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Abstract

We address the inventory planning problem in process networks under uncer-
tainty through stochastic programming models. The scope of inventory planning
requires the formulation of multiperiod models to represent the time-varying
conditions of industrial process, but the multistage stochastic programming for-
mulations are often too large to solve. We propose a policy-based approximation
of the multistage stochastic formulation that avoids anticipativity by enforcing
the same decision rule for all scenarios. The proposed formulation includes the
logic modeling inventory policies, and it is used to find the parameters that
offer the best expected performance. We propose policies for inventory plan-
ning in process networks with arrangements of inventories in parallel and in
series. We compare the inventory planning strategies obtained from the policy-
based formulation with the analogous two-stage approximation of the multistage
stochastic program. Sequential implementation of both planning strategies in
receding horizon simulations show the advantages of the policy-based model,
despite the increase in computational complexity.

Keywords: Inventory planning, Process network, Stochastic programming,
Inventory policies, Receding horizon

1. Introduction

Inventory planning is a critical aspect of enterprise-wide optimization [16].
Inventories are used in production and logistic networks to coordinate supply
cycles and to mitigate the risks associated with uncertainty. The importance
of inventory management in industrial applications derives from the effect of
stockouts in the levels of customer satisfaction and the impact of stock in the
economic balance of companies. Remarkably, the value of U.S. inventories was
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estimated to be over $1,707 billion in December 2013 [50], and the opportunity
cost ascribed to capital invested in inventories added up to $434 billion in 2012
[54]. Therefore, the potential savings from stockout prevention and inventory
related cost offer a huge opportunity for optimization.

Many strategies have been proposed to manage inventories since Harris [17]
introduced the Economic Order Quantity (EOQ) model in 1913. The EOQ
model was developed to balance ordering and holding cost for problems with
a deterministic demand rate. Classical models for inventory management with
uncertain demand include continuous-review (r,Q) policies and periodic-review
basestock policies; the main purpose of these models is to minimize the expected
cost of replenishment and stockouts, since complete satisfaction of uncertain
demand might be too expensive or impossible.

One of the main advantages of the classical models is that they prescribe
a policy for inventory management that is easy to implement. In fact, these
policies are often optimal under assumptions satisfied by simple inventory man-
agement problems. Therefore, policies are in practice the method of choice to
plan inventories in most industrial applications. However, the complexity of
production networks limits the suitability of the classical models for inventory
management in production processes. The main complications for inventory
planning in process networks arise from the network topology, the limitations
in production capacity, and the multiple sources of uncertainty.

It is common practice in industry to allocate storage units at different stages
of the network in order to decouple the production of successive sections. The
role of inventory is to buffer temporal mismatches among supply availability,
processing rates, and demand. In addition to the raw material and final prod-
uct inventories that are used to hedge against external uncertainties, production
networks also include intermediate inventories that protect against the variabil-
ity in processing rates. The importance of intermediate inventories resides in
their ability to reduce the interdependence of processing units, to delay the
formation of bottlenecks, and to increase capacity utilization.

The interest for the control of intermediate inventories in production pro-
cesses can be traced back to the work by Simpson [42] in the 1950’s. However,
few methodologies have been proposed for inventory planning under uncertainty
in continuous process networks. In this article, we focus on developing stochastic
programming formulations that leverage the nature of the inventory planning
problem. We propose a new approach that includes the logic of inventory policies
in a mathematical programming framework with the purpose of finding optimal
policy parameters. The idea is to combine the advantages of logic-based mathe-
matical programming with the pragmatism derived from inventory management
theory. This approach for inventory optimization is completely novel and of-
fers significant benefits for production planning in complex networks. We show
that using policies for inventory management in process networks has advan-
tages over multistage or two-stage stochastic programing techniques. From the
modeling perspective, policies offer an alternative way to avoid anticipativity
that can be used on arbitrary sets of scenarios. From the industrial perspective,
policies are attractive because they are intuitive and easy to implement.
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The reminder of the article is organized as follows. In Section 2, we re-
view the publications that are most relevant to our work. Section 3 introduces
the inventory planning problem that we address. The method that we pro-
pose to solve the problem and to evaluate the solutions is outlined in Section
4. In Section 5, we present a motivating example that illustrates the partic-
ularities of the stochastic inventory planning problem. Section 6 presents the
optimization model for single-echelon basestock policies. In Section 7 we revisit
the motivating example to compare the inventory plans obtained from differ-
ent stochastic programming models. Section 8 presents a general model for
stochastic inventory planning in process networks. Sections 9 and 10 propose
policies for inventory planning in process networks with inventories in parallel
and in series, respectively. In Section 11, we present a simulation approach to
evaluate the performance of inventory planning strategies. Sections 12 and 13
implement the proposed inventory planning models in two different examples.
Finally, Section 14 presents the conclusions.

2. Literature review

Management of intermediate inventories has been addressed in the litera-
ture of multi-echelon supply chains, which was initiated with the seminal work
of Clark and Scarf [4]. They proved that basestock policies are optimal for the
average cost of multi-echelon serial systems with stationary stochastic demand,
convex cost function, and finite horizon. Later, Federgruen and Zipkin [12]
demonstrated the optimality of basestock policies in the infinite horizon. A re-
cursive algorithm to calculate optimal basestock levels in the serial and assembly
multi-echelon system with linear costs was developed by van Houtum and Zijm
[52]. A simpler procedure yielding lower and upper bounds on the echelon cost
functions was developed by Shang and Song [40]; they also present a heuristic
for approximating optimal basestock levels that performs surprisingly well in
practice.

The derivation of optimal policies for inventory management in networks
with general topologies is a challenging task. The analysis of multi-echelon as-
sembly systems presented by Rosling [36] showed that their optimal basestock
policies can be obtained from an equivalent serial system. For multi-echelon dis-
tribution systems, basestock policies have only been proved to be optimal under
the assumption that stockouts occur with equal probability at the downstream
installations [6]. Under this balancing assumption, optimality of basestock poli-
cies has been proved for two-echelon systems [11, 12] and for multi-echelon
systems [5].

The application of multi-echelon basestock policies to supply chain design is
based on two models: guaranteed service-time and stochastic service-level. The
guaranteed service-time model strategically locates safety inventories to satisfy
the maximum product requirements that installations are committed to satisfy
during their net lead time. The model was initially developed by Kimball [25]
for a single-stage system, and implemented in serial systems by Simpson [42].
Extensions of the guaranteed service-time model for safety stock placement in
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assembly and distribution networks have been developed for bounded demands
[15, 14] and for normally distributed demands [19, 20]. The alternative stochas-
tic service-level model developed by Lee and Billington [29] locates inventories
to offer prescribed service levels at the installations of a decentralized supply
chain; basestock levels are obtained from the characterization of random delays
experienced by installations as a result of shortages in the upstream stages.

Ettl et al. [8] developed expressions for the actual lead time in a multi-
echelon supply chain by approximating the dynamics of inventory levels with
queuing models; they also included their inventory model in an optimization
framework to minimize the total inventory cost. The use of queuing models
to characterize production and distribution networks started with the work of
Jackson [21]. The advantage of queuing networks is that they allow modeling the
dynamics of inventories in networks with finite processing capacity. The most
influential queuing models of manufacturing systems characterize them with
product-form solutions that can be found for a restrictive class of networks, from
which Jackson networks are representative. An exceptional model capturing the
dynamics of basestock policies in serial servers was developed by Lee and Zipkin
[30]; they showed that the serial system can be described exactly for some special
cases and they developed approximations for the general case.

The characterization of optimal policies for capacitated production-inventory
systems with stationary demand was presented by Federgruen and Zipkin [9, 10].
They showed that under the usual assumptions, a modified basestock policy is
optimal in the infinite horizon for the average and discounted cost criteria, and
also for the discounted cost criterion in a finite horizon. The modification of the
classic basestock policy accounts for the capacity limitation by truncating the
replenishment when the order-up-to quantity cannot be fulfilled. An algorithm
to calculate optimal basestock levels and the corresponding costs for capacitated
multi-echelon systems in the infinite horizon was developed by Tayur [47] using
a sequence of uncapacitated models that converge to the capacitated system.
A more general simulation-based method to find optimal basestock levels in
capacitated multi-echelon systems was presented by Glasserman and Tayur [13];
their Infinitesimal Perturbation Analysis (IPA) estimates the sensitivity of the
cost function with respect to the policy parameters and use them to recursively
improve the basestock levels.

Most of the literature about inventory management in chemical process net-
works is related to deterministic systems. Karimi and Reklaitis [24] recognized
the importance of intermediate storage for batch and semicontinuous processes,
and derived expressions to find optimal storage capacities according to the pe-
riodicity of the production processes. Other models for multiproduct batch
plants have included uncertainty in the design problem [53, 39, 18], but they
have not considered inventory management in their formulations. The inte-
gration of batch plant design and scheduling was addressed by Subrahmanyam
et al. [44] using a decomposition approach that iterates between a design su-
perproblem and scheduling subproblems. Petkov and Maranas [33] addressed
the optimal design and operation of batch plants with normally distributed
demand for multiple products assuming a single-product campaign production
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mode; they exploited the properties of normal distributions to find the optimal
operating policy corresponding to the potential designs.

Multi-echelon policies have also been applied for inventory management in
the process industry. Jung et al. [22] developed a simulation-optimization ap-
proach in which safety stock levels are determined in a linear program and
evaluated using discrete-event simulation. The proposed approach can accom-
modate diverse network structures and uncertainty characterizations. Recently,
Chu et al. [2, 3] presented a similar approach that uses agent-based simulations
to generate linear inequalities that are added to the LP planning problem to
enforce the service level constraint; this approach has been used for reactive
scheduling and multi-echelon inventory planning.

The guaranteed service-time model was implemented by You and Grossmann
[56] for the design of chemical supply chains with uncertain demand; they ex-
tended the guaranteed service-time methodology for production planning and
inventory management in dedicated chemical networks that include capacity
constraints [57]. In a subsequent publication, dedicated and flexible processes
are considered simultaneously by including a cyclic scheduling model that de-
termines the sequence and duration of the flexible processes [58]. An MILP
formulation for the optimal design of chemical networks with uncertainty in
supply, demand, and random failures was developed by Terrazas-Moreno et al.
[48, 49]. Their analysis considers the impact of slack production capacity and
the effect of intermediate inventories in the reliability of the production network.
The formulation proposed by Terrazas-Moreno et al. [48] allows including diverse
characterizations of uncertainty as exemplified by their description of random
failures using a Markov process.

An alternative approach for inventory management in production and dis-
tribution networks has leveraged control theory for sequential decision-making.
Bose and Pekny [1] proposed using Model Predictive Control (MPC) for plan-
ning and scheduling of supply chain activities; their framework included forecast-
ing, optimization, and simulation modules. Perea-López et al. [31, 32] modeled
the dynamics of supply chains by considering flows of material and informa-
tion. In a first article [31], they implemented site-dependent control laws to
simulate the behavior of decentralized supply chains in closed loop. In a second
article [32], they developed a discrete-time model of the supply chain dynamics
and used MPC to plan production and distribution in a rolling horizon. The
integration of scheduling and control for coordination of production and dis-
tribution has been recently addressed by Subramanian et al. [46]; their model
characterizes the state of the system according to inventory levels and compare
three MPC approaches that manipulate orders and shipments. In a related ar-
ticle, Subramanian et al. [45] proposed a state-space model for scheduling that
describes the system with the levels of inventory, the tasks in progress, and
their starting time; shipments, yield variations, delays, and unit breakdown are
considered disturbances in the model.

Another body of literature related to our research advocates for the use of
stochastic programming in supply chain design and operation. Tsiakis et al. [51]
proposed a MILP formulation for the design of multi-echelon supply chains con-
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sidering scenarios with uncertain demand. You et al. [55] developed a two-stage
stochastic programming model for supply chain planning under uncertainty with
risk management. Jung et al. [23] proposed a multistage stochastic program-
ming formulation for multi-period supply chain planning; their solution method
iterates between a rolling horizon simulation and an outer loop that improves
the safety stock targets using a gradient-based search.

Stochastic programming problems with a very large number of scenarios
have been successfully solved through Sample Average Approximation (SAA)
[41, 26]. SAA is a framework to approximate the optimal expected value of
a stochastic program based on the solution of smaller problems with randomly
sampled scenarios; the method provides statistical bounds on the expectation of
the optimal objective value. Santoso et al. [37] implemented SAA for the optimal
design of a supply chain with uncertain supply, capacity, cost structure, and
demand. The minimum-cost design of a supply chain with a complex topology
was formulated as a two-stage stochastic program by Schütz et al. [38]; in their
formulation, the design is decided in the first stage and the operation is modeled
in the second stage. An implementation of SAA for the design of resilient supply
chains was presented by Klibi and Martel [27]; their stochastic programming
formulation considers disruptions and other types of uncertainty in the scenarios.

3. Problem description

Inventory management involves decisions related to the replenishment and
depletion of inventories. In continuous process networks, inventory decisions
are closely related to production planning because most units are simultane-
ously internal suppliers and consumers. The complexity of chemical production
networks requires storage of raw materials to guard against supply variability,
intermediates to avoid the formation of bottlenecks, and final products to hedge
against demand uncertainty. The role of intermediate inventories is widely un-
derstood in industrial applications but few methodologies have been proposed
to optimize their management strategies in continuous process networks with
complex topologies and capacity constraints.

This work addresses the inventory planning problem in continuous process
networks with uncertainty in supply, available production capacity, and demand.
We impose no restrictions on the characterization of the uncertain parameters
other than the availability of discrete-time forecasts. Then, given a process
network with known structure, our goal is to propose planning strategies that
minimize the expected costs of inventory holding and stockouts in a finite hori-
zon.

4. Outline of solution and result evaluation methods

The inventory planning problem under uncertainty can be formulated as a
stochastic programming (SP) problem where production and inventory decisions
are optimized to obtain the plan with minimum expected cost. In multiperiod

6



problems with a discrete number of scenarios, the optimal solution of such a
problem can be obtained by solving a multistage SP formulation. However,
because of the computational difficulty to solve large-scale multistage SP models,
it is often necessary to approximate them with two-stage SP formulations. Two-
stage SP models are significantly easier to solve, but they do not capture the
sequence in which information about uncertain parameters is revealed, which
might deteriorate the quality of their solutions. We propose an alternative
approximation of the multistage SP model that avoids anticipating the outcomes
of uncertainty by enforcing inventory policies for all scenarios.

We develop a logic-based SP formulation that integrates inventory policies
in a mathematical programming framework. In order to optimize these policies,
we first postulate a parametric model mapping the levels of inventory in the
network to replenishment and depletion actions. This parametric model is based
on the logic of basestock policies and includes additional rules according to the
topology of the process network. The logic-based SP formulation optimizes the
parameters of the inventory policy with the objective of minimizing the expected
cost over the scenarios.

Each scenario describes the trajectory of all uncertain parameter through-
out the planning horizon. The scenarios can be generated by reproducing all
possible trajectories in problems with discrete uncertain parameters, by simu-
lating sample-paths from stochastic processes, from historical data, or from any
other forecasting method. The probability associated to scenarios depends on
the method used to generate them.

The most rigorous evaluation of the quality of a stochastic solution requires
comparing the expected cost obtained by implementing it with the optimal ex-
pected cost of the multistage SP model. This is the approach that we follow
for the motivating example in Sections 5 and 7. The alternative for prob-
lems with too many scenarios is to compare different decision strategies using
closed-loop Monte Carlo simulations. These simulations involve a sequential
decision-making process that implements the first-period decisions recursively.
The simulation horizon specifies the number of times that decisions are made
and implemented. Closed-loop Monte Carlos simulations yield a cost associated
with the decision-making strategy, but this cost is a random outcome. There-
fore, several replications are required to estimate the expected simulation cost
and to compare the quality of different decision-making strategies. We use this
approach to evaluate the inventory planning strategies presented in Sections 9
and 10.

5. A motivating example

We present an small motivating example to illustrate the proposed inventory
planning approach. The problem considers production planning and inventory
management in a production-inventory system with uncertain demand. The
system includes a single processing unit with deterministic production capacity,
a storage unit with unlimited capacity, and stochastic demand. The planning
problem has a discrete time horizon with 11 periods spanning from t0 to t10.
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Figure 1: Schematic representation of the motivating example.

Demands are independent and identically distributed (iid) uncertain parameters
characterized by a discrete uniform probability distribution in periods t1 to t10.
A schematic representation of the motivating example is presented in Fig. 1.

We consider the case study in which supply (S) is unlimited, available pro-
duction capacity (C) is 100 units of product per period, and demand can be
either 110 or 90 units of product per period (DH = 110, DL = 90). It is worth
noticing that demand can be fully satisfied by accumulating inventory in the
initial time period (t0), even if the outcome of uncertain demand is high in
periods t1 to t10.

The objective of the planning problem is to minimize the expected costs as-
sociated to inventory holding and stockouts. Stockouts are calculated according
to the backorders model that carries out unsatisfied demands to the next time
period. We use a unit holding cost (H) of $5/unit-period and a unit backorder
cost (P ) of $15/unit-period.

The planning problem entails a sequential decision-making process in which
new information becomes available as uncertainty is revealed with time. The
problem has a discrete representation of time and a finite support for the un-
certainty space; therefore, we can formulate it as a multistage SP problem. The
multistage SP model is presented in Eqns. (1)-(6).

min Hxt0 + E
ξ∈Ξ

 ∑
t∈T\{t0}

Hxξ,t + Pbξ,t

 (1)

s.t. qξ,t + uξ,t = C ∀ t ∈ T, ξ ∈ Ξ (2)
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[xξ,t − bξ,t] = [xξ,t−1 − bξ,t−1] + qξ,t −Dξ,t ∀ t ∈ T, ξ ∈ Ξ (3)

xξ,t = xξ′,t, bξ,t = bξ′,t, qξ,t = qξ′,t, uξ,t = uξ′,t

∀ t = {t0}, (ξ, ξ′) ∈ Ξ× Ξ (4)

xξ,t = xξ′,t, bξ,t = bξ′,t, qξ,t = qξ′,t, uξ,t = uξ′,t

∀ t ∈ T \ {t0}, (ξ, ξ′) ∈ Γt (5)

xξ,t, bξ,t, qξ,t, uξ,t ∈ R+ ∀ t ∈ T, ξ ∈ Ξ (6)

where T is the set of time periods (t), Ξ is the set of scenarios (ξ), and Γt is
the set of scenario pairs with the same outcomes of the uncertain parameters
up to time t. This set is used to enforce that decisions can only depend on the
outcomes of past stages, which is the non-anticipativity condition. The formal
definition of Γt for the example is given by Eqn. (7).

Γt :=
{

(ξ, ξ′) : (ξ, ξ′) ∈ Ξ× Ξ, (Dξ,t1 , Dξ,t2 , ..., Dξ,t) = (Dξ′,t1 , Dξ′,t2 , ..., Dξ′,t)
}
(7)

The multistage SP formulation given by Eqns. (1)-(6) is known as the ex-
plicit representation because it includes copied variables for each scenario and
Non-Anticipativity Constraints (NAC) relating them. The model denotes end-
of-period inventory level with variables xξ,t and end-of-period stockouts with
variables bξ,t; processing rate is denoted with variables qξ,t and underutilization
with uξ,t. The objective function is given by Eqn. (1). In the first period,
t0, only holding cost is considered because there is no demand; in subsequent
periods, holding and backorder costs are incurred. Eqn. (2) represents the ca-
pacity constraint of the processing unit, where the slack variable uξ,t denotes
underutilization. The mass balance in the storage unit is modeled with Eqn.
(3); production in a period is considered instantaneous. Non-anticipativity of
the decisions is enforced with Eqns. (5)-(4). The domains of the variables are
presented in Eqn. (6).

The multistage SP formulation for this motivating example describes in sce-
narios the possible trajectories of demand; there are 1,024 scenarios correspond-
ing to the sequences of demand from period t1 to t10. Despite the large number
of scenarios, this multistage SP model is a Linear Program (LP) that can be
solved with any commercial solver. The optimal solution specifies the value of
45,056 variables in the explicit representation or 8,188 variables in an implicit
formulation without copied variables. However, the same optimal solution can
be described in much simpler form using a basestock policy.

The capacitated single-echelon basestock policy establishes rules to operate
the system according to the inventory level. The basestock level indicates the
ideal level of inventory in a given period. Following the basestock policy, pro-
duction capacity and inventory are first used to satisfy demand; surplus capacity
is used to intend replenishing inventory up to the basestock, but no inventory in

9



excess of the basestock level is hold. The optimal basestocks for the motivating
example and the corresponding expected costs are presented in Table 1.

Period Basestock
Expected costs [$]

Holding Backorder Total

t0 30 150.00 0.00 150.00
t1 20 100.00 0.00 100.00
t2 20 75.00 0.00 75.00
t3 20 62.50 0.00 62.50
t4 20 56.25 18.75 75.00
t5 20 50.00 28.13 78.13
t6 20 46.88 46.88 93.76
t7 10 27.34 58.59 85.93
t8 10 19.53 76.17 95.70
t9 10 17.77 100.19 117.98
t10 0 0.00 121.00 121.00

Total: 605.27 449.71 1,054.98

Table 1: Optimal basestock levels and costs for the motivating example.

6. Capacitated single-echelon basestock policy

It is not always easy to infer the optimal basestock levels from the solution
of the multistage SP formulation. Nevertheless, the simplicity and intuitive
appeal of inventory policies advocates for a general framework to obtain optimal
basestock levels. Let us denote by yt the basestock level of the single-echelon
system at time t. Then, the sequence of events involved in implementation of
the basestock policy can be described as follows:

1. Random demand (Dξ,t) is realized.

2. Production capacity (C) and carried over inventory (xξ,t−1) are used to
satisfy demand (Dξ,t) and backorders (bξ,t−1).

3. Surplus capacity is used to replenish inventory up to the basestock level
(yt).

4. Inventory level (xξ,t) and backorders (bξ,t) are updated.

5. Holding or stockout cost is calculated.

The logic describing the operation of the basestock policy in a capacitated
single-echelon systems is simple. It can be characterized with the conditions
given by Eqns. (8)-(9).
• Backorders (bξ,t) are allowed if there is no inventory:

bξ,t =

{
0, if xξ,t > 0

Dξ,t + bξ,t−1 − xξ,t−1 − Ct, if xξ,t = 0
(8)
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• Underutilization (uξ,t) is allowed if inventory is at basestock level:

uξ,t =

{
0, if xξ,t < yt

xξ,t−1 + C −Dξ,t − bξ,t−1, if xξ,t = yt
(9)

In order to include the basestock policy in a mathematical programming
formulation, we divide the state-space of the system in three discrete states:
empty inventory, intermediate level, and full inventory. In each state, the logic
dictates the processing rate and inventory management plan according to a
different rule. This logic can be modeled with the disjunctions presented in
Eqn. (10),

 xξ,t = 0
bξ,t ≥ 0
uξ,t = 0

 ∨
 0 < xξ,t < yt

bξ,t = 0
uξ,t = 0

 ∨
 xξ,t = yt

bξ,t = 0
uξ,t ≥ 0

 ∀ t ∈ T, ξ ∈ Ξ (10)

where the term on the left models the basestock policy with an empty inventory,
the term on the center with an intermediate level, and the term on the right with
a full inventory. Strict inequalities modeling intermediate levels (0 < xξ,t < yt)
can be implemented in the mathematical programming environment with epsilon
precision (ε ≤ xξ,t ≤ yt − ε).

The formulation enforcing a basestock policy for inventory management in
the motivating example is obtained by replacing NAC constraints (5) with the
logic presented in Eqn. (10). The most obvious advantage of this logic-based SP
formulation is that its solution can be easily characterized with the basestock
levels (yt). The formulation is a Generalized Disjunctive Program (GDP) that
can be seen as a multiperiod SP formulation with piece-wise linear decision rules
for inventory management [28].

The GDP model can be reformulated as a Mixed-Integer Linear Program
(MILP) by introducing binary variables; for notational convenience, we denote
binary variables with a hat (ˆ) throughout the article. Binary variables x̂0

ξ,t

and x̂yξ,t indicate if the inventory is empty or at the basestock level, respectively.
The conditions defining these variables are presented in Eqns. (11)-(14),

xξ,t ≤M
(
1− x̂0

ξ,t

)
∀ ξ ∈ Ξ, t ∈ T (11)

xξ,t ≤ yt ∀ ξ ∈ Ξ, t ∈ T (12)

xξ,t ≥ yt −M
(
1− x̂yξ,t

)
∀ ξ ∈ Ξ, t ∈ T (13)

x̂0
ξ,t + x̂yξ,t ≤ 1 ∀ ξ ∈ Ξ, t ∈ T (14)

where the parameter M is an upper bound on the basestock level, Eqn. (11)
forces the inventory to be empty if variable x̂0

ξ,t equals one, Eqns. (12)-(13)

forces the inventory to be at basestock level if x̂0
ξ,t equals one, and Eqn. (14)

allows selecting only one of these states per scenario and time period.
The logic presented in Eqn. (10) is completed with Eqns. (15)-(16),
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bξ,t ≤M x̂0
ξ,t ∀ ξ ∈ Ξ, t ∈ T (15)

uξ,t ≤M x̂yξ,t ∀ ξ ∈ Ξ, t ∈ T (16)

where Eqn. (15) allows stockouts only when the inventory is empty, and Eqn.
(16) allows underutilization only when the inventory is at basestock level.

The MILP reformulation of the logic-based SP model is obtained by replacing
the NAC constraints (5) in the multistage SP model with Eqns. (11)-(16). The
resulting model can be solved using any available MILP solver.

7. Motivating example revisited

Despite the convenience of establishing production and inventory manage-
ment plans according to a policy, solving the logic-based SP formulation can
be significantly harder than solving an LP model. Additionally, there is no
guarantee that the optimal policy obtained from the logic-based SP formula-
tion yields an expected value as good as the optimal multistage SP solution.
However, large-scale multistage SP problems are also difficult to solve and often
the multistage model is only an approximation of the real problem. The most
common approximation is to restrict the number of scenarios in problems with
a large number of discrete uncertain parameters or in problems with continuous
support.

In order to asses the quality of the solutions obtained from different ap-
proximations of multistage stochastic programs, we propose a new performance
metric called the Residual Expected Value (REV). The REV of a solution is the
optimal expected value of the multistage SP problem after fixing the first-stage
variables. The REV generalizes the multistage Value of the Stochastic Solution
(VSS) to allow comparing the quality of different decision-making strategies,
since VSS only compares the SP solution with the solution of the expected
value problem [7].

We evaluate the performance of a decision-making strategy by measuring
how much the REV deviates from the expected value obtained from the ex-
act multistage SP formulation. Our analysis considers three decision-making
strategies for the production and inventory planning problem presented in Sec-
tion 5. All formulations approximate the multistage SP solution based on a
model with a reduced number of sampled scenarios. In addition to the multi-
stage SP and the logic-based SP problem, we include in our analysis the results
from the two-stage SP problem. The two-stage SP problem is obtained by re-
laxing NAC constraints (5) of the multistage SP problem in all stages after the
first. Instances of the scenario trees generated using the sampling technique are
presented in Fig. 2.

The trees presented in Fig. 2 are generated by sampling 10 scenarios ran-
domly. The multistage structure in Fig. 2a can only be recognized in the first
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(a) Sampled

multistage tree

(b) Sampled

policy-constraint tree

(c) Sampled two-stage

tree

Figure 2: Scenario trees for the motivating example

few periods. After period 5, the sampled multistage tree does not have indis-
tinguishable scenarios, which makes it identical to the two-stage tree in Fig. 2c.
On the other hand, the policy-constraint tree maintains non-anticipativity by
implementing a single decision logic for all scenarios.

We compare the REV for the three SP models using different sample sizes.
Each point presented in Fig. 3 was estimated with 200 sample trees generated
using Latin-Hypercubes Sampling; the same 200 sample trees were used to eval-
uate all SP models. Fig. 3 shows that a relatively low number of scenarios is
needed to obtain a good first-stage solution with the multistage and logic-based
SP formulations; with 100 sample scenarios, both formulations produce a REV
that is within 1% of the expected value of the full multistage SP model. The
two-stage SP formulation on the other hand, does not seem to provide better
solutions even with a larger number of scenarios; furthermore, the error bars in-
dicate a high variability in its results. One of the most interesting observations
from Fig. 3 is that the logic-based SP formulation outperforms the multistage
SP formulation when small sample sizes are used. This might be specially rele-
vant for stochastic programming problems with a large number of scenarios or
for stochastic problems with continuous random parameters.

8. Mathematical model for stochastic inventory planning in process
networks

Our model to formulate the inventory planning problem considers process
networks of general topology. The transformation of raw materials into final
products is achieved with a sequence of steps that are carried out in specific
processing units. We denote the set of materials by M and the set of processing
units by I. Three sets of parameters are considered uncertain in the formu-
lation: available supply, available production capacity, and demand. For ease
of notation, we use capitalized letters for parameters and sets, and lower-case
letters for variables and indexes; all variables in this section are defined in the
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Figure 3: Residual expected value as a function of the sample size

positive real domain. The equations describing the mathematical model are
presented in the remainder of this section.

8.1. Supply balances

The availability of supply is modeled with Eqn. (17). The subset of materials
that are externally supplied is denoted by MS . The amount of material m that
is available as external supply at time t and scenario ξ is given by parameter
Sξ,t,m. ISm is the subset of processing units that receive external supply of
material m. The flow of supply consumed in unit i is denoted by fSξ,t,i,m, the

flow that is stored as inventory by rSξ,t,m, and the underutilization of supply by
vξ,t,m.

Sξ,t,m =
∑
i∈ISm

fSξ,t,i,m + rSξ,t,m + vξ,t,m ∀ ξ ∈ Ξ, t ∈ T, m ∈MS (17)

8.2. Production capacity

The capacity of processing units is modeled with Eqn. (18). We define
the available production capacity (Cξ,t,i) as an uncertain parameter to model
random variations impacting the potential throughput of processing units; the
maximum capacity of a unit is always greater than its available production
capacity. The processing rate is denoted by qξ,t,i and the underutilization by
uξ,t,i.
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Cξ,t,i = qξ,t,i + uξ,t,i ∀ ξ ∈ Ξ, t ∈ T, i ∈ I (18)

8.3. Consumption balance

The consumption of material m in processing unit i is modeled with Eqn.
(19). The subset of materials that are consumed in unit i is denoted by M in

i ; the
mass balance coefficient indicating the amount of material m that is consumed
per unit production rate is give by parameter Ai,m. The subset of processing
units feeding material m to unit i is denoted by Iupi,m. The flow of material m
from unit i′ to unit i is fξ,t,i′,i,m, and the amount of inventory depleted to feed
unit i is modeled with variable dξ,t,i,m.

Ai,mqξ,t,i = fSξ,t,i,m +
∑

i′∈Iup
i,m

fξ,t,i′,i,m + dξ,t,i,m ∀ ξ ∈ Ξ, t ∈ T, i ∈ I, m ∈M in
i

(19)

8.4. Production balance

The production of material m in processing unit i is modeled with Eqn.
(20). The subset of materials that are produced in unit i is denoted by Mout

i ;
the mass balance coefficient indicating the amount of material i that is produced
per unit production rate is given by parameter Bi,m. The subset of processing
units receiving material m from unit i is denoted by Idowni,m . The amount of
inventory replenished by unit i is rξ,t,i,m, and the production flow that is used
to satisfy demand is fDξ,t,i,m.

Bi,mqξ,t,i =
∑

i′∈Idown
i,m

fξ,t,i,i′,m + rξ,t,i,m + fDξ,t,i,m ∀ ξ ∈ Ξ, t ∈ T, i ∈ I, m ∈Mout
i

(20)

8.5. Inventory balance

The inventory of material m is modeled with Eqn. (21). The subset of
materials that can be stored is denoted by Mx. The balance includes the inven-
tory carried-over from the last period (xξ,t−1,m), the replenishment from supply
(rSξ,t,m), the replenishment from processing units (rξ,t,i,m), the inventory used
to feed processing units (dξ,t,i,m), and the inventory used to satisfy external
demand (dDξ,t,m). The set of units allowed to replenish the inventory of material
m is denoted by Irm, and the set of units that can deplete inventory of material
m is denoted by Idm.
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xξ,t,m = xξ,t−1,m + rSξ,t,m +
∑
i∈Irm

rξ,t,i,m −
∑
i∈Idm

dξ,t,i,m − dDξ,t,i,m

∀ ξ ∈ Ξ, t ∈ T, m ∈Mx (21)

8.6. Demand balance

Demand satisfaction is modeled with Eqn. (22). The subset of materials
with external demand is denoted by MD. Demand (Dξ,t,m) and carried-over
backorders (bξ,t−1,m) are equal to the production flow that is used satisfy de-
mand (fDξ,t,i,m), the inventory that is depleted to satisfy demand (dDξ,t,m), and
the end-of-period backorders (bξ,t,m).

Dξ,t,m + bξ,t−1,m =
∑
i∈IDm

fDξ,t,i,m + dDξ,t,m + bξ,t,m ∀ ξ ∈ Ξ, t ∈ T, m ∈MD (22)

8.7. Objective function

Different objective functions can be used in the inventory planning problem.
In our formulation, we minimize the sum of expected holding and stockout costs
as presented in Eqn. (23). The probability of scenario ξ is denoted by Pξ. The
holding cost of material m at period t is denoted by Ht,m, and the penalty per
unit backorder of material m at period t is denoted by Pt,m.

min
∑
ξ∈Ξ

Pξ
∑
t∈T

 ∑
m∈Mx

Ht,mxξ,t,m +
∑

m∈MD

+Pt,mbξ,t,m

 (23)

9. Policy for inventories in parallel

We propose a priority-based policy for storable materials that compete for
the same replenishment resources. The basic condition is that policy parameters
must be the same across scenarios. The goal of the model is to establish the
optimal priorities (ẑn,l,m) and basestock levels (yt,m) for inventories in a paral-
lel arrangement. An illustration of a parallel arrangement with three storable
materials is presented in Fig. 4.
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Figure 4: Parallel arrangement with m0 as a shared resource for the replenishment of inven-
tories m1, m2, and m3.

9.1. Logic-based formulation

We denote by N the set of parallel arrangements in the process network,
by M̃n the subset of storable materials that belong to parallel arrangement n,
and by Rn ⊂ M the materials that are considered shared resources for the
production of m ∈ M̃n. The set of priority levels in parallel arrangement n is
Ln. The number of priorities and the number of storable materials in a parallel
arrangement are set equal (|M̃n| = |Ln|) with the purpose of assigning unique
priority levels.

The binary variables indicating the ordering of priorities for the storable
materials in a parallel arrangement are defined according to Eqn. (24).

ẑn,l,m =

{
1, if material m has priority level l in parallel arrengment n

0, otherwise
(24)

In order to ensure that each storable material in a parallel arrangement is
assigned a unique priority level, we use the exclusive -or- conditions presented
in Eqn. (25)-(26),

∨
m∈M̃n

[ẑn,l,m = 1] ∀ n ∈ N, l ∈ Ln (25)

∨
l∈Ln

[ẑn,l,m = 1] ∀ n ∈ N, m ∈ M̃n (26)

where we express the disjunctions in terms of binary variables for notational
convenience. The boolean logic can be obtained by establishing the following
correspondence between binary (ẑn,l,m) and boolean (Zn,l,m) variables:
ẑn,l,m = 1 ⇔ Zn,l,m = true
ẑn,l,m = 0 ⇔ Zn,l,m = false

The priorities established by variables ẑn,l,m specify the order in which in-
ventories in the arrangement are replenished. In particular, the material that is
assigned priority l + 1 can only be replenished if the replenishment of material
with priority l is complete. Binary variable ŵξ,t,n,l indicates that the replen-
ishment of material with priority level l is complete in a given scenario (ξ) and
time period (t). The definition of variable ŵξ,t,n,l is given by Eqn. (27).
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ŵξ,t,n,l =

{
1, if replenishment of material with priority l is complete

0, otherwise
(27)

The completion of replenishment for material with priority level l implies
that no additional upstream materials shared in the parallel arrangement are
needed to replenish this inventory. If we denote by Irm the set of units that can
replenish the inventory of material m, variable ŵξ,t,n,l must satisfy the condition
given by Eqn. (28).


ẑn,l,m = 1

xξ,t,m < yt,m∨
i∈Irm

[
uξ,t,i > 0

ĝξ,t,i,m = 0 ∀ m ∈M in
i \ {Rn}

]


=⇒ ŵξ,t,n,l = 0 ∀ ξ ∈ Ξ, t ∈ T, n ∈ N, l ∈ Ln, m ∈ M̃n (28)

The implication presented in Eqn. (28) states that the replenishment of in-
ventory with priority level l cannot be considered complete if the inventory level
(xξ,t,m) is below the basestock (yt,m), and there is available capacity (uξ,t,i > 0)
and upstream materials (ĝξ,t,i,m = 0) for the units (i ∈ Irm) that can replen-
ish it; we exclude the shared resource (Rn) from the set of upstream materials
(M in

i ) required for the replenishment because their shortage does not relax the
implication. Binary variables ĝξ,t,i,m indicate if there is an upstream shortage
of material m that does not allow increasing the processing rate in unit i. The
logic establishing material shortage is given by Eqn. (29).

[xξ,t,m > 0] ∨ [vξ,t,m > 0]
∨

i′∈Iup
i,m

[
uξ,t,i′ > 0

ĝξ,t,i′,m = 0 ∀ m ∈M in
i′

]
=⇒ ĝξ,t,i,m = 0 ∀ ξ ∈ Ξ, t ∈ T, i ∈ Iconsm , m ∈M (29)

Expression (29) does not allow indicating shortage of material m for the
units that consume it (i ∈ Iconsm ), if there is available inventory, supply under-
utilization, or the upstream units capable of producing it (i′ ∈ Iupi,m) are not

fully utilized nor in shortage of the materials they consume (M in
i ).

The priorities for the replenishment are enforced with Eqns. (30)-(31).

ŵξ,t,n,l = 0 =⇒ ŵξ,t,n,l+1 = 0 ∀ ξ ∈ Ξ, t ∈ T, n ∈ N, l ∈ Ln (30)∨
l∈Ln

[
ẑn,l,m = 1

ŵξ,t,n,l−1 = 0

]
=⇒ rξ,t,i,m = 0

∀ ξ ∈ Ξ, t ∈ T, n ∈ N, i ∈ Irm, m ∈ M̃n (31)
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where Eqn. (30) guarantees that variables indicating the completion of replen-
ishment (ŵξ,t,n,l) are activated following the order of priorities, and Eqn. (31)
constraints replenishments according to the completion of levels that are hier-
archically higher.

9.2. An MILP reformulation

We reformulate the logic for inventory management in parallel arrangements
using mixed-integer constraints. The reformulation of constraints (25)-(26) is
given by Eqns. (32)-(33).

∑
m∈M̃n

ẑn,l,m = 1 ∀ n ∈ N, l ∈ Ln (32)

∑
l∈Ln

ẑn,l,m = 1 ∀ n ∈ N, m ∈ M̃n (33)

The implication on replenishment completion (Eqn. (28)) can be reformu-
lated according to Eqn. (34).

(1− ẑn,l,m) + x̂yt,m + û0
ξ,t,i +

∑
m′∈Min

i \Rn

ĝξ,t,i,m′ + (1− ŵξ,t,l) ≥ 1

∀ ξ ∈ Ξ, t ∈ T, n ∈ N, l ∈ Ln, i ∈ Irm, m ∈ M̃n (34)

where binary variable û0
ξ,t,i indicates if there is underutilization of unit i in

scenario ξ at time period t. We enforce the definition of û0
ξ,t,i with the big-M

constraint presented in Eqn. (35).

uξ,t,i ≤M
(
1− û0

ξ,t,i

)
∀ ξ ∈ Ξ, t ∈ T, i ∈ I (35)

The condition (29) that indicates shortage of upstream material m in unit i
can be reformulated with Eqns. (36)-(39),

x̂0
ξ,t,m + (1− ĝξ,t,i,m) ≥ 1 ∀ ξ ∈ Ξ, t ∈ T, i ∈ I, m ∈M (36)

v̂0
ξ,t,m + (1− ĝξ,t,i,m) ≥ 1 ∀ ξ ∈ Ξ, t ∈ T, i ∈ I, m ∈M (37)

û0
ξ,t,i′ +

∑
m′∈Min

i′

ĝξ,t,i,m′ + (1− ĝξ,t,i,m) ≥ 1 (38)

∀ ξ ∈ Ξ, t ∈ T, i ∈ Iconsm , i′ ∈ Iupi,m, m ∈M (39)

where binary variable v̂0
ξ,t,m indicates if there is supply underutilization of ma-

terial m in scenario ξ at time period t. We enforce the definition of v̂0
ξ,t,m with

Eqn. (40),
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vξ,t,m ≤M
(
1− v̂0

ξ,t,m

)
∀ ξ ∈ Ξ, t ∈ T, m ∈MS (40)

Finally, the logic expressed in Eqns. (30)-(31) can be reformulated with
Eqns. (41)-(42), respectively.

ŵξ,t,n,l ≥ ŵξ,t,n,l+1 ∀ ξ ∈ Ξ, t ∈ T, n ∈ N, l ∈ Ln (41)∑
i∈Irm

rξ,t,i,m ≤M (1− ẑn,m,l) +Mŵξ,t,n,l−1

∀ ξ ∈ Ξ, t ∈ T, n ∈ N, l ∈ Ln,m ∈ M̃n (42)

where the parameter M is an upper bound for the total replenishment from all
units i ∈ Irm.

It is important to remark that Eqns. (32)-(42) only represent one MILP
reformulation of the logic developed for inventory management in parallel ar-
rangements. Other reformulations with different number of variables and con-
straints are possible; they might lead to stronger or weaker formulations with
respect to the LP relaxation.

10. Policy for inventories in series

The inventory planning for materials that undergo sequential transforma-
tion is based on multi-echelon inventory theory. We identify from the network
structure processing paths (k) starting at raw material nodes and finishing at
end product nodes; the purpose is to coordinate inventory management for the
materials in these paths. A multi-echelon arrangement is a subset of storable
materials (M̄k ⊆ Mx) associated with a particular processing path. We define
an echelon as the subset (M̄k,e ⊆ M̄k) containing a number e of the most down-
stream materials in multi-echelon arrangement M̄k; echelons are numbered from
the most downstream (echelon M̄k,1) to the most upstream (echelon M̄k,|EK |),
according to the conventions from multi-echelon literature. An illustration of
the echelons comprising a multi-echelon arrangement is presented in Fig. 5.

10.1. Logic-based formulation

Formally, the subsets of materials in echelon M̄k,e is given by Eqn. (43),

M̄k,e =
{
m : m ∈

{
M̄k,e−1 ∪mk,e

}}
(43)

where mk,e is the storable material preceding other e−1 materials in processing
path k. Consequently, echelon M̄k,1 only contains one final product (mk,1 ∈
MD ∀ k ∈ K).
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Figure 5: A multi-echelon arrangement with 3 echelons

The logic of basestock policies in multi-echelon systems is based on the con-
cept of echelon inventory level. The echelon inventory level considers the avail-
able inventory for all the materials that belong to the echelon. The challenge to
define the echelon inventory level in process networks is that materials change
their identity through the production process; therefore, we have to consider the
mass balance coefficients (Ai,m and Bi,m) to calculate the equivalence between
one material and its downstream successor. The inventory level (χξ,t,k,e) for
echelons M̄k,1 and M̄k,e can be calculated from Eqns. (44)-(45), respectively.

χξ,t,k,1 = xξ,t,m − bξ,t,m ∀ ξ ∈ Ξ, t ∈ T, k ∈ K, m = mk,1 (44)

χξ,t,k,e =
1

Qk,e,e−1
χξ,t,k,e−1 + xξ,t,m

∀ ξ ∈ Ξ, t ∈ T, k ∈ K, e ∈ Ek\{e = 1}, m = mk,e (45)

where Qk,e,e−1 is the conversion ratio in the process that transforms material
mk,e into material mk,e−1 following processing path k. It is worth noticing that
the inventory level of echelon M̄k,1 includes backorders, and that our process
does not consider in-transit inventory since the transportation between units is
assumed to be instantaneous.

Based on the echelon inventory level, we can extend the capacitated single-
echelon basestock policy for inventory planning in sequential production pro-
cesses. The idea is to define basestock levels (yt,k,e) for each echelon, such
that the available downstream inventory is considered in the replenishment de-
cisions corresponding to material mk,e. The logic for capacity utilization of the
units (i ∈ Irm) that can replenish inventory xξ,t,m remains the same as in the
single-echelon system, except that we now have to consider the case in which un-
derutilization is forced because upstream material shortage. In a multi-echelon
arrangement, the conditions allowing backorders and underutilization are given
by expressions (46)-(47), respectively.
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χξ,t,k,1 > 0 =⇒ bξ,t,m = 0 ∀ ξ ∈ Ξ, t ∈ T, k ∈ K, m = mk,1 (46)

[χξ,t,k,e < yt,k,e] ∧ [gξ,t,m = 0 ∀ m ∈M in
i ] =⇒ uξ,t,i = 0

∀ ξ ∈ Ξ, t ∈ T, k ∈ K, e ∈ Ek, i ∈ Irmk,e
(47)

The equations defining echelon inventory levels (Eqns. (44)-(45)) and the
logic controlling production decisions (Eqns. (46)-(47)) can be used in a logic-
based formulation to find the optimal parameters of the basestock policy. For
processing networks with multi-echelon arrangements, the parameters to opti-
mize are the basestock levels for each echelon (yt,k,e).

10.2. A MILP reformulation

We reformulate the logic for inventory management in multi-echelon ar-
rangements using mixed-integer constraints. Similarly to the capacitated single-
echelon basestock policy, this reformulation requires variables that indicate the
state of the inventory level. We introduce binary variable χ̂0

ξ,t,k,1 indicating if

inventory in echelon 1 is empty, and variable and χ̂yξ,t,k,e indicating if inventory
of echelon e is at basestock level. The definition for these variables is enforced
with Eqns. (48)-(50).

χξ,t,k,1 ≤M
(
1− χ̂0

ξ,t,k,1

)
∀ ξ ∈ Ξ, t ∈ T, k ∈ K (48)

χξ,t,k,e ≤ yt,k,e ∀ ξ ∈ Ξ, t ∈ T, k ∈ K, e ∈ Ek\{e = 1} (49)

χξ,t,k,e ≥ yt,k,e −M
(
1− χ̂yξ,t,k,e

)
∀ ξ ∈ Ξ, t ∈ T, k ∈ K, e ∈ Ek\{e = 1} (50)

The implication presented in Eqn. (46), preventing stockouts if inventory is
available, can be reformulated with big-M constraint (51).

bξ,t,m ≤Mχ̂0
ξ,t,k,1 ∀ ξ ∈ Ξ, t ∈ T, k ∈ K,m = mk,1 (51)

(52)

Finally, condition (47) can be reformulated with (47).

χ̂yξ,t,k,e +
∑

m∈Min
i

ĝξ,t,i,m + û0
ξ,t,i ≥ 1 ∀ ξ ∈ Ξ, t ∈ T, k ∈ K, e ∈ Ek, i ∈ Irmk,e

(53)

The MILP reformulation proposed for multi-echelon arrangements is ob-
tained by enforcing Eqns. (44)-(45) together with Eqns. (48)-(53). The re-
sulting reformulation is only one reformulation of the logic proposed for multi-
echelon arrangements. Other reformulations are also possible.
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11. Evaluating inventory planning strategies with closed-loop Monte
Carlo simulations

In order to asses the potential benefits of implementing a policy-based pro-
duction planning, we compare the planning decisions obtained by solving the
logic-based SP formulation with the decision obtained from the equivalent two-
stage SP formulation. The challenge for large-scale problem is that the number
of scenarios in multiperiod problems grows exponentially; therefore, we cannot
calculate the REV exactly as we have done with the motivating example in Sec-
tion 7. The alternative is to use the planning strategies in a receding horizon
with the purpose of simulating the sequential implementation of the decision-
making process. The proposed closed-loop Monte Carlo simulations resemble
Economic MPC [34], but our focus is on finite planning horizons and we solve
a stochastic programming problem at each time period.

The scenarios for the SP formulations represent possible values of the ex-
ogenous uncertain parameters, from the current period until the end of the
planning horizon. We assume to have a probabilistic description of these pa-
rameters, which allow us generating possible trajectories using sampling tech-
niques. The multiperiod SP formulations with sampled scenarios can be con-
sidered sample-path optimization problems [35]; the purpose of solving these
sample-path problems is to estimate the optimal planning strategy based on a
reduced set of scenarios.

Four different parameters must be specified for the implementation of the
closed-loop simulations: number of replications, length of the simulation hori-
zon, length of the planning horizon, and sample size for the planning problem.
The number of replications specifies how many closed-loop simulations we run;
a large number of replications is desirable because it allows better estimation
of the simulation expected cost and its variance. The simulation horizon is the
length of the simulation and specifies how many optimization problems we solve
in each replication. The planning horizon is the length of the sample-paths used
as scenarios in the multiperiod formulations; it defines how far into the future we
look when solving the planning problem. Finally, the sample size specifies how
many scenarios we include in the optimization problems; a larger the number of
scenarios tends to produce better approximations of the full problem, but the
sample size is constrained by the computational complexity of the instances.

The closed-loop simulations are used to evaluate the performance of the
proposed formulations for inventory and production planning. The procedure to
estimate the expected performance of these planning strategies has the following
steps:

1. Establish the parameters for the closed-loop simulations.

2. Start a closed-loop simulation (t∗ = 1).

2.1. Observe the state at simulation time (t∗).

2.2. Generate scenarios by randomly sampling paths of the exogenous
uncertain parameters.
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2.3. Formulate and solve the stochastic optimization problem.

2.4. Implement the decisions corresponding to the current simulation time
(t∗).

2.5. Randomly generate the realizations of the exogenous uncertain pa-
rameters for the next time period in the simulation (t∗ + 1).

2.6. Roll the simulation time forward (t∗ = t∗ + 1).

2.7. If simulation time is less than the simulation horizon, go back to Step
2.1. Otherwise, continue to Step 3.

3. If the number of closed simulations is less than the number of replications,
go back to Step 2. Otherwise, continue to Step 4.

4. Calculate the statistics over all replications and terminate.

Fig. 6 shows the trajectory of uncertain parameters in a closed-loop Monte
Carlo simulation, where the past is represented by a unique path and the future
is represented by alternative paths indicating possible scenarios. The simulation
presented in Fig. 6 is performed over five periods (t∗ = 0 to t∗ = 4). At each
period, a stochastic SP problem with a 4-period planning horizon is solved.
Then, time moves forward and uncertainty is revealed.

Figure 6: Trajectory of uncertain parameters in a closed-loop Monte Carlo simulation.

In the following examples, we compare the performance of the planning
decisions obtained from the logic-based SP formulations and the equivalent two-
stage SP formulations. For both of them, we use exactly the same sampled
scenarios in every instance. In addition, we use the same realizations of the
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uncertain parameters in the implementation of the closed-loop simulations. The
mathematical models and the sampling procedure are implemented in AIMMS
4.8.3; all optimization problems are solved using GUROBI 6.0.0 on an Intel Core
i7 CPU 2.93 Ghz processor with 4 GB of RAM.

12. Example with inventories in parallel

This example illustrates the implementation of the two-stage and the pri-
ority policy approaches for inventory planning in production processes with
parallel arrangements. The structure of the network is shown in Fig. 7. The
purpose of the network is to transform raw material (m0) into four products
(m1,m2,m3, and m4) with final demands. The units producing final products
share the same raw material, which creates competition for the replenishment
of inventories. The process network only allows storage of final products.

Raw material supply and final product demands are deterministic. Supply
(St,m0) is constant at 90 ton/period throughout the time horizon. Demand
(Dt,m) for final products is deterministic but time-varying. The demand profiles
are presented in Fig. 8.

Mass balance coefficients (Ai,m) indicating the amount of materials con-
sumed per unit production rate are presented in Table 2; all mass balance
coefficients for the amount of material produced per unit production rate are
equal to one (Bi,m = 1 ∀ i ∈ Iprodm , m ∈Mout

i ). Unit holding costs (Ht,m) and
unit backorder costs (Pt,m) are constant in time; their values given in Table 3.

Unit Ai,m0

i1 1.180
i2 1.355
i3 0.724
i4 0.570

Table 2: Consumption coefficients
(Ai,m0 ) for the example with inven-
tories in parallel.

Material
Ht,m Pt,m

[$ ton/period] [$ ton/period]

m1 0.55 4.40
m2 0.45 3.60
m3 0.65 5.20
m4 0.85 6.80

Table 3: Cost parameters for the example with
inventories in parallel.

Available production capacities (Cξ,t,i) in the processing units are consid-

Figure 7: Structure of the example with an arrangement of parallel inventories.
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Figure 8: Deterministic demands for the example with inventories in parallel.

ered uncertain. Each uncertain parameter is modeled as an independent time-
homogeneous Discrete Time Markov Chain (DTMC) with the purpose of de-
scribing the state-dependent evolution of uncertainty in industrial processes.
The states of the DTMCs characterize the value of the uncertain parameters;
each parameter has three states that imply different available production capac-
ities. Table 4 shows the value of each uncertain parameter according to their
state.

Parameter
State

Low Nominal High

Cξ,t,i1 13.23 14.70 16.17
Cξ,t,i2 32.13 35.70 39.27
Cξ,t,i3 22.68 25.20 27.72
Cξ,t,i4 28.35 31.50 34.65

Table 4: Production capacities according to their DTMC state for the example with inventories
in parallel.

We assume that all uncertain parameters are initially at their nominal values.
The evolution of each DTMCs is characterized with the one-step transition
matrix (Π). The same transition matrix is used to model the evolution of all
production capacities. The transition matrix is given by Eqn. (54).

Low Nominal High

Π =

 0.70 0.25 0.05
0.15 0.70 0.15
0.05 0.25 0.70

 Low
Nominal
High

(54)

It is worth noticing that in a single time period, there are 4 uncertain pa-
rameters with 3 possible outcomes, giving rise to 81 possible combinations. In
a multiperiod problem with 6 time periods there are millions (816) of possible

26



scenarios, which would result in an intractable optimization problem for any
practical purpose.

We compare performance of the two-stage SP and the logic-based SP in-
ventory planning strategies based on 25 closed-loop simulations. At each
period, each strategy solves a stochastic optimization problem with 10 sampled
scenarios and a planning horizon of 6 time periods. In the logic-based SP
formulation, we enforce the priority policy for the parallel arrangement made
up by the four final products (M̃1 = {m1,m2,m3,m4}) in planning periods 2,
3, 4, and 5. It is unnecessary to enforce the policy in the first planning period
because the uncertainty has already been revealed; enforcing the policy in the
last planning period does not bring any benefit because no future periods can
be anticipated. The length of the simulation horizon is set to 12 periods.

Table 5 presents the computational statistics for the two-stage SP formula-
tion and the MILP reformulation of the logic-based SP model. The number of
variables and constraints remain the same throughout the simulations because
we use a receding horizon approach. All MILPs are solved to an optimality gap
of 0.25%.

Statistic
Formulation

Two-stage SP Logic-based SP

Constraints: 1,812 4,204
Continuous variables: 2,460 2,484
Binary variables: 0 976
Instances solved to optimality: 300 300
Mean CPU time of instances [s]: < 1 176 (± 501)

Table 5: Computational statistics of the two-stage SP and the logic-based SP formulations
for the example with inventories in parallel.

Table 5 shows a significant difference in computational complexity of both
models. It is important to remark that the two-stage SP formulation is strictly
a relaxation of the logic-based SP formulation, and it has only a subset of the
variables and constraints. As a consequence, the mean CPU time required to
solve the instances of the two-stage SP model is less than one second; the mean
CPU time for the instances of the logic-based SP model is 176 seconds, with a
standard deviation of 501 seconds.

The results of the closed-loop simulations can be observed in Figs. 9-10,
where the shaded lines represent the cost trajectories for the individual replica-
tions and the solid lines are the averages over all replications. The figures show
similar costs for both approaches, with a slightly higher stockout cost for the
two-stage SP model that can be observed in periods 10 and 11. The trajectories
presented in Figs. 9-10 evidence significant variability in the results obtained
from the implementation of both planning strategies. This variability is inher-
ent to the nature of the problem, because uncertainty in production capacities
constitutes a high risk for stockouts. The main performance metric for the plan-
ning strategies is the expected cost of simulations. Table 6 presents the mean
cost for each planning strategy over all simulations, together with its standard
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deviation and the corresponding service level (type β).

Figure 9: Trajectories of holding and stockout costs obtained from the two-stage SP formula-
tion for the example with inventories in parallel.

Figure 10: Trajectories of holding and stockout costs obtained from the logic-based SP for-
mulation for the example with inventories in parallel.

The results from Table 6 show a 2.7% reduction in the total expected cost
for the logic-based SP model in comparison to the two-stage SP model; the
reduction is obtained from lower stockout costs without increasing the inventory
cost significantly. Although the difference is rather small, the results suggest
that the logic-based SP model is more effective at selecting the materials that are
stored as inventories according to the representation of the future given by the
scenarios. Despite the large variability in the simulation total costs, we can be
confident in the advantages of the logic-based SP model because it consistently
outperforms the two-stage SP model throughout the replications. A comparison
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Metric
Model

Two-stage SP Logic-based SP

Mean inventory cost [$]: 34.26 34.50
Mean stockout cost [$]: 95.54 90.80
Mean total cost [$]: 129.80 126.30
Standard deviation [$]: 110.34 110.69
Service level (β): 0.985 0.986

Table 6: Performance metrics for the two-stage SP and the logic-based SP formulations.

of the total cost for each replication is presented in Fig 11; we observe that the
two-stage SP model only outperforms the logic-based SP model by a negligible
amount in 8 out 25 replications.

Figure 11: Comparison of replication costs for the example with inventories in parallel.

13. Example with inventories in series

We use this example to compare the inventory plan obtained from the two-
stage SP formulation with the plan dictated by the logic-based SP formulation
modeling the multi-echelon inventory policy. The example has been adapted
from the Example 1 presented by Terrazas-Moreno et al. [48], and originally
proposed by Straub and Grossmann [43]. The purpose of the process network
is to transform a single raw material (m0) into one final product (m3). The
network offers three alternative processing paths, from which we identify one
multi-echelon arrangement including both storable materials: M̄1 = {m1,m3}.
The structure of the network and the echelons of M̄1 are shown in Fig. 12.

29



Figure 12: Structure of the example with a multi-echelon arrangement of inventories.

Supply availability (Sξ,t,m0
), available production capacities (Cξ,t,i), and

demand are considered uncertain. Supply and demand are modeled as normally
distributed random variables; their mean values (S̄ξ,t,m0

, D̄ξ,t,m3
) are periodic

functions presented in Fig. 13; their coefficients of variation are set to 15%.

Figure 13: Time-varying normally distributed supply and demand for the example with in-
ventories in series.

The capacity (Cξ,t,i) of each processing unit is modeled as an independent
time-homogeneous Discrete Time Markov Chain (DTMC) with the purpose of
describing probabilistic failures. The DTMCs characterize the states of the units
that can be either working normally (up) or failed (down). Table 7 shows the
value of production capacities according to their state.
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Parameter
State

Up Down

Cξ,t,i1 5 0
Cξ,t,i2 5 0
Cξ,t,i3 7 0
Cξ,t,i4 9 0

Table 7: Production capacities according to the state of units for the example with inventories
in series.

We assume that all units are initially at their up state. The evolution of
each DTMCs is characterized with the one-step transition matrices (Πi) given
by Eqn. (55).

Up Down Up Down

Πi1 =

[
0.97 0.03
0.50 0.50

]
Up
Down

Πi2 =

[
0.95 0.05
0.50 0.50

]
Up
Down

Up Down Up Down

Πi3 =

[
0.96 0.04
0.50 0.50

]
Up
Down

Πi2 =

[
0.93 0.07
0.50 0.50

]
Up
Down

(55)

From the individual states of the processing units, we know that there are
16 different discrete states for the entire system. The entire system could be
characterize as a single DTMC, but it is unnecessary because we assume that
the state transitions for each unit only depend on its own state. In addition to
the discrete states characterizing production capacities, supply and demand are
modeled with continuous distributions; therefore, the total number of scenarios
is uncountable.

The remaining parameters of the example are deterministic; they are given
in Tables 8 and 9. Mass balance coefficients indicating amount of material pro-
duced per unit production rate are all equal to one (Bi,m = 1 ∀ i ∈ Iprodm , m ∈
Mout
i ). Unit holding costs (Ht,m) and unit backorder costs (Pt,m) are constant

in time.

Unit
Material

Ai,m0 Ai,m1

i1 1.087 -
i2 1.111 -
i3 1.176 -
i4 - 1.333

Table 8: Consumption coefficients
(Ai,m) for the example with invento-
ries in series.

Material
Ht,m Pt,m

[$ ton/period] [$ ton/period]

m1 1 -
m3 3 10

Table 9: Cost parameters for the example with
inventories in series.

We compare performance of the two-stage SP and the logic-based SP inven-
tory planning strategies based on 25 closed-loop simulations. At each period,
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both strategies solve a stochastic optimization problem with 10 sampled sce-
narios and a planning horizon of 5 time periods. In the logic-based SP
formulation, we enforce the multi-echelon basestock policy for arrangement M̄1.
The length of the simulation horizon is set to 15 periods.

The computational statistics for the instances of each formulation are pre-
sented in Table 10. All MILPs are solved to an optimality gap of 0.25%.

Statistic
Formulation

Two-stage SP Logic-based SP

Constraints: 1,304 2,204
Continuous variables: 1,750 1,760
Binary variables: 0 450
Instances solved to optimality: 300 300
Mean CPU time of instances [s]: < 1 189 (± 487)

Table 10: Computational statistics of the two-stage SP and the logic-based SP formulations
for the example with inventories in series.

The cost trajectories for the two-stage SP and the logic-based SP models are
presented in Figs. 14-15, respectively. Shaded lines represent the trajectories
for individual replications and solid lines are the averages. The figures show a
trend for the two-stage SP model to produce higher inventory costs; this can be
observed at periods 3, 4, and 5.

Figure 14: Trajectories of holding and stockout costs obtained from the two-stage SP formu-
lation for the example with inventories in series.

32



Figure 15: Trajectories of holding and stockout costs obtained from the logic-based SP for-
mulation for the example with inventories in series.

The trajectories in Figs. 14-15 show significant variability for holding and
stockout cost across replications. Variability in this process network is the result
of random failures that produce high stockout risk. The performance metrics
for the planning models are presented in Table 11.

Metric
Model

Two-stage SP Logic-based SP

Mean inventory cost [$]: 32.30 21.07
Mean stockout cost [$]: 42.33 48.31
Mean total cost [$]: 74.62 69.38
Standard deviation [$]: 59.10 56.34
Service level (β): 0.958 0.952

Table 11: Performance metrics for the two-stage SP and the logic-based SP formulations.

We observe from Table 11 a reduction in the mean total cost obtained from
the logic-based SP model that correspond to 7.20% of the cost obtained from
the two-stage SP model. The reduction is the result of an inventory planning
strategy that is more effective at balancing holding and backorders cost; the
logic-based SP model benefits from an increased coordination between interme-
diate and final product inventory levels.

Finally, in Fig 16 we present the cost obtained for each replication using the
two-stage SP and the logic-based SP planning strategies. The figure shows that
the logic-based SP approach yields a lower cost than the two-stage SP approach
in 19 out of 25 replications. These results clearly illustrate the advantages of
the multi-echelon basestock policy for inventory planning in process networks.
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Figure 16: Comparison of replication costs for the example with inventories in series.

14. Conclusions

In this article, we have proposed a policy-based approach for the stochastic
inventory planning problem in process networks. Our motivation originates
from the effectiveness of policies for inventory management and their appeal
for industrial implementation. Given the difficulty to obtain optimal policies
analytically in process networks, we have developed the logic describing these
policies with the purpose of including them into the production and inventory
planning problem.

We have proposed two sets of logic rules for inventory planning in networks
with parallel and sequential structures. The logic is formulated as a GDP model
that avoids anticipativity in stochastic programing problems and yields the opti-
mal parameters of inventory policies. We implemented the MILP reformulations
of our logic-based SP models in two examples, and compared the results with the
corresponding two-stage SP models. The comparisons were based on closed-loop
simulations that resemble the actual implementation of these planning strate-
gies in an industrial environment. Despite the increase in the computational
complexity of the instances, the examples show a significant improvement in
the inventory plans obtained from the logic-based SP model.

The proposed logic-based SP formulation has the advantage of being com-
pletely flexible with respect to the probabilistic description of the uncertain
parameters. The only requirement for the model is to be able to generate
scenarios describing the evolution of uncertain parameters by any forecasting
method. This feature is specially important for industrial applications in which
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correlation and autocorrelation of the uncertain parameters is very common,
and allows using historical data in the inventory planning model.

The logic developed for inventory planning in process networks with paral-
lel and sequential structures can be extended to address networks of arbitrary
topology with complex uncertainty models. There is an extraordinary potential
for inventory optimization in these networks because their complexity conceals
the most effective planning strategies. This contribution offers a novel approach
for a very challenging problem particular to the process industry.
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