problem
MP k, even though the number of binary variables stays constant. The total
time required by Algorithm 1 to solve the instance is 46 s, in contrast with
Algorithm 2 that only takes 8 s. This instance shows the advantage of Algorithm
2 for problems that are solved in few iterations.

First iteration Final iteration
Problem HPk & MPk HPk MPk

Constraints: 4,174 4,229 7,620
Continuous variables: 3,835 3,835 7,259
Binary variables: 240 264 240
Solution time [s]: 2 12 6

Table 6: Computational statistics for Algorithms 1 and 2 in Instance 2

The optimal investment plan for the leader in this industrial instance is to
expand plant L3 at time 1 and 5. The rational reaction of the competition is
not to expand at all. The elements of the objective functions at the trilevel
optimal solution are presented in Table 7.

The optimal capacity expansion plan for the trilevel formulation differs from
the results reported by Garcia-Herreros et al. [10] for the bilevel formulation
in which the competitions cannot expand. Even though the optimal expansion
strategy for the competition is not to expand, considering the competition as
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Element of objective function Leader Competition

Income from sales [M$]: 816 504
Investment in new plants [M$]: 0 0
Expansion cost [M$]: 56 0
Maintenance cost [M$]: 94 97
Production cost [M$]: 288 171
Transportation cost [M$]: 76 41

Total NPV [MM$]: 302 195

Table 7: Optimal objective values in Instance 2

a rational decision-maker changes the optimal plan of the leader. This result
exposes some of the counter-intuitive mechanisms present in multilevel opti-
mization problems. In this particular instance, if the leader implements the
bilevel optimal plan [10] prescribing three expansions instead of two, the ratio-
nal reaction of the competition is to expand plant C1 at time 1. This expansion
plans would produce a NPV for the leader equal to M$ 294, which is 2.5% lower
than the trilevel optimal solution (M$302). This measure of regret illustrates
the value of obtaining the trilevel optimal solution in comparison to a bilevel
formulation that assumes static competitors.

9. Conclusions and future work

For the first time, a fully competitive model for the capacity planning prob-
lem has been formulated as a trilevel optimization. It allows simultaneously
considering the conflicting interests of three rational decision-makers within a
mathematical programming framework. We have also addressed for the first
time the topic of degeneracy in multilevel decision problems. Our research
found a void in definitions and models that induce ambiguity in the characteri-
zation of trilevel optimal solutions. We have introduced several extensions of the
optimistic models from bilevel programming and we have provided algorithms
that allow finding these different optimal solutions.

The proposed model belongs to a challenging class of mathematical prob-
lems: multilevel programming with integer variables in more than one level.
The few general methods available to solve this type of problems are at an early
stage. We have developed two problem specific solution methods that rely on
different properties of the formulation. The examples show that none of the
two algorithms strictly dominates the other in terms of performance, indicat-
ing that both are interesting approaches to solve this problem. The solutions
obtained from the new formulation unveil complex interactions that are very
difficult to predict. A significant improvement over previously proposed models
is quantified in monetary terms for the industrial instances.

The type of problems that we have addressed are of interest in applications
where discrete decisions are taken by different players. As the range of applica-
tions is expected to increase, we consider the generalization of the algorithms as
an important direction for future research; additionally, efficiency and numeri-
cal stability of the algorithms can still improve. For the industrial application
of the capacity expansion model, we believe that it is important to extend the
model to include stochastic parameters.
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